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3 10 8.93% 1.29% 1.71% 0.81
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The results (Tables RC1–4) are conventional radiocarbon ages (Stuiver and Polach 1977), and are quoted in 
accordance with the international standard known as the Trondheim convention (Stuiver and Kra 1986).

The calibrations of these results, which relate the radiocarbon measurements directly to the calendrical time 
scale, are given in Tables RC1–4 and in Figures RC1–4.  All have been calculated using the datasets pub-
lished by Reimer et al (2013) and the computer program OxCal v4.2 (Bronk Ramsey 1995; 1998; 2001; 2009).  
The calibrated date ranges cited are quoted in the form recommended by Mook (1986), with the end points 
rounded outward to 10 years.  The ranges in Tables RC1–4 have been calculated according to the maximum 
intercept method (Stuiver and Reimer 1986); the probability distributions shown in Figures 1–4 are derived 
from the probability method (Stuiver and Reimer 1993).

terminus post quem for its digging of 380–170 cal BC 
15N of the sample suggested the animal consumed coastal and 

salt-marsh plants (Britton et al 2008).  



mulation rate (yr/cm) shows a relatively uniform rate for peat deposition.

Five samples, four single Phragmites macrofossils and a ‘bulk’ peat sample were submitted for dating (Table 
c 

0.92km offshore at Stolford. The monolith was taken from a vertical section of a small pit that was excavated 
into the peat outcrop, and demonstrated that the offshore peat shelf was overlying some silty clays   Age-
depth modelling will provide a useful comparison to the timing of peat development at other locations within 
the local foreshore and samples taken from the regressive contact will complement pollen, diatom and plant 
macrofossil analysis, thus providing temporal information relating to changes in the local vegetative environ-
ment.  

The Phragmites 

fragment (UBA-27978) of horizontally bedded Phragmites ( Phrag-
mites fragment might be expected to be the youngest constituent part of the 1cm slice of peat from this depth 
then this discrepancy is not unexpected and as such a weighted mean of all three determinations has been 
calculated as providing the best estimate for the age of deposit (7065±31 BP).

at 1.5cm (Fig RC7, middle)

The posterior for the memory indicates that our prior belief of a high correlation between peat accumulation 
at a distance of 1cm (approximately equivalent to 10 years) is not entirely accurate. The lower correlation 
(compare the prior and posterior in Fig RC7 (right)) possibly suggests a higher than expected variability. On 
the other hand, the average distribution of all accumulation rates is quite similar to the (prior) distribution (Fig 

information on accumulation rates. 

The age-depth model (Fig RC7) estimates that the start of peat accumulation (equivalent to a terminus ante 
quem 8030–7820 cal BP (95% probability).  Peat accumula-
tion ended in 7875–7730 cal BP (95% probability).  

hazenults and an acorn) from STFD14 Environmental sample 3 (STFD14ES3). The sample was collected 
c 0.3km offshore. 

Age-depth modelling of this short 24cm sequence would it is hoped provide a useful comparison to the timing 
of peat development at other locations within the local foreshore and together with pollen, diatom and plant 

The age-depth models shown in Figures RC5 and 7–8 were derived from Bacon (Blaauw and Christen 2011) 
using IntCal13 (Reimer et al 2013).  Bacon is Bayesian age-depth modelling software used to reconstruct 
accumulation histories for deposits by combining radiocarbon dates with prior information – other Bayes-
ian age-depth software includes Bchron (Haslett and Parnell 2008), Bpeat (Blauuw and Christen 2005, and 
OxCal (Bronk Ramsey 2008; Bronk Ramsey and Lee 2013).  Parnell et al (2011) provides information on the 
background, workings, and results obtained from OxCal, Bchron, and Bpeat, and Blaauw and Christen (2011) 
provide a comparison of the output from Bacon, OxCal, and Bchron.

All age-depth models produce estimates of accumulation rates. The simple connection of the mid-points of 
dated levels using linear sections (Blaauw, 2010), for example assumes linear accumulation between each 
dated level, and that changes in accumulation rate took place abruptly and exactly at the dated depths.  Prior 
information in the form of assumptions about the accumulation rate of a deposit and its variability over time 
are taken into account explicitly in Bacon.  Thus information on the expected deposition time for a region can 

et al 2012). 

The main objective for dating samples from BH19 were to establish the timing, and accumulation rates, of the 
lower local organic formation to enable age-depth modelling of part of the local stratigraphic sequence. The 
chronology will be used with pollen, diatom and plant macro analysis to better inform our understanding of the 
timing of local early to mid-Holocene environmental changes, and how they compared to changes at other 

Radiocarbon samples
Five samples, four single Phragmites macrofossils and a ‘bulk’ peat sample were submitted for dating (Table 
RC2).  One of the duplicate Phragmites -
cient carbon during pretreatment.  Measurements on the humic and humin fractions of the peat sample from 

mean (5261±22 BP) has been taken as providing the best estimate for the age of the deposit. 

The accumulation rate prior consists of a gamma distribution (Fig RC5, left panel), that is much like a normal/
-

thickness at 1.5cm.   

The posterior for the memory indicates that our prior belief of a high correlation between peat accumulation 
at a distance of 1cm (approximately equivalent to 20 years) is not entirely accurate. The lower correlation 
(compare the prior and posterior in Fig RC5 (right) possibly suggests a higher than expected variability. On 
the other hand, the average distribution of all accumulation rates is quite similar to the (prior) distribution). 

accumulation rates. 

