Commanding position
HIGH-STATUS LATE IRON AGE AND ROMANO-BRITISH OCCUPATION
OF A WEALDEN RIDGE AT BEEDINGS HILL, WEST SUSSEX

By Matt Pope
Caroline Wells
David Rudling
Anna Doherty
Susan Pringle
Louise Rayner
Roberta Tomber

This report presents the results of recent excavation and a field-walking survey at Redfolds Farm and Beedings Castle, near Nutbourne, Pulborough. It also publishes for the first time material from this site retained by the late Con Ainsworth. Late Iron Age and early Roman finds of pottery, including imported Dressel 1 amphorae and ‘Pulborough’ samian, coins and ceramic building material, are reported and discussed. Through the fieldwork and archive reassessment undertaken as part of the Beedings survey, Beedings Hill can now be confirmed as a site with significant high-status Late Iron Age and Romano-British activity. Strong evidence has been identified for trading contacts with the continent in the form of wine amphorae, other ceramics and Late Iron Age coinage. Insights are gained into Iron Age decorated pottery groups and the local production of samian in the 2nd century AD. The significance of this evidence in understanding the distribution of political power in Late Iron Age West Sussex and its transformation under Roman rule are discussed.

INTRODUCTION

Beedings Castle is a monumental early 20th-century house built for the physician John Harley. The site is at 90m OD on the edge of the north-facing scarp of the Lower Greensand in the parish of Nutbourne, near Pulborough, West Sussex (Fig. 1). During the construction of the house, a series of sand-filled hollows were revealed within the underlying Lower Greensand geology. These were shown to contain a unique stone tool assemblage consisting of some 2300 pieces of fresh, human-struck flint and, at a higher level, a feature containing a probable Bronze Age cremation vessel (Harley 1900). During the 1980s the flint material was recognised by Roger Jacobi as comprising an exceptional example of poorly understood early Upper Palaeolithic technology, and interest in the site was renewed (Jacobi 1986; 2007).

Throughout the last quarter of the 20th century Con Ainsworth of the Worthing Archaeological Society (Fig. 2) maintained contact with the owner of the Castle and nearby Beedings House. As a consequence, the presence of significant pottery of Late Iron Age and early Roman date was noted and investigated during works on the house and gardens. Two Iron Age coins found by the owner were reported (Aldsworth 1979; 1984). In the present century, geophysical surveys (Wells 2000) and small-scale investigations were carried out in response to development (Griffin 2002; Butler 2003).

An opportunity to investigate further the nature of the Late Iron Age activity at Beedings came in 2008, when a project funded by English Heritage was undertaken to assess and mitigate potential damage to early and late prehistoric archaeology through ploughing of fields immediately adjacent to the original site (Pope 2008).

This paper gives an account of the Late Iron Age and Romano-British finds found during these works, and provides an overview of earlier investigations and recovered material from works during the 1980s and 1990s. Detailed publication of the early and late prehistoric flintwork will be presented elsewhere (Pope et al. in prep).

HISTORY OF INVESTIGATIONS AND PREVIOUS FINDS AT BEEDINGS

Beedings ‘Castle’ (Figs 1 and 3) was built by Dr John Harley at the turn of the 20th century. Construction involved an excavation five feet deep into the local rock, which he described as comprising ‘rubble, ‘scrub’, sand and bedded sandstone of the Lower Greensand’ (Harley 1900); in only one place did he find that the ground below the topsoil had been disturbed. In his short publication Harley describes clearly a feature some 4–5ft wide and 5ft deep in which a horizontal stone was found to cover red clay, a ‘rotten’ pottery vessel of soft and vesicular material with simple rounded rim and undecorated, some ash, about 10 worked flakes and
Fig. 1. Location map for Beedings and investigated areas.
2 cores, and rounded pebbles interpreted as sling shot, all lying on a layer of burnt clay. Harley did not attempt to date the feature, but the account of this ‘cinerary urn’, as he describes it, and its associated worked flint within the grave feature strongly suggest a prehistoric date, perhaps Bronze Age. The hilltop promontory would have been a choice location for a burial monument.

Once the house was built, Harley maintained a cabinet of curiosities and artefacts. The story of this cabinet and the eventual dispersal and rescue of collections from it were researched and published by Dr Roger Jacobi (1986; 2007). The objects included the Upper Palaeolithic flints first published by Jacobi, and Gallo-Belgic pottery which will be discussed later in this paper. Among the labels that survived for Jacobi to discover with the collection in the Barbican House Museum in Lewes was one which provides evidence that other pottery from cremation pits was found, at a higher level than the Palaeolithic flints. ‘It is generally called Romano-British, but some of it is Celtic or early British’ (Jacobi 1986, 62). In 1900 ‘Celtic’ was commonly used for the Late Iron Age, particularly decorated material, and ‘early British’ referred to an early prehistoric period, either
Bronze Age or Neolithic. We can see here that the Beedings site, even in 1900, had evidence for multi-period activity, and this evidence can now be corroborated by more recent work which is outlined in chronological order below.

MATERIAL RECOVERED BY AINSWORTH AND JUDD

As a series of building modifications were undertaken and new houses were constructed in the grounds of Beedings Castle, further observations were made. The Ainsworth Beedings archive consists of finds made by the late Con Ainsworth and the then owner, Mr Tracy Judd, during the last quarter of the 20th century. The most interesting part of this material is a collection of 39 sherds of amphorae, in particular a type known as Dressel 1 – both 1A and 1B. Dressel 1A dates from 2nd–1st century BC and 1B style is confined to the 1st century BC (Peacock 1971; Fitzpatrick 1985). In addition, some 1st-century BC Late Iron Age pottery was collected, both plain and decorated, as was a coin of Epaticus (c. AD 20–40), and some sherds of Roman pottery were also found. Prehistoric flint material was retained, but none of Palaeolithic date. The following account describes the surviving information and relates how it was collected.

Con Ainsworth was involved on at least two occasions (1985 and 1994) in some archaeological investigations around the Beedings location (which includes both the Castle grounds and those of Beedings House (Fig. 1) adjacent), and in addition he retained various pieces of pottery that had been found by Mr Judd at various points in time. Research on the archaeological work undertaken by Con Ainsworth has been hindered by the lack of a written archive such as field notes, site plans or section drawings. Before his death he passed to Caroline Wells a box of amphorae and pottery sherds, and three sheets of paper with a small amount of information. On a site visit he pointed out the locations of investigations and, through a number of conversations, a limited amount of further detail was recorded. After his death a further box of amphora sherds was located and, separately from Dr Roger Jacobi, a box of flint artefacts of the later prehistoric period. In addition, forming a very useful element of the record, a number of slides were located by Roger Jacobi and Liz Somerville. Together, these form a sequence of photographs showing the 1985 excavation conducted by Ainsworth by the garage block in front of Beedings Castle, including shots of amphorae and pottery in situ and immediately after discovery. These photographs give the precise position of the trench adjacent to the garage wall and decorative lamp-post (Fig. 2). These investigations had been conducted with some collaboration with Dr Roger Jacobi, who was hoping that Upper Palaeolithic material or a geological gull feature would be revealed while he was preparing his first paper on this site (Jacobi 1986).

Also in the Ainsworth archive are artefacts marked 1978. According to a note these were collected by Mr Judd around the time of the construction of Beedings House to the south-east of the Castle. No information records the precise finds locations and some pieces could have come from any part of his property, which included the Castle, the main drive and adjacent fields.

Finds marked 1994 almost certainly came from a brief watching episode by Con Ainsworth and volunteers one Sunday morning while Mr Judd used his JCB digger just to the east of Beedings House. It was recalled that on this occasion a V-shaped ditch was seen, although unstable fill and insecure conditions meant that it was not ‘bottomed’ by volunteers (C. Ainsworth and D. Dunkin, pers. comm.), and Mr Judd did not dig it out completely because he did not have a small enough bucket for his digger (T. Judd, pers. comm.). At that time this was the first potentially late prehistoric archaeological feature observed on the site, yet no section drawing or photographic record was made – or has survived – and no particular finds can be linked to any recorded level within this putative ditch. It is likely that Mr Judd’s landscaping work then removed the upper part of this feature but, a decade later, a truncated ditch was encountered in both of the two adjacent areas of developer-funded watching brief carried out by Archaeology South-East (Griffin 2002; Butler 2003), and this feature may have been one and the same.

