Prehistoric burnt flint mounds and later activity at Hammonds Mill Farm, Burgess Hill, West Sussex

By Chris Butler

INTRODUCTION

Hammonds Mill Farm is located to the south of Burgess Hill (TQ 301175) adjacent to the Heron Stream, a tributary of the River Adur (Figs 1 & 2). The underlying geology is Wealden Clay with a drift deposit of 2nd River Terrace Gravel.

In June 2000, Archaeology South-East carried out an archaeological evaluation in advance of the excavation of a lake at Hammonds Mill Farm, Burgess Hill (Littlewood 2000). The evaluation established the presence of old stream channels, but did not locate any archaeological deposits or finds. On the commencement of groundwork in July 2000, John Mills, the Assistant County Archaeologist for West Sussex, asked the Mid Sussex Field Archaeological Team (MSFAT) to undertake a watching brief.

During a visit to the site in mid-July Lawrence Gaston identified a spread of fire-fractured flint at the western end of the excavated lake and recovered a Mesolithic flint pick from the surface. He also recovered numerous sherds of Roman and medieval pottery from an area to the north of the farm drive, where the topsoil had been stripped in advance of the dumping of excess material from the lake excavations.

On 16 July 2000, members of MSFAT carried out an excavation to recover and record the archaeological deposits that had been exposed. Subsequently the landowner discovered wood and bone during further machining, so MSFAT returned to the site for a further three days in late July and August 2000.

THE BURNT FLINT MOUNDS

On the southwestern edge of the newly excavated lake (Fig. 2; Area 1), a slight mound consisting of a spread of burnt flint had been exposed. An area was cleaned, recorded, and then trowelled to determine the extent of the feature. The mound survived as a layer of burnt flint 200 mm thick (Context 103) mixed with an orange-brown silty clay (Fig. 3). Owing to its truncation its full extent could not be determined, it could, however, be seen in the edge of the lake for over a distance of 6.8 m. A small number of worked flints, and a few sherds of Late Bronze Age/Early Iron Age pottery came from Context 103 and from the soil (Context 102) immediately above it. Below the mound at its northwestern end, a small oval pit measuring 0.91 m by 1.22 m and 160 mm deep was filled with small fire-fractured flint pieces (Fig. 3, Context 118). A single sherd of Late Bronze Age/Early Iron Age pottery and a single flint flake were found in the pit fill. Bulk soil samples were taken from the pit for wet-sieving, and a pollen sample was taken from Context 103.

During the second phase of work, a further mound of burnt flint, 100 mm thick and covering an area of approximately 13 × 5 metres, was located in the northwest part of the new lake (Fig. 2). Although it had been badly disturbed and truncated by machining, a section was excavated through this feature, and a few pieces of worked flint were recovered from the mound. Although this feature resembled a burnt flint mound, no trough or other contemporary features were associated with it.
Hammonds Mill Farm: site location.

Fig. 1. Hammonds Mill Farm: site location.
Fig. 2. Hammonds Mill Farm: site plans.
Fig. 3. Hammonds Mill Farm, Areas 1 and 3: sections and plans.
THE ROMAN AND MEDIEVAL ACTIVITY

In an area to the north of the farm drive topsoil stripping had revealed a number of features (Fig. 2; Area 2). Four shallow circular and oval features, all of which had been heavily truncated, were excavated (Fig. 4). Two sherds of medieval pottery were recovered from the top of Cut 105, and five small pieces of fired clay were found in the fill of Cut 117, but otherwise the fills of these features were sterile.

To the west of these features a broad linear ditch measuring 1.86 m wide and running north–south (Context 115) was located. A section excavated through it showed it to be 200 mm deep with a single fill, although its profile suggested that it may have been recut. The ditch was very indistinct: a second section 5 m further south failed to locate it, and whilst it could be traced a little way further north it soon petered out. The only artefact recovered from the fill of this ditch was a single piece of fire-fractured flint.

A second linear feature (Fig. 4, Context 108) running east-west produced part of a Roman pot from its upper fill. A number of sections were cut through this feature, showing that its profile became narrower and deeper towards the west end. The fill also produced a single piece of Roman tile, some fragments of fired clay, a single sherd of samian pottery, and some residual flintwork and fire-fractured flint. The western terminal of this linear feature was fully excavated, but its east end could not be traced at the eastern edge of the site, probably due to its truncation.

