Stone finds in context

A CONTRIBUTION TO THE STUDY OF LATER PREHISTORIC ARTEFACT ASSEMBLAGES

by Mike Seager Thomas

One of the more common finds made on later prehistoric sites in Sussex is humanly-transported stone. By reviewing traditional approaches to such finds and considering the implications of their study — in context — for a range of differing social models previously applied to the interpretation of the important Middle Bronze Age settlement site of Black Patch, Alciston, the present paper demonstrates how such study can inform our understanding of the later prehistoric period generally. Clasts (pieces of stone comprising the whole or part of a stone object) are considered in relation to each other, to non-stone finds from the site, and to the various features from which they were recovered.

INTRODUCTION

This paper demonstrates how the study of humanly-transported stone from excavated site assemblages can improve our understanding of 1) production and distribution, and 2) meanings, use and ritual during the later prehistoric period. Of principal interest is the patterning (the distribution and associations) of stone finds, within and across sites. It relates to two ongoing fields of study. First, work on artefact assemblages from sites of the later prehistoric period, particularly in southern Britain, has concerned itself with the identification and interpretation of deposition patterns. What was the distribution of the material? Was it broken or intact? What categories of finds were present and what was their relationship to each other? The object of this research has been both to clarify our understanding of site deposition and to uncover the meanings behind this (Hill 1995). Second, the study of specific categories of finds — e.g. pottery — has, by identifying patterns of production and exchange, established a preliminary framework within which both social and economic relationships during the period can begin to be understood (Ellison 1981). By reconsidering the stone finds from the Middle Bronze Age site of Black Patch, Alciston, and a number of other Sussex sites, the present paper demonstrates the importance of a full consideration of excavated stone objects for such study.

Both artefactual and non-artefactual stone finds (excluding those of struck flint) are considered in context. In archaeological terms stone is intrinsically undatable, but it has a number of properties which recommend it for archaeological inquiry and it is upon these that the study methodology is based. These are as follows: first, durability. Stone lends itself to reuse, it will outlast many other categories of finds, and it may retain evidence of the processes to which it has been subject, both in terms of clast morphology and patterning. Second, intra-regional variability. In some geological areas (such as the study area) this can be great, making it possible to distinguish between stone from different sources and, within limits, to provenance it, to identify preferences, and to identify both catchment areas and differences between and changes in them. Third, lithology. Stones of different geological type have properties which recommend them for a variety of roles: most assemblages of stone finds will represent a number of different site activities and artefact types. Such knowledge is the key to the understanding of stone finds and is essential if we are to identify genuine patterning. Its identification, therefore, is the first task of the present study (Table 1). The second is the interpretation of such patterns: why they were formed in a particular way, in what situations, and whether they are incidental, functional or ritual. This is achieved by considering them in terms of find, feature and site relationships (Table 1; Figs 1 & 2). Black Patch, Alciston, was chosen as a case study, firstly, because of the continuing availability of the excavated assemblage, and secondly, the detailed recording of all categories of find.
Table 1. The interpretation of stone finds (relationships in italics applied to the interpretation of the Black Patch assemblage).

