SILCHESTER:
CHANGING VISIONS OF A ROMAN TOWN

INTEGRATING GEOPHYSICS AND ARCHAEOLOGY:
THE RESULTS OF THE SILCHESTER MAPPING PROJECT
2005–10
SILCHESTER: CHANGING VISIONS OF A ROMAN TOWN

INTEGRATING GEOPHYSICS AND ARCHAEOLOGY:
THE RESULTS OF THE SILCHESTER MAPPING PROJECT
2005–10

BY

John Creighton with Robert Fry

Britannia Monograph Series
No. 28

Published by the Society for the Promotion of Roman Studies
Senate House Malet Street London WC1E 7HU
2016
CONTENTS

List of Figures vii
List of Tables xiii
List of Digital Material archived on ADS xiii
Acknowledgements xv
Summary xvii

INTRODUCTION
1. Scope, Aims and Objectives 1

PART I: PREVIOUS WORK
2. Locating Calleva 5
3. Past Fieldwork at Calleva 10

PART II: THE SILCHESTER MAPPING PROJECT
4. Methodology 37
5. Mapping the Interior 48
6. Mapping the Exterior 157
7. The Material Evidence from Silchester 267

PART III: THE DEFENCES: EVIDENCE AND INTERPRETATION
8. The Town Wall and Ditch 285
9. The Inner and Outer Earthworks 302
10. The Linear Earthworks 329

PART IV: INTERPRETATION AND DISCUSSION
11. Calleva’s Origins 339
12. Military Involvement 357
13. Cemeteries and Human Remains 369
14. Urban Infrastructure 388
15. Trade and Industry 406
16. Public Entertainment 424
17. Calleva: Historical and Archaeological Narratives 431
18. Concluding Remarks 447

