Greenwell’s Lost Barrow ‘CLXXIV’ in Crosby Garrett Parish

T. CLARE, H. J. O’REGAN AND D. M. WILKINSON

IN 1877 Canon William Greenwell (1820-1918), the Durham archaeologist and collector, published his book British Barrows, a record of digging hundreds of burial mounds in northern England. Most of the records were brief and did not include plans, sections, or drawings of the objects found. One of the few illustrations was, however, that of an antler macehead from a mound he had dug in Crosby Garrett parish and denoted simply ‘Barrow CLXXIV’ (Figure 1a). This and the other objects from the site now in the Greenwell Collection in the British Museum demonstrate high status burial and a late Neolithic date (see Kinnes, 1979, 64-65 for discussion).

Unfortunately the precise location of the site, described as an oval mound denuded by stone robbing, was lost, although it cannot have been far from the Rayseat Pike long cairn, which he had also dug. The significance of this is that the latter appears to have affinities with the long barrows of eastern Yorkshire and Lockhill in South West Scotland (Clare, 2008 for discussion), just as the objects from the lost site are best paralleled in eastern Yorkshire. Consequently the two sites appear to represent continuity both of cultural linkages and of land use within the area, raising questions about the contemporary environment.

A possible candidate for the lost site was discovered by fieldwork in 1972 near Mazon Wath, at OS grid reference NY69350759 (Clare, 1973). Here, adjacent to a small disused quarry is an oval mound, which at first sight looks like topsoil stripped from the quarry. However, the mound itself seems to have been quarried and the shape and dimensions (plan form) are those of Greenwell’s site. Fig.1b shows the site as it is today, and two small mounds, (A) and (B), appear to be spoil piled on the surface of the original, larger mound. Indeed (A) looks as if the material there spilled down, back into the quarry/excavation (C), which appears to have been expanded from a trench (D), a technique used by Greenwell to dig ‘The Standing Stones’ on Moor Divock (Clare, 2007).

Given the importance of Greenwell’s CLXXIV to Cumbrian archaeology it was decided to test whether the mound shown in Fig. 1b was indeed a barrow or simply spoil. This was undertaken by four small test trenches (Fig. 3), each located for a specific purpose.

The areas excavated and contexts

Note the context numbers are in brackets and a concordant list is provided in Table 1.
Fig. 1a. The artefacts from barrow CLXXIV (from Kinnes, 1979).

Fig. 1b. The quarried mound near Mazon Wath (based on Clare, 2007). Form lines at 10cm intervals.
Trench 1, originally 0.5m wide before being widened to 1m, was designed to explore the apparent ‘northern’ edge of the mound with the hope of finding a palaeosol. Below the turf (1) was a thin layer of soil with many small stones (2). Below this was what appeared to be in situ blocks of limestone pavement over which and between which were medium sized, thin slabs, most sloping downhill (3). Removal of the slabs (Fig. 2) revealed limestone pavement (4) but no apparent palaeosol.

Trench 2, originally 1m square, aimed to look at the bottom of the old excavation/quarry (area C in Fig. 3). Below the turf (5) was black soil with numerous small stones (6) and below that solid rock (4). Within the black soil were three sherds of brown, curved glass, probably from a bottle.

The excavation was then extended to examine the ‘face’ of the earlier disturbance and the nature of the ‘surviving mound’ – which proved to be almost wholly solid rock (section 2, Fig. 5a). Within the area east of the rock face was black soil and stones (6), beneath which was what appeared to be in situ cairn material (7) – more compact black soil with larger stones.

Trench 3 aimed to investigate what was considered to be the cairn and the ground outside, again in the hope of revealing a palaeosol. In particular it allowed the ground surface adjacent to the quarry exposure to be investigated. Originally 0.5m wide it revealed soil and small stones (9) below the turf (8). Within (9) were several teeth and fragments of bone. Below this layer was an area of larger stones within a loam/clay (10), again with fragmentary bone remains. This was considered to be possible cairn material and the trench was widened to explore the surface. Beyond this area and below contexts (9) and (10) was limestone pavement and grykes (vertical fissures within limestone pavement). There were no finds from the orange brown loam (11) within the grykes.