<table>
<thead>
<tr>
<th>Level of inquiry</th>
<th>Data to be recorded</th>
<th>Examples</th>
<th>Interpretative use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Orientation</td>
<td>Random, parallel to cut, unknown</td>
<td>Mode of deposition</td>
</tr>
<tr>
<td>(excavator)</td>
<td>Concentrations (distribution within feature)</td>
<td>Edge of feature, top of feature, bottom of feature</td>
<td>Mode of deposition, type of deposit, possible uses of deposit and/or of clasts</td>
</tr>
<tr>
<td></td>
<td>Clast support</td>
<td>Matrix supported, clast supported</td>
<td>Mode of deposition, type of deposit</td>
</tr>
<tr>
<td></td>
<td>Physical relationship to other finds categories</td>
<td>Mixed, separated</td>
<td>Type of deposit, use of deposit, use — and/or realm of use of clast (e.g. domestic)</td>
</tr>
<tr>
<td></td>
<td>Sampling strategy</td>
<td>100%, 1/2 section</td>
<td>Validity of interpretations</td>
</tr>
<tr>
<td>Context</td>
<td>Type of feature (preliminary interpretation)</td>
<td>post-hole, hearth, occupation layer, OLS, midden</td>
<td>Use or reuse of clast, processes to which clasts may have been subject</td>
</tr>
<tr>
<td>(supervisor)</td>
<td>Structure</td>
<td>hut, 4-post structure</td>
<td>Cross context relationships</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>MBA</td>
<td>Date of stone use, inter-site relationships</td>
</tr>
<tr>
<td></td>
<td>Physical relationships to other features</td>
<td>yes, no</td>
<td>Residuality, processes to which clasts may have been subject</td>
</tr>
<tr>
<td></td>
<td>Local geology and soil type</td>
<td>Upper Chalk</td>
<td>On-site availability, post-deposition processes (e.g. carbonate precipitation)</td>
</tr>
<tr>
<td>Clast (finds specialist)</td>
<td>Stone-type</td>
<td>Sarsen, granite</td>
<td>Provenance, selection, date, actual site catchment, use potential</td>
</tr>
<tr>
<td></td>
<td>Colour</td>
<td>Natural, altered (e.g. oxidized or reduced)</td>
<td>Burning, provenance, reuse, post deposition transforms (e.g. patination) and other natural process</td>
</tr>
<tr>
<td></td>
<td>Size and weight</td>
<td>Large pebble (65 g)</td>
<td>Selection (sorting), use, use potential</td>
</tr>
<tr>
<td></td>
<td>Shape</td>
<td>Rounded, angular (e.g. thermal fracture), discoidal</td>
<td>Selection, use and use potential, natural processes</td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td>Hard, friable</td>
<td>Burning, use and use potential</td>
</tr>
<tr>
<td></td>
<td>Surface appearance</td>
<td>Faceting, fire-cracks, weathering rinds, chatter-marks</td>
<td>Use, event sequencing (reuse), physical and chemical weathering, provenance</td>
</tr>
<tr>
<td></td>
<td>Conjoins</td>
<td>Between clasts in different contexts</td>
<td>Cross-context relationships, phasing, mode of deposition, resiliency</td>
</tr>
<tr>
<td></td>
<td>Site distribution</td>
<td>Concentrations (across site)</td>
<td>Activity areas, mode of deposition</td>
</tr>
<tr>
<td></td>
<td>Quantification</td>
<td>Stone type, artefact type, use wear</td>
<td>Selection, activity areas, site resource strategies (industry)</td>
</tr>
<tr>
<td></td>
<td>Regional geology</td>
<td>Variable</td>
<td>Selection, provenance</td>
</tr>
<tr>
<td></td>
<td>Inter-site relationships</td>
<td>Artefact sets, stone source (e.g. non-local)</td>
<td>Regional modelling, use, exchange networks, date</td>
</tr>
</tbody>
</table>
PART ONE
PAST APPROACHES TO THE STUDY OF PREHISTORIC STONE FINDS

In the study of prehistoric sites in Sussex, two approaches to the recovery and analysis of archaeological stone can be recognized. The first corresponds to the antiquarian tradition within archaeology. The objective of much of this work was the recovery of finds for collection and display (e.g. Curwen & Curwen 1927, 2). Most non-artefactual material was discarded at source, while the recording, or at least publication, of material and its relationships depended on the particular interests or research bias of the excavator concerned. Usually it was by feature or, at best, spit, i.e. finds from different deposits or contexts were bulked.

The second approach corresponds to the data-led strategies of modern research and rescue archaeology. These involve the retention of all finds and data which might be meaningful and their recording by deposit or context. Given this, it should be possible to reconstruct most of the relationships relevant to the interpretation of a site. But what is studied and the resources allotted to this study in terms of money and detailed contextual recording depends partly upon the research objectives of the excavator concerned, and partly upon the project members’ understanding of the material and its relevance to these objectives. As in antiquarian archaeology many data are overlooked, including — all too frequently — those necessary for a proper understanding of stone finds.