So the Ainsworth archive contains objects collected, as dated, from 1978, 1985 and 1994. An object marked 1982 may have been incorrectly overwritten. Finds had been bagged haphazardly but they had been individually marked, which could be used to assess whether any objects came from significant undisturbed stratigraphic contexts. The markings given are for the most part an individual sherd number, a date and an alphanumeric mark, often ‘A1D1’ or ‘S2’, which is assumed to relate to stratigraphic position.
Turning to the stratigraphic record itself, the sum total of written notes consisted of a typed, schematic note on the stratigraphy relating to the 1985 trench on the north side of Beedings Castle excavated before a modification to the car parking space. Ainsworth’s simple record is shown in Table 1. On a separate sheet of paper, Ainsworth recorded that ‘S2’ marked on pottery meant unstratified items collected by Mr Judd.

The schematic stratigraphy and notation would lead the reader to believe that the 1985 excavation securely located a buried feature of natural origin containing only Late Iron Age 1st century BC material, namely pottery and imported amphorae, and that this material was stratified underneath a buried soil line, which was in turn stratified below mixed soil residues containing material of earlier and later date. The question was whether this interpretation could be corroborated by the stratigraphic information recorded on the surviving finds. Certainly there do seem to be two Dressel 1A rim forms (Fig. 6, nos 1 and 2) but marked S2 D1, and it is unclear whether this indicates unstratified (S2) or from the gully (D1); perhaps they were found loose in spoil, probably from the gully. A Dressel 1B rim form was found and is marked S2 – unstratified. The other amphorae sherds found that year are handle pieces.

Flint artefacts collected from the excavation site by Roger Jacobi are all marked A1, topsoil/dumped soil layer. Thus the labels marked on the artefacts do not support the suggestion that Dressel 1A was found securely stratified below Dressel 1B, or in a stratified sequence reflecting their relative dating. As artefacts from other years are also sometimes marked ‘A1D1’, no reliance can be placed on these for anything other than the year of recovery, and it is considered that ‘A1D1’ indicates that an object was recovered from the interface between topsoil and subsoil. As to the declared ‘gully’ called context D, no other lines of evidence confirm its identification.

It may be inferred, therefore, from the Ainsworth archive first, that neither investigation can be said to have revealed securely recorded archaeological contexts without mixed assemblage material and second, that both the Beedings Castle garage site and the Beedings House construction area produced both Dressel 1A and 1B, Late Iron Age pottery and early Roman pottery; in both areas, material from the 1st century BC through to the 1st and perhaps early 2nd century AD has been found.

It is worth noting that some analysis was initiated and undertaken by Con Ainsworth. Identification of the Dressel 1A and 1B rims by Dr David Williams of Southampton University took place on the occasion of a visit to Chichester, perhaps in 1986 (D. Williams, pers. comm.). This brief sighting allowed the presence of amphorae from near Pulborough to become more widely known, resulting in early published references to the site (Cunliffe and de Jersey 1996, 54, fig. 36; Davenport 2003, 103). Other pottery rims and decorated sherds had been drawn, but only photocopied sheets remained in the archive.

Analysis was taken further in 2000, when the first box of amphorae sherds received was taken to Dr David Williams for analysis. A sample of these items were the subject of a detailed fabric analysis with petrological thin-sections by undergraduate Alastair Spencer, who produced a report comparing the Beedings sample with material from Ashton Keynes near Bristol (2000). Further discussion of the Ainsworth archive pottery is included below.

RETURNING TO BEEDINGS: 21ST CENTURY RESEARCH

In 2000-2 it was established through geophysical surveys under the direction of Caroline Wells that the surface of Beedings Hill was crossed by long, continuous, relatively narrow structures within the bedrock (Wells 2000). Projection of these fissures across Beedings Hill showed them to have originally extended under the house and to have provided a suitable context for preservation of the lithic assemblage.

In 2003 geoarchaeological assessment of
one of these linear structures, at a location in Field 1, some 150m west of the original find-spot, resolved the geophysical feature at that point as a relatively shallow bedding structure within the solid geology. Meanwhile, observation of ground works for construction of a tennis court revealed, in cross-section, the depth of fissures in the bedrock between Beedings House and Beedings Castle, and the fine-grain silty sediments therein with good preservation potential (Fig. 3). Reappraisal of the geophysical survey of Field 3 led to the realisation that other larger fissure features were present and could be targeted by excavation. The first trenches were excavated in 2007, which established the location and size of one fissure, and tested two less productive areas.

Through long-term communication with the original land owner, Mr Judd, it was hoped to continue investigating the hill as part of an ongoing and episodic research project. However, in late 2007 Mr Judd confirmed that he was in the process of selling the land at Beedings Hill as part of his disposal of Redfolds Farm, and that the entire hill was to be turned over for a vineyard. Deep ploughing of the fields was scheduled for late March 2008, and a mitigation response, commissioned and funded by English Heritage, was implemented in January and August 2008. This involved characterisation and recovery of archaeology from the areas to be ploughed through field-walking and targeted follow-up excavation.

While the main impetus behind the Beedings Survey was to isolate and preserve the internationally important early Upper Palaeolithic material at the site, a key secondary objective was to establish a better understanding of the later prehistoric land use at the site, specifically related to the Late Iron Age and Romano-British archaeology of the hill.

THE BEEDINGS SURVEY: RESULTS OF FIELDWORK IN 2008

The Beedings Survey was executed in two distinct stages. The first stage was to undertake field-walking and ground-truthing through test pits in Fields 1 and 2 (Fig. 4). The second stage was the focused excavation of identified fissures in the threatened area of Field 3 (Fig. 5). It was in the second stage of work that significant Pleistocene archaeology was recovered; this Palaeolithic material is to be published separately (Pope et al. in prep.). However, the field-walking collected a large body of multi-period archaeological data from the surrounding landscape. This report covers the Late Iron Age and Romano-British material from both stages of the project.

Field-walking survey and test pits: Fields 1 and 2

The entire site was topographically surveyed using total station and then Fields 1 and 2 divided into 20m by 20m grids (Fig. 4). The site was then field-walked over the course of two weeks, including a single weekend during which in excess of 30 volunteers (drawn from UCL and local archaeological societies) helped to undertake the bulk of the collection process. Finds totals were calculated, and artefact distribution plots were rapidly assembled for interpretation. The field-walking produced more than 8000 finds and indicated a diffuse spread of pottery, flintwork and ceramic building material (CBM) across Fields 1 and 2. The presence of high-status Late Iron Age and Romano-British pottery previously documented for the hill was further confirmed with finds of samian, Dressel 1A amphorae fragments and tegula tile, and Late Iron Age coins including two Gallo-Belgic gold issues were recovered (see below for details).

One broad spread of Romano-British ceramics and tegula tile was identified. This concentration was targeted initially by geophysical survey and then tested by direct excavation (test-pits). The geophysics revealed nothing in the way of structures, localised pits or fissure features, and excavation of the area revealed only small depths of topsoil overlying an undulating solid geology characterised by exposed bedding planes rather than fissures. The tegula concentration was found to be a component of deep topsoil accumulation across one part of the field and is interpreted as dry valley colluvial in-fill.

The four 2 x 3m geoarchaeological test pits (Fig. 4) revealed disturbed and diffuse scatters of further flintwork of Mesolithic to Bronze Age date within the thin topsoil covering the Lower Greensand geology on the south-facing slopes of Fields 1 and 2. Some greater depths of subsoil were associated with bedding plane interfaces which contained very small quantities of Mesolithic material; no archaeological features were revealed in the test pits.