Bibliography 449
Index 477
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 2: Locating Calleva</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1 Horsley’s interpretation of the Antonine Itineraries from Britannia Romana</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3: Past Fieldwork at Calleva</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 3.1 Stukeley’s map of ‘Vindoma’ 1722</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 3.2 John Wright’s plan of 1745, based on John Stair’s work</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 3.3 Isaac Taylor’s map of Hampshire 1759</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 3.4 Plan of 1818 by Sir Richard Colt Hoare</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 3.5 Kempe’s inaccurate elaboration on Wright’s map of 1745</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 3.6 Henry Maclauchlan’s map of 1850</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 3.7 Excavations before the Society of Antiquaries’ work</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 3.8 The Society of Antiquaries of London’s excavations: the areas covered each season and trenches revealed by the geophysics</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 3.9 Photographs of the original Great Plan by Henry Hodge, completed in 1909</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 3.10 Reproduction of the Great Plan of 1909, Henry Hodge</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 3.11 Excavations by Mike Fulford, up to 2013</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 3.12 The twentieth-century campsites: ‘spikes’ in the fluxgate gradiometry results</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 3.13 Aerial photographic features and the upstanding earthworks</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 3.14 The Environment Agency LiDAR data around Silchester</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 3.15 1993 survey by GSB compared to the Antiquaries’ Plan</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 3.16 2000 survey and interpretation by English Heritage compared to the Antiquaries’ Plan of the Forum area</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4: Methodology</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.1 The extent of the fluxgate gradiometry survey in and around Silchester</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 4.2 Comparative geophysical techniques 1</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 4.3 Comparative geophysical techniques 2</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 4.4 Methodology 1: pits and spikes</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 4.5 Methodology 2: the visibility of houses in the fluxgate gradiometry data (greyscale ±7 nT)</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 4.6 Methodology 3: the positioning and combination of evidence for houses</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5: Mapping the Interior</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 5.1 Atlas key</td>
<td>50</td>
</tr>
<tr>
<td>Fig. 5.2 Index to the Interior</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 5.3 Interior 1 – Antiquaries’ plans and modern topography</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 5.4 Interior 1 – fluxgate gradiometry image (± 7nT)</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 5.5 Interior 1 – interpretative plan</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 5.6 Interior 2 – Antiquaries’ plans and modern topography</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 5.7 Interior 2 – fluxgate gradiometry image (± 7nT)</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 5.8 Interior 2 – interpretative plan</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 5.9 Interior 3 – Antiquaries’ plans and modern topography</td>
<td>63</td>
</tr>
</tbody>
</table>
FIG. 5.10 Interior 3 – fluxgate gradiometry image (± 7nT) 64
FIG. 5.11 Interior 3 – interpretative plan 65
FIG. 5.12 Interior 4 – Antiquaries’ plans and modern topography 67
FIG. 5.13 Interior 4 – fluxgate gradiometry image (± 7nT) 68
FIG. 5.14 Interior 4 – interpretative plan 69
FIG. 5.15 Interior 5 – Antiquaries’ plans and modern topography 73
FIG. 5.16 Interior 5 – fluxgate gradiometry image (± 7nT) 74
FIG. 5.17 Interior 5 – interpretative plan 75
FIG. 5.18 Simplified phasing of Insula IX, Fulford and Clarke 1997–2014 78
FIG. 5.19 Interior 6 – Antiquaries’ plans and modern topography 81
FIG. 5.20 Interior 6 – fluxgate gradiometry image (± 7nT) 82
FIG. 5.21 Interior 6 – interpretative plan 83
FIG. 5.22 Interior 7 – Antiquaries’ plans and modern topography 87
FIG. 5.23 Interior 7 – fluxgate gradiometry image (± 7nT) 88
FIG. 5.24 Interior 7 – interpretative plan 89
FIG. 5.25 Interior 8 – Antiquaries’ plans and modern topography 91
FIG. 5.26 Interior 8 – fluxgate gradiometry image (± 7nT) 93
FIG. 5.27 Interior 8 – interpretative plan 94
FIG. 5.28 Interior 9 – Antiquaries’ plans and modern topography 101
FIG. 5.29 Interior 9 – fluxgate gradiometry image (± 7nT) 102
FIG. 5.30 Interior 9 – interpretative plan 103
FIG. 5.31 Phasing of Fulford’s excavation of the Basilica (1977, 1980–6) 105
FIG. 5.32 Interior 10 – Antiquaries’ plans and modern topography 113
FIG. 5.33 Interior 10 – fluxgate gradiometry image (± 7nT) 114
FIG. 5.34 Interior 10 – interpretative plan 115
FIG. 5.35 Interior 11 – Antiquaries’ plans and modern topography 119
FIG. 5.36 Interior 11 – fluxgate gradiometry image (± 7nT) 120
FIG. 5.37 Interior 11 – interpretative plan 121
FIG. 5.38 Interior 12 – Antiquaries’ plans and modern topography 127
FIG. 5.39 Interior 12 – fluxgate gradiometry image (± 7nT) 128
FIG. 5.40 Interior 12 – interpretative plan 129
FIG. 5.41 Interior 13 – Antiquaries’ plans and modern topography 131
FIG. 5.42 Interior 13 – fluxgate gradiometry image (± 7nT) 132
FIG. 5.43 Interior 13 – interpretative plan 133
FIG. 5.44 Interior 14 – Antiquaries’ plans and modern topography 137
FIG. 5.45 Interior 14 – fluxgate gradiometry image (± 7nT) 138
FIG. 5.46 Interior 14 – interpretative plan 139
FIG. 5.47 Interior 15 – Antiquaries’ plans and modern topography 143
FIG. 5.48 Interior 15 – fluxgate gradiometry image (± 7nT) 144
FIG. 5.49 Interior 15 – interpretative plan 145
FIG. 5.50 Interior 16 – Antiquaries’ plans and modern topography 149
FIG. 5.51 Interior 16 – fluxgate gradiometry image (± 7nT) 150
FIG. 5.52 Interior 16 – interpretative plan 151
FIG. 5.53 Interior 17 – Antiquaries’ plans and modern topography 153
FIG. 5.54 Interior 17 – fluxgate gradiometry image (± 7nT) 154
FIG. 5.55 Interior 17 – interpretative plan 155