ANTIQUARIAN STRATEGIES

E. C. Curwen, excavating in Sussex during the inter-war years, was interested in the dating of querns. This necessitated a more rigorous approach to the recording of their archaeological associations than was then usual (Curwen 1937, 133), including much which relates to site processes and artefact taphonomy. Though traditional in outlook, his work heralds a more contemporary approach to stone finds, and what he recorded continues to be of use interpretatively.

An early example, co-written with E. Curwen, referred to conjoining clasts of sandstone in different pits on the Caburn (Curwen & Curwen 1927, 26). Finds of all categories including quern fragments, beach pebbles and natural porospæra (hollow flint balls) were recorded by pit. These data have been used in the re-analysis of on-site relationships carried out in association with recent excavations at the site (Hamilton 1998). Further useful observations were made in reports on excavations at the Trundle hillfort and causewayed enclosure. In the first, he referred to fragments of greensand from Iron Age features, distinguishing these from a single unbroken find of the same material recovered from a Neolithic one. He inferred from the small size of the Iron Age material that it had been deliberately broken (Curwen 1929, 63). In the second report, he identified fragments belonging to rotary querns (Curwen 1931, 144). The blackening of clasts suggested fire to him as a mechanism by which they may have been broken up (Curwen 1931, 145). This pattern of breakage and burning accords well with observations by the present writer on archaeological stone from late prehistoric sites in Sussex (Seager Thomas 1998b, 21 and below). Curwen’s later report (1934) on excavations at the Middle Bronze Age settlement site of New Barn Down referred to the refitting of two querns of Lower Greensand, from 9 and 17 fragments respectively. He described them as little used and so contrasted them with other worn examples from the same structure. The contrast between the pattern of stone abandonment as recorded here (Fig. 1), and at the Caburn, reflects...
similar contrasts between finds assemblages from other Bronze and Iron Age sites within the region (S. Hamilton pers. comm.), and raises a number of questions regarding the exact nature of this, in particular why or how they were broken in this manner. These questions are relevant to recent research on possible ‘special deposits’ (Hamilton 1998, 32, 38; Poole 1995, 262; Hill 1995). None the less many useful data are lacking. Owing to Curwen’s failure to quantify his observations on stone finds, it is difficult to make any meaningful comparisons between finds from his sites and other assemblages, and therefore to identify any interpretable trends in regional distribution or use. He made no mention of sampling strategies. Where identified, stone was considered in terms of facies, not origin, while data on the nature of clast fracture, hardness and fabric colour were not discussed (these indicate that the quern fragments from New Barn Down come from the Lodsworth area of West Sussex and that most of them have been burned). The reports of Curwen, however, are the best of their time. By contrast, the reports of another antiquarian, A. E. Wilson, the Curwens’ successor at the Caburn and excavator of the important Bronze Age enclosure of Highdown Hill, evince little interest in and no understanding of the use of stone finds in the interpretation of excavated sites. Trench notebooks from these sites (in the library of the Sussex Archaeological Society in Lewes) make frequent mention of them yet his reports, four in all, mention them hardly at all. For example: ‘The large round hearth’, he writes of Highdown, ‘... yielded a large rim of a Late Bronze Age bucket pot, a spindle whorl and part of a saddle quern’ (Wilson 1940, 180). We do not know of what stone — local or imported — the quern was fashioned; we do not know if it was burned and cannot, therefore, postulate the nature of its relationship either to the feature in which it was contained or to the material found with it; we do not know how it was fashioned, and we do not know if, or for what purpose, it was used. Clearly Wilson’s research bias differed from that of Curwen.

