Proceedings of the Cambridge Antiquarian Society

(incorporating the Cambs and Hunts Archaeological Society)

Volume XCVII
for 2008
Proceedings of the Cambridge Antiquarian Society

(incorporating the Cambs and Hunts Archaeological Society)

Volume XCVII
for 2008

Editor Dr. Evelyn Lord
Associate Editor (Archaeology) Professor Stephen Upex

Published by the Cambridge Antiquarian Society 2008
ISSN 0309-3606
Contents

Further Investigations at Arbury Camp, Cambridge: The Eastern Entrance – A Monumental Architecture
Christopher Evans and Mark Knight 7

Iron Age settlement by the Dam Brook at Scotland Farm, Dry Drayton
David Ingham 31

Excavation of a Middle Iron Age enclosure at Bushmead Road, Eaton Socon, Cambridgeshire
Daniel Stansbie 41

Late Iron Age/Early Roman Pottery Kilns at Blackhorse Lane, Swavesey, 1998–99
Steven Willis, Alice Lyons, Elizabeth Shepherd Popescu and Judith Roberts 53

Iron Age Ditches and an Anglo-Saxon Building near the Mile Ditches, Bassingbourn, TL 3294 4335
Tom Phillips 77

A Zoomorphic Roman Handle from New Street, Godmanchester, TL 5246 2704
Nina Crummy and Tom Phillips 83

Excavations on a Roman Saltmaking Site at Cedar Close, March, Cambridgeshire
Tom Lane, Elaine L Morris and Mark Peachey 89

A Romano-Saxon Farmstead and possible 12th-century Dovecote or Windmill:
Community excavations at Spring Close, Boxworth, TL 350 645
Aileen Connor 111

New work on old sites: Somersham and Pampisford revisited
Christopher Taylor 121

Excavation of the Civil War bastion ditch of Cambridge Castle
Craig Cessford 137

The Old Plough: a neglected property of Ely Porta Manor
Michael Chisholm 149

Living on the Edge: Commons, Castles and Regional Settlement Patterns in Medieval East Anglia
Robert Liddiard 169

West Cambridge: the two World Wars and the inter-war lull
Philomena Guillebaud 179

Fieldwork in Cambridgeshire 2007
Elizabeth Shepherd Popescu and Sarah Poppy 195

Reviews
Tim Malim and Sue Oosthuizen 215

Notes on Contributors
219

Index
221

Abbreviations
227

Recent Accessions to the Cambridgeshire Collection
Chris Jakes 229
Late Iron Age/Early Roman Pottery Kilns at Blackhorse Lane, Swavesey, 1998-99

Steven Willis, Alice Lyons, Elizabeth Shepherd Popescu and Judith Roberts

With a contribution by Christopher Evans

Illustrations by Crane Begg, Gillian Greer and Sue Holden

Excavations at Blackhorse Lane, Swavesey by Cambridgeshire County Council's CAM ARC in 1998-99 revealed, inter alia, important evidence for pottery manufacture during the Late Iron Age/Early Roman period consisting of one or possibly two kilns, as well as kiln debris and pottery. Contemporary features included a probable cremation burial, ditches and the remnants of a possible roundhouse. These features suggest the presence of a craft/industrial area on the western edge of the fen island.

The evidence for pottery production is particularly notable since very few kiln structures of this period are yet known in Britain. A large group of kiln superstructure fragments and kiln furniture was found either associated with the kiln(s) or dumped in ditches nearby. Although the pottery recovered from these features is of late pre-Roman Iron Age type (at its broadest c. 130 BC - AD 80), the kiln technology suggests a date no earlier than the second quarter of the 1st century. The pottery, which has particular importance since most of it occurred in stratified settlement-related contexts, makes a significant addition to the growing corpus of later Iron Age and Transitional material from Cambridgeshire. The assemblage has numerous relatively complicated forms, with a high proportion of well-executed handmade items. The typology of the pottery assemblage displays both traditional and changing elements, reflecting wider developments in society at this time.

Geology and Topography

Swavesey is a large parish on the edge of the fens in south-east Cambridgeshire (Fig. 1). It lies at the junction of first and second terrace gravels and Ampthill clay which constitutes the main part of a spur of higher ground (British Geological Survey 1985). The gravels on which the present settlement lies form an 'island' at the end of this spur, leading out into the Ouse valley and the edge of the fen, where there is a covering of alluvium.

The village is 14km to the north-west of Cambridge and 13km south of Huntingdon. The site is generally flat and lies approximately 200m to the west of the village core at a height of 6m OD.

Archaeological Background

The gravel promontory or island on which most of Swavesey stands would have offered a favourable settlement site within the fen edge zone throughout the later prehistoric period. Concentrations of later prehistoric remains have been found on the valley/fen edge at, for example, Over – the next promontory east from Swavesey (Spoerry 1996, 4). A conquest period kiln was excavated in the field immediately to the north-east of the development site in 1990 and is summarised by Evans below.

Between 1995 and 1998 CAM ARC undertook several phases of evaluation and excavation in advance of housing development between School Lane, Blackhorse Lane and the High Street (Sutherland and Hatton 1996; Spoerry 1996; Cooper and Spoerry 1997; Roberts 1998; TL 360 688; Fig. 1). The present report relates to Iron Age remains uncovered during the 1998-9 work. Most of the remaining evidence from the site dates to the Late Saxon and medieval periods and is soon to be published (Sayer in prep.).

Recent work in the general area has considerably enhanced understanding of early settlement patterns and associated landscape development. The results of excavations by the Cambridge Archaeological Unit (CAU) at Haddenham (Evans and Hodder 2006 and see below) are reflected in findings from Colne Fen, Earith (Evans pers. comm.), which lies c. 7km to the north of Swavesey. Here, eight Middle to Late Iron Age enclosures were found which, as well as providing insights into the fen-edge economics of these communities, give crucial information on what, as it is interpreted, appears to be the 'arrival' of Late Iron Age wheelmade pottery-using groups into the area in the late 1st century BC (Evans et al forthcoming).

The Kilns and Associated Activity

A kiln found on the northern edge of the Blackhorse Lane site was figure-of-eight shaped in plan (3928; 1.55m long, 0.9m wide and 0.15m deep), with the
Figure 1. Site location showing the local topography.
steep-sided firing chamber to the west (Figs 2 and 3). The sides of the stoke-hole were gently concave, sloping up to the firing chamber which had a flat base. The feature was lined with a pale yellow clay which had been applied and smoothed and was fired to a depth of 15–25mm, although some fragments of the collapsed lining were fired to their full thickness (50–60mm). The fill of the kiln (3926) was a mix of very dark grey brown and dark grey clayey sandy silt containing ash, moderate charcoal flecks and fragments of fired clay. Ten partial and one complete kiln bar (3925) were found resting on the kiln fill. None of these appeared to be in situ but were probably part of a deliberate backfilling episode once the kiln had been opened after firing, rather than collapsing during use. Sealing the kiln bars was a layer of dark grey brown silty clay, dark red clay and olive clay, containing fragments of poorly fired pottery, kiln lining and flecks of charcoal (3923/3924). Eighty-three sherds of pottery (weighing over 4kg) were recovered from the kiln and surrounding area.

A second possible kiln (aligned north-west to south-east) lay between the first kiln and a ditch immediately to its south (2123), which itself contained large quantities of kiln debris. This possible kiln consisted of a flue or stokehole (2112) which was curving and narrowed towards the north-west, as well as a pit which may represent the firing chamber (2053). The profile was irregular dropping from 5mm to 15mm in the south-east. Interpretation as a kiln remains tentative since no evidence of firing was found. The putative flue contained a single fill of very dark grey brown clay silt which included fragments of Iron Age pottery and animal bone. A curvilinear slot (3782), 4.18m long, and associated posthole may have served as a windbreak around the northern side of this potential kiln.

Just to the south was a ditch which was up to 3.30m wide, with a butt end to the south-east. Its upper fills were cut by a major ditch which had been recut several times (2123) and was up to 5m wide and 1.08m deep. This perhaps formed part of an enclosure or other boundary and was aligned north-west to south-east, but may have turned to the south-west at its eastern end. It was traced over a distance of c. 60m, and various sample sections were cut across it during the course of the excavations. One slot dug immediately adjacent to the putative second kiln recorded upper fills, some of which indicate natural erosion; one fill suggests deliberate refuse deposition within dark clay silt. This deposit (2121=2143) contained 97 sherds of Iron Age pottery as well as 18 partial kiln bars, 42 kiln bar fragments and kiln lining. The fill of another section (3906) contained a large dump of kiln waste including 54 partial kiln bars and 76 kiln bar fragments, as well as various other items of kiln furniture. Other finds from the ditch include a fragment of quern stone and cow, sheep/goat, pig, red
deer and dog bone. An early fill contained a cattle metatarsus showing considerable polish on the shaft and distal condyles, with a hole made in the proximal articulation. This bone was certainly used, but its precise function remains unclear; similarly worked long bones have been found at other Iron Age sites such as Danebury (Sellwood 1984, fig. 7.39, no. 3.217), Dragonby (Taylor et al. 1996, 359, fig. 14.8), Nettleton (Stallibrass 1999, 22) and Thorpe Thewles (Swain 1987, 92, fig. 59, no. 2) and it has been suggested these items represent handles for tools with tangs. Perhaps given the context this item was one for fashioning pottery or structural elements of the kiln. Elk and frog bones were also recovered, while environmental samples yielded cereals, legumes and elder; there was some suggestion, however, of contamination from later contexts.

Further east were other ditches (3966 cut by 3952) of apparent Iron Age date, although these ran on a different alignment to the ditch sequence to the west. A feature in the far north-eastern corner of the site may represent a pit or the butt end of a ditch (3958).