Chapter 6: Mapping the Exterior
FIG. 6.1 Index to Exterior sheets 157
FIG. 6.2 Exterior 1a and 1b – excavations, aerial photography and fieldwalking 161
FIG. 6.3 Exterior 1a and 1b – fluxgate gradiometry (± 2nT) 162
FIG. 6.4 Exterior 1a and 1b – geophysics interpretation on top of LiDAR data 163
FIG. 6.5 Exterior 2 – excavations, aerial photography and fieldwalking 165
FIG. 6.6 Exterior 2 – fluxgate gradiometry (± 2nT) 166
LIST OF FIGURES

fig. 6.7 Exterior 2 – geophysics interpretation on top of LiDAR data 167
fig. 6.8 Exterior 3 – excavations, aerial photography and fieldwalking 169
fig. 6.9 Exterior 3 – fluxgate gradiometry (± 2nT) 170
fig. 6.10 Exterior 3 – geophysics interpretation on top of LiDAR data 171
fig. 6.11 Exterior 4 – excavations, aerial photography and fieldwalking 173
fig. 6.12 Exterior 4 – fluxgate gradiometry (± 2nT) 174
fig. 6.13 Exterior 4 – geophysics interpretation on top of LiDAR data 175
fig. 6.14 Exterior 5 – excavations, aerial photography and fieldwalking 177
fig. 6.15 Exterior 5 – fluxgate gradiometry (± 2nT) 178
fig. 6.16 Exterior 5 – geophysics interpretation on top of LiDAR data 179
fig. 6.17 Exterior 6 – excavations, aerial photography and fieldwalking 181
fig. 6.18 Exterior 6 – fluxgate gradiometry (± 2nT) 182
fig. 6.19 Exterior 6 – geophysics interpretation on top of LiDAR data 183
fig. 6.20 Exterior 7 – excavations, aerial photography and fieldwalking 185
fig. 6.21 Exterior 7 – fluxgate gradiometry (± 2nT) 186
fig. 6.22 Exterior 7 – geophysics interpretation on top of LiDAR data 187
fig. 6.23 Exterior 8 – excavations, aerial photography and fieldwalking 189
fig. 6.24 Exterior 8 – fluxgate gradiometry (± 2nT) 190
fig. 6.25 Exterior 8 – geophysics interpretation on top of LiDAR data 191
fig. 6.26 Exterior 9 – excavations, aerial photography and fieldwalking 193
fig. 6.27 Exterior 9 – fluxgate gradiometry (± 2nT) 194
fig. 6.28 Exterior 9 – geophysics interpretation on top of LiDAR data 195
fig. 6.29 Exterior 10 – excavations, aerial photography and fieldwalking 199
fig. 6.30 Exterior 10 – fluxgate gradiometry (± 2nT) 200
fig. 6.31 Exterior 10 – geophysics interpretation on top of LiDAR data 201
fig. 6.32 Exterior 11 – excavations, aerial photography and fieldwalking 203
fig. 6.33 Exterior 11 – fluxgate gradiometry (± 2nT) 204
fig. 6.34 Exterior 11 – geophysics interpretation on top of LiDAR data 205
fig. 6.35 Exterior 12 – excavations, aerial photography and fieldwalking 207
fig. 6.36 Exterior 12 – fluxgate gradiometry (± 2nT) 208
fig. 6.37 Exterior 12 – geophysics interpretation on top of LiDAR data 209
fig. 6.38 Exterior 13 – excavations, aerial photography and fieldwalking 211
fig. 6.39 Exterior 13 – fluxgate gradiometry (± 2nT) 212
fig. 6.40 Exterior 13 – geophysics interpretation on top of LiDAR data 213
fig. 6.41 Exterior 14 – excavations, aerial photography and fieldwalking 217
fig. 6.42 Exterior 14 – fluxgate gradiometry (± 2nT) 218
fig. 6.43 Exterior 14 – geophysics interpretation on top of LiDAR data 219
fig. 6.44 Exterior 15 – excavations, aerial photography and fieldwalking 223
fig. 6.45 Exterior 15 – fluxgate gradiometry (± 2nT) 224
fig. 6.46 Exterior 15 – geophysics interpretation on top of LiDAR data 225
fig. 6.47 Exterior 16 – excavations, aerial photography and fieldwalking 227
fig. 6.48 Exterior 16 – fluxgate gradiometry (± 2nT) 228
fig. 6.49 Exterior 16 – geophysics interpretation on top of LiDAR data 229
fig. 6.50 Exterior 17 – excavations, aerial photography and fieldwalking 231
fig. 6.51 Exterior 17 – fluxgate gradiometry (± 2nT) 232
fig. 6.52 Exterior 17 – geophysics interpretation on top of LiDAR data 233
fig. 6.53 Exterior 18 – excavations, aerial photography and fieldwalking 237
fig. 6.54 Exterior 18 – fluxgate gradiometry (± 2nT) 238
fig. 6.55 Exterior 18 – geophysics interpretation on top of LiDAR data 239
fig. 6.56 Exterior 19 – excavations, aerial photography and fieldwalking 241
fig. 6.57 Exterior 19 – fluxgate gradiometry (± 2nT) 242
fig. 6.58 Exterior 19 – geophysics interpretation on top of LiDAR data 243
fig. 6.59 Exterior 20 – excavations, aerial photography and fieldwalking 245
fig. 6.60 Exterior 20 – fluxgate gradiometry (± 2nT) 246
FIG. 6.61 Exterior 20 – geophysics interpretation on top of LiDAR data
FIG. 6.62 Exterior 21 – excavations, aerial photography and fieldwalking
FIG. 6.63 Exterior 21 – fluxgate gradiometry (± 2nT)
FIG. 6.64 Exterior 21 – geophysics interpretation on top of LiDAR data
FIG. 6.65 Exterior 22 – excavations, aerial photography and fieldwalking
FIG. 6.66 Exterior 22 – fluxgate gradiometry (± 2nT)
FIG. 6.67 Exterior 22 – geophysics interpretation on top of LiDAR data
FIG. 6.68 Exterior 23 – excavations, aerial photography and fieldwalking
FIG. 6.69 Exterior 23 – fluxgate gradiometry (± 2nT)
FIG. 6.70 Exterior 23 – geophysics interpretation on top of LiDAR data
FIG. 6.71 Exterior 24 – excavations, aerial photography and fieldwalking
FIG. 6.72 Exterior 24 – fluxgate gradiometry (± 2nT)
FIG. 6.73 Exterior 24 – geophysics interpretation on top of LiDAR data