RECENT STONE FINDS
Modern, data-led strategies in Sussex have resulted either in the archiving of stone finds themselves (e.g. Bishopstone) (Brighton Museum), and/or the preparation of complete archive reports which list all stone finds by context (e.g. Downsview: Barber unpub.). The only notable exception to this rule is the Bronze Age site of Mile Oak, Portslade, from which data on artefactual material only are available (M. Russell and D. Rudling pers. comm.). The retention of such data is essential if we are to identify patterning, within or between sites, and it is the principal improvement of modern over antiquarian strategies for the collection and study of stone finds. Problems remain, however, both in Sussex and elsewhere: many identifications are either incorrect or inadequate (at Black Patch, for example, sarsens were mistaken for Wealden sandstone) (vide Cartwright 1982, 39); in addition, the focus of study remains on the stone as an artefact, rather than on the processes to which it has been subject (reports checked by the author against the finds themselves invariably ignore or underestimate the number of clasts which have been burned) (e.g. Bishopstone: Bell 1977, 288); and finally, contextual analyses continue to be inhibited by the bulk excavation of finds from individual contexts and features. Where material has been discarded, such errors and shortcomings cannot of course be identified or corrected. In order to avoid this in the future the adoption of a ‘prompt-led’ finds recording system is recommended. Instead of relying on the random and, sometimes, inadequate knowledge of the archaeologist in the field for the selection of the data to be recorded, this would ask questions of a site or feature which are specifically designed to aid the interpretation of the material recovered. The relationships between finds within individual features would be recorded by the excavator; details of the sampling strategy employed, and any relationships which exist between finds and particular structures or categories of feature would be recorded by the supervisor or site director; the finds themselves would be recorded by the finds’ specialist concerned.

PART TWO
BLACK PATCH: THE CONTEXTUAL ANALYSIS OF AN ARTEFACT ASSEMBLAGE
Reconsidered here is the stone finds assemblage from the Middle Bronze Age settlement of Black Patch, near Alciston in East Sussex. Table 1 sums up the interpretative sequence. It is not intended as a definitive statement on the study of stone finds: too many variables exist. But the idea, based firstly on
their contextual relationships, and secondly on the properties referred to in the introduction, is generally applicable. Interpretation at the level of the individual stone object or clast is based on a combination of local site-assemblage analysis, experimentation (primarily stone burning) and regional geological survey (Seager Thomas 1998a, 7).

The site comprised a series of hut platforms and enclosures. Except for two quern fragments from the ditch of a barrow of Beaker date, little evidence for domestic activity prior to the settlement was found. Two platforms — of two and five huts, respectively — were fully excavated (Drewett 1982). All stone finds were retained. The present discussion is based on a re-examination of those from hut platform 4 (Fig. 2), 400 metres from the next hut platform (hut platform 2) and over a kilometre from the Beaker barrow (Barrow 1). Hut platform 4 was the larger of the two and differed from platform 1 in that it produced a large assemblage of what the excavator describes as de facto rubbish (Drewett 1982, 333), i.e. that left on hut floors when the site was abandoned, in addition to that which occurred in pits and post-holes. The identification of this is based upon horizontal patterning recognized within the excavated assemblage. The range and proportion of potential uses as indicated by artefact or stone type resembles those of other Middle Bronze Age downland settlements nearby (e.g. Itford Hill), though in some cases the actual stone type varied. Dominating the assemblage was fire-cracked flint. The next most common stone find was sarsen stone, a silicified sandstone, which was probably available within an hour’s walk of the site, if not closer. The presence of artificially smoothed facets indicates that most clasts are fragments of quernstones or rubbers. Those from post-holes are all of large pebble-size (64 mm) or more, too big to be have been intruded accidentally during the occupation of the platform. Also present were a few clasts of non-local stone. These included Horsham stone (from the High Weald), and a non-calcareous siltstone similar in appearance to Upper Greensand of Eastbourne type, both burnt, and a single faceted clast of a cherty, non-calcareous Lower Greensand which almost certainly originated in West Sussex. These were found with a collection of burnt local ironstone at the back of hut 4. A clast of imported ‘Mayen’ lava identified in the original report (Cartwright 1982) can no longer be traced. In view of the chronological and spatial isolation of hut platform 4, there is little reason to assume the presence of any significant quantities of residual material.

The present discussion considers three possibilities. First, disused stone artefacts would not be introduced into a newly-established site and, therefore, their presence in post-holes indicates secondary activity. Second, it indicates deliberate placement, i.e. the formation of non-functional ‘special deposits’. Third, material identified as de facto rubbish — including stone — on many Middle Bronze Age settlements including Black Patch may in fact be ‘special deposits’ or, more likely, secondary rubbish.