6460–
6055 cal BP (95% probability) and ended in 6110–5925 cal BP (95% probability).  The plot (Fig RC6) of accu-
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macrofossil analysis, provide additional information regarding the timing of particular environmental changes 
that occurred in the local area. 

at 1.5cm (Fig RC8, middle)

The posterior for the memory indicates that our prior belief of a high correlation between peat accumulation 
at a distance of 1cm (approximately equivalent to 20 years) is not entirely accurate. The lower correlation 
(compare the prior and posterior in Fig RC8 (right)) possibly suggests a higher than expected variability. On 
the other hand, the average distribution of all accumulation rates is quite similar to the (prior) distribution (Fig 

information on accumulation rates. 

7455–
7002 cal BP (95% probability).  Peat accumulation ended in 6825–6615 cal BP (95% probability)
OD.
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Lab Number Material Context Radiocarbon 
Age (BP)

13C 
(‰)

15N 
(‰) C:N

Calibrated date 
-

dence)

SUERC-58166 Animal bone, Bos? sp., 
proximal end of left tibia 

the possible ring-ditch, found 
within a distinct context at the 
base of the feature

2204±31 7.2 3.3 380–170 cal BC

Laboratory 
Number Sample reference Material Radiocarbon 

Age (BP)
13C 

(‰)

Calibrated 
Date

-
dence) – cal 
BP

SUERC-57809 Peat, humic acid 5219±30
SUERC-57810 Peat, humin 5302±30

5261±22 6180–5940
Phragmites (single fragment) 
horizontally bedded – 100mg

-
cient carbon

UBA-27975
Phragmites (four fragments, 
?originally one), horizontally 
bedded – 100mg

5368±47 6290–5990

SUERC-57814 Phragmites (horizontally bed-
ded one fragment – 400mg

5367±30 6280–6010

UBA-27976 Phragmites, (single fragment) 
horizontally bedded – 228mg

5431±45 6310–6120
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Laboratory 
Number Sample reference Material Radiocarbon 

Age (BP)
13C 

(‰)

Calibrated 
Date

-
dence) – cal 
BP

SUERC-57872 Corylus avellana nut 5931±27 6850–6670
UBA-27981 Quercus acorn 6120±50 7170–6860
SUERC-57873 Corylus avellana nut 6086±27 7150–6880

UBA-27982 Phragmites (single fragment), 
horizontally bedded, 126mg

6190±47 7250–6950

SUERC-57877 Phragmites, single fragment, 
horizontally bedded, 252mg

6225±28 7250–7010

UBA-27983 Phragmites, single fragment, 
horizontally bedded, 173mg

6278±48 7310–7220

Laboratory 
Number Sample reference Material Radiocarbon 

Age (BP)
13C 

(‰)

Calibrated 
Date

-
dence) – cal 
BP

SUERC-57871
Phragmites leaf (horizontally 
bedded) (single fragment), 
190mg

7002±29
7940–7750

UBA-27977
Phragmites leaf (single frag-
ment) horizontally bedded, 
105mg

7059±52
7980–7780

Phragmites leaf (single frag-
ment), horizontally bedded, 
119mg

-
cient carbon

UBA-27978 Phragmites (single fragment), 
horizontally bedded, 129mg

6918±53 7920–7660

UBA-27979 Peat, humic acid 7139±53

UBA-27980 Peat, humin 7132±53
7136±38 8020–7870





 

 

-



Diatom

Sample

No.

Diatoms Diatom
Numbers

Quality of

Preservation

Diversity Assemblage

type

Potential 

for 

% count

D1 + v low v poor low/mod bk mar (fw) some/low
D2 + v low v poor low/mod bk mar (fw) some/low
D3 + v low v poor low/mod bk mar (fw) some/low
D4 + v low v poor low bk mar (fw) low
D5 + v low v poor mod bk fw mar low
D6 - - - - - none
D7 + ex low v poor low bk mar (fw) none
D8 + ex low v poor one sp. bk mar none
D9 + ex low ex poor v low bk mar (fw) none
D10 + ex low ex poor low mar bk fw aero none
D11 + v low v poor low/mod mar bk fw aero low
D12 + v low v poor low/mod mar (bk) low
D13 - - - - - none
D14 - - - - - none
D15 + ex low ex poor one sp. fw aero none
D16 + ex low ex poor two sp. fw aero none
D17 + ex low ex poor two sp. fw aero epiphyte none
D18 + ex low ex poor one sp. fw none
D19 + ex low ex poor low bk mar fw aero none
D20 + v low v poor low mar bk low
D21 + v low v poor low mar bk low
D22 + v low v poor low mar bk low

.

 

.



 

 



 

 

 

 

 



Fig: Appendix 5.1.1 Cross section of deposit m
odel



Fig: Appendix 5.1.2 Cumulative predictive model output Fig: Appendix 5.1.3 Flow accumulation output



Fig: Appendix 5.1.4 Slope analysis of model area Fig: Appendix 5.1.5 Stream buffer of hydrological network (stream order)



Fig: Appendix 5.1.6 Stream order network (from hydrological analysis of pre-Holocene surface) Fig: Appendix 5.1.7 Potential for surviving deposits of interest within the study area
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