Chapter 7: The Material Evidence from Silchester

FIG. 7.1 Two early recovered bronze statuettes from Silchester

Chapter 8: The Town Wall and Ditch

FIG. 8.1 The location of interventions on the Town Wall and Ditches
FIG. 8.2 Sections through the Town Wall and Ditches

Chapter 9: The Inner and Outer Earthworks

FIG. 9.1 Boon’s historical interpretation of the development of the earthworks
FIG. 9.2 The earthworks as reconstructed by Boon and our current understanding
FIG. 9.3 The location of interventions on the Inner and Outer Earthworks
FIG. 9.4 Sections and profiles of the Inner and Outer Earthworks
FIG. 9.5 GPR and earth resistance survey of the North-East Extension
FIG. 9.6 GPR and earth resistance survey within the Rampier Copse Enclosure
FIG. 9.7 Summary of dating evidence for the earthworks
FIG. 9.8 Rampier Copse and the other peripheral enclosures
FIG. 9.9 Hypothetical sequence for the development of the earthworks and roads

Chapter 10: The Linear Earthworks

FIG. 10.1 Linear earthworks near Silchester
FIG. 10.2 Byes Lane Dyke and new earthworks and enclosures from LiDAR
FIG. 10.3 The Bramley Frith Wood enclosure from LiDAR
FIG. 10.4 The new road or earthwork to the north-east from LiDAR