A few pits were scattered across the northern part of the site and may have been used as quarries or for storage. They varied in diameter between 2.5m and 0.7m and in depth between 0.4m and 0.27m. Very few finds were recovered from them and it is unlikely they were used for rubbish disposal. One (3949, 0.5m wide, 0.3m wide and 0.12m deep) had steep sides and a flattish base. Its fill of a very dark grey brown clay silt with frequent gravels contained a small quantity of human bone associated with pottery (including Fig. 9, Nos 52 and 53) and it is possible the latter represented an urn or partial urn. The bones comprised the badly eroded but largely unburnt remains of the upper right torso of an individual – the right scapula, right clavicle, upper vertebrae and upper ribs with totally burnt animal bone mixed in.

Lying isolated some distance to the south was a shallow ring gully (3094), positioned close to the edge of the wetter land. This may relate to a roundhouse and had a diameter of c. 7m. Its fill contained small quantities of Iron Age pottery.

A Note on the 1990 Kiln
Christopher Evans

In 1990 the CAU undertook evaluation fieldwork throughout the north-western corner of Swavesey, anticipating an application for housing development (Evans 1990). Initially, the focus of the programme was in the area of Amen Corner, in the rampart-bounded fields behind Taylor's Lane. For the purposes of this note, the main area of interest, however, is the investigation of the plots behind Blackhorse Lane where, across our six trenches, evidence of dense ‘early’ settlement was found. At this point some contextual explanation is necessary. This was only the second trenching programme the Unit had undertaken and the quality of the archaeology stretched the limits of its then four staff (and, by comparison with today’s levels, the project’s funding was minute). Those were early days in developer-funded fieldwork and we were all ‘learning the ropes’.

Little excavation per se was then made of the many features exposed within the Blackhorse Lane trenches (four only), though considerable quantities of surface finds were recovered (e.g. c. 330 sherds of pottery). Although a number of features therefore had to remain undated, two main phases of usage were identified: late pre-Roman Iron Age and Saxo-Norman/ early medieval (11th to 13th centuries).

As chance would have it, one of the trenches cut straight through what was clearly the remains of a kiln; again, it was not excavated as such and its recording can only be considered ‘un-nuanced’. Sealed by a layer of ‘scorched clay’ (i.e. the remnants of the kiln’s dome), and including fragments of end-tapering kiln bars, this primarily consisted of ash and charcoal-filled radial/spoke-like ‘troughs’ (i.e. flues). Together these must represent the remains of some manner of up-draft kiln, whose floor would have been raised on the kiln bars (see e.g. Detsicas 1987, 157–9, fig. 36); five postholes occurred within the same area. For the purposes of this contribution, the pottery recovered from the kiln has recently been reviewed and has duly been reassigned to the conquest period (i.e. of early Roman attribution), with the remainder of the ‘early’ assemblage still being of Late Iron Age date (M. Brudenell and K. Andersen, pers comm.).

While no other kiln-related features were found, a large pit present in an adjacent trench, which yielded a surface find of 2nd-century AD mortarium, could also potentially have been associated with pottery production. In 1990 it was assigned to the Saxo-Norman phase based on the abrasion of that sherd and its assumed residuality; the pit could well, though, have been of Roman date.

In 1994, in collaboration with the CAU, a team from Toyma University in Japan undertook geophysical survey within Swavesey, including across the Blackhorse Lane plots. Involving ground radar, resistivity, magnetic susceptibility and magnetometry survey, they successfully identified a number ditches associated with the settlement and, moreover, what appears to be a major timber building in the southeast corner of the area (Maekawa et al. 1995; Maekawa 1997; Senda 1999). In addition, the magnetometry also detected significant anomalies in the northwest quarter, near the recorded kiln. Though possibly only the traces of modern bonfires, it is conceivable that they reflect other kiln locations.

The recovery of the kiln in 1990 obviously resonates with the Iron Age kilns found on the adjacent CAM ARC site and, thereby, attests to a continuation of pottery production across the ‘the divide’ of the conquest. Moreover, it contributes to the growing corpus of conquest period kiln complexes recently recovered from the region, such as at Greenhouse Farm and the Addenbrooke’s Hutchison Site, Cambridge (Gibson and Lucas 2002; Evans et al. 2004), and further attests to how very localised was early Roman pottery production.
Late Iron Age/Early Roman Pottery Kilns at Blackhorse Lane, Swavesey, 1998-99

The Kiln Debris and Kiln Furniture

Alice Lyons

Introduction
A significant quantity of baked clay, weighing 47.8kg, consisting of kiln bars, kiln plates, clay slab plates, kiln lining, a possible stacker or setter and undiagnostic daub fragments was recovered from the CAM ARC site. This material was associated with the in situ pottery kiln (3928), as well as the probable kiln and associated dumps of kiln debris within an adjacent enclosure ditch (2123). The largest group came from ditch fill 3906 (17.2kg; 36% by weight of the entire assemblage). A second large dump of kiln debris came from a medieval trackside ditch (3934, ditch 3935), which cut through underlying kiln 3928. Small quantities of baked clay were also recovered from other ditches and pits. It is clear that the assemblage from Swavesey represents several kilns, in addition to those excavated.

Kiln Bars

Three complete kiln bars, 94 partial bars and 134 bar fragments was found, most of which (54 partial bars and 76 bar fragments) came from ditch fill 3906. The kiln bars are of a square-sectioned type with tapering ends ('cigar-shaped'; Fig. 4). Most of these bars

Figure 3. Kiln 3928.
Figure 4. Above: kiln bars and stacker or setter; below: kiln bars (2143=2121 and 3925), modified kiln bar (3906) and kiln lining fragments (2143=2121 and 3934).
have a grey (reduced) core with an orange (oxidised) surface. Common inclusions within the sandy fabric are chalk flecks and flint fragments, as well as organic matter. The clay has been roughly mixed and folded over (with a single seam) to form the tapering rectangular shape. Most bars have grey (reduced) centres with orange-grey (partially reduced) surfaces. There is no evidence that the bars were formed around a stick and in some instances the finger prints of the maker can still be seen.

Of all the types of kiln furniture found, bars are the most frequently encountered (Swan 1984, 62). Kiln bars were used in conjunction with a (usually central) pedestal on which one end rested and from which the bars radiated (ibid, 60–63, plates 18 and 20). The tapering shape of the bars allowed the maximum number to be placed on a single pedestal, the other end of the bars being seated on a ledge constructed integrally as part of the lining of the firing chamber (ibid, 63, plate 20). Unfortunately evidence for a pedestal in either kiln excavated at Swavesey is lacking, although parts of the integral ledge appear to be visible on the plans and photos of kiln 3928.

The shape and length of kiln bars, even within the same kiln can vary quite considerably, presumably as the bars from different kilns became mixed through reuse, which would also have the advantage of allowing the potter to arrange the kiln bars individually for each new kiln that was constructed.

Clay Slab Bars and Portable Kiln Floor Fragments
Slab bars are quite flat objects with a rectangular section (Swan 1984, 64). Objects of this type have been found at Water Newton in the Lower Nene Valley where an early Roman kiln of similar date to the Swavesey example was found (Swan 1984, 96–97). At both sites slab bars are found in addition to the ‘cigar-shaped’ kiln bars and may have been used as a portable floor plate in conjunction with them. The fabric for the six clay slab bar fragments recovered at Swavesey is constant across the site; it is sandy with chalk inclusions and orange (oxidised) throughout.

A single piece of clay with a curved edge (50–70mm thick) was the most complete example of a fragment of kiln floor (from kiln fill 3926). The surface of this object is cracked as if it has been exposed to extreme heat. This appears to be a section of portable flooring that would have been used in conjunction with the kiln bars.

Possible Kiln Stacker or Setter
Stackers or setters were used within the kiln to aid horizontal stacking of the vessels with the aim of preventing pottery moving or collapsing during firing (Swan 1984, 40). Published examples are found in various shapes including rings, squat cylinders and bobbin-shaped objects. In addition pottery wasters from previous firings were often used for this purpose, along with natural materials such as stones. The possible two-pronged stacker or setter found at Swavesey is without a close published parallel in this region (Fig. 4).

Plate Fragments
Unperforated baked clay plates, such as the 67 examples found at Swavesey, were perhaps used as part of the portable kiln floor and may also have helped to separate layers of pots within the kiln (Swan 1984, 64) and/or provide the temporary topping of the pottery stack before the turf roof was laid down (ibid, 41). Although recorded artefacts of this type are generally rare in Cambridgeshire (as are the kilns themselves) both circular and sub-rectangular forms are well documented artefact types on sites of the 1st millennium BC around Milton Keynes (Williams 1994, 363).

The fabric for the Swavesey plates is constant across the site, being sandy with chalk inclusions and orange (oxidised) throughout. Both sides of the plates are densely covered in grass and/or cereal impressions.

Kiln Lining
Baked clay often constitutes the remains of the lining of the kiln furnace chamber (Swan 1984, 32). The material from Swavesey is orange (oxidised) throughout and contains coarse inclusions of chalk and sometimes flint. Large inclusions were added to help reduce shrinkage during firing and therefore prevent the collapse of the kiln.

Some of the clay retains the finger marks of the kiln builder, where the clay has been pressed into the cut of the oven (Fig. 4, bottom right). Although no tool marks were visible on the fragments recovered here, some bear impressions of straw where the surface has been wiped after construction but before firing (Fig. 4, middle right).