Trial trenching and geophysics: Field 3

Excavations undertaken in Field 3 before threatened horticultural development were sited directly on fissures identified through geophysics. A network
Fig. 4. Fields 1 and 2 with field-walking grid.
of these fissures was effectively mapped using an RM15 Geoscan meter, and likely dominant features, thought to be gulls, were isolated and targeted through excavation. A total of seven trenches were eventually sited in this field, sampling a range of fissure features including a single significant suspected gull (Fig. 5). Each trench was excavated using small hand tools in a series of 100mm spits following major stratigraphic or lithological divisions. Finds were recorded using a total station, and aspect and orientation details were recorded for each find before lifting.

These excavations revealed only small quantities of Late Iron Age and Romano-British ceramics, but did include, from Trench D, a cluster of Dressel 1B amphora fragments made up of the neck, handles and basal spike, but appeared to lack most of the body sherds. This is the first example of the type from the hill top fully recorded in situ, despite the Ainsworth collection of 39 sherds of Dressel 1 amphora from the site.

THE POTTERY ASSEMBLAGE by Anna Doherty
The trench excavations and field-walking at Beedings yielded two assemblages which, while small, both produced important ceramic evidence. From the trenches, sherds of Dressel 1B amphora were uncovered, adding to a substantial quantity of Republican amphorae now known from the vicinity. This material forms a regionally significant group which is published here for the first time. The field-walking assemblage includes a relatively high proportion of locally produced samian, augmenting previous evidence and suggesting that the environs of the Borough Farm villa were home to one of only two known Romano-British samian industries.

Methodology
The pottery was examined using a ×20 binocular microscope. Prehistoric fabrics have been defined according to a site-specific fabric type-series that was formulated according to the guidelines of the Prehistoric Ceramics Research Group (PCRG 1997).
In the absence of a regional type-series for Sussex, Roman fabrics and forms have been recorded using Museum of London codes (Davies et al. 1994). The Camulodunum type-series is also referred to in the text for the Gallo-Belgic imported wares (Hawkes and Hull 1947). The assemblage was quantified by sherd count, weight and EVE (Estimate Vessel Equivalent).

As detailed above, although the pottery from the Ainsworth archive was marked, it is not clear which, if any, relates to stratified features, and so it is treated as an unstratified assemblage.

The Dressel 1 amphora
The most important aspect of the Ainsworth archive is the 39 sherds of Italian Dressel 1 amphorae (CAMP), weighing 5.68kg, accompanied by a single, thinner-walled sherd, weighing 46g, in a broadly similar fabric, containing sparse limestone inclusions (ITFEL). This item compares well with the National Roman Fabric Reference Collection description of the Italian feldspathic fabric associated with Dressel 2–4 (Tomber and Dore 1998, ITA AM 2). All the amphora sherds were laid out in order to look for cross-joins. Among this material there are 8 distinct rim forms, 16 handle/handle-attachment sherds and 16 bodysherds. Aside from two groups of three cross-fitting sherds, none shared enough similarities, in terms of wall-thickness, firing-colour, hardness, presence/absence of slip and coarseness of inclusions to be considered as likely to be from one vessel. Two certain examples of the Dressel 1A triangular rim form were identified (Fig. 6, nos 1 and 2), while two others appear to be transitional A/B forms (Fig. 6, nos 3 and 4). Rims from four vessels are typical 1B forms (Fig. 6, nos 5–8) and in the rest of the assemblage the wall thickness suggests that the majority of sherds are also likely to be of this type.

Turning to the most recent work at Beedings, excavations yielded a further 15 sherds, weighing 1020g, from Trench D. All but one of the sherds appeared to be from a single Dressel 1B form, although no cross-joins were identified. These sherds were also found in the subsoil, probably reflecting extensive landscaping of the area during the construction of Beedings Castle in the early 20th century, which may have truncated archaeological features.

A selection of 16 sherds from the Ainsworth archive had previously been submitted for petrological analysis, and the full report is retained in the archive (Spencer 2000). In summary, the report concludes that most sherds share a similar suite of minerals, volcanic rock making up between 2% and 15% of the matrix in each of the sherds. The report concludes that they are likely to fall into either category fabric 1 or 2 as defined by Peacock (1971). The description broadly matches that of fabric ITA AM 1 from the National Roman Fabric Reference Collection, for which a range of sources in central and southern Italy, including Campania, Latium and Etruria, are proposed (Tomber and Dore 1998, 97; Peacock and Williams 1986, 87).

Macroscopically there is some variability in the colour and hardness of fabrics. Both clear-cut examples of the earlier 1A form and one of the transitional A/B rims, as well as one thicker-walled bodysherd, are associated with a pink, white-slipped fabric which appears slightly harder-fired. The majority of the sherds, including most of the 1B style rims, are more orange in colour and very powdery to the touch. Since these variations do not seem to correspond to any clear differences in fabric composition, they may only indicate minor alterations in the temperature and atmosphere of firing. However, they do seem to correspond fairly well with the progression from Dressel 1A to 1B.

Other Iron Age and Roman pottery
The Ainsworth archive also contained a small number of other sherds ranging in date from the later Middle Iron Age to the earlier Roman period (Table 2). All of these except one, originally taken to be an amphora sherd, are rims, bases or decorated sherds, suggesting that plain bodysherds were not retained. A small quantity of undiagnostic pottery in similar fabric types was found in trenches D, E and F during the recent fieldwork.

Fabrics
A range of fabrics were noted among the likely pre-conquest material, but it is notable that half of all the non-amphora sherds from Ainsworth's archive are in a distinctive fabric tempered with calcareous inclusions (probably a soft sedimentary rock), which is usually leached out on surfaces (C1). This fabric seems to have some overlap with grog-tempered wares from the site, which also sometimes contain calcareous inclusions (GR1). Other fabrics are made up by quartz-rich wares (Q1) sometimes containing rare or sparse flint-temper (FL1).
Table 2. Quantification of pottery by sherd count and weight.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Ainsworth archive</th>
<th>Field-walking 2008 trenches</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sh</td>
<td>Wt (g)</td>
<td>Sh</td>
</tr>
<tr>
<td>BAETE</td>
<td>1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>BB1</td>
<td>3</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>C1</td>
<td>16</td>
<td>112</td>
<td>7</td>
</tr>
<tr>
<td>CAMP</td>
<td>39</td>
<td>5678</td>
<td>15</td>
</tr>
<tr>
<td>CGGW</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FINE</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FL1</td>
<td>1</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>GR1</td>
<td>4</td>
<td>114</td>
<td>7</td>
</tr>
<tr>
<td>HOO</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>NFCC</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NGWH</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OXID</td>
<td>3</td>
<td>396</td>
<td>45</td>
</tr>
<tr>
<td>OXIDF</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>RCGW</td>
<td>3</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>SAMAP</td>
<td>14</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>SAMEG</td>
<td>4</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>SAMLG</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SAMLZ</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SAMMV</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>SAND</td>
<td>2</td>
<td>66</td>
<td>38</td>
</tr>
<tr>
<td>TN(M)</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TNIM</td>
<td>2</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>ITFEL</td>
<td>1</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>6580</td>
<td>133</td>
</tr>
</tbody>
</table>

Pre-conquest fabric descriptions:

- **C1** Moderate to common, soft calcareous rock inclusions of 0.5–2mm, usually leached out on surfaces.
- **GR1** Common well-sorted grog temper usually of 0.5–1.5mm, in some cases accompanied by rare to sparse soft calcareous inclusions similar to those in C1.
- **Q1** common silt-sized quartz grains with rare larger examples of up to 0.2mm.
- **FL1** Rare/sparse ill-sorted flint mostly of 0.5–3mm in a matrix similar to Q1.

A small number of Roman sherds (Table 2) are mostly coarse grey (SAND) and oxidised (OXID) wares which were probably manufactured locally in the Arun Valley. There are also several examples of Rowland’s Castle ware (RCGW) and one sherd in the white-slipped oxidised fabric associated with the flagon-producing industry at Hoo in North Kent (HOO).

Vessel form

Four decorated sherds fit broadly into the Middle Iron Age decorated saucepan continuum, dated by association with phase 7 material in the Danebury ceramic sequence to the 3rd to 1st centuries BC (Cunliffe 1984, 233–4). However, two of these are in grog-tempered wares and two others are in a possibly related calcareous fabric, suggesting that they may belong to a period of overlap between this tradition and the first influence of Aylesford–Swarling style pottery. Thus they may well be contemporary with the amphora assemblage although, in the absence of any stratigraphy, this cannot be stated with certainty.