Chapter 11: Calleva’s Origins

FIG. 11.1 The Fulford’s two open-area excavations revealing the Iron Age lanes
FIG. 11.2 The development of the Iron Age lanes
FIG. 11.3 Evidence for the layout and extent of the Iron Age oppidum

Chapter 12: Military Involvement

FIG. 12.1 The hypothetical forts and fortresses of Webster, Sommer and Fulford
FIG. 12.2 The Period 4 building and comparative examples of various principia
FIG. 12.3 Gallo-Roman civitates providing auxiliary recruits named after the tribe, with a notional representation of the kingdom of Britannia

Chapter 13: Cemeteries and Human Remains

FIG. 13.1 Distribution of human remains within the Town Wall
FIG. 13.2 Western Cremation Cemetery
FIG. 13.3 Geomagnetic ‘hot points’ within and outside the Town Walls
FIG. 13.4 The Western Enclosures
FIG. 13.5 The Insula XXXVI enclosure
FIG. 13.6 The Silchester enclosures and comparative examples
LIST OF FIGURES

FIG. 13.7 The Eastern Inhumation Cemetery 384
FIG. 13.8 The funerary landscape around Silchester 385

Chapter 14: Urban Infrastructure
FIG. 14.1 Dating evidence for the Roman street-grid 390
FIG. 14.2 Water supply and disposal within the town 395
FIG. 14.3 The course and elevation of the iron-collar wooden water-pipe 397
FIG. 14.4 Changing impressions of the route of the Roman roads to the west and south-west 401
FIG. 14.5 Aerial photograph of a possible early road to Old Sarum from the South Gate 402

Chapter 15: Trade and Industry
FIG. 15.1 The main east-west road showing lots of readings >10 nT in the fluxgate gradiometry data and the distribution of strip-houses and tabernae against a background of these features 407
FIG. 15.2 The location of buildings argued to be tabernae across the town 409
FIG. 15.3 Pits to the south-west of the Town Wall in relation to the London Clay and valley – possible tanning-pits 417
FIG. 15.4 The potential stock enclosures at Silchester and Verulamium 418

Chapter 16: Public Entertainment
FIG. 16.1 Fluxgate Gradiometry results and interpretation to the north-west of the city showing the major linear features 426
FIG. 16.2 Geophysical investigations of LP 3700 428
FIG. 16.3 Comparative size of known circuses compared with the space at Silchester 429

Chapter 17: Calleva: Historical and Archaeological Narratives
FIG. 17.1 The early development of Calleva 437
FIG. 17.2 The later development of Calleva 440

Foldout The revised plan of Silchester, showing the layout of the town and the key features revealed by the geophysics and aerial photography in the vicinity
LIST OF TABLES

Table 3.1 Summary of excavations in and around Silchester
Table 3.2 Summary of geophysical work at Silchester
Table 4.1 Map sources consulted
Table 4.2 Description of fluxgate gradiometry feature classes
Table 5.1 Concordance of Insula number, Interior map sheet and figure references
Table 5.2 Phasing summary for Insula IX excavations
Table 7.1 Coin hoards from Silchester
Table 11.1 Potential pre-oppidum finds
Table 11.2 Potentially pre-Caesarean coins
Table 11.3 Ceramics assemblages at Late Iron Age Silchester
Table 11.4 Schedule of pre-Claudian material from Silchester with secure locations
Table 13.1 Infant remains within the Town Walls
Table 13.2 Inhumations within the Town Walls
Table 13.3 Skulls from Silchester
Table 13.4 Other human remains from within the Town Walls
Table 13.5 Potential Silchester burial areas and enclosures
Table 17.1 Construction projects at Silchester

Page
31
36
38
44
48
79
270
340
341
342
350
370
371
373
373
386
439

DIGITAL MATERIAL

An archive has been deposited with the Archaeological Data Service under the project title ‘Silchester