Trench 4a, originally laid out as an area 1m x 1.5m, aimed to examine whether feature (A) was a spoil heap overlying the original surface of the mound. Below the turf (12) was soil with numerous small stones (13a) and below that larger stones, many flat, within a black soil/loam (14). In order to explore these stones further the trench was again extended. As a result it was possible to demonstrate that it was indeed spoil, with little interstitial material amongst the angled stones under the highest part of feature

Table 1: concordant list of contexts and their interpretation

<table>
<thead>
<tr>
<th>Trench 1</th>
<th>Trench 2</th>
<th>Trench 3</th>
<th>Trench 4a</th>
<th>Trench 4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Turf
Soil with small stones
Spoil (Greenwell’s)?
Surface of cairn?
Cairn
Loam and gryke fills
Natural, including bedrock

TABLE 1: concordant list of contexts and their interpretation

tcwaas_003_2008_vol8_0003
(A), context (13b). Some of these rested directly on the large flat slabs (Fig. 4) and the latter if not (13) also appeared to be spoil. Below (13) was a distinctive 10cm+ deep patch of brown clayey soil (14) which was not located in Trench 4b.

Trench 4b aimed to explore the lower slope of the presumed cairn; in particular it was hoped to locate a palaeosol and establish what the cairn surface without Greenwell’s, presumed, spoil might have looked like. Here below the turf (16) was a black soil with numerous small stones (17) and then small, thin slabs, sloping downhill (18) (Fig. 7). Below them was an orange brown loam between stones (19a) and a brown clay/loam with numerous stones (19b). Below these was an orange loam (20), which, beyond the presumed edge of the mound, became more sandy. Within this loam were rounded stones and bedrock.
Fig. 3. The position of the trenches and recorded sections.
Finds

Apart from the fragments of glass in Trench 2 it was possible to identify a number of small bones and snail shells.

Bones

The bones recovered were from humans, large mammals and small mammals (e.g. mice and voles). All large mammal remains were identified to species where possible, while teeth were used to identify the species of all small mammal specimens. Material from each trench was bulk sampled and dry sieved in the laboratory. All material was sieved through a 2mm sieve, and in each case a sub-sample was also sieved through a 1mm sieve. In total 42.5kg of material was sieved and many more small mammal bones and large mammal bone fragments were retrieved this way. A full species list, scientific names and numbers of specimens found are presented in Table 2 and listed by trench below. No faunal remains were recovered from Trench 1, and Trench 2 only produced six snail shells. Trench 3 produced the richest bone assemblage, but some bones (including human) were also recovered from Trenches 4a and 4b.

Fig. 4. The eastern end of Trench 4 showing how the spoil (including the large slabs and loose tipped stones) are separated from the stony cairn material by a thin soil.
Table 2

<table>
<thead>
<tr>
<th>Common name</th>
<th>Species name</th>
<th>Trench 2 NISP (MNI)</th>
<th>Trench 3 NISP (MNI)</th>
<th>Trench 4a NISP (MNI)</th>
<th>Trench 4b NISP (MNI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Homo sapiens</td>
<td>27 (2)</td>
<td>1 (1)</td>
<td>3 (1)</td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>Canis familiaris</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red deer</td>
<td>Cervus elaphus</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red squirrel</td>
<td>Sciurus vulgaris</td>
<td>1 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water vole</td>
<td>Arvicola terrestris</td>
<td>38 (2)</td>
<td>16 (1)</td>
<td>3 (1)</td>
<td></td>
</tr>
<tr>
<td>Bank vole</td>
<td>Clethrionomys glareolus</td>
<td>4 (2)</td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field vole</td>
<td>Microtus agrestis</td>
<td>11 (3)</td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigmy shrew</td>
<td>Sorex minutus</td>
<td>2 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibian (unidentified)</td>
<td>Amphibia indet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bird (unidentified)</td>
<td>Aves indet.</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified small vertebrate postcrania and incisors</td>
<td></td>
<td>130</td>
<td>33</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total identifiable bone (to body part)</td>
<td></td>
<td>263</td>
<td>53</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Total unidentifiable bone fragments</td>
<td></td>
<td>896</td>
<td>126</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Sum of bones and bone fragments</td>
<td></td>
<td>1159</td>
<td>179</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Total weight of sieved sediment (kg)</td>
<td></td>
<td>24.5</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Bones recovered by hand and sieving. No faunal remains were recovered from Trench 1, and the majority of specimens from the site were not identifiable. Number of identifiable specimens present (NISP) provided for each species, with the estimated minimum number of individuals (MNI) represented by that material given in parentheses. MNI for humans have not been adjusted for ages, meaning that with unerupted and tooth wear categories, there are several individuals represented, but in each case by different teeth (further details are given in Appendix 1 and text).