In Area 3 (Fig. 2) a deep pool had been excavated for the lake and had revealed a palaeochannel. A trench excavated by hand across the palaeochannel and 4 × 2 m in size, revealed a complicated series of sand, clay and gravel layers (Fig. 3), some of which contained pieces of animal bone and worked wood. A single sherd of Saxon pottery was recovered from the top of these deposits and a few sherds of Roman pottery were also found. At the base of these layers was a silty clay layer (Context 135) containing large quantities of natural wood pieces, together with leaf and other organic material. A flint core-rejuvenation flake was recovered from this layer.

Further excavation for the lake a few metres to the west of this trench revealed the same palaeochannel. Although it had been severely truncated, a section 7 m long was excavated across the palaeochannel, so that a complete section from bank to bank could be recorded (Fig. 3: Trench 5). A sandy clay layer (Context 138) on the south edge of the channel and below the main fill produced animal bone and wood, whilst a piece of Roman pottery and a piece of Roman tile were recovered from a silty clay and flint gravel layer on the north side (Context 139).

The stratigraphy in Area 3 was extremely complex: there were subtle changes in the different layers within the palaeochannel. Some of the layers peter out (e.g. Contexts 130 and 137) or merge into other layers (e.g. Contexts 123 and 130) between the sections recorded in the main trench in Area 3 and in Trench 5, Area 3, (Fig. 3), whilst some layers from which artefacts or samples were recovered do not appear in either section (e.g. Contexts 128 and 136).

THE FINDS

Finds recovered during the surface collection from Area 2 and from excavated contexts across the site are discussed below.

PREHISTORIC POTTERY

All the prehistoric pottery was recovered from Area 1, and was identified by Sue Hamilton, who provided the following comments. There were three fabrics present:

1. Grog-tempered with some shell/siltstone. Some evidence of burnishing. One sherd has an everted rim. Early first century BC.
2. Tempered with burnt flint. Late Bronze Age/Early Iron Age.
3. Sand-tempered with occasional grog inclusions. Bronze Age/Iron Age

In Area 3 (Fig. 2) a deep pool had been excavated for the lake and had revealed a palaeochannel. A trench excavated by hand across the palaeochannel and 4 × 2 m in size, revealed a complicated series of sand, clay and gravel layers (Fig. 3), some of which contained pieces of animal bone and worked wood. A single sherd of Saxon pottery was recovered from the top of these deposits and a few sherds of Roman pottery were also found. At the base of these layers was a silty clay layer (Context 135) containing large quantities of natural wood pieces, together with leaf and other organic material. A flint core-rejuvenation flake was recovered from this layer.

Further excavation for the lake a few metres to the west of this trench revealed the same palaeochannel. Although it had been severely truncated, a section 7 m long was excavated across the palaeochannel, so that a complete section from bank to bank could be recorded (Fig. 3: Trench 5). A sandy clay layer (Context 138) on the south edge of the channel and below the main fill produced animal bone and wood, whilst a piece of Roman pottery and a piece of Roman tile were recovered from a silty clay and flint gravel layer on the north side (Context 139).

The stratigraphy in Area 3 was extremely complex: there were subtle changes in the different layers within the palaeochannel. Some of the layers peter out (e.g. Contexts 130 and 137) or merge into other layers (e.g. Contexts 123 and 130) between the sections recorded in the main trench in Area 3 and in Trench 5, Area 3, (Fig. 3), whilst some layers from which artefacts or samples were recovered do not appear in either section (e.g. Contexts 128 and 136).

Table 1. Prehistoric pottery (number of sherds).

<table>
<thead>
<tr>
<th>Context</th>
<th>Fabric 1</th>
<th>Fabric 2</th>
<th>Fabric 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>7</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>103</td>
<td>15</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

ROMAN AND MEDIEVAL POTTERY

I am grateful to Malcolm Lyne who identified and commented on the Roman and medieval pottery.

The Roman pottery from the Area 2 surface collection comprised six grey ware sherds including a rim from a New Forest necked storage jar (AD 270–350) and one East Sussex Ware sherd.