PHASING

In its final form platform 4 was considered by the excavator to represent a ‘joint family compound . . . probably part of a developing cycle of nuclear, joint and extended families’ (Drewett 1982, 342). Recently, however, this view has been challenged in line with Ellison’s model for the Middle Bronze Age in southern England (1981, 417–21) in which the principal settlement module comprises a major (i.e. large) residential structure and a smaller ancillary structure in which a different range of activities were practised. Two successive and unrelated modules are postulated. The first would comprise huts 2 and 4 and fences 2 and 4, the second huts 1, 3 and 5, and fences 1, 5 and 3. The evidence is as follows: 1) the plan of the excavated features incorporates some anomalous boundaries; 2) the second phase of hut 1 cuts hut 2; 3) huts 1 and 3 differ in both size and plan from huts 2 and 4; and 4) artefactual evidence — the de facto rubbish — from hut 4 duplicates that from huts 1 and 3 (Russell 1996, 35–6) (Fig. 3). If, however, we accept the possibility that disused stone artefacts would not be introduced into a newly-established site, huts 1, 2 and 5, and fences 3 and 4 ought not to belong to the site’s primary module (Fig. 2). That would leave huts 3 and 4 as the primary module, and huts 1 (phase 1) and 2 and huts 1 (phase 2) and 5 as secondary or — possibly — secondary and tertiary modules. Contra Russell, it is also likely that pond 2 had been open for some time when fence 4 was erected since flakes conjoining with a near-complete quernstone found in a post-hole which belonged to fence 4 were found in the secondary fill of the former (layer 3) (Drewett 1982, 332, fig. 7). In terms of hut size, this interpretation fits Ellison’s model perfectly. However, artefactual evidence from hut 4 still
Fig. 2. The distribution of stone manuports from hut platform 4, Black Patch. (Adapted from Drewett 1982, 327, fig. 5; 335, fig. 9.)
duplicates that from hut 3. This can be explained in several ways: firstly, by the time hut platform 4 was abandoned, the use of at least one hut must have changed, i.e. modular units were not fixed; secondly, the de facto rubbish has been misinterpreted; or, thirdly, the sarsens in the Black Patch post-holes represent some kind of ‘special deposit’, and not just post-packing.

Note: At first glance the suggestion that hut 4 is primary appears wrong: three cut features contained imported material. But one of these (088) was not a post-hole and of the other two one was outside the hut’s post-ring (090) and the other (the excavator’s 058) is described as ‘enlarged’, i.e. it had been disturbed. Both 088 and 058 contained stone types otherwise restricted to a layer which post-dated the period of the hut’s construction (057, layer 3) (Fig. 2). Presumably the material they contained related to the activity or activities represented by this deposit.

RITUAL OR RUBBISH?
It has been suggested of metalwork from a Black Patch post-hole that it reflects ‘... not an “activity area” but a foundation deposit similar in context to the chalk phallus from the porch post-hole of hut D at Itford Hill’ (Barrett & Needham 1988, 136); and recent work on structured deposition patterns in Iron Age Wessex has suggested that non-functional ‘special deposits’, defined either by the recurrence of apparently non-functional deposition patterns or the presence of material not easily explained in terms of discard, occur in features of all types — pits, post-holes, ditches, working-hollows etc. (Hill 1995).

Can the same be argued of the sarsens which occurred in post-holes at Black Patch? For the most part no: the principal evidence that they were not just post-packing is Russell’s re-interpretation. As we have seen, however, they include a single, nearly complete, lower stone of a saddle quern (Fig. 2). Finds of complete or nearly complete quernstones have been made in a hut post-hole at New Barn Down (Curwen 1934, 167), a porch pit or post-hole at Thorny Down, Wiltshire (Stone 1941, 120, 132), a pit or large post-hole at Green Lane, Farnham (Oakley et al. 1939, 192), and a hut post-hole at Cock Hill, West Sussex (Ratcliffe-Densham & Ratcliffe-Densham 1961, 186). The latter was fragmented — probably fire-fractured (vide Ratcliffe-Densham & Ratcliffe-Densham 1961, pl. xb). Whole quernstones are also common in pits (e.g. Itford Hill) (Burstow & Holleyman 1957, 172, 177). This may be an example of the sort of recurrence referred to above and it would be unwise to write it off in terms of discard alone, especially in view of the fact that some of the foregoing are of imported stone. Querns, however, come in a set of an upper and a lower stone: if one is broken, the other — unless it is refashioned — is rendered useless. It may be, therefore, that the occurrence of whole stones in post-holes — and other features — has as much to
tell us about site-resource strategies as it has about ‘special deposits’. Either stone per se was not that precious during the period or the fashioning of artefacts from it was a specialist task not carried out at the point of use. The latter view is recommended by two things: firstly, the high ratio of faceted to unfaceted clasts on site (approximately 1:1) and, secondly, the observation that most fractures result from burning not dressing.