Trench 3

The bones from this trench were nearly all recovered from the north-west end (closest to the centre of the original mound), the south-east end (closest to the old quarry) was sterile, with the middle section producing only a few small mammal limb bones.

The human remains were all either teeth (n = 14), hand (n = 7) or foot (n = 6) bones. The hand bones consisted of one first phalanx, two second phalanges, one third phalanx, one navicular, one lunate and one unidentifiable carpal, whilst the feet were represented by one third cuneiform, one metatarsal, one first phalanx, one second phalanx and two third phalanges. Two of the hand bones are the only specimens from the site that may be directly associated – the navicular and lunate are of a similar size, from the same side and they fit together. The human remains in this trench represent at least five individuals (based on tooth eruption and wear) spanning the full range
of wear categories from unerupted (age 5-6), <17, 17-25, 25-35 to 35-45 years (see Appendix 1 for full details).

Except for a single dog tooth, all other specimens from the trench – which included a red squirrel molar – were from small mammals. The dog tooth is an unerupted lower M2 with almost no root development, indicating that it was a young puppy, as this tooth erupts fully into the mouth at the age of 5-6 months (Hillson, 1986). Another unidentified deciduous mammal tooth was also found during sieving.

Trench 4a

The majority of the remains from Trench 4a were of small mammals, particularly water vole (Table 2), and only two large mammal specimens were recovered – both were first phalanges, one human and one of red deer. In contrast to the remains from Trenches 3 and 4b, all bones from Trench 4a were in very poor surface condition (few bones in the other two trenches showed a similar degree of surface erosion).

Trench 4b

Three human teeth, from at least two individuals, based on tooth eruption or wear (one age 2-3 years and another 17-25 years), were recovered from Trench 4b (full details given in Appendix 1). The only other identifiable specimens were of water vole.

Snails

Snails were recovered from Trenches 2-4. Many of the snails were found during sieving, however two were found during excavation in Trench 2 and appeared to be *in situ* below a loose rock directly overlying the bedrock (therefore considered to be the pre-barrow land surface). These specimens have been identified as *Cepaea* sp. and *Arianta arbustorum*. Other identified snail species were *Discus rotundatus* and *Trichia* sp.

Discussion and interpretation

Barrows, as burial mounds, typically contain human and other animal remains (Woodward, 2000), and our excavations have shown that the Mazon Wath site contains such material. Therefore we interpret it as a barrow and the shape and dimensions of the site are consistent with those of Greenwell’s ‘lost’ site. Indeed even the small height of the artificial mound is consistent with Greenwell’s description: ‘It is placed upon an outcrop of the limestone rock, and looks higher than it really is, there being now no more than 1½ ft of added material’ (see Fig. 5b).

Table 1 suggests how the contexts of each trench may relate to each other. Given the low height of the mound and the use of a natural topographical feature it is difficult to be certain, without further work, what the precise composition of the ‘barrow’ was. Apart from the bedrock, the most clearly defined stratigraphic unit was the ‘spoil’, context (13). However, the upper part of this looked no different from the black soil with stones encountered in other trenches e.g. (2) in Trench 1 and (6) in Trench 2. The
Fig. 5a. Section C-D (west to east).

Fig. 5b. The possible profile of the site prior to Greenwell's work.

Greenwell's 1½ft (45cms)?

Section 2
significance of this is that in those trenches the context can be interpreted as being undisturbed by Greenwell, and if (17) in Trench 4b was the same feature then failure to identify it in Trench 4a must be explained by Greenwell’s spoil, and in particular (13a), being such material piled on top of a continuation of 17. However, if the lower part of 13a was a continuation of (17) and the equivalent of (2) then the surface encountered by Greenwell was not a cairn of loose stones but a grassed mound similar to the present monument. In short, whilst there is some stratigraphic ambiguity, the possibility that the mound had not been robbed for stone, as Greenwell stated, must be considered.