A group of 67 sherds (weighing 274 g) from the same Roman sandy grey ware vessel were found in the top of Ditch
Fig. 4. Hammonds Mill Farm, Area 2: sections and plans.
108 in Area 2. This fabric, with large black, ferrous inclusions, is similar to Hardham/Wiggonholt fabrics but probably derives from a different source (AD 70–200). A single abraded sherd of central Gaulish samian came from the same context.

Other Roman pottery was found in the palaeochannel in Area 3. It included two grey ware sherds from Context 131. One of them was from a second-century flagon, and single grey ware sherds came from Contexts 132 and 139. All of these are likely to be Hardham products and could date from AD 70–200. A single sherd of Middle Saxon pottery with frequent flint inclusions similar to Fabric G at Friars Oak (Butler 2000b), was found in Context 130 in Area 3.

The surface collection in Area 2 also recovered 17 Saxo-Norman sherds, together with 70 twelfth- to fourteenth-century sandy ware sherds and 11 twelfth- to thirteenth-century coarse sandy wares with frequent flint inclusions, all of which are likely to have come from cooking-pots. There were also two sherds from thirteenth- to fourteenth-century green-glazed jugs and a single sherd from a tripod pitcher. Context 106 in Area 2 produced two medieval sherds in a sandy fabric with occasional small flint inclusions.

PREHISTORIC FLINTWORK
An assemblage of 82 pieces of worked flint was recovered (Table 2), of which 36 pieces came from the surface collection in Area 2, and the remainder from excavated contexts.

A single heavily orange-patinated flake from Context 124 may be Palaeolithic and may have derived from the 2nd river terrace gravels. Mesolithic pieces include a soft hammer-struck bladelet, two crested blades, a core-rejuvenation flake, a few hard hammer-struck flakes with evidence of platform preparation and a small pick.

The remainder of the assemblage comprised predominantly hard hammer-struck flakes, fragments and shattered pieces and, together with the three scrapers, is all likely to date to the Bronze Age. Of these, seven flakes, two fragments and four shattered pieces were recovered from the first burnt flint mound, whilst a single flint flake was found in its associated pit. The second mound produced two flakes, a chip, a fragment and a shattered piece. Burnt mounds rarely produce many pieces of worked flint. The only other recently excavated example in Sussex was at Potlands Farm, Patching, where the burnt flint mound produced 26 flakes, two cores and a side scraper (Stevens 1997).

BUILDING MATERIAL
Pieces of Roman tile were recovered during the Area-2 surface collection, together with an over-fired fragment of tegula from the upper fill of Ditch 108. A single Roman tile fragment was found in Context 139 in Area 3. A number of daub-like fired clay pieces were also recovered from various contexts in Area 2.

A few fragments of medieval and post-medieval tile were found during the surface collection survey.

FIRE-FRACTURED FLINT
Owing to the large quantities of fire-fractured flint in the burnt flint mounds, only small samples were taken. Other contexts across the site produced small numbers of fire-fractured flints. Most of the fire-fractured flint pieces were of a small size (average weight <4 g).

THE ANIMAL BONE by Patricia Stevens
Some 70 bones from nine contexts were examined (Table 3). From these remains four species could be identified with certainty: cattle, horse, sheep and pig, and two groups of material grouped by size and recorded in Table 3 as LAR (Large ungulate) and SAR (Small ungulate). All bones were examined for butchery, pathology, gnawing and erosion. Teeth-wear data were recorded following Grant (1982). Measurements were taken wherever possible following those recommended in the AML Manual (Jones et al. nd) or by von den Driesch (1976).

As can be seen in Table 3, cattle are the predominant species present, representing 50% of the assemblage, with horse (13%), then sheep (6%) and pig (3%) all represented by smaller numbers. Unidentified bones comprise 28% of the assemblage. The fusion data suggests that the cattle were aged between 12 months and 4 years, and the horse remains indicate an age of between 12 and 18 months. The two sheep mandibles can be aged around 4 years, and one of the pig bones suggests an age of less than 2 years.
It is apparent that many of the cattle and horse bones were left lying around where they could be scavenged by dogs as 20% of the bones had been gnawed. Some 7% of the assemblage, mostly cattle bones, but also single examples of horse and sheep, exhibited evidence of butchery. Six bones, mostly from Context 130, showed evidence of erosion.