Forty-two sarsen clasts were recovered from the terrace of hut 1, most of them from a single quern. They ranged in size from small pebbles (20 mm) to a small boulder (256 mm) and their morphology indicated that they owed their fragmentation to exposure to fire. Clasts occurred in layers 2 to 5, but were concentrated, with some of the pottery and flint flakes, in a linear spread within the rear half of the hut’s post-ring (Fig. 2) (Drewett 1982, 329, fig. 6). From these observations we can deduce three things. First, layers 2, 3, 4 and 5, comprising deposits on and above the hut floor (Drewett 1982, 332, fig. 7), represent either a single depositional episode or have been mixed subsequently. The latter possibility is not considered here. Second, the presence of quern fragments is unrelated to the quern’s primary role as a grinder (contra Drewett 1982, 333). Third, there is a direct relationship between the deposition of stone and that of the other categories of find with which it was found, i.e. they were deposited or mixed together. The size of the clasts moreover would have inhibited occupation. This removes the interpretative problem caused by the duplication of finds, for, though it is likely to represent some form of activity, it more closely resembles — or appears to involve — deposition than abandonment in situ, i.e. it is not de facto rubbish in the sense discussed by the excavator. The alternatives include rubbish-dumping/levelling, and non-functional ‘special deposits’, possibly combined. Many finds made at Black Patch, in particular those of burnt grain and metalwork, suggest the latter (Barrett & Needham 1988, 136), and it is tempting to consider the burnt quern from hut 1 in the same way. But querns at Black Patch and other settlement sites of the period, like many other categories of stone find, appear routinely to have ended their lives in a fire; and, far from marking it out, the burning of that from hut 1 fixes its place within a general trend of functional use and reuse. Its mixing with other common finds suggests, therefore, not a ‘special deposit’ but an ordinary domestic rubbish-dump. This is what the}

excavator described as secondary rubbish (Drewett 1982, 332). Such an hypothesis may be supported by the occurrence of conjoining clasts from a single quern in pond 2 and a post-hole belonging to fence 4. If the former was picked out of pond 2, or if the latter were thrown into it, it suggests that at the end of its life this was used for rubbish disposal. It does not seem unreasonable to suggest, therefore, that other features on site — including hut 1 — were reused in the same way.