However, Greenwell’s idea that the site had originally been higher and ‘reduced to its present low elevation by the action of the stone-waller’ is significant, for he believed the ‘stone-waller’ had disturbed many interments. In particular he reported that broken and disturbed bones ‘were met with scattered throughout the whole of the southern part of the mound and for a space of 7 ft north of the centre’.

It would seem, therefore, that the bone material recovered by us in Trench 3 does not represent that missed by Greenwell but rather that left by earlier disturbance or in situ deposits (below). In contrast, those specimens recovered in Trenches 4a and 4b which were either in very poor condition or more robust elements like teeth, might be explained by previous disturbance. Aeration by disturbance to recover stone, for example, might explain the absence of bone fragments in Trenches 4a and 4b, whilst such fragments made up the bulk of the material from the potentially in situ deposits of Trench 3. A possible confounding factor is that the size range of bones recovered from the site (only 15 ≥ 3cm in length) are those which can be moved around within the soil by small burrowing mammals such as the bank, field and water voles, meaning that the bone scatters could be a results of small mammal activity rather than that of humans.

The primary burials

It is evident that the mound had been built on a natural spur of rock but the shallow depth of the mound – and Greenwell reported it was only some 45cm high – raises questions about the location of the primary burials. Whilst there can be little doubt they were in the vicinity of Trench 2, the fact that the latter was an area cleared down to solid rock raises the question of whether they were laid in a grave dug down to solid rock or placed in a natural hollow with material piled above.

In this context attention is drawn to the section revealed in the adjacent quarry (Fig. 6). This shows that there may originally have been soil burying the rock face, so that the burials recorded by Greenwell could have been placed in graves in that natural fill. If that were not the case and the burials had been placed on the original ground surface, then, allowing for the depth of the cairn recorded by Greenwell, the original ground surface must have been similar in area to the present one C, Fig. 1b.

Do the details noted by Greenwell help us choose between these options? He states that the bone pin and boar’s tusks ‘had been broken by pulling out the large stones which had been placed over the body . . .’. If these were the large stones in Trench 4a
Fig. 4) lying on the old surface of the mound and below much of Greenwell’s spoil then they must have been encountered quickly i.e. the slabs and associated burial were probably not in a grave. However, the slabs are suggestive of a structure associated with the body. Equally they are remarkably like those in situ above the solid rock in Trench 1 (Fig. 2) suggesting that either prehistoric people or Greenwell’s men had cleared them from above the solid rock we encountered in Trench 2. Of the two, a prehistoric grave covered by the slabs seems the best interpretation.

A variant interpretation is, however, suggested by Greenwell’s account which allows that the primary burials were both contemporary and arranged in linear fashion. If so, then they imply the existence of a space, and one formally defined, and the face of the natural rock outcrop could have helped define such a burial area. Certainly a similar outcrop was utilised in that way in the early Neolithic site at Hilton in Buteshire, where a second side was defined by primary cairn material (Marshall, 1976 in Kinnes, 1979). It is obviously now difficult to establish whether such an arrangement existed here but the large slabs noted above might have been part of such an arrangement. If so, then the structure of the monument would have again been consistent with the northern tradition articulated by Kinnes (1979), with the linear burial area echoing that beneath nearby Rayseat Pike, again of early Neolithic date. But if there was a formally defined area here why did Greenwell not identify it; indeed, why did he not report the natural rockface?
The potential cultural and ritual implication of the bone assemblage