The predominance of cattle was also noted at Friars Oak, where they represented 16.7% of the assemblage (Butler 2000b, 42). Sheep and pig were represented at Friars Oak in proportions similar to those at Hammonds Mill, although horse only made up 1% of the Friars Oak assemblage. It was also noted at Friars Oak that many of the bones, especially cattle bones, had been gnawed.

WATERLOGGED WOOD AND CHARCOAL
by Rowena Gale

Introduction
A quantity of worked wood was recovered from the palaeochannel in Area 3. Charcoal was also present, albeit sparsely, in Context 130 in Area 3 and in a possible Late Bronze Age/Early Iron Age (Context 103) in Area 1. Species identification was undertaken on 17 samples of waterlogged wood from Area 3 and on samples of charcoal from Areas 1 and 3. Drawings and photographs of the pieces of worked wood have been retained in the archive.

Materials and methods
With the exception of sample W9 (Context 130, which was compressed and degraded), the waterlogged wood was well-preserved and firm in texture. Charcoal fragments measuring >2 mm in cross-section were considered for species identification. The charcoal was sparse and too fragmented to include intact radial segments of roundwood. The samples were prepared for examination using standard methods (Gale & Cutler 2000).

Results
The taxa identified from the waterlogged wood are given in Table 4, with brief descriptions of the wood samples in Table 6. The charcoal identifications are shown in Table 5. Where anatomical differences between related genera are too slight to allow secure identification to genus level, group names are given. These include members of the Pomoideae (Crataegus, Malus, Pyrus and Sorbus). Where a genus is represented by a single species in the British flora, this is named as the most likely origin of the wood, given the provenance and period. It should be noted, however, that it is rarely possible to name individual species from wood features and exotic species of trees and shrubs were introduced to Britain from an early period (Godwin 1956; Mitchell 1974). Classification follows that of *Flora Europaea* (Tutin et al 1964–80).

Discussion
Late Bronze Age/Early Iron Age. Area 1
The taxa identified included oak (*Quercus* sp.) heartwood, maple (*Acer campestre*) and, probably, hazel (*Corylus avellana*).

Roman and medieval. Area 3
The bulk of the worked wood was excavated from the palaeochannel. The wood (Table 6) included a mixture of oak (*Quercus* sp.) plank-like pieces (Contexts 124 and 130), squared oak stakes (Context 124), a long section of quartered oak roundwood (Context 136 – similar to Context 130) and irregularly-shaped pieces of oak and blackthorn (*Prunus spinosa*) that were difficult to attribute to any particular function (Context 130). Tool-marks present on many of the pieces indicated either that the piece had been cut from the main tree or that lateral branches had been removed, or they demonstrated shaping to form the item required (e.g. notches). Context 124 also contained a group of wood chips (oak, *Quercus*, and alder, *Alnus glutinosa*). Pieces of thick bark were present in Contexts 127 and 130 and although these remain unidentified, the deeply fissured cork suggests oak as a possibility. A triangular, notched piece of oak (*Quercus* sp.) from Context 128 (below Context 122), was poorly preserved and partially burnt. It possibly originated from roundwood.

Three lengths of roundwood all of which retained bark were recovered from Contexts 137 and 138 (Table 6). Samples W10, maple (*Acer*), and W11, oak (*Quercus*), displayed tool-marks. W11 was particularly interesting: the piece was forked at one end, and one lateral had been removed, leaving a short stump, while the other was much longer and had been sharpened to form a point or prong. The third piece of roundwood, W12, identified as maple, may have been worked to take advantage of its natural curvature, although its purpose was not clear. A single piece of oak (*Quercus* sp.) charcoal was also present in Context 136, together with a burnt epidermal or bark cylinder from a narrow stem, diameter 2 mm. There was insufficient structure to enable identification of the latter.

Two pieces of associated roundwood, <W13>, Context
135, were identified as a member of the Pomoideae. The indigenous members of this group are anatomically similar and include hawthorn (*Crataegus*), rowan (*Sorbus aucuparia*), whitebeam (*S. aria*), service tree (*S. torminalis*), apple (*Malus*) and pear (*Pyrus*). Both pieces retained bark, and it is feasible that the two originated from a single branch, about 17 years in age. Tool marks were visible on the larger piece where lateral branches had been cut off.