The most complete example of a saucepan form is one of the grog-tempered vessels, which features a tooled motif similar to ‘pendant swags’ but lacking the typical dot infilling (Fig. 6, no. 10; Cunliffe 2005, fig. A:15, no. 4). Other decorated examples are more fragmentary and include one with a tooled arc, mirrored by a line of large impressed dots (Fig. 6, no. 11). Another has an infilled area of diagonal lines on a vessel of more rounded, closed profile (Fig. 6, no. 12). All three are probably best paralleled in Cunliffe’s Caburn–Cissbury group, which is concentrated in central and eastern Sussex. However, very close parallels between this and the Hawk’s Hill–West Clandon style found to the north in Surrey have also been highlighted (Seager Thomas 2010, 21). For example, the large impressed dots following the alignment of burnished lines on no. 11 (Fig. 6, no. 11) look similar to an example from Hascombe (Seager Thomas 2010, plate 3). Pendant swag decoration can also be found in Surrey assemblages (Cunliffe 2005, fig. A:18, no. 6). Calcareous fabric type C1 appears to occur in both regions, and a common North Wealden source has been proposed for this ware (Seager Thomas 2010, 21).

The other decorated sherd is from a sharply carinated shoulder (Fig. 6, no. 13), a trait which is fairly alien in Saucepan-type assemblages. Together with its grog-tempered fabric, this may suggest a date towards the Late Iron Age proper. The shoulder is scored by a series of deeply-tooled oblique lines, with more simple diagonally tooled lines further up the shoulder. Three further forms may also be of broad Middle to Late Iron Age date. One flint-tempered example has a crudely formed bead rim (Fig. 6, no. 14), while two others in the calcareous fabric are S-profile types (Fig. 6, nos. 15 and 16). These latter vessels are well paralleled in Middle to
Late Iron Age assemblages from Roundstone Lane, Angmering and Titnore Lane, Worthing (Seager Thomas in prep; Doherty 2012).

Assemblage size
The Dressel 1 amphora assemblage, from the various interventions in and around Field 3, totals 55 sherds, weighing 6698g. It amounts to an estimated 40 vessels, including nine distinct rims. Quite a number of find spots of Dressel 1 are known from the coastal counties of central southern Britain, and include examples from several sites towards the western edge of the Sussex coastal plain, for example Chichester, Copse Farm, Ounces Barn, Westhampnett and Ford (Down 1978; Bedwin and Holgate 1985; Bedwin and Place 1995; Priestley-Bell 2010; Place 2004). However, Beedings is one of relatively few British sites to have produced substantial numbers of these vessels.

By the standards of Hengistbury Head, the Beedings assemblage is still relatively small; the 1979–1986 excavations there produced almost 70kg of Dressel 1 (Williams 1987). However, it should be remembered that Hengistbury, and most other British assemblages of any size, come from large open-area excavations, whereas the Ainsworth archive derives from two small trenches and from some piecemeal collection by the landowner around Beedings House. In the past decade, watching briefs covering a total area of c. 10m² during an extension to that property produced two further sherds of amphorae, including a rim, which were not formally identified but seem likely to have been Dressel 1 (Butler 2003). The current work added 11 small trenches/test pits to the total excavated area. This material was dispersed in and around Field 3, and it therefore seems likely that larger-scale excavations would have uncovered an even more substantial assemblage.

Dating of the amphora assemblage
The dating of Dressel 1 amphorae has been discussed in detail elsewhere (Peacock 1971; Fitzpatrick 1985; Sealey 1985). To summarise, although Dressel 1A was produced from an earlier period (c. 120–50 BC) and Dressel 1B was produced later into the 1st century BC (c. 70–10 BC), most British examples of both types probably cluster around the middle quarters of the 1st century BC. The difficulty in dealing with a totally unstratified assemblage is that these c. 40 vessels could represent one large shipment or a trickle of vessels arriving over a period of a century or more. The ratio of Dressel 1A to 1B may suggest a slightly later peak in activity than, for example, at Hengistbury Head, where the earlier form is much more common. However, at Beedings the presence of both Dressel 1A and a probable sherd of Italian Dressel 2–4 is of interest because it provides some evidence of importation over a sustained period and this is, to some extent, backed up by the spread of datable coins and other imported pottery from the site.

A collection of vessels thought to have belonged to Dr Harley of Beedings Castle contains four imported Gallo-Belgic vessels likely to date to the late 1st century BC to the mid 1st century AD, including a girth beaker (Cam 82–84), an unidentified platter type in Terra Rubra and a cup (Cam 56) and platter (Cam 8) in Terra Nigra (Timby and Rigby 2007). Unfortunately, owing to a cataloguing error in which this archive was conflated with that from a separate site, Beedings Wood elsewhere in Sussex, the provenance of these vessels is slightly uncertain, although on the strength of general distribution of these wares they seem much more likely to be from the current site. The field-walking assemblage also produced some limited evidence for continued high-status consumption on the site in the 1st century AD, in the form of single sherds of central Gaulish Terra Nigra (TN (M)), North Gaulish white ware (NGWH) and central Gaulish glazed ware (CGGW); however this material may relate to the nearby early villa site at Borough Farm (Rudling 2003, 113).

Continental trade
The background to the importation of Italian wine amphorae is one of increasing contact with the Gallo-Roman world. The creation of the Roman province of Transalpina, in the late 2nd century BC, opened up trade routes with northern Gaul and southern Britain which were maintained despite periods of unrest throughout the 1st century BC, particularly during the Gallic wars (Cunliffe 2005, 476). Indeed, some have linked the expansion in trade with southern Britain to an influx of Armorican refuges following a major defeat of the Veneti in 56 BC (Cunliffe 1987, 342). The amphorae themselves were probably transported on an inland route through the river systems of Gaul, perhaps via the Rhône and the Loire into Armorica and from there across the channel (Cunliffe 1982, 42). However, it has been noted that most north-west Gaulish examples of Dressel 1 cluster around
coasts, and they may have arrived via an alternative seaborne route (Galliou 1984, 28). In either case, it is likely that trade and exchange were organised with southern Britain's nearest continental neighbours rather than directly with Republican Italy. A reciprocal trade with north-west Gaul has been demonstrated at Hengistbury Head, where Armorican goods, including wheel-thrown pottery, coins and figs, were found in some quantity, alongside Italian amphorae. It was also a centre of specialised production where high-status objects of bronze, shale and glass were being produced, in the latter case from raw materials also probably imported from the continent (Cunliffe 1987, 339).

Sites producing more substantial Dressel 1 assemblages cluster around the natural harbours of the south coast. Cunliffe has argued that both Mount Batten and Poole harbour formed part of a ‘contact-zone’, serving as subsidiary transport hubs allowing regional commodities to be transshipped to Hengistbury for redistribution to the continent and to sites in the Wessex hinterland. Sites around Poole harbour have also produced distinctive imported pottery types from north-west Gaul, and it is argued that these probably arrived via Hengistbury (Cunliffe 1982, 44–9). Whether a site like Beedings was directly linked to this sophisticated trading network, or had smaller-scale direct contact with the continent, remains uncertain. Although much further inland than the other sites, Beedings is close to the river Arun, which may well have been navigable. It was well known to Roman geographers and has been identified with the name Trisantona on the Ptolemy map (Rivet and Smith 1979, 45). Re-interpretation of the etymology of this name suggests that it may specifically denote significant inland transport routes (Coles 1994). After the Roman conquest this area was at the crossroads of Stane Street and the Greensand Way, and it is possible that parts of the local Roman road system pre-existed as Iron Age trackways (Rudling 2003, 114). It has alternatively been suggested that the amphorae from Beedings might have been transported overland along a precursor to Stane Street running from Fishbourne Creek to Pulborough (Magilton 1995, 31–3). In either case, the Beedings assemblage might be interpreted in a similar way to those at Poole and Mount Batten, as a kind of depot from which onward transport to other settlements was organised.