Catalogue of illustrated items
2121=2143, fill of ditch 2123. Fig. 4. One complete, six incomplete and thirteen fragments of kiln bars. The complete bar measures 380mm in length by 40mm wide, by 33mm deep. All of these bars have a grey (reduced) centre, with an orange (oxidised) surface.
3925, fill of kiln 3928. Fig. 4. One complete and ten partial kiln bars. The complete bar measures 350mm long by 40mm wide by 35mm deep. Most of these bars have a grey (reduced) centre with orange-grey (partially reduced) surfaces. It is worthy of note that the complete example has an orange centre, with orange-grey surfaces, while one end is a darker grey.
3906, fill of ditch 2123. Fig.4. Incomplete modified kiln bar made in the same way as the other kiln bars of a sandy fabric with chalk and flint inclusions. It has a square section measuring 44mm by 42mm. The surviving end has been (pre-firing) shaped to form two equal prongs with a smooth semi-circular concave shape in between them. Its similarity to a kiln bar makes it unlikely that it was intended to stand vertically, and it probably lay horizontally within the kiln to support the internal structure of the loaded kiln during firing.
2121=2143, fill of ditch 2123. Fig. 4, bottom right. Fragments of kiln lining. The material is orange throughout with chalk inclusions. The lining is smoothed on one side (with no sign of tool marks) with ridges and finger impressions visible.
3934, fill of ditch 3935. Plate 1, middle right. Substantial frag-
ments of kiln lining. It is orange (oxi-2003, 145) compared to 24.8g for the present material.

the average sherd weight was 11.5g (Hill with Home
assemblage is instructive; amongst that assemblage
with the average sherd weight for the Wardy Hill
vessels are evidently reconstructable. A comparison
of readily identifiable cross-joins between contexts.
by several sherds and with a considerable number
characterised by an abnormally high proportion of
assemblage is in remarkably good condition being
and forms is fairly wide, though this is not unusual
fiable variables to be undertaken. The range of fabrics
cient size to enable types of analysis involving quanti-

Age/Transitional period.

the well preserved pottery, offer some opportunity
to explore a pottery production site of the Late Iron
has evidently been disturbed by this later activity
and incorporated in younger deposits. However, the
amount of Iron Age pottery occurring in later groups
proved to be modest. All of the larger groups of Iron
Age pottery appear to come from undisturbed con-
texts. (Curiously all of the Roman sherds from the site
were associated with either earlier or later pottery.
Two Roman fine ware sherds were recovered together
with three Late Iron Age sherds. Moreover, all three
Nene Valley colour coated sherds present in the as-
semble were associated with Saxon sherds, while
the Roman grey ware fragment was found amongst
a large medieval group.)

Methodology
The methodology adopted in characterizing and
cataloguing the pottery followed the guidelines and
conventions outlined by the Prehistoric Ceramics
Research Group (PCRG 1995). The initial identifica-
tions, cataloguing and assessment were undertaken
in 1999 and these records were enhanced in 2004 for
reporting. Initial examination of sherds established
the existence of considerable variation in the fabric
types present and demonstrated that these differenc-
es could not be consistently determined by unaided
visual examination. Consequently all sherds were
scrutinised via clipped breaks under a x20 micro-
scope, to establish the nature of the fabric and char-
acter of the tempering inclusions. Fourteen different
and discrete fabric categories were identified with
all sherds accordingly allocated to a fabric category.
The sherds were then counted and weighed and basic
data on their technology of production (manufac-
ture), firing conditions, vessel form and occurrence
of decoration was recorded. The presence of any sur-
face residues (carbonised deposits and/or limescale)
was also recorded. This information was entered
into an Access database to facilitate basic analysis of
the assemblage; the approach adopted followed the
principles of the Oxford Archaeology-Warwickshire
Museum Service pottery recording system (cf. Booth
n/d). A copy of this Access database is included with
the Site Archive. The composition of the assemblage
is recorded in Table 1. Subsequently rim and base per-
centages (EVES) and diameters were measured when
the pottery for drawing was definitively selected.
Chronology
The sherds belong to a later Iron Age cultural horizon. Precise dating is elusive and there is an absence of independent dating evidence; no continental pottery imports occur and metalwork was not found, while the typology of this pottery is notoriously difficult to pin-down chronologically (cf. Gibson and Lucas 2002, 106-7; Hill with Horne 2003). Nonetheless, the general form types present, together with the fabric varieties, are well preceded in the region and are consistent with forms catalogued by Thompson (1982). The technology of production, general forms, rim type, attention to detail and finish, and attributes such as shoulder cordons and carinations place the pottery in the Late Iron Age and are features associated with the so-called 'Belgic' phase. Some specific parallels can be found amongst the Camulodunum assemblage (Hawkes and Hull 1947; see below). Yet as with pottery of Late Iron Age/early Roman type from elsewhere in Cambridgeshire, no one source of influence is discernible (cf. J. Evans 1990). The start date for these types is not securely anchored, especially since the conventional dating of the Late Iron Age in south-east England is now in doubt, with the probability that types have been consistently ascribed dates which are unnecessarily 'late' (cf. Haseigrove 1997). Hence on typological grounds some of the pottery from Swavesey may pre-date the turn of the millennium. Equally, pottery types as represented here are known to continue in use in Cambridgeshire into the period following the Roman conquest. No early Roman pottery is present, though absences of Roman pottery are known to occur at other Cambridgeshire sites where occupation is believed to continue well into the second half of the 1st century AD and even to the Trajanic period, especially in the fen region (J.D. Hill and Christopher Evans, pers. comm.; cf. Fincham 2002). Roman material culture was evidently slow to arrive at some sites in the county. The potential date range for the spread of types present is therefore c. 130 BC–AD 80/90. However, a considerable proportion of the vessels represented display a clear 'Transitional' dimension in terms of form and/or fabric (i.e. transitional between what is typical of Iron Age vessels and what is typical of Roman vessels, in these respects). On balance a likely date for the assemblage is c. AD 25–60 (see discussion below). Comparison with the types manufactured at Greenhouse Farm and Cherry Hinton, indicates that this assemblage from Swavesey is earlier in emphasis than at these two production sites of the Early Roman era (Gibson and Lucas 2002; J. Evans 1990), markedly so in the case of Cherry Hinton.

The absence of pottery that is culturally Middle Iron Age is a matter of interest. This absence is apparent, for instance, when one compares the illustrated material from the present site with that from the nearby site of Wardy Hill (Hill with Horne 2003). At some Late Iron Age sites in the Lower Nene valley, c. 20–25km north-west of Swavesey, Late Iron Age (so-called 'Belgic') pottery forms appear alongside Ancaster-Breedon/'Scored Ware' types which are more typical of the Middle Iron Age (Elsdon 1992). The evidence from these sites (e.g. Rollo 1988; Willis 1998) and indeed from other sites in Cambridgeshire (J.D. Hill, pers. comm.) demonstrates that these types were, at some locations at least, being used contemporaneously. It is unclear whether this absence of culturally Middle Iron Age pottery from the Swavesey assemblage is due to geography or social choice factors, or is an index of date (for instance, implying that the assemblage post-dates any overlap between these two ceramic traditions).

The typology of the extant kiln remains (feature 3928 and perhaps features 2112/2053) and furniture indicates that it, at least, is of mid-1st century AD date,

Table 1. Late Iron Age pottery by fabric.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Number of sherds</th>
<th>%</th>
<th>Weight (grams)</th>
<th>%</th>
<th>Average sherd weight</th>
<th>No. of rim sherds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>226</td>
<td>28.9</td>
<td>4340</td>
<td>22.4</td>
<td>19.2</td>
<td>35</td>
</tr>
<tr>
<td>B</td>
<td>194</td>
<td>24.9</td>
<td>3271</td>
<td>16.9</td>
<td>16.9</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>1.9</td>
<td>529</td>
<td>2.7</td>
<td>35.3</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>249</td>
<td>32.0</td>
<td>8734</td>
<td>45.1</td>
<td>35.1</td>
<td>26</td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>2.8</td>
<td>366</td>
<td>1.9</td>
<td>16.6</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>13</td>
<td>1.6</td>
<td>213</td>
<td>1.1</td>
<td>16.4</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0.1</td>
<td>13</td>
<td>0.1</td>
<td>13.0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>0.5</td>
<td>147</td>
<td>0.8</td>
<td>36.7</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>26</td>
<td>3.3</td>
<td>993</td>
<td>5.1</td>
<td>38.2</td>
<td>6</td>
</tr>
<tr>
<td>J</td>
<td>2</td>
<td>0.3</td>
<td>28</td>
<td>0.1</td>
<td>14.0</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
<td>0.4</td>
<td>41</td>
<td>0.2</td>
<td>13.7</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
<td>0.3</td>
<td>37</td>
<td>0.2</td>
<td>18.5</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>2.7</td>
<td>605</td>
<td>3.1</td>
<td>28.8</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>0.3</td>
<td>54</td>
<td>0.3</td>
<td>27.0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>780</td>
<td>100.0</td>
<td>19,371</td>
<td>100.00</td>
<td>24.8</td>
<td>109</td>
</tr>
</tbody>
</table>
but does not provide further assistance in refining the chronology. Thermoluminescence and archaeomagnetic dating of the kiln remains were considered by the excavator, but in the event did not prove feasible following discussions with various specialists.

There is one rim sherd, from the fill of pit 3154, which may be a Bronze Age residual piece. The sherd is small (6g) and from an uncertain form, though the rim is upstanding above a slight neck (Fig. 6, No. 15). This item has a brown surface and is decorated with simple slash marks at the top of the rim and a narrow herring bone arrangement on the exterior below the rim. These features imply a Bronze Age cultural association while such features are not unprecedented for the Iron Age. The fabric (B) in which this item occurs does not distinguish it, while its site context is also unindicative. On balance it looks conspicuous amongst this assemblage and a Bronze Age attribution is reasonable.