There was no evidence in the immediate vicinity to indicate either how or why these pieces of worked wood came to be in the old stream bed in Area 3, or the function of the individual pieces of worked wood. The presence of wood chips (Context 124) and bark (Contexts 127 and 130) could imply either tree-felling to clear the area or the conversion of lumber to timber. Perhaps the area was used temporarily during the Roman and Saxon periods to produce wooden items from local timber or, alternatively, the wood could represent waste or recycled materials assembled as firewood.

The relatively narrow range of taxa identified reflects the selection process by which the material was chosen for each item. Several pieces of the worked wood had structural connotations (i.e. possible planks, posts or stakes) and the use of oak for many of these tends to add weight to the suggestion of structural origins.

Table 5. Charcoal.

<table>
<thead>
<tr>
<th>Context</th>
<th>Date</th>
<th>Acer</th>
<th>Corylus</th>
<th>Quercus</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>Bronze Age/Early Iron Age</td>
<td>1</td>
<td>cf. 2</td>
<td>3 heartwood</td>
<td>-</td>
</tr>
<tr>
<td>124</td>
<td>Roman/Saxon</td>
<td>-</td>
<td>-</td>
<td>1 heartwood</td>
<td>1 bark cylinder, diameter 2 mm, unidentified</td>
</tr>
</tbody>
</table>

Table 6. Waterlogged wood.

<table>
<thead>
<tr>
<th>Context</th>
<th>Sample</th>
<th>Identification</th>
<th>Description and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>W1</td>
<td>Quercus sp.</td>
<td>Oak plank with 2 notches. 532 × 66 × 20 mm</td>
</tr>
<tr>
<td></td>
<td>W2</td>
<td>Quercus sp.</td>
<td>Base of square-cut oak stake, heartwood, tool marks on lower end, 356 × 34 × 30 mm</td>
</tr>
<tr>
<td></td>
<td>W4</td>
<td>Quercus sp.</td>
<td>Oak heartwood. ? piece from worked plank, roughly oblong, 292 × 104 × 18 mm</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Quercus sp.</td>
<td>6 wood chips: 5 × oak, 1 × alder</td>
</tr>
<tr>
<td>127</td>
<td>-</td>
<td>-</td>
<td>2 pieces of unidentified bark from a wide branch or trunk, largest piece 130 × 60 × 10 mm; the bark deeply fissured, similar to that of oak</td>
</tr>
<tr>
<td>128</td>
<td>W6</td>
<td>Quercus sp.</td>
<td>Oak, probably roundwood, but in poor condition, partially burnt; roughly triangular section of wood with notch and other signs of working, 180 × 24 × 34 mm</td>
</tr>
<tr>
<td>130</td>
<td>W5</td>
<td>Quercus sp.</td>
<td>Slightly curved oblong piece of oak wood, surface abraded, 172 × 70 × 28 mm; possibly a quartered section from roundwood</td>
</tr>
<tr>
<td></td>
<td>W5</td>
<td>Quercus sp.</td>
<td>Oak heartwood, radial segment of roundwood, 160 × 60 × 25 mm</td>
</tr>
<tr>
<td></td>
<td>W7</td>
<td>Quercus sp.</td>
<td>Oak heartwood, base of wide plank or possible stake, 480 × 150 × 65 mm</td>
</tr>
<tr>
<td></td>
<td>W8</td>
<td>Quercus sp.</td>
<td>Oak heartwood, radial wedge, 370 × 180 × 70 mm</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Quercus sp.</td>
<td>2 × oak heartwood; 2 × blackthorn; 5 × deeply-fissured bark, unidentified</td>
</tr>
<tr>
<td></td>
<td>W9</td>
<td>-</td>
<td>Wood structure too degraded to identify; radial wedge from wide branch or trunk, 100 × 130 × 40 mm</td>
</tr>
<tr>
<td>Top of 135</td>
<td>W3</td>
<td>?Acer sp.</td>
<td>Very degraded piece of wood, now fragmented, length 260 mm.</td>
</tr>
<tr>
<td>135</td>
<td>W13</td>
<td>Pomoideae</td>
<td>2 pieces of roundwood from a member of the hawthorn/rowan group a) straight length, 17 growth rings, bark in situ, 180 × 30 mm; b) 2 severed lateral branches at one end, the other end with tool marks, length 390 mm, max. diameter 80 mm; bark in situ</td>
</tr>
<tr>
<td>136</td>
<td>W15</td>
<td>Quercus sp.</td>
<td>Oak heartwood, length of quartered roundwood, now fragmented into several pieces; sapwood absent, minimum age range about 23 years</td>
</tr>
<tr>
<td>137</td>
<td>W10</td>
<td>Acer sp.</td>
<td>Length of maple roundwood, one end cut with oblique tool mark, 22 growth rings, 320 × 70 × 42 mm</td>
</tr>
<tr>
<td></td>
<td>W11</td>
<td>Quercus sp.</td>
<td>Oak roundwood, natural branch, one end forked, 9 growth rings, 548 × 40, narrowing to 26 mm; orked end — one lateral severed and short, the other longer and sharpened to a point or prong; bark in situ except where sharpened</td>
</tr>
<tr>
<td>138</td>
<td>W12</td>
<td>Acer sp.</td>
<td>Maple roundwood, crooked, with possible working to take advantage of natural bend, roughly oval in section, 440 × 46/70 narrowing to 44/26 mm; minimum growth rings: 37</td>
</tr>
</tbody>
</table>
PLANT REMAINS by Pat Hinton