This could have involved both import and export, perhaps with fewer archaeologically visible commodities from the region providing impetus for this trade. Diodorus Siculus (5.26.3), writing in the mid 1st century BC, reported that Roman traders could demand an enormous price for wine in Gaul and that a slave could be traded for a single jar of wine, such was the enormous appetite for alcohol among native Gauls (Cunliffe 1988, 88). In Britain, where distribution of wine seems to have been much more limited, its value may have been even greater. It is also worth noting that Sussex find-spots of Dressel 1 are concentrated at the western edge of the coastal plain, where the best evidence for field systems in this period occurs, suggesting that grain might have provided another basis for reciprocal trade or exchange. Having said this, the four decorated Mid/Late Iron Age sherds from the site, which are probably broadly contemporary with the amphorae, do not show strong affinities to assemblages from this area. Unlike pottery from North Bersted, Copse Farm and Westhampnett, there are no clear traits associated with the St Catherine’s Hill/Worthy Down style (Morris 1978; Hamilton 1985, 225; Mepham 2008, 165). Instead curvilinear, sometimes in-filled, motifs predominate, and these have much more in common with the Caburn-Cissbury group found further east and possibly with the Hawk’s Hill/West Clandon style found to the north in Surrey (Cunliffe 2005, fig. A:15, A:18). Given the tiny number of decorated sherds, we should treat this evidence with caution, but it may hint at the likely local trade networks.

Status and function inferred from the amphora assemblage

This site would appear to be well-linked to trading networks, but may also represent the place of major consumption, indicating perhaps a locale for festive group occasions of feast or funerary activity. The extent to which this represents a high-status assemblage in use is debatable. However, the Middle to Late Iron Age indigenous pottery assemblage from the site suggests some accompanying contemporary settlement in the area, and the coin assemblage may suggest that votive practices were happening in the vicinity. There is good evidence, for example from the high-status Welwyn type burials found in Essex and Hertfordshire, that the wine transported in these amphorae would have been considered
of high status and perhaps often consumed in particular votive or ceremonial contexts. The Lexdon tumulus contained large numbers of sherds which appeared to have been deliberately broken and shovelled into the grave (Williams 1986, 124). This may suggest that not only the contents but the amphorae themselves were considered special. More locally, at Ford, a Dressel 1 amphora sherd was found in an enclosure ditch, also containing an early Aylesford–Swarling style urned cremation (Place 2004). At least two of the local find-spots of pre-conquest amphorae also coincide with temple sites at Hayling Island and Lancing Ring (Timby and Rigby 2007).

Although we have little direct evidence for the types of activity taking place at Beedings in the 1st century BC, there is a clear correlation with specialised production on other sites in southern Britain that have produced Republican amphorae. This might be interpreted in terms of industry being conveniently located close to trading ports; however, it has alternatively been suggested that many industrial activities such as smelting were closely bound up with magical rituals, suggesting that wine might have been consumed in quantity on such sites (Loughton 2009, 92).

Despite being recovered from the subsoil, almost all sherds are large, although it is possible that this simply reflects collection practices. Rims and handles, which make up just over half of the assemblage, seem to be over-represented and only one base sherd was recovered. All the sherds recovered from trench D appeared to be from a single vessel, although none cross-fitted and many were from different diagnostically recognisable parts of the amphora body. This could suggest that extremities of the vessel had been deliberately removed so that parts could be re-used elsewhere. The general trend for diagnostic sherds strongly suggests selective practice in the past, and raises the possibility that recognisable amphora fragments had some status or meaning of their own and were deliberately curated. Consumption of wine in northern Gaul has been strongly linked to a warrior class (Poux 2004). On sanctuary sites in this region, amphorae that have been carefully cut down at the neck have been found in association with decapitated skulls, and it has been suggested that there may have been a strong symbolic link between the vessel body and the human form, between wine and blood (Poux 2004, 606).

Illustration catalogue (Fig. 6)

1. Dressel 1A (CAMP); marked BD85 S2 D1
2. Dressel 1A (CAMP); marked BD85 S2 D1
3. Dressel 1A/B (CAMP); marked BD82 A2
4. Dressel 1A/B (CAMP); marked BD78 A1 D1
5. Dressel 1B (CAMP); marked BD78 A1
6. Dressel 1B (CAMP); marked BD85 S2
7. Dressel 1B (CAMP); marked BD94 D1
8. Dressel 1B (CAMP); marked BD78
9. Dressel 1B (CAMP); 2008 Trench D
10. Saucepan with ‘pendant swags’ lacking in-filled decoration (GR1); BD78 A1 D1
11. Bodysherd with tooled curvilinear arc mirrored by impressed dots (C1); BD78 A1 D1
12. Bodysherd with an in-filled area of diagonal lines (C1); BD78 A1 D1
13. Carinated shoulder sherd with short diagonal lines above the shoulder and deeply incised slashed lines across the shoulder (GR1); BD78 A1
14. Handmade jar with crudely-formed bead rim (FL1); BD85 S2 A1
15. S-profile jar (C1); BD78 S2 A1
16. S-profile jar (C1); BD78

Pottery from field-walking and test pits in Fields 1 and 2

The field-walking and test pits in Fields 1 and 2 yielded a small pottery assemblage totalling 133 sherds (1222g). The pottery covers quite a broad date-range; the earliest material consists of tempered wares similar to those described above (Table 2). A high proportion is made up of coarse grey (SAND) and oxidised (OXID) wares typical of fabrics produced locally in the Arun Valley. Forms include two examples of the rounded rim dish (4H) derived from black-burnished traditions and dated to c. AD 120–300. The latest material is represented by a few sherds of the late 3rd–4th-century New Forest colour-coated ware (NFCC). In general, though, the non-samian assemblage is fairly undiagnostic and, beyond providing some insight into the likely date range of Roman activity in the area, it is of limited significance.

Of importance are 14 sherds of locally produced samian (SAMAP) recovered during the field-walking (Fig. 4). The possibility of Romano-British samian production in the region was first postulated by Simpson (1952) on the basis of a waster from Aldgate, London and three stylistically similar unstratified mould fragments found at Borough Farm villa (adjacent to the current site; Fig. 1) in...
1–9 Dressel 1 amphorae; 10–16 local Middle to Late Iron Age pottery

Fig. 6. Iron Age and Roman pottery.
the early 20th century. Willis (2004, appendix 6.9) records examples of ‘Aldgate–Pulborough’ samian from nine other sites, mostly in Sussex and Surrey. More recently, examples have been recorded at a small number of other sites in Surrey and Kent and in London and Silchester (J. Bird, pers. comm.). One of the largest collections comes from excavations in the area of high-status buildings, including a bath house at Wiggonholt (Webster 1975), a site which may have had strong administrative links with Borough Farm (Evans 1974, 117).

The extremely high-fired, inclusionless matrix associated with this ware is macroscopically very distinctive, and in particular the tendency of the slip to blister and flake is reminiscent of the description given by Webster (1975, 164). The forms are all plain and include examples of Dragendorff 18/31, 36 and Curle 15 dishes, and two Dragendorff 27 cups, all of which are previously known in the repertoire of this ware. In order to confirm this identification, six of the sherds were thin-sectioned and compared petrographically with the reference example from the National Roman Fabric Reference Collection (Tomber and Dore 1998, 186). These were all found to be of a similar local origin (see below).

Perhaps most significant in this small assemblage is a base sherd from a dish/platter which has the severely warped appearance of a waster. It is also notable that this fabric type makes up over 10% of the, admittedly very small, collection from field-walking. Generally speaking, Gaulish samian makes up a much smaller proportion even at high-status villa sites (Willis 2004, 7.2.7). The current assemblage therefore seems to suggest that the mould fragments found in the vicinity were indeed derived from a production centre nearby.