The human remains recovered by our excavations represent a number of different individuals, probably six, based on categories of tooth eruption and wear assigned to each specimen. These range from two young children (2-3 years and 5-6 years) to an old adult (heavily worn teeth in the age 35-45 year categories), and are best interpreted as secondary burials – certainly in the case of those from Trench 3 – but whether they are additional to the ‘dozen’ or more unburnt and burnt interments estimated by Greenwell is impossible to determine. Similarly the dog, red deer and red squirrel remains may or may not be from animals that were deliberately buried in the barrow. The age range of individuals recorded by us is similar to that given by Greenwell, indicating that burial at Mazon Wath was not confined to particular age groups. This is similar to that seen at other sites in the area such as Hardendale Nab (Williams and Howard-Davis, 2004), which contained many infants, and Borwick (Olivier, 1987), which had the full age range from foetal to ‘old adult’. But was Greenwell right to suggest that here, as elsewhere, the site had been disturbed prior to his work? The significance of this is that if the mound had not been previously disturbed then the human bone encountered in our excavations may reflect prehistoric depositional practises comparable to those at Hardendale Nab and Borwick; sites primarily Bronze Age in date, although there might have been a late Neolithic element at Hardendale Nab. As such they are consistent with the interpretation of secondary burials.

Was Greenwell correct, therefore, in interpreting the form of the mound as being the result of stone robbing? The suggested profile of the mound, and the large stones in Trench 4a interpreted as being deposited by him and lying on that surface, indicate that he found a low flat-topped mound. Such a structure is consistent with others in Cumbria, as is the location of the site as a projection of the hillside (Clare, 2007 and Figs. 8a-d here). As such there is no need to invoke stone robbing to explain the form of the mound prior to Greenwell’s work, rather, like the secondary burials, it can be interpreted as representing a local tradition equivalent to one which may have existed elsewhere but ‘subsumed within the category “bowl barrow” by later typologies’ (Field, 1998, 323).

At both Hardendale Nab and Borwick, as in our site, individuals are represented only by fragments and a notable feature is the apparent absence of crania. One possible interpretation is to see such material as ‘token’, material removed from elsewhere and part of the ‘circulation’ of ancestral remains. However, given the fact that it was possible to interpret our material as being of the kind which might have been missed by Greenwell’s men, it is possible to suggest an alternative explanation, namely that the material derives from deposits where larger bones and skulls have been removed for burial or circulation elsewhere i.e. that they represent – perhaps with some cairn matrix – the ‘sweepings’ of something like excarnation areas. If however, we accept that the material has been brought from elsewhere then it is possible the other faunal remains may have come from elsewhere with the human bones but this seems unlikely in the case of the small mammals, especially shrews and water voles, as they are not usually associated with carrion.
Fig. 7. The south side of Trench 4.
The Palaeo-environmental evidence

Some of the faunal evidence recovered is not consistent with the present habitat of upland limestone grassland. For example, water voles are today, in Britain, closely associated with rivers and other water bodies, although both in continental Europe today, and prehistoric Britain, they have wider ranges, often living away from water (Matthews, 1982; Yalden, 1999). The red squirrel tooth also appears anomalous for the current habitat and suggests more trees in the area in the past. This species is not just confined to mature woodland, and especially when its populations are large, individuals move out into sparsely wooded areas (Corbet and Southern, 1977). There is the additional possibility that the tooth could have been regurgitated by a bird of prey and the squirrel could have been living some distance from the site. In this context, the *in situ* snail *A. arbustorum* is of particular interest as it also suggests more scrubby conditions than today (Kerney and Cameron, 1979) and is not recorded from limestone pavements in Northern England (O’Connor, *pers. comm*.).

The commonest snail was *Discus rotundatus*, and while this has wide habitat tolerances it also often lives in reasonably shady, organic rich habitats. Potentially this could be provided by grykes on limestone pavements, however we were unable to find this species living in local pavements today (we also failed to find *A. arbustorum*). *D. rotundatus* is therefore taken to be evidence for scrub or woodland.

It seems reasonable to infer, therefore, that the mound was built in an environment of scrubby woodland rather than open country or closed woodland. This is consistent with the undated pollen diagram from Sunbiggin Tarn (Webster, 1969). Although only 1.7 km away the tarn is to the west of the mound, whilst the prevailing wind is also from the west, so that the pollen diagram may not be wholly representative of the environment of the site. Nevertheless the steady rise in grass between 528 and 368cms and commencing with the decline of elm is suggestive of a fairly lengthy and continuous period of forest reduction: one which could have included scrub. Scrub vegetation is also indicated in the dated pollen sequence at Bank Moor approximately 4-5 km north-north-west of the barrow. Birch scrub was present, although to varying degrees, prior to the first radiocarbon date in the core of 5563 Cal BC through at least 1887 Cal BC (Skinner and Brown, 1999). In the context of the pollen evidence it is possible to see the Rayseat Pike long cairn and barrow CLXXIV as part of a changing landscape. However, the fact that the land use appears to have been continuous, and that a high status late Neolithic burial was made near to a ‘classic’ long cairn, is suggestive of social continuity too.