Soil samples were taken from a number of contexts during the excavation and processed by flotation. The results are shown in Table 7.

The sample from the fill of Pit 118 in Area 1 produced only a small quantity of charcoal. The samples from Area 3 were from Contexts 123-127 & 135. Context 135 comprised mainly uncharred woody debris. Hazel (Corylus avellana) nutshell fragments and charcoal were present, but only one other seed was seen. The other two contexts included uncharred seeds and fruits with many wood and twig fragments. Their preservation was poor owing to their burial in wet conditions.

The seeds, fruits and nuts are listed in Table 7 under the plants' more usual habitats, but these are not necessarily exclusive. Also where specific identification is not possible the preferred habitat is uncertain e.g. corn mint (Mentha arvensis) grows in damp grassy places but water mint (M. aquatica) in wetter fields, marshes and ditches. Wood avens (Geum urbanum) grows usually in damp hedgerows but water avens (G. rivale) more commonly at stream sides. Ragged robin (Lychnis flos-cuculi) however, is very much a plant of marshy places and fine-leaved water dropwort (Oenanthe aquatica) always by ditches and ponds. Water plantain (Alisma plantago-aquatica) and pond weeds (Potamogeton sp.) are true aquatics, rooted in water.

Table 7. Plant remains.

<table>
<thead>
<tr>
<th>Area</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>Pit 118</td>
<td>Layer</td>
</tr>
<tr>
<td>Context</td>
<td>119</td>
<td>123</td>
</tr>
<tr>
<td>Sample weight</td>
<td>12 g</td>
<td>2 kg</td>
</tr>
<tr>
<td>Flot weight</td>
<td>1 g</td>
<td>29 g</td>
</tr>
</tbody>
</table>

Grass/waste/disturbed ground
- *Ranunculus acris/bulbosus* Meadow or bulbous buttercup
- *Ranunculus cf. repens* Creeping buttercup
- *Urtica dioica* L. Common nettle
- *Chenopodium album* L. Fat hen
- *Atriplex* sp.
- *Rumex crispus* - seed + perianth Curled dock
- *Rumex* sp.
- *Torilis japonica* (Houtt.) DC Upright hedge-parsley
- *Apiaceae indet.* Carrot family
- *Sonchus cf. oleraceus* Smooth sow-thistle

Damp places
- *Geum rivale/urbanum* Water or wood avens
- *Lychnis flos-cuculi* L. Ragged robin
- *Oenanthe aquatica* (L.) Poir Fine-leaved water-dropwort
- *Lycopus auriculatus* L. Gypsy wort
- *Mentha arvensis/aquatica* Corn or water mint
- *Carex cf. hirta* Hairy sedge
- *Carex sp.* Sedges