Pottery production evidence, mainly in the form of waster assemblages, is known from quite a diverse range of sites within a radius of a few kilometres of Beedings, including one within the earthworks of Hardham Camp (Winbolt 1927). Unfortunately, the nature of local production is still poorly understood, and the extent to which this can be considered a single industry therefore remains uncertain. It is perhaps no coincidence that the only well-recorded kilns from the locality are from Wiggonholt. The phenomenon of villa-estates being involved in specialised craft production, particularly of pottery, is well-known in Roman Britain (Young 1977, 13; Swan 1984, 19); the location of the current site in the immediate hinterland of Borough Farm villa may therefore be significant, particularly given its excellent access, via Stane Street, to the urban consumers of samian.

However, although there is some evidence of production of more specialised wares, namely flagons and other white wares, at Wiggonholt, it is likely that there would have been a considerable difference in the levels of investment and skill involved in producing samian compared with coarse wares. Samian forms, and to lesser extent fabrics, were often loosely imitated by Romano-British pottery industries, but only one other, at Colchester, made what could be considered true samian ware, in respect of the quality of the slip, firing and the use of moulded decoration, even if the products of both these centres compare fairly poorly with Gaulish examples. The only known kiln associated with Colchester samian, at Warren Field, had a particularly complex design which could be compared with examples in East Gaul, strongly suggesting the work of migrant potters (Swan 1984, 93–4). There is a strong distribution of samian from Sinzig at Colchester, and there was even a suggestion that some samian could have been manufactured in Colchester from clay imported from this area (Storey et al. 1989, 39).

Until kilns are located, it is uncertain whether this would also have been the case in Sussex. All the decorative motifs used by the ‘Aldgate–Pulborough potter’ have strong parallels at Lezoux, Central Gaul, although it is possible that this indicates copying of poinçons from bowls in circulation in Britain (Simpson 1952, 68; Webster 1975). It is also worth noting that production in both areas appears to have been short-lived, achieving very limited market share, perhaps suggesting that investment in specialised equipment and resources was ultimately too costly without the economies of scale that benefited the Gaulish industries.

Petrographic analysis of samian ware from Beedings by Roberta Tomber

Six samples of samian ware from Beedings were submitted for petrographic analysis. The aim was to compare them with the single thin section from the nearby production at Pulborough published as part of the National Roman Fabric Reference Collection (Tomber and Dore 1998, 186). Comparison showed that, despite some variation within the six samples, all conformed to that of the Pulborough sample.
and could be verified as Pulborough products. The larger number of samples from Beedings has resulted in a clearer understanding of the clay than was obtained from the single one previously analysed from Pulborough.

All six samples were united by a silt-sized matrix made up primarily of quartz, rounded micritic limestone and iron stone and, rarely, feldspar. Larger, fine-sand fragments up to c. 0.2 or 0.3mm vary in quantity between samples, but are never common. Mica, both white and brown, is moderate and the clay is anisotrophic, but not vitrified. This means that, although they were well-fired, the temperature was below 1200°C (Rice 1987, 82). The most characteristic feature of the fabric is the presence of naturally occurring rare-to -moderate rounded iron-rich siltstones and/or fine-grained sandstones, occasionally micaceous and sometimes with a visible argillaceous component, some akin to quartz-rich clay pellets. These rock fragments vary in size, ranging between c. 0.2mm and 1.6mm. Sample 1 is particularly fine, and exhibits long voids, also identifiable in the hand specimen.

The fabric seen in thin section is compatible with the geology of Pulborough, which is situated on the Lower Greensand, specifically the Pulborough Sand Rock characterised by sandstone (Gallois and Edmunds 1965, 32–4, pl. 1).

Summary of fabrics and forms

All the Roman tile is in similar orange to orange-red clays containing common medium to coarse quartz <1mm, sparse to moderate red iron-rich material and sparse very coarse ‘grog’ or clay inclusions, <c. 5 mm. Some examples contain distinctive voids apparently caused by the use of organic chaff temper. The fabrics resemble those of the ‘London/ Sussex’ fabric group, so called because box flue tiles in the fabrics occur on sites in Sussex, Surrey, Hampshire, Kent and Greater London (Betts et al. 1994, 19–20). The flue tile fabrics have a date range of c. AD 70–140 in London (MoL fabric codes 3054 and 3059); the roof tile fabrics cannot be closely dated. The Roman tile assemblage is mostly very abraded and no complete tiles are present. Of the identifiable material, tegula fragments (flat, flanged roofing tiles) are the most frequent, with smaller counts of imbrex. Tegulae range from 21mm to 33mm in thickness, the median thickness being 29mm. Several of the identifiable tegula fragments are flanges, suggesting that the flanges have been removed at some stage.

Three fragments of imbrex (curved roofing tile) are present, all highly abraded; surviving wall thickness is 14mm to 15mm. The imbrices account for less than 3% (by weight) of the Roman tile assemblage. The roof tile assemblage from this site contains over 90% tegulae and flat tiles and is thus unlikely to represent the remains of a collapsed roof. The consistency of the tile fabrics suggests that the material was locally sourced, although the predominance of flat tiles makes it unlikely that it represents primary deposition of roofing tile. The assemblage is likely to represent secondary use or dumping of material which may have been produced in the later 1st or 2nd centuries AD.

THE IRON AGE AND ROMAN COINS

david rudling

Field-walking and associated metal-detecting surveys in February 2008 recovered two Iron Age gold coins, a stater and a quarter stater. The discovery of these coins was reported to Laura Burnett, Finds Liaison Officer (Sussex) of the Portable Antiquities Scheme, and they were initially thought to qualify as ‘treasure’ under the Treasure Act 1996, especially as it was considered by the finders that the coins might have been deposited as votive offerings in the vicinity of a springhead of ritual significance (Department of National Heritage 1997, 6). Subsequently it was
established that the coins were in fact discovered some distance apart, in Fields 1–2 (see Fig. 1) and in Field 4 (unmarked), to the north-west and north-east respectively of the springhead. Furthermore, their dates of minting were different, making it less likely that they were buried at the same time as part of one activity (Laura Burnett pers. comm.). It was concluded that the two coins were not parts of a hoard and that, while it was possible that the two coins could represent separate deposits at the ‘same site’, there was not enough evidence available to identify that site as having a ritual function. The coins were therefore not deemed to qualify as treasure as defined by the 1996 Act.

Before the discoveries referred to above, a single Iron Age gold coin had been found in 1976 during the construction of agricultural buildings forming part of Redfold Farm (Aldsworth 1979, 251 and pl. 10). This coin, which was recorded by the Oxford University Celtic Coin Index (reference: CCI-890225), was found to the south of those recovered in 2008. It is of the same type, a Gallo-Belgic E stater of c. 60–50 BC, as the most easterly of the coins found in 2008 in Field 4.

In 2009 a further four coins were found by Tony Gill with the aid of a metal detector in the vineyard Field 1–2 which had previously yielded the western of the two gold coins discovered in 2008. These coins include an Iron Age gold quarter stater of a type similar to that found in 2008, and similarly dated to c. 50 to 20 BC, an Iron Age Southern (Atrebates) silver unit of Tincomarus dated to c. 20 BC to AD 10, and two Roman silver coins, one Republican (a denarius minted c. 124 BC by Q. Fabius Labeo) and a corroded plated copy denarius of the emperor Tiberius (AD 14–37) (Ghey 2009). These four coins were declared ‘Treasure’ at a Coroner’s Inquest and have since been acquired by Worthing Museum.

Previously, in March 1983, Mr Judd had discovered an Iron Age Atrebatic silver coin, together with Iron Age and Romano-British pottery, during the construction of a new bungalow to the south-east of ‘Beedings’ (Aldsworth 1984, 217). This coin is a silver unit of Epaticcus (c. AD 20–40) (Mack 1975 type 263a; Van Arsdell 1989 type 581–1).

In July 2010 the writer (David Rudling) collected from the landowners the two 2008 gold coin finds for recording purposes. At this meeting Mr and Mrs Outhwaite presented a number of objects found on their farm, and these items included a further four Roman coins, as well as three late medieval silver pennies (not discussed further here). Although precise find spots are not known for these additional seven coins, it was agreed that they should also be taken for identification and recording purposes (see Archive).