In many cases the reason why stone was burnt remains unknown but a number of possibilities are suggested by the distribution of burnt stone elsewhere on hut platform 4 and on other sites. Consider hut 3. A concentration of fire-cracked flint towards the centre of the porch is interpreted by the excavator as a possible hearth, another in the eaves, a position not suitable for a hearth, as a possible store of temper for potting (Drewett 1982, 333, 336, fig. 10). Both views are difficult to sustain, however. Firstly, flint is explosive and it is not likely to have been placed upon a fire within a living or working area. Its location is better explained in the terms set out for so-called de facto rubbish above, i.e. it is not de facto but secondary rubbish. Secondly, apart from the fire-cracked flint itself no other evidence of temper preparation was identified within the excavated area (cf. Needham & Sørensen 1988, 124). Thirdly, a ‘cache’ of burnt stones which were not used for tempering in Sussex during the Middle Bronze Age period occurred in an identical position in the eaves of hut 4, likewise mixed with finds of other categories (layer 3). These types are less explosive than flint and it is possible that they were burned indoors and then pushed aside, or, like the sarsens in hut 1, that they form part of a secondary dump comprising material wholly unrelated to the activities which took place in hut 4. But, in view of the treatment of the flint, it is tempting to infer that they too were brought in from outside and deliberately placed in the position in which they were found, i.e. the concentrations of burnt stone in the centre of the hut are secondary rubbish and the concentrations in the eaves are de facto rubbish. Much the same could be postulated of the concentration of burnt stone from New Barn Down illustrated in Figure 1 (Gurd’s ‘querns’). The best interpretative fit for these deposits is a steam production or, possibly, a storage heater hypothesis (e.g. Curwen 1934, 148). A related function is suggested by the presence of different burnt stones
at the bottom of or filling pottery vessels on Bronze Age sites at Patcham-Fawcett School (Greatorex unpub.), Shinewater Park (Seager Thomas unpub.), Farnham (Oakley et al. 1939, 182) and, possibly, Weston Wood, Albury (Harding 1964, 15), and their close association with broken vessels elsewhere: pot boiling. It is not clear whether the purpose of this was practical, in a modern, western sense, or not. A further function for burnt stone, dry cooking, is suggested by the occurrence of pit features at Patcham-Fawcett and elsewhere with dark, charcoal-rich fills which comprise primarily burnt stone (Greatorex unpub.; Ramseyer 1991 etc.). The presence of burnt stone in rubbish deposits indicates repeated episodes of such activity.

INTERPRETATIVE SUMMARY
The foregoing has implications for our understanding of the Bronze Age on three counts. First, site organization. Insofar as the study of domestic modules and ‘special deposits’ is based upon the study of deposits which may have been disturbed or added to in a variety of ways it is flawed. It demonstrates, however, that disused artefacts and features alike were a resource. Second, site resource strategies. In terms of site procurement, Black Patch can be grouped with Plumpton Plain, Varley Halls and Downsview which, like it, utilized primarily local material (Holleyman & Curwen 1935; Barber 1997, 51; Barber unpub.), and distinguished from Itford Hill which appears to have utilized primarily non-local stone (Burstow & Holleyman 1957, 204). This is indicative either of a different or altered site-procurement strategies. The latter possibility is enhanced by the slightly later date available for the Itford Hill site (Hamilton 1997, 41). The presence of stone from West Sussex confirms, however, that far-reaching contacts known to have existed during the Late Bronze Age were already in place by the Middle Bronze Age. Artefacts of stone appear to have been fashioned off-site. Third, stone use. It suggests a different or additional role for one of the most abundant categories of find made on sites of the period (burnt stone), which, though functional, may have had ritual connotations.

CONCLUSION
The examination of stone finds in context can inform our understanding of: 1) possible stone use per se; 2) site function and organization; 3) structural phasing and role; and 4) site-resource procurement strategies. As we have seen, these are integral to a full and proper understanding of past societies, both at site level and in general. Two things are necessary: proper recovery and proper recording. These are inhibited, firstly, by a failure to consider the effects of natural and anthropogenic processes on clasts, both in terms of their appearance and their patterning; and, secondly, by a failure to consider the relationships of different types of find — including those of stone — to each other and to the structures containing them, and the processes to which these have been subject. In part this could be addressed by the adoption of prompted recording systems. Ultimately, however, a re-allocation of resources away from hurried rescue excavation and traditional artefactual and environmental studies to a more detailed and contemplative field archaeology is required. Given this, future work could take full advantage of the range of interpretative possibilities discussed here. All categories of find are of value when looked at in context.

Acknowledgements
The material from Black Patch is stored in the museum of the Sussex Archaeological Society, Lewes. The author would like to thank Peter Drewett, Helen Poole and Emma Young for permission to re-examine it. Material from New Barn Down is stored in Worthing Museum. The author would like to thank Sally White for permission to re-examine it. The geological survey and experimental work referred to in the text was part-funded by a Margary Grant from the Sussex Archaeological Society. It is intended that a fuller report on this work will be published in due course.

Author: M. Seager Thomas, 12 St Nicholas Lane, Lewes, East Sussex, BN7 2JY.

REFERENCES

— — 1934. A Late Bronze Age farm and Neolithic pit dwelling on New Barn Down, Clapham, near Worthing, *SAC* 75, 136–70.