The six Roman sherds recorded from the site are not closely diagnostic of date within that era. A grey ware sherd and a fine oxidised sherd can only be classified as Roman (c. AD 50-400) while three of the remaining four sherds are Nene Valley colour-coated fine wares (c. AD 140/150-400); the remaining item is a copy of a Drag 31 samian dish. The dating of these items imply that there was no continuation of occupation into the Flavian/Hadrianic period.

The presence of a fairly wide range of fabric categories is not surprising amongst an assemblage of this date from Cambridgeshire, whilst the nature of the tempers used is well precedented in the region. There is no reason to believe that these fabrics are other than very local, though some vessels may have been made elsewhere in the region. Fabrics A, B and D predominate accounting for 85% of the assemblage (see Table 1). There was a clear preference for potters to use quartz grains and grog. In broad terms this is typical for a Late Iron Age / Transitional assemblage from this area. Quartz grains and grog are both efficient tempers and will have been readily accessible. Swavesey lies with Isobel Thompson’s Late Iron Age pottery zone 9 (Thompson 1982) which is characterized by quartz sand fabrics rather than dominated by grog; the present material is in accord with this characterization. The less frequent fabrics might represent non-local imports or ‘variations on a fabric recipe theme’ or ‘experiments’. Fossil shell

Fabric and Manufacture

Fourteen fabric types are represented amongst the Iron Age pottery. These categories are principally based upon inclusion type though there are other (corresponding) differences. With the possible exception of the quartz grains in Fabrics H and L, and the probable exception of the mica in H, all inclusions are evidently deliberately added temper. A large proportion of sherds can be described as heavily tempered. The following table summarises the fabrics on the basis of inclusions:

The presence of a fairly wide range of fabric categories is not surprising amongst an assemblage of this date from Cambridgeshire, whilst the nature of the tempers used is well preceded in the region. There is no reason to believe that these fabrics are other than very local, though some vessels may have been made elsewhere in the region. Fabrics A, B and D predominate accounting for 85% of the assemblage (see Table 1). There was a clear preference for potters to use quartz grains and grog. In broad terms this is typical for a Late Iron Age / Transitional assemblage from this area. Quartz grains and grog are both efficient tempers and will have been readily accessible. Swavesey lies with Isobel Thompson’s Late Iron Age pottery zone 9 (Thompson 1982) which is characterized by quartz sand fabrics rather than dominated by grog; the present material is in accord with this characterization. The less frequent fabrics might represent non-local imports or ‘variations on a fabric recipe theme’ or ‘experiments’. Fossil shell

Table 2. The pottery fabrics.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric A: Quartz grains with rare grog.</td>
<td>Common to abundant sub-rounded and rounded quartz grains, which are fine and well-sorted, occur together with sparse or rare grog pellets, which are also fine.</td>
</tr>
<tr>
<td>Fabric B: Quartz grains with sparse to moderate grog.</td>
<td>Well-sorted sub-rounded and rounded fine quartz grains are common or moderate; fine grog pellets, equally well-sorted are sparse to moderate.</td>
</tr>
<tr>
<td>Fabric C: Quartz grains; hard and oxidised.</td>
<td>Well sorted, sub-rounded and rounded fine quartz grains are common or abundant; the fabric is hard or very hard, oxidised, with a rough feel.</td>
</tr>
<tr>
<td>Fabric D: Grog.</td>
<td>Examples of this category are moderately hard with a soapy feel and tempered with sub-angular grog pellets in moderate frequency. The pellets are (seemingly invariably) well-sorted, though their size varies from sherd to sherd (vessel to vessel), the range being, typically, c. 0.5-2.5mm.</td>
</tr>
<tr>
<td>Fabric E: Quartz grains; unoxidized.</td>
<td>Well sorted, sub-rounded and rounded fine quartz grains are common or abundant; the fabric is hard and unoxidized.</td>
</tr>
<tr>
<td>Fabric F: Calcareous fragments.</td>
<td>Calcareous (fossil shell) fragments, typically c. 1-2mm, are common to abundant.</td>
</tr>
<tr>
<td>Fabric G: Rare calcareous fragments.</td>
<td>Calcareous (fossil shell) fragments c. 1mm and less are rare.</td>
</tr>
<tr>
<td>Fabric H: Grog, plus very fine mica and some quartz grains.</td>
<td>The fabric is moderately hard with a soapy feel; fine grog pellets occur in sparse frequency together with some very fine mica and rare fine/very fine quartz grains.</td>
</tr>
<tr>
<td>Fabric I: Calcareous fragments and grog.</td>
<td>Calcareous (fossil shell) fragments, typically c. 1-2mm, are moderate; grog pellets, c. 1-1.5mm are sparse to moderate.</td>
</tr>
<tr>
<td>Fabric J: Flint.</td>
<td>Angular/sub-angular flint, c. 1-2.5mm, is moderate to common.</td>
</tr>
<tr>
<td>Fabric K: Flint and grog.</td>
<td>Angular/sub-angular flint, c. 1-2.5mm, is sparse to moderate; grog pellets c. 1-2mm are sparse to moderate.</td>
</tr>
<tr>
<td>Fabric L: Flint and sparse quartz grains.</td>
<td>Angular/sub-angular flint, c. 1-2.5mm, is moderate to common; fine quartz grains are sparse.</td>
</tr>
<tr>
<td>Fabric M: Grog; calcareous fragments rare.</td>
<td>Grog pellets, c. 1-1.5mm are sparse to moderate; calcareous (fossil shell) fragments, typically c. 1mm, are rare.</td>
</tr>
<tr>
<td>Fabric N: Quartz fragments and grog.</td>
<td>Fragments of quartz c. 1.5-2mm and grog pellets are sparse.</td>
</tr>
</tbody>
</table>
(calcite) tempering occurs (Fabrics F, G, I and M) and is commonly encountered amongst Iron Age assemblages in East Anglia and Lincolnshire. The flint and calcite tempered fabrics form only a very minor proportion of the assemblage (Table 1) and represent only a few vessels; rims and other sherds in these fabrics suggest that the forms in question also differ from those of the general run of the assemblage. This latter pattern might imply a different source/s or a slightly differing (earlier) date. However, as a number of later Iron Age assemblages from Cambridgeshire and the south-east Midlands testify, typologically (and ostensibly culturally) differing pottery was, during this period used on settlement sites contemporaneously (cf. above; Rollo 1988; Willis 1998; Hill 2002b).

Two strong trends amongst the material are germane. First, virtually all of the contexts which contained comparatively sizeable groups of Iron Age pottery yielded proportions of the three fabrics which dominate the assemblage as a whole. This might be taken to suggest that these fabrics are broadly contemporary. An exception is ditch fill 4016, from ditch 3904 (22 sherds of Fabric D, from a variety of vessels, but none of A and only one in B). However, something of a division can be seen between the forms occurring in Fabrics A and B and those in D. The latter, grog tempered ware was generally employed in manufacturing vessels of classic Late Iron Age type with cordons and carinations and thickened out-turned rims. On the whole these forms have an affinity with many seen at Camulodunum (Hawkes and Hull 1947). Hence Fabric D was used to produce vessel Nos 11, 22, 23, 24, 25, 42, 43, 44, 47, 48, 49, 52, 54 and 58. A and B were used to produce forms in the same genre (e.g. Nos 20 and 21) but are associated with forms where cordons and carinations are absent (perhaps had been 'dropped') and profiles are more rounded; Fabric D at best seems to have been infrequently used for these forms. There may, therefore, be a chronological/sequential aspect visible here, with D being a fabric associated with more traditional forms. There is no tight form-fabric difference in the case of Fabrics A and B and so they might be considered contemporary recipe variants; there is some evidence though of a chronological or technological distinction between the two.

The vessels have been manufactured with care and skill. The majority of the sherds (461: 59.1%) come, unequivocally, from handmade vessels. The latter are well formed and some may have been finished on a turning board, perhaps at the rim (as with the South-East Dorset Black Burnished ware industry). Some 21.5% of sherds (168) appear to be from wheelmade vessels, though this figure is inflated by 59 sherds from a single vessel. In the case of 151 sherds (19.4%) it is not possible to tell for certain how the vessel was formed; with a proportion of items careful surface finishing has obscured the manufacturing technique (cf. Seager Smith 1998, 13; Hill with Horne 2003, 166). Of note, a similar proportion (that is, two-thirds) of the pottery from the mid-1st-century/early Roman transition phases at Wardy Hill was handmade (Hill with Horne 2003, 164–6). Amongst the Swavesey assemblage there appears to be some correlation between fabric and construction technique. This is indicated by the data presented in Table 3. The table shows that sherds from handmade vessels are present in similar numbers for the three main site fabrics. However, the pattern with regard to sherds from wheelmade vessels is somewhat different. The absolute numbers are small, which immediately raises the question as to whether this is a reliable pattern for characterizing trends; nonetheless, with this proviso in mind, the data in Table 3 imply that Fabric A may have been preferred to B and D in the manufacture of wheelmade pottery. This might be a chronological trend, consistent with wider patterns, if the quartz sand tempered Fabric A was replacing B and D with their grog inclusions; indeed, a switch to sand tempering is seen in other Late Iron Age/Transitional assemblages from the region. Or this might be a manufacturing or social choice. It is interesting to note, in this connection, Hill’s thesis that the potter’s wheel was a technology adopted by Late Iron Age people because they wished to produce certain specific, ceramic forms, and that the choice of a temper to be used in potting was culturally influenced (Hill 2002a; 2002b). In the Cambridgeshire region, in contrast, Hill contends, the adoption of the wheel was not a catalyst of ceramic change but was adopted and applied in line with traditional ceramic ideas (2002b). Use of the wheel in Cambridgeshire appears to have differing adoption dates across the county; it may have been in regular use in parts of middle and northern Cambridgeshire by c. 30 BC (cf. Rollo 1988; Hill with Horne 2003).