The Iron Age coins

1. Continental (Ambianic) gold stater, uninscribed Gallo-Belgic type E, c. 60–50 BC. Diameter: 19mm; Weight: 6.17g. Fig. 7b. Obverse: Blank, except for minor marks at the edges which are remnants of the ‘Apollo Head’ design seen on Gallo-Belgic type C coins, the very worn obverse dies of which were used to strike the type E staters (Ian Leins pers. comm.). Reverse: Disjointed horse right; exergual line is continuous. Reference: Scheers (1972, 1) class II; Van Arsdell (1989) type 52–1; Mack (1975) type 27.

There is a wide distribution of such coins in South-East England, including the coastline of Sussex (Mack 1975, 17, map 6). Research by Scheers (1972) has indicated that Gallo-Belgic E coins, which show general reductions in both weight and fineness of the gold compared to earlier types and are found in large hoards, were the main coinage of the core Belgic tribes during the Gallic War (58–50 BC) against Julius Caesar. It is therefore probable that many of these coins were struck to pay troops and mercenaries, including presumably some from Britain. The other ways by which such coins might have reached Britain include trade and migration.

2. British (Atrebatic) gold quarter stater, uninscribed British ‘QC’ Gold, c. 50–20 BC. Diameter: 14mm; Weight: 1.37g. Fig. 7a. Obverse: Abstracted head of Apollo right, face formed of two joined crescents and three pellet-in-rings, wreath and line with pellet-in-circles to left, pellet border. Reverse: Horse right with triple-tail with pellet terminals, strap around horse’s belly, flower and pellet in ring above horse, cog wheel and crescent below horse, pellet-in-circle above horse’s head, two crescents in front of horse and line with pellet-in-ring on end extending from neck. Reference: Van Arsdell (1989) 226 variant; BMC (Hobbs 1996, 72) 503.
The main distribution of British ‘Q’ coins, which were copied from the Gallo-Belgic F series (the last of the imported coinages), indicates that they originated in central–southern England (e.g. Hampshire, Berkshire and Sussex). They have a distinctive ‘triple-tail’ horse (Hobbs 1996, 14).

The Roman coins
1. Possibly 1st century AD, Ae as or dupondius. Very eroded central ‘core’ of a coin: 21 mm diameter surviving.

2. Trajan, AD 97–117. Ae sestertius. 29mm, but much edge damage.
 Obverse: Lettering missing, laureate bust right, with drapery on left shoulder.
 Reverse: Female figure seated left on throne, right hand extended.

3. Probably Faustina II, wife of Marcus Aurelius (AD 161–180). Ae sestertius. 28mm, but much edge damage.
 Obverse: Illegible, bust right, with hair fastened in chignon low at back of head. *Reverse:* Illegible, female figure standing left, right hand extended, left hand holding vertical sceptre.

4. 1st or 2nd century. Ae as or dupondius. 28 mm; 13.1g. Very worn.
 Obverse: Illegible, bust right. *Reverse:* Illegible/ worn flat.

Discussion of coin evidence
Considered as a group, the various Late Iron Age and early Roman coins found at Redfold Farm and for which we have find spots indicate a scatter of coins to the south-west of Beedings Castle. The find spots are all in the vicinity of a springhead, with just one coin, the gold stater found in 2008, recovered to the east of the springhead. All were found to the south or south-west of the site at Beedings House which has yielded fragments of Dressel 1A and 1B amphora of Late Iron Age date.
(see above) and the silver coin of Epaticcus found by Mr Judd in 1983. All were also discovered at some distance to the east of the large early villa on Borough Farm (Prætorius 1911).

While the Late Iron Age coins are of three main dates of manufacture (c. 60–50 BC, c. 50–20 BC and c. 20 BC–AD 10), the two roughly contemporary British gold quarter staters were found within approximately 60m of each other and may originally have been buried or lost together. In contrast, the two contemporary Gallo-Belgic E gold staters were found on opposite sides of the springhead, approximately 150m apart, and were presumably separate deposits or losses. Whether any of these Iron Age coins, or any of the Roman coins with finds spots, were votive offerings in the vicinity of a sacred springhead remains uncertain. Such practices and deposits of metal objects including coins in or near ‘watery places’ (such as rivers, lakes, springs and wells) are, however, well attested in the archaeological record from both prehistoric and Roman times (Moorhead et al. 2010, 15). In the case of ritually important springs, the elaborate Roman baths and temple complexes at Bath are well known, while at Springhead in Kent an area of springs at the head of the River Ebbsfleet has yielded extensive evidence for both Iron Age and Roman ritual activity, including the depositing of many coins (Andrews 2008). Much closer to Redfold Farm, at Ratham Mill, Funtington on the West Sussex coastal plain, is a Romano-Celtic type temple and the probable area of the illicit discovery of large quantities of Late Iron Age coinage. This important religious site is only a short distance from the Bosham stream (Rudling 2008, 109–10). However, it is also possible that all the ‘located’ coins, and also some or all of the ‘unlocated’ Roman coins in the possession of Mr and Mrs Outhwaite, may have been associated with the site at Beedings. A further possibility is that some of the Roman coins from Redfold Farm came from the villa at Borough Farm, perhaps alongside manure and other refuse as a result of manuring practices on fields belong to the villa.

DISCUSSION

by Matt Pope, Caroline Wells and David Rudling

The Beedings Survey project has enlarged our understanding of the site through incorporation of evidence from the Ainsworth archive, the excavations by Pope and Wells, and the field-walking across land now belonging to Redfolds Farm. The Beedings site may not yet be fully understood in terms of the nature or duration of occupation, but the publication of this material extends northwards the known distribution of Iron Age sites in West Sussex, where only a chalk downland and coastal plain distribution has been mapped hitherto (Hamilton 2007, figs 2 and 3). The location of the site on a defensible spur of the Lower Greensand scarp, at the highest local spot, the extensive visibility (to see or to be seen) and its proximity to a major river route should be stressed. Taking the hilltop as a whole with the neighbouring Borough Farm, we see that the two adjacent areas of archaeological interest together occupy a ‘hammer-head’-shaped promontory jutting out from the main Lower Greensand block, towards the Weald, and separated from the main block of hilltop by only a narrow ridge surmounted by the present lane to Nutbourne (Fig. 8). Falling away on either side of the lane are steep valleys both east and west, with permanent springs issuing at lower levels. The Beedings/Borough Farm hilltop is a defensible area of land by virtue of its topography, commanding extensive views in at least three directions of the compass over tens of kilometres (tree-cover permitting). The navigable River Arun at its closest point is 3.2km to the south, or closer if meandering nearer to the Wiggonholt bank two thousand years ago.

As few pits and no post holes of the period have yet been located, the activity around Beedings cannot be confirmed as either the nucleus or the periphery of a settlement in the Late Iron Age, but it can be confirmed that significant, high-status activity took place here during the period. Aspects of that activity included participation in trading networks that extended ultimately to the Mediterranean world (wine and amphorae) and the Gallic world (coins), as well as other parts of Sussex and possibly Surrey (pottery). There are hints that not all the activity was of a secular nature, since the coin distribution could be argued to lie on either side of the springhead south of Beedings Castle. Dr John Harley’s 1900 report of an ‘ancient cremation’ burial offers very little information from which to interpret its date, though an earlier prehistoric date is likely, but it has been noted that Dressel 1 amphorae
are associated with burial sites in Late Iron Age Britain. The proportions of amphora sherds found, favouring robust rims and handles, suggest that selective practices preceded their incorporation in the ground. Re-use of empty amphorae after the Italian wine had been consumed can be postulated but not confirmed, and further use of broken pottery is suggested. The general activity was long-lasting, for two centuries, though perhaps intermittent. Settlement drift in the prehistoric and Roman period is a known phenomenon, and it is therefore no surprise that further west along the prominent Beedings hill top scarp-edge Borough Farm Roman villa was established in the 1st century AD. This very important but poorly understood villa was discovered and partly excavated in 1817, and then rediscovered in 1907, followed by partial excavations in 1909 (Praetorius 1911; Winbolt 1935, 25–6; Russell 2006, 138–41). These two phases of investigation revealed the masonry footings of a large quadrangle or courtyard, bordered to the north by two adjacent and parallel east–west corridors, the inner of which terminates in an apse at its western end (and perhaps also originally at its eastern end – similar to the western-most corridor of the Flavian Palace at Fishbourne). Inside the quadrangle was discovered a suite of rooms, including one which had once had a tessellated floor suspended over a hypocaust heating system. At least two other rooms had also once had tessellated floors.