The putative (primary) linear burial area would be consistent with such continuity but clearly the final monument forms were different. The objects recovered by Greenwell suggest that the tradition of building flat topped mounds against hillsides, such as those in Fig. 8, had begun at least as early as the late Neolithic but whether this indicates a change in the phenomenology of landscape (Tilley, 1994) is unclear. Perhaps significantly Rayseat Pike is located on a break of slope when both flat ground and a hilltop were available within 100m to the east, precisely the same direction in which the mound and hillside merge at Mazon Wath. The monumental forms recorded in Fig. 8 may thus have been presaged in the early Neolithic monument of Rayseat Pike,
FIG. 8a. The probable configuration of the mound prior to Greenwell’s excavations showing how it was a platform like extension of the hillside. The small mound (E) is probably spoil from the quarry and (F) the edge of the original mound buried by (E).

FIG. 8b, c and d. The mounds of Orton Scar, Gaythorne Plain 1, Gaythorne Plain 3 (west) respectively 6.75 and 6 kms away (site names and plans after Clare, 2007). Form lines at 10cm intervals.
indicating that ideas about the natural landscape did not change, whilst monument forms and burial practice did.

Conclusion

It is difficult not to interpret the Mazon Wath mound as being Greenwell’s barrow CLXXIV. However, the small size of the excavations, the shallow depth of deposits and proximity of limestone pavement made stratigraphic interpretation difficult. In particular, the objective of simply proving that the site was Greenwell’s barrow meant that the structure of the remaining prehistoric mound was not investigated. However, the proximity of the outcropping limestone suggests the nature of the construction probably varied across the site.

The way in which the barrow was located on and utilised the limestone outcrop is a feature found in other sites but its position on a broad slope within scrub woodland means the site would not have been visible from any great distance. Equally, it appears that some of the bone deposits encountered by Greenwell were not those of disturbed burials but rather fragmentary remains indicative of secondary burials of the kind encountered in other cairns within the region. The origins of some Bronze Age funerary structures, traditions and practices would thus appear to lie in the local Late Neolithic; indeed comparison with nearby Rayseat Pike suggests they may extend back into the Early Neolithic.

Acknowledgements

The authors wish to thank Ceri Roach and Inna Lekshedt for their help in the excavations, and the Commoners of Crosby Garrett parish for permission to excavate the site. Terry O’Connor helped with the identification of the snails, in particular Arianta, for which we are grateful. The authors are also grateful to the Trustees of the British Museum for permission to reproduce Fig. 1a.

Notes and References

Clare, T., 2007, Prehistoric Monuments of the Lake District (Tempus, Stroud).
Greenwell, W., 1877, British Barrows.

APPENDIX 1

Human dental remains

Adult human teeth were aged according to the tooth-wear criteria of Brothwell (1972) and juvenile teeth were aged according to the stages of tooth development recorded by Ubelaker (1978, cited in Bass, 1995).

Trench 3

The 14 teeth represent both upper and lower arcades and both sides of the jaws from several individuals. The lower teeth comprised a left I1 and I2, 1 right P3 (worn), one unsided partial P4 (unworn), one right M1 (unworn, age <17), one left M1 (heavily worn, age 35-45), one right M2 (worn, age 25-35), one left M2 (worn, age 17-25). The upper teeth were all from the right and consisted of one I2 (slightly worn, and shovelled), two canines (one unerupted, age 5-6; one heavily worn) and one M3 (worn, age 25-45). There were also two very worn and broken teeth, one molar and one incisor, which were human but could not be identified further.

Trench 4b

Three human teeth (one lower incisor, one lower M1 and one upper M2). The human remains represent at least two individuals, as the lower M1 was unerupted with almost no root formation (age 2-3 years), while the upper M2 was only just in wear indicating an age of 17-25 years. The incisor crown was broken, but it was possible to see a wear facet on the dentine indicating that it had been in wear for some time.