Table 3. Late Iron Age pottery by method of manufacture: the relative frequency of sherds from handmade and wheelmade vessels in the three main fabrics.

<table>
<thead>
<tr>
<th>Fabric Number of sherds</th>
<th>Handmade Pottery As a % of all sherds identifiable as handmade</th>
<th>Wheelmade Pottery Number of sherds</th>
<th>As a % of all sherds identifiable as wheelmade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>137</td>
<td>29.7</td>
<td>44</td>
</tr>
<tr>
<td>B</td>
<td>126</td>
<td>27.3</td>
<td>19</td>
</tr>
<tr>
<td>D</td>
<td>123</td>
<td>26.7</td>
<td>27</td>
</tr>
</tbody>
</table>

The firing environments which produced these vessels also show variation. Just over half of the sherds (51.1%) have oxidised exterior surfaces. The figure for sherds with oxidised surfaces is just over a quarter (26.1%), while the remainder show variation in exterior surface colour (the vessel represented by the 59 sherds is of this category). The storage jars tend to have light grey or light brown surfaces, while the three beakers represented (see below) are all oxidised. These types apart, the impression gained is that there is no clear correspondence between colour and form.
Table 4 shows the incidence of firing by fabric type. No clear trend is present beyond the confirmation that the three main fabric types are associated with both oxidized and unoxidized conditions. Amongst the oxidized items Fabric A is somewhat more prominent. These data can only provide a rough guide, not least since firing/colour can vary across the surfaces of single vessels and so sherds from the same vessels may speak of differing firing circumstances.

Table 4. Late Iron Age pottery by firing, as indicated by surface colouring, etc.: the relative frequency of oxidized and unoxidized sherds in the three main fabrics.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Number of sherds</th>
<th>Number of unoxidized sherds (n=399)</th>
<th>Number of oxidized sherds (n=204)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>117</td>
<td>29.3</td>
<td>87</td>
</tr>
<tr>
<td>B</td>
<td>106</td>
<td>26.6</td>
<td>51</td>
</tr>
<tr>
<td>D</td>
<td>124</td>
<td>31.8</td>
<td>61</td>
</tr>
</tbody>
</table>

Form Types and Function

A broad range of forms is represented amongst the material. The very good condition of the items means that a high proportion of the assemblage is sufficiently extant to ascertain forms, profiles and sizes. The generic form type of the 109 Iron Age rim sherds present has been identified and these data are presented as percentages in Table 5. These data are not a perfect index of the form composition of the assemblage as in a number of cases there will be more than one rim sherd from the same vessel. This is an inherent aspect as the standardization in manufacture of some types renders it difficult to take a ‘minimum number of vessels’ approach (EVE data might provide an alternative). Nevertheless the table and the illustrations provide a guide to the character of the assemblage.

Table 5. Late Iron Age pottery: rim sherds by form type.

<table>
<thead>
<tr>
<th>Form</th>
<th>Number of rim sherds</th>
<th>Relative frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowls</td>
<td>53</td>
<td>48.6</td>
</tr>
<tr>
<td>Jars</td>
<td>12</td>
<td>11.0</td>
</tr>
<tr>
<td>Large storage jars</td>
<td>10</td>
<td>9.2</td>
</tr>
<tr>
<td>Bowls or Jars</td>
<td>24</td>
<td>22.0</td>
</tr>
<tr>
<td>Beakers</td>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>Cups</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Uncertain</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The assemblage is clearly dominated by bowls. In large part these are medium sized necked bowls with high rounded shoulders or carinations and a simple bead-type or slightly out-turned (and thickened) rim. A high proportion of the vessels of this type display burnishing or are semi-burnished on the exterior of the neck, though this tends to be absent from the body; this is a phenomenon seen in other assemblages of this era. Vessel shoulders frequently display cords or corrugations typical of Late Iron Age vessels from south-east England (Thompson 1982; Cunliffe 1991). These are in the style which has often been referred to as ‘Belgic’ or late La Tène, following the precedent of the Aylesford-Swarling tradition. In many instances bowl forms present at Swavesey can be paralleled with examples from elsewhere in the region. Some instances can be noted: fills 2144, 3828 and 3906 (ditches 2123, 4035 and 3939 respectively) produced sherds from vessels of Cam. 218 (Hawkes and Hull 1947), occurring in Fabrics A and B. From 3006 (gully 3005) came a rim probably from a Cam. 242 in Fabric A (Fig. 6: No.14). Context 3828 also contained rims from forms Cam. 221 and 258, both in Fabric D, while 3906 also contained a fine example of a Cam. 211b (Fabric D) and sherds from identical bowls similar to Cam. 267 in upper profile (Fabric B).

The storage jars present are evidently tall forms with a high shoulder and neck; their straight-sided bodies taper moderately to the base. They occur principally in Fabrics A and B, and particularly, D, though there is an example in L (see Fig. 6: No.19; Fig.8: No.48; Fig.9: No.49). These forms display a high frequency of decoration at Swavesey, with vertical combing on the body and wavy combing on the shoulder being common characteristics. Similar vessels are known from elsewhere in East Anglia and the southern Midlands (e.g. Gibson and Lucas 2002, fig. 11, no. 12; Kenyon 1948, fig. 34, no. 13; Clamp 1985, fig. 31, nos. 11 & 12). One vessel, from 3926, has a thick interior residue, presumably limescale.

Jars form a small proportion of the assemblage and the rim sherds are less easy to parallel than are those from bowls (perhaps due to the fact that these sherds often represent smaller proportions of their parent vessels). Necked and narrow mouthed vessels occur. One vessel resembles Cam. 232 (from ditch fill 3906, in Fabric A, Fig. 7: No.39) which may be termed a flask, while a vessel in Fabric I has a lid-seated rim and carbonised residues on its exterior.

Sherds from four beakers are present. Ditch fill 3948 (ditch 3949) produced a group of sherds from a single vessel in Fabric M; a number of sherds from a decorated beaker similar to Cam. 115 (in B) came from ditch fill 3906; much of a further decorated beaker came from 4023 (Fabric A). Ditch fill 3976 (ditch 3904) yielded a small rim sherd evidently from a butt beaker in Fabric B (not illustrated). These beakers are large vessels, with a capacity making them suitable for communal use. Beakers following Gallo-Belgic form prototypes such as that from 3976 and Fig. 9, No.55 here, whilst exceptional amongst the Swavesey material became popular in southern and eastern England from c. AD 30; indeed imitations of the imported types are more frequent finds than the ‘originals’ through the mid 1st century AD (cf. Willis 1994). It is significant therefore to see such Gallo-Belgic de-
rived forms present amongst the assemblage from Greenhouse Farm, Cambridgeshire (e.g. Gibson and Lucas 2002, fig. 12, nos 27-29, fig. 15, no.66) though the likelihood is that the production at that site is later in emphasis than was so with the 1998–9 Swavesey material.

Sherds from a single cup are present (ditch fill 3828; Fabric B), Fig. 6.21. Cups are occasionally present amongst later Iron Age and Transitional assemblages from across England. In this case the item in question is a miniature version of the simple carinated bowl, Cam. 214, a type which is widespread in southern Britain during the 1st century AD. Examples of this form in such modest dimensions are not unknown, though unusual. It is essentially the size of a modern cup so is not a genuine ‘miniature’ pot of the type sometimes thought to have a ‘votive’ purpose or to be a potter’s firing test piece (cf. Hamilton 2002).

The overall composition, whilst displaying some considerable range in form variants, is, at the generic level, heavily weighted to vessels of one class: the bowl. This basic form is the traditional mainstay of Iron Age assemblages from the region comprising north Cambridgeshire, Peterborough, the Fens, Norfolk and north Suffolk. The near absence of beakers and cups, and the actual absence of platters from the present assemblage is typical of the region during this period (cf. Hill 2002b) and is perhaps indicative of an emphasis in the dating of this material which is earlier in the c. AD 25–60 range rather than later. Whilst understanding of the Iron Age, Transitional and early Roman pottery sequences in Cambridgeshire is growing, sub-regional and chronological variations are manifest with a complex mix of traditional and new types at many sites. Comparison and sequencing of particular assemblages is not straightforward, while specific difficulties in the attribution of sherds to forms also hinders comparison.

A total of 197 sherds (25.3%) have some decoration present. A large proportion of these are body sherds from large ‘storage’ jars, which show combing characteristic of the form type, or bowls with bands of horizontal grooves on their upper body.

Soot, carbonised residues and limescale can provide an indication of the functions to which vessels were put. Amongst the present material 4.1% of sherds have interior limescale deposits suggesting that they have been used in a process/es involving the boiling of water. There is no evident association with a particular fabric or form type (several vessels display this coating including bowls, jars and storage jars). (No cases of limescale on vessel exteriors were observed). A closely similar proportion of sherds, 5.0%, have soot/carbonised residues, with approximately 24 vessels with such residues. In two cases these residues occur on vessel interiors, but in all other cases they are on the exterior, as is normal, indicating use of the pots over fires and perhaps the burning of foodstuffs which have boiled over the side of the vessels. Hill noted a similar proportion of the pottery with such residues at Wardy Hill, and suggested the residues are likely to be from porridge or stew (cf. Hill with Horne 2003, 181). In the case of the Swavesey pottery there is a strong pattern to the incidence of these residues: they are associated closely with handmade forms (as at Wardy Hill: Hill with Horne 2003, 181) and with the following Fabrics B, D and I; only one sherd is of Fabric A and only one vessel amongst this group of 24 was wheelmade. Hence grog tempered wares were preferred in this role, rather than sand tempered Fabric A (this is at some variance with the Wardy Hill pattern: Hill with Horne 2003, 181). In terms of form types with soot/carbonized residue, it is apparent that it was very largely bowl shapes that were being used in this cooking role, with only two jars associated with the exterior residue. Jars were presumably used for storage.