Dating evidence for building activity at the villa site includes “half-box” tiles re-used in a hypocaust... [which] indicate a villa earlier than c. AD 75–80' [our emphasis] (Black 1987, 155). Such half-box tiles are the earliest type of wall-jacketing found in Britain, although they are not present at Fishbourne (Black 1987, 12). Similarities in design and building materials at Borough Farm put this site in a category of large early ‘imposed’ villas in Sussex which also include Fishbourne, Southwick and Angmering (Rudling 1998, 44–5, fig. 3; 2003, 113–14). Such villas were probably the property of the local native aristocracy which was ‘left in peace to develop in the strongly philo-Roman atmosphere created by the client.
kingdom of [T]Cogidubnus (Cunliffe 1973, 79; Rudling 1998, 440). It has been suggested that the wide distribution of the large early villas may be very significant, with each located on a distinct block of land which may ‘represent the territory over which the land-owning aristocracy held control’ (Cunliffe 1973, 79). In the case of the Borough Farm villa, Beedings Hill was perhaps the ancestral home base of the local aristocracy, and in Roman times at least its wider territory may have included the lower-lying lands to the south within the Hardham–Pulborough–Wiggonholt triangle, which includes sites associated with pottery production. It is perhaps possible that the focus of activity on Beedings Hill was moved slightly to the west in order to improve physical access to/from Stane Street, which lies three-quarters of a mile further west, and also to maximise the display potential of the high-status villa complex to people using the Roman road, as is the case with a high-visibility location to/from Stane Street at Bignor Villa.

Another indication of the continued importance of the people occupying Beedings Hill/ the Borough Farm villa is perhaps the discovery in 1824 at Broomer’s Hill, about 800m south-west of the villa, of four rare pigs of lead, all having been stamped [T] CL TR LVT BR EX ARG, so products of Lutudarum, possibly near Wirksworth, Derbyshire (Winbolt 1935, 63; Rivet and Smith 1979, 403–4). Given the proximity of the lead finds to the villa, it has been suggested that the valuable lead was intended for construction work in a major building, perhaps at the villa or elsewhere on its estate, but for reasons unknown apparently never reached the villa or was used (Black 1987, 12). The pigs of lead may date to c. AD 43–70/80.

Other dating evidence from the Borough Farm villa includes a few coin finds which are mainly 1st century (Claudius, Nero and Domitian), but also one early 2nd century (Hadrian) and perhaps one of the late 3rd century (Allectus). Other noted finds include a 1st-century type brooch and the moulds for producing local samian discussed above.

In the Roman period the Beedings/Redfold Farm area was probably a peripheral locality of the Borough Farm villa establishment. The newly recorded locally made samian and the Roman tile assemblage were both recovered from Field 1, in the western part of our survey area, and may relate to the wider villa estate.

CONCLUSIONS

Returning to the Beedings site under consideration, we conclude by emphasising that the work by Con Ainsworth in retaining a number of finds of later prehistoric and early Roman period date from both Beedings Castle in 1985 and Beedings House in 1979 and 1994, whatever the deficiencies in archaeological recording, at least provided a glimpse of international and local trading networks, as evidenced by the pottery found on this Sussex hilltop. Although Ainsworth did not satisfactorily record archaeological features of this period, the verbal accounts, and the finds themselves, were important enough to stimulate further research on the site during this last decade which has now resulted in, first and foremost, the discovery of in situ flintworking of Pleistocene date (Pope et al. in prep), and second, the range of later prehistoric and early Roman material discussed in this report.

Through the fieldwork and archive reassessment undertaken as part of the Beedings survey, Beedings Hill can now be confirmed as a site with significant evidence of consumption, trade and production in the Late Iron Age and early Romano-British periods. Strong evidence has been identified for trading contacts with northern Gaul in the form of amphorae and their contents of wine or other commodities, Late Iron Age coinage circulation and discard/deposition in the area, and Late Iron Age pottery production/circulation over a 30-mile radius. In Field 1 to the west, a small concentration of Roman roof tile without trace of a related building indicates a probable link between the identified Late Iron Age activity and the nearby large early Roman villa at Borough Farm.

The entire hilltop area, including Borough Farm, Redfolds Farm and the Beedings Castle Estate, should be considered as one single, evolving precinct of high-status activity from a century before the Roman occupation through to at least the 2nd century AD. Any future account of high-level political and economic interactions between indigenous ruling elites in West Sussex and the Roman Empire will need to consider carefully the evidence from Beedings. The above evidence suggests that power in this region was not restricted to the Chichester area, but that a more widespread network of political elites, with wide spheres of influence, extended into the Wealden region.
Acknowledgements
The project team would like to thank English Heritage for funding the Beedings survey and subsequent post-exavagation work, especially the EH staff directly involved in shaping the project. The project acknowledges the inspiring work of Con Ainsworth, who with Worthing Archaeological Society kept academic interest focused on the hill during the 1980s and 1990s, and Roger Jacobi for recognising the site and his analysis of the original collections on which many interpretations here are based. We would like to thank the landowners, Charles and Wendy Outhwaite (Redfolds Farm) and Helen Simmons (Beedings House), for their generosity in granting permission to excavate and their support for the project, and Mr and Mrs Aldridge, owners of Beedings House c. 2001–6. We would like to thank the residents of Beedings Castle for their interest and daily tolerance of our works, especially Vivian Doussey, Tony Whitbread, Helmut Van-Der-Hyde and Tom Caplan. Con Ainsworth would have wished to thank and acknowledge his own volunteer teams and Tracy Judd. Caroline Wells is most grateful to those who assisted with the geophysical surveying projects and early enquiries.

The contribution of all specialists during the post-excavation work is acknowledged, particularly those of Lucy Allott, Luke Barber, Chris Butler, Elke Raemen, Rob Scaife and Phil Toms. Their assessment work (not published here) is available in the site archive. We also thank Joanna Bird for her comments on the Pulborough samian and for providing recent find-spots.

At UCL the authors would like to thank Mark Roberts for encouraging involvement in the project and for assistance with early phases of fieldwork and Stephen Shennan for support in pursuing the project. We would like to thank the volunteers and students who took part in the excavations, especially Gill Turner, Andrew Maxted, Pete Skilton, Juliet Smith, Karine Le Hegarat, Elizabeth Lane, Bob Turner, Bertie Haken, Harriet Kinloch, Kate Emery, Giles Emery, Elinor Croxall, Trudy Duthie, Keith Bolton, Dawn Cansfield, John Ede and Geoff Smith. The illustrations for this article were prepared by Justin Russell and Fiona Griffin (ASE).

Author: Matthew Pope, Institute of Archaeology, University College London, 31–4 Gordon Square, London, WC1H OPY; m.pope@ucl.ac.uk.

Correspondence: Louise Rayner, Archaeology South-East, Units 1 & 2, 2 Chapel Place, Portsde, East Sussex, BN41 1DR; Louise.rayner@ucl.ac.uk.

REFERENCES

Butler, C. 2003. An archaeological watching brief at Beedings House, Nutburne Lane, Pulborough, West Sussex (Project 1535 Phase 2). Archaeology South-East client report.

Doherty, A. in prep. The prehistoric and Roman Pottery, in C. Clarke Excavations at St Barnabus Hospice, Tilbury Lane, Goring-by-Sea, West Sussex.

Pope, M., Wells C., Dinns R. and Mills A. In prep. The context of prehistoric flint assemblages from Beedings, West Sussex.
Priestley-Bell, G. 2010. The excavation of prehistoric remains, a Roman road and post-medieval kiln at Stane Street, Westhampnett, West Sussex, SAC 148, 47–70.
Seager, Thomas, M. 2010. A re-contextualisation of the prehistoric pottery from the Surrey hillforts of Hascombe, Holmbury and Anstiebury, SAC 95, 1–33.