Streams/ditches
- *Alisma plantago-aquatica* L. Water plantain
- *Potamogeton* sp. Pond weed
- *Quercus sp. - nut (acorn)* Oak
- *Corylus avellana* L. - nuts - nutshell fragments Hazel
- *Rosa sp. - seed - thorn* Rose
- *Rubus fruticosus L. agg.* Bramble
- *Prunus spinosa* L. Sloe
- *Stachys cf. sylvatica* Hedge woundwort
- *Sambucus nigra* L. Elder
- *Wood and bark fragments, tree buds, etc.* 30 g c. 450 g 675 g
- *Charcoal* c. 1 g
Oak (*Quercus* sp.), hazel (*Corylus avellana*), rose (*Rosa* sp.), bramble (*Rubus fruticosus* agg.), sloe (*Prunus spinosa*) and elder (*Sambucus nigra*) are common trees or shrubs of hedgerow or scrub, and the whole assemblage suggests an area of hedges and ditched damp or wet grassland.

DISCUSSION

The work at Hammonds Mill Farm has shown that the streamside was being exploited from the Mesolithic through to the Saxon periods. The similarities between elements of this site and the site at Friars Oak, Hassocks (Butler 2000b) are significant in demonstrating the importance of streamside locations for the concentration of past activities. The excellent preservation of the archaeological remains has been highlighted at both sites.

The two spreads of fire-fractured flint at Hammonds Mill Farm, probably dating to the end of the Bronze Age, may be the remains of burnt flint mounds commonly associated with cooking activities. Few burnt flint mounds have been excavated in Sussex, although many burnt stone mounds are known from Ireland and elsewhere in Britain. One example of a burnt flint mound in Sussex was recently excavated at Potlands Farm, Patching (Stevens 1997). These mounds are normally crescent-shaped with a trough located within the open end of the crescent. Unfortunately, the two burnt flint mounds at Hammonds Mill Farm had been severely truncated by the machining for the new lake. It was therefore impossible to determine either their original size or whether they had associated trough features, although it is possible that Pit 118 in Area 1 may have been a trough. Bronze Age activity was recorded at Friars Oak, and also at Maltings Farm, Burgess Hill (Butler 1998) to the north of this site (Fig. 1).

In the Roman and Saxon periods there may have been some exploitation of the stream area, with bone, worked wood, pottery and tile being discarded into the stream, which suggests that there may have been a settlement nearby. The possible Roman field boundary (Ditch 108) in Area 2, hints at a possible farmstead, perhaps on the south-facing slope to the north of the site or near the spring to the northeast. This Roman activity reinforces the evidence from the Edwards High Vacuum site on the southern outskirts of Burgess Hill (Sawyer 1999), where Roman remains were also found (Fig. 1). The Roman settlement at Hassocks, some 2 km to the south appears to be limited to the Greensand ridge and does not extend further north (Butler, forthcoming). However, it seems likely that there were farming settlements located further north alongside the London-Brighton Roman road, of which this site may have been one. The Saxon C14 date and the single sherd of Middle Saxon pottery hints at Saxon activity along the streamside, which also fits the pattern found at Friars Oak. At Friars Oak, as well as streamside activity, perhaps including management of the watercourse, evidence for Middle Saxon settlement was also found (Butler 2000b). As the Hammonds Mill site is further downstream from Friars Oak, it is, of course, possible that the Saxon wood, pottery and some of the other material has been washed downstream from the Friars Oak site.

Acknowledgements

I would like to thank the owner of Hammonds Mill Farm, Mr. Russell, for allowing us to carry out the work. John Mills, Assistant County Archaeologist for West Sussex made the initial arrangements for the watching brief. Lawrence Gaston, Michael Fairbrother, Bruce Milton, Jo Miller, Dave Atkin and Claire Goodey, together with other members of MSFAT, took part in the fieldwork. I would also like to thank the specialists mentioned above for their reports and comments. Sue Rowland prepared Fig. 1.

Author: Chris Butler, Rosedale, Berwick, Polegate, East Sussex, BN26 6TB.

REFERENCES

— — forthcoming. The Roman Settlement at Hassocks.