In sum the forms present show a close affinity to those occurring amongst other Late Iron Age assemblages from the region. The beakers and cup are the only vessel forms classifiable as ‘finewares’ amongst the ensemble (a total of five vessels). The bowls are comparatively well made but are heavy and robust types which cannot be categorised as fine ware. In fact the assemblage has a distinctly ‘undifferentiated’ character, with an absence of ‘status’ vessels. Hill highlights the significance of burning with the Wardy Hill assemblage, seeing this as an expression of fine ware (Hill with Horne 2003); comparatively little material amongst the present assemblage was burnished to any marked extent.

The Kilns
Kiln 3928 was encountered in 1999; it was disturbed and was only partially exposed within the area of archaeological investigation. Its fill (3926) yielded 83 sherds weighing over 4kg. Sherds came from approximately five vessels, and in the case of three of these vessels, substantial proportions survived. Four items are illustrated here: Fig. 8, Nos 46–48 and Fig. 9, No. 49. Number 46 is in Fabric B (wheelmade and unoxidized) while the other four vessels, including three illustrated forms are examples of Fabric D (three at least evidently wheelmade).

The three well represented vessels comprised two large storage type jars and a moderate to large jar, in Fabric D. All three were wheel-made and essentially unoxidized. Whilst Nos 48 and 49 are similar forms there is a size difference. There is no necessary reason to believe that these are products of the kiln. They differ in typological detail and capacity; while the two large storage jars were combed on the body the other vessels were unembellished. They were clearly not elements of a consistent batch, if indeed their production took place in this kiln or not. One of the vessels has what appear to be extensive limescale deposits on the interior, and if this indeed represents limescale this vessel is unlikely to relate directly to the kiln.

An associated deposit lying to one side of the kiln (3924) may represent kiln collapse. It yielded 12 sherds belonging to one of the three storage jars from 3926; further sherds from the same vessel were forthcoming from ditch fill 3934.

The probable kiln 2112/2053 was encountered and
investigated during the trial trenching in 1998. It lay between kiln 3928 and the ditch immediately to its south (2123, etc.) which contained large quantities of kiln debris. The identification of 2112/2053 as a Late Iron Age kiln is problematic for reasons discussed elsewhere in this report. Morphologically this feature resembles a flue (2112) and kiln (2053) which can be paralleled with examples from the Nene Valley (Woods 1974). However, no evidence for firing was found and sherds recovered from 2053 were spotted to AD 900–1150. The fill of the flue, 2113, contained four small body sherds (35g) in Fabrics B, D and F.

It is a curious and signal fact that no wasters/sherds from wasters or items with noticeable defects were present amongst the assemblage recovered in 1998–9. Overall the Late Iron Age pottery from the excavations has the profile of a normal domestic assemblage at a time of change. Relating pottery at production sites directly to kilns is not always straightforward. The identification of 2112/2053 as a Late Iron Age kiln is problematic for reasons discussed elsewhere in this report. Morphologically this feature resembles a flue (2112) and kiln (2053) which can be paralleled with examples from the Nene Valley (Woods 1974). However, no evidence for firing was found and sherds recovered from 2053 were spotted to AD 900–1150. The fill of the flue, 2113, contained four small body sherds (35g) in Fabrics B, D and F.

Catalogue of Illustrated Pottery

1. Fig. 5. 2121, fill of ditch 2123. Rim sherd, Fabric A, dark grey surfaces, reddish brown margins and a dark grey core; RE: 0.12. Wheelmade/turned. Smoothed exterior surface at neck.
2. Fig. 5. 2121, fill of ditch 2123. One rim sherd and two body sherds, Fabric A, mid to pale grey exterior surface, pale yellowish brown interior surface, pale yellowish brown margins, and a dark grey core; RE: 0.08. Rilling on shoulder. Probably handmade with wheel-finishing, especially to upper part of vessel. Some similarity to a vessel from Greenhouse Farm (Gibson and Lucas 2002, fig. 11 no. 1).
3. Fig. 5. 2121, fill of ditch 2123. Five base sherds and eleven body sherds, Fabric A, mid to dark grey exterior surface, pale yellowish brown to pale grey interior surface and margin and a dark grey core; RE: 0.35. Probably handmade with wheel-finishing.
4. Fig. 5. 2121, fill of ditch 2123. Rim sherd, Fabric B, dark reddish brown surfaces and a dark grey core; RE: 0.06.
5. Fig. 5. 2121, fill of ditch 2123. Rim sherd, Fabric B, dark reddish brown surfaces and a dark grey core; RE: 0.06. Wheelmade/turned rim. Exterior surface below rim was originally smoothed.
6. Fig. 5. 2143, fill of ditch 2123. Four rim sherds and five body sherds, all conjoining, Fabric A, strong reddish brown exterior surface and margin, pale reddish brown interior surface and margin and dark grey core; RE: 0.47. Wheelmade/turned rim. As with other vessels of this form amongst this assemblage the exterior surface is rough rather than smoothed or burnished.
7. Fig. 5. 2143, fill of ditch 2123. Decorated body sherd, Fabric A, red exterior surface, dark reddish brown interior surface, reddish brown margins with grey core. Probably handmade. A vessel from a "Belgic ditch" at Cambridge has similar combed decoration on its body (Alexander and Pullinger 1999, pl. XLII No. 128).
8. Fig. 5. 2143, fill of ditch 2123. Rim sherd, Fabric B, reddish brown to dark grey surfaces and margins, with dark grey core; RE: 0.15. Wheelmade/turned rim.
9. Fig. 5. 2143, fill of ditch 2123. Rim sherd, Fabric B, brown to dark grey exterior surface, dark reddish brown interior surface with grey core and margins; RE: 0.11. Smoothed exterior surface. Traces of carbonized residue on exterior surface. Probably handmade with wheel-finishing to the rim.
10. Fig. 5. 2144, fill of ditch 2123. Two rim sherds and a body sherd, all same vessel, Fabric A, generally grey exterior surface, with the interior surface ranging from pale to dark brown, with a grey core; RE: 0.27. Body probably handmade with wheel finishing. Exterior surface below shoulder is burnished.
11. Fig. 5. 2144, fill of ditch 2123. Rim sherd, Fabric D, reddish brown interior and exterior surfaces, with dark grey core and margins; RE: 0.10. Wheelmade/turned rim; otherwise method of manufacture uncertain. Exterior surface smoothed.
12. Fig. 5. 3004, surface cleaning. Rim sherd, Fabric M, pale yellowish brown exterior and interior surfaces, dark grey core; RE: 0.12. Probably handmade with wheel-finishing. Smoothed surfaces.
13. Fig. 6. 3004, surface cleaning. Rim sherd, Fabric N, dark grey throughout; RE: 0.06. Handmade. This item, unusually amongst the Swavesey assemblage, has a resemblance to types of Middle Iron Age tradition; compare to vessels from Wardy Hill (eg. Hill with Horne 2003, fig. 79 nos 9 and 12; fig. 81 no. 7, though the Swavesey item has more of an external bead to its rim).
14. Fig. 6. 3006, fill of gully 3005. Rim sherd, Fabric J, pale brown, mid brown and dark brown throughout; RE: c. 0.05. Handmade. Perhaps Cam. form 242.
15. Fig. 6. 3100, fill of pit 3154. Rim sherd, Fabric B, dark brown exterior surface and rim, with grey interior surface and dark grey core; RE: c. 0.03. Handmade. Probably Bronze Age.
16. Fig. 6. 3359, fill of ditch 3360. Rim sherd, Fabric A, dark grey exterior surface, mid brown interior surface and a grey core; RE: 0.08. Wheelmade/turned rim; otherwise method of manufacture uncertain.
17. Fig. 6. 3798, fill of pit 3853. Rim sherd, Fabric B, dark grey exterior and interior surfaces, red margins and dark grey core; RE: 0.17. Wheelmade/turned.
18. Fig. 6. 3806, fill of ditch 3804. Two conjoining rim sherds, Fabric D, mid grey to brown exterior and interior surfaces, with grey core; RE: 0.09. Probably handmade with wheel-finishing. Surfaces smoothed.
19. Fig. 6. 3824 and 3828, fills of ditch 4035. One base and five...
Late Iron Age/Early Roman Pottery Kilns at Blackhorse Lane, Swavesey, 1998-99

body sherds, all conjoining, Fabric A, red to pale brown exterior surface, pale yellowish brown interior surface, with grey core; BE: 0.23. Handmade with wheel-finish-
ing. (Context 3924: 1 sherd; and 3928: 5 sherds). Similar vessels occur at Wardy Hill (Hill with Horne 2003, fig. 74.5), Greenhouse Farm (Gibson and Lucas 2002, fig. 11.12) and Leicester (Kenyon 1948, fig. 34 no. 13; Clamp 1985 fig. 31 nos. 11 & 12); see too, no. 48, below.

20 Fig. 6. 3828, fill of ditch 4035. Three rim sherds, one base and six body sherds, Fabric A, reddish brown surfaces and margins with a dark grey core; RE: 0.33; BE: 0.15. Probably handmade with wheel-finishing, especially to upper part of vessel. The exterior of the neck (at least) is burnished. Some similarity to a vessel from Greenhouse Farm (Gibson and Lucas 2002, fig. 11 no. 7).

21 Fig. 6. 3828, fill of ditch 4035. Two rim sherds and a base, Fabric B, reddish brown surfaces and margins with dark grey core; RE: c. 0.32; BE: 0.20. Small Cam. 214 Bb. Method of manufacture uncertain. Resembles a small Cam. 214 Bb; cf. Form 57 at Greenhouse Farm which appears more developed (Gibson and Lucas 2002, fig. 14 no. 57).

22 Fig. 6. 3828, fill of ditch 4035. Rim sherd, Fabric D, light grey to yellowish brown surfaces; yellowish brown margins and a dark grey core; RE: 0.18. Probably wheelmade. Smoothed exterior surface. Calcareous deposit covers the whole of the interior surface.

23 Fig. 6. 3828, fill of ditch 4035. Rim sherd, Fabric D, dark grey throughout; RE: 0.10. Wheelmade/turned. Burnished exterior surface at neck.

24 Fig. 6. 3828, fill of ditch 4035. Rim sherd, Fabric D, dark grey throughout; RE: 0.09. Handmade. Exterior and interior surfaces smoothed.

25 Fig. 6. 3828, fill of ditch 4035. Rim sherd, Fabric D, dark grey throughout; RE: 0.08. Wheelmade/turned rim. Burnished exterior surface. Traces of carbonized residue on exterior surface and rim.

26 Fig. 7. 3837, fill of ditch 4035. Rim sherd, Fabric I, dark
brownish grey throughout; RE: 0.15. Wheelmade/turned. Smoothed exterior surface. Pierced hole at neck; compare this with a vessel from Wardy Hill with two neck piercings (Hill with Horne 2003, fig. 77 no. 10) and Vessel No. 51 from Swavesey.

27 Fig. 7. 3837, fill of ditch 4035. Rim sherd, Fabric I, dark grey throughout; RE: 0.15. Handmade. Interior surface very smooth. Traces of carbonized residue on exterior.

28 Fig. 7. 3889, fill of ditch 3804. Two conjoining base sherds, Fabric M, dark grey exterior and core, with pale brown interior surface; BE: 0.46; pierced base. Handmade or wheel-turned. Smoothed exterior surface.

29 Fig. 7. 3894, fill of ditch 3893. Rim sherd, Fabric A, dark grey exterior and core, with reddish brown interior surface; RE: 0.10. Handmade body, with wheel turned rim? Burnished exterior.

30 Fig. 7. 3894, fill of ditch 3893. Decorated body sherd, Fabric A, dark grey exterior surface and dark reddish brown interior surface, red margins and dark grey core.

31 Fig. 7. 3904, ditch cut 3904. Rim sherd, Fabric A, dark brown to dark grey exterior and interior surfaces, reddish brown margins and a dark grey core; RE: 0.15. Wheelmade/turned rim. Burnished exterior.

32 Fig. 7. 3904, ditch cut 3904. Rim sherd, Fabric C, red surfaces and margins with grey core; RE: 0.16. Evidently wheelmade/turned. Smoothed surface at rim.

33 Fig. 7. 3905, 3906, fills of ditch 3904 and ditch cut 3939. Four rim sherds and three body sherds, all same vessel, Fabric B, reddish yellow surfaces throughout with dark grey margins and core; RE: 0.61. Probably handmade, with wheel-finishing. Rilling on shoulder and upper wall. (Context 3905: 1 sherd; 3906: 5 sherds; and 3939: 1 sherd). A similar form occurs at Wardy Hill (Hill with Horne 2003, fig. 82.4) but has more of an angular rim.

34 Fig. 7. 3905, 3906, fills of ditch 3904 and ditch cut 3939. Three rim sherds and four body sherds, all conjoining, Fabric B, pale brownish yellow to pale grey exterior surface, pale brownish yellow interior surface and margins throughout, with dark grey core; RE: 0.34. Handmade body, with wheel turned rim. (Context 3905: 1 sherd;
Figure 7. Pottery (cat. nos 26–40).

35 Fig. 7. 3906, fill of ditch 3904. Rim sherd, Fabric A, pale brown to dark grey exterior surface with dark grey margin, pale reddish brown interior surface and margin, and a grey core; RE: 0.13. Wheelmade/turned rim.

36 Fig. 7. 3906, fill of ditch 3904. Rim sherd, Fabric A, pale brown to pale grey exterior surface, pale reddish brown interior surface, dark grey margins and a mid grey core; RE: 0.10. Rim probably wheel-turned.

37 Fig. 7. 3906, fill of ditch 3904. Rim sherd, Fabric A, pale brown to mid grey exterior surface, reddish yellow interior surface, dark grey margins and a mid grey core; RE: 0.08. Wheelmade/turned rim.

38 Fig. 7. 3906, fill of ditch 3904. Rim sherd, Fabric A, mid greyish-brown exterior and interior surfaces, reddish brown margins and a grey core; RE: 0.07. Probably handmade body, with wheel turned rim.

39 Fig. 7. 3906, fill of ditch 3904. Neck and shoulder sherd with rim missing, Fabric A, pale brown exterior surface, reddish brown interior surface, pale red margins and grey core. Wheelmade. Smoothed exterior surface. Similar form to Cam. 232.

40 Fig. 7. 3906, fill of ditch 3904. Two conjoining rim sherds, Fabric B, light grey to yellowish brown surfaces; yel-
Figure 8. Pottery (cat. nos 41–48).
lowish brown margins and a dark grey core; RE: 0.24. Wheelmade/turned rim. Smoothed rim and exterior surface.

Fig. 8. 3906, fill of ditch 3904. One rim sherd, five base sherds and seven body sherds, all same vessel, Fabric B, pale reddish brown exterior and interior surfaces, with grey core; RE: 0.09; BE: 1.00. Wheelmade. Smoothed exterior surfaces. Cf. Cam. 119B.

Fig. 8. 3906, fill of ditch 3904. Four rim sherds, one base sherd and eleven body sherds, mostly conjoining, Fabric D, exterior surface generally reddish brown to grey, interior surface generally pale reddish brown, with dark grey core; RE: 0.54; BE: 0.32. Wheelmade/turned. Cf. Cam. 214A. A similar vessel occurs at Wardy Hill (Hill with Horne 2003, fig. 77.9).

Fig. 8. 3906, fill of ditch 3904. Rim sherd, Fabric D, dark grey exterior surface, brown interior surface, reddish margins and grey core; RE: 0.21. Wheel-formed rim.

Fig. 8. 3906, fill of ditch 3904. Neck and shoulder sherd with rim missing, Fabric D, reddish brown exterior surface and margin, dark grey interior surface, and a grey core. Laminated interior surface. Method of manufacture uncertain. Smoothed exterior surface.

Fig. 8. 3906, 3976 and 4016, fill of ditch 3904. Four conjoining rim sherds, one base, and fourteen body sherds, all same vessel, Fabric I, mainly dark grey exterior surfaces, while interior surface varies between pale yellowish brown and dark grey; the core and margins are dark grey; RE: 0.40; BE: 0.38. Traces of carbonized residue on the exterior surface. Handmade. (Context 3906: 4 sherds; 3976: 8 sherds; and 4016: 7 sherds). This neckless beaded rimmed form is close to Cam. 255a.

Fig. 8. 3926, fill of kiln 3928. Two conjoining rim sherds, Fabric B, essentially dark grey throughout; RE: 0.20. Burnished rim and exterior surface at neck. Evidently wheelmade/turned rim.

Fig. 8. 3926, fill of kiln 3928. Four rim sherds and fifteen body sherds, all same vessel, Fabric D, generally the exterior surface at and above the shoulder is pale reddish brown, while below the shoulder the surface is grey; the core and interior surface are dark grey; RE: 0.37. Wheelmade/turned rim and shoulder, whilst body apparently handmade. Smooth exterior surfaces. Interior surface has extensive calcareous residues.

Fig. 8. 3926, fill of kiln 3928. One rim sherd and seven body sherds, all same vessel, Fabric D, essentially the fabric and surfaces are pale grey throughout; RE: 0.24. Handmade, with wheel-finishing, especially to upper part of vessel. Smoothed surfaces. There is another sherd from this vessel in context 3698. Similar vessels occur at Wardy Hill (Hill with Horne 2003, fig. 74.5), Greenhouse Farm (Gibson and Lucas 2002, fig. 13.12) and Leicester (Kenyon 1948, fig. 34 no. 13; Clamp 1985 fig. 31 nos. 11 & 12); see too, No. 19.

Fig. 9. 3926, fill of kiln 3928. One rim sherd, three base sherds and seven body sherds, several conjoining, Fabric D, generally reddish brown surfaces and margins with dark grey core and with some areas of dark grey on the exterior surface; RE: 0.23; BE: 0.48. Wheelmade/turned rim, whilst body apparently handmade. There are many other fragments and flakes from this vessel which could not be reconstructed. Similar to a large jar type from Greenhouse farm (Gibson and Lucas 2002, fig. 11 no. 12).
Discussion

Recorded examples of non-military pre-Flavian pottery production have been found at several sites in the Cambridge and Lower Nene Valley area. Eleven kilns are known at Greenhouse Farm (Gibson and Lucas 2002), eleven others were found at the Hutchison Site, Addenbrooke’s Hospital (Evans et al. 2004), six more at Cherry Hinton (J. Evans 1990) and a single kiln at Water Newton (Perrin 1999, 44–5). A solitary Flavian kiln has been recorded at Haddon near Peterborough (J. Evans 2003, 75–81). This kiln (while slightly later in date) was associated with debris that may have come from earlier kilns producing ‘Belgic’-type grog tempered wares. The kilns found at Swavesey are similar to the Group 4 (‘dumb-bell’) type found at Greenhouse Farm (Gibson and Lucas 2002, 99, fig 5). Reference to the published pottery from sites of broadly similar date in the region, such as Cambridge (Alexander and Pullinger 1999), Cherry Hinton (J. Evans 1990), Greenhouse Farm (Gibson and Lucas 2002) and Wardy Hill (Hill with Horne 2003), shows marked typological contrasts with the material reported here. This doubtless arises from a combination of chrono-
logical and cultural reasons. The assemblage from Wardy Hill includes much culturally Middle Iron Age pottery, plus Aylesford-Swarling tradition forms alongside early Roman types, with comparatively little in the way of Transitional types. The pottery from the production sites at Greenhouse Farm and Cherry Hinton is dated to the early Roman era (pre-Flavian and pre-Flavian/Flavian respectively) and in these cases the pottery is stylistically much more Gallo-Belgic and Roman in inspiration compared to the present assemblage, and it is instructive that there are few typological parallels between these two sites and the 1998–9 pottery from Swavesey.

In the absence of independent dating evidence the 1998–9 material suggests a date of c. AD 25–60. A proviso arises in this respect due to the known endurance of Iron Age traditions in the vicinity of the fens to the early 2nd century AD; this is significant given that Swavesey is on the fen margin. Occupation/activity at the site was limited in time and extent. There is a possibility that the area examined in Blackhorse Lane was part of a larger contemporary complex, while the 1990 kiln is now seen as Early Roman. Yet the nature of the evidence from Swavesey is consistent with Gibson and Lucas’ model for Greenhouse Farm (Gibson and Lucas 2002) which they interpret as potentially an occasional or seasonal gathering place where pottery production and marketing was an element in a local ‘coming together’ event involving exchange and other activities. Pottery production and activity at neither site continued much into the Roman era. In the case of Swavesey, considering the evidence from 1990 and 1998–9, the site was in use over a period of time in the mid 1st century AD at least. Whilst the 1990 kiln is thought to be associated with an early post-conquest date it is conceivable that the 1998–9 evidence is mainly pre-conquest, though the suggested date for the pottery and activity of c. AD 25–60 seems most appropriate.

The kiln evidence from Swavesey 1998–9 is such that it can potentially be associated with pre-Roman Iron Age precedents, for which Swan has noted continental parallels (Swan 1984; cf. J. Evans 1990). Whether the kiln technology arrived with incomers or was developed by indigenous people on the basis of transferred or locally emerging knowledge is an intriguing question. Swan associates kilns such as these with the production of ‘Belgic’ style pottery. The 1998–9 kiln and pottery evidence is consistent with her identification of this pattern. Whilst direct evidence of a link between the kilns and the Iron Age tradition pottery recovered from the site is minimal (e.g. contextually and through the absence of wasters) they are characteristically and technologically consistent.

The majority of the kiln bars from Swavesey are of the tapering ‘cigar-shaped’ type which is the most common kiln bar-form in this region. This is the only type of kiln bar with a clearly concentrated distribution around the area of the Wash (Swan 1984, 63). Bars of this type can be found to the north into southern Lincolnshire and as far south as Bedfordshire and Buckinghamshire. An increasing corpus of evidence suggests that this type of portable furniture was in use in pre-Flavian contexts and possibly even pre-conquest (AD 43) deposits.

Portable kiln furniture technology was introduced into Britain during the second quarter of the 1st century (Thompson 1982, 23) and continued in use throughout the 1st century AD (apparently unchanged by the conquest) and sporadically through most of the 2nd century (Swan 1984, 63). Such furniture was, however, generally unstable, and fixed interiors therefore became more popular over time. Although kilns with permanent internal fittings were introduced to Cambridgeshire at the time of the conquest (Greenhouse Farm Group 2, kiln F238; Gibson and Lucas 2002, 116) permanent features did not become the standard until the late 1st/early 2nd century.

Some 20% of the pottery recovered from Swavesey was wheelmade, with 60% identifiably handmade, with some finishing on a turning wheel/board. Investigations at Haddenham and Earith have lead Christopher Evans to suggest that an ‘arrival’ of a Late Iron Age population can be envisaged utilising wheelmade pottery and this was associated with a change to organically ‘planned’ enclosure complexes, contrasting with the earlier Middle Iron Age square compound communities associated with Scored Ware pottery (Evans and Hodder 2006; Evans et al forthcoming). This inevitably raises the long-standing issue of ‘Belgic’ influence or incursion; for Evans, these were clearly separate groups operating within what is now Cambridgeshire, with no question of direct settlement continuity (Christopher Evans pers. comm.). Given this view it is intriguing to note the coincidence of these two traditions of pottery at the Swavesey site, occurring in the same features, thus raising questions about chronology, manufacture and consumption. In terms of the site context, however, the excavated evidence for Iron Age activity in Swavesey is as yet relatively limited. The few ditch systems and enclosure boundaries recorded so far are too fragmentary to permit any overview of the layout of settlement. The character of the Iron Age features recorded at Blackhorse Lane does, however, suggest that the site lay adjacent to a main contemporary settlement which was probably focused on the higher gravels occupied by the medieval and modern village, but this deduction is a matter for future investigation.

Conclusions

Direct evidence for pottery manufacture in Britain in the Iron Age is (intriguingly) meagre and this evidence is itself weighted to the end of the Iron Age. Manufacture and kilns of the mid 1st century AD are somewhat better known through in situ and artefactual traces. The visibility of manufacture increases around the time of the Roman conquest, but the conquest should not be seen as causal in this process in
a blanket manner. There is a wider trend to greater archaeological visibility (in many forms) through the later Iron Age and into the Roman era, and in relation to pottery manufacture complex unfolding changes were underway by the start of the Late Iron Age (cf. Hill 2002a; 2002b). Reconfiguration in pottery usage and production were part of the vanguard of change. The evidence from Swavesey is an episode within these broader processes. Certainly potters travelled to Britain in the wake of the incoming army following the invasion of AD 43 and skills were disseminated. Perhaps they also travelled to Britain before the Claudian invasion. Precise dating of kilns and production at this time has proved elusive (and in this respect Swavesey is no different from other sites), yet whilst close dating is instructive, to pursue the question of “is it pre- or post conquest production” is not necessarily of the greatest significance as it attributes a primacy to the invasion of AD 43 when we might best be considering the wider configuration of cultural changes through this time. The processes of change and their social roots are more germane: pottery was changing independent of whether legions crossed the Channel and stayed.

The question arises as to quite what is represented by the Iron Age remains, from the Blackhorse Lane site, comprising, as they do, of much pottery, some production evidence and comparatively few features and contemporary deposits. Is this a settlement with production, part of a specialist production site or a market place? A direct link between the kiln evidence and the recovered pottery in the present case is not necessarily proven but is implied by the nature of the pottery, in particular its quantity (in the light of comparatively modest Iron Age deposit volume), high average sherd weight, the high incidence of conjoining sherds, and typological consistency as with the rilled vessels (e.g. Fig. 7, Nos 33, 34 and 38). Fabric and technological variation is not necessarily inconsistent with a production centre as there is some correlation between specific fabrics and specific forms and technology and forms and fabrics: this signals careful design rather than a long period of activity at the site. On the other hand it is clear that a proportion of vessels had been used. Such a combination of evidence is consistent with production on the edge of a large settlement complex or an occasional market/production node, following the interpretative model for Greenhouse Farm forwarded by Gibson and Lucas (2002).

Recorded kilns of this early date are rare in Cambridgeshire but not as rare as they once were and the new evidence from Swavesey adds significantly to corpus of data available. In fact the Cambridgeshire region has a unique and growing corpus of sites testifying to pottery production in the 1st century AD. Moreover, it is particularly unusual in terms of the quality of evidence dating to the mid 1st century; it is especially helpful that much evidence has been examined and published recently by some of the leading practitioners in ceramic studies, who have engaged the question of the role these vessels had in societies.

The Swavesey finds are a contribution to the picture as they illustrate the sequence, and in particular the transition from Iron Age tradition to more Roman types. Publication and discussion of the issues meets one of the significant research aims identified by the Study Group for Roman Pottery (Willis 2004, 10), namely to address the lack of published kiln groups in the East Midlands and East Anglia.

Acknowledgements

The authors would like to thank McLean Homes for funding the work and providing on-site facilities; particular thanks are extended to Colin Sells, the site manager. The fieldwork and early part of the post-extraction programme were directed and managed by Judith Roberts, with the latter stages managed by Elizabeth Shepherd Popescu. Thanks are offered to all those who took part in the various phases of fieldwork.

The human remains were examined by Corinne Duhig and the plant macrofossils and animal bone by James Rackham — they are warmly thanked for their contributions. The authors thank Jeremy Evans for his advice with the pottery.

Finally, thanks are also extended to the relevant Cambridgeshire County Council Development Control officers for their role in the project and for their continued interest in the site.

Cambridge Antiquarian Society is grateful to McLean Homes East Anglia Ltd for a grant towards the publication of this paper.

Bibliography

Booth, P, No Date Oxford Archaeological Unit: Roman Pottery Recording System: an Introduction unpublished typescript

Cooper, S and Spoerry, P, 1997 Late Saxon and Medieval Activity at Barwell Engineering Site, Blackhorse Lane, Swavesey. Cambridgeshire County Council Archaeological Field Unit Report 136

Cunliffe, BW 1991 Iron Age Communities in Britain. London: Routledge and Kegan Paul Ltd

Detsicas, A 1987 The Cantiaci. Gloucester: Alan Sutton

(eds), La Céramique Précoc en Gaule Belgique et dans les Régions Voisines: de la Poterie Gauloise la Céramique Gallo-Romaine. Nord-Ouest Archéologie 9, Berck-sur-mer, 231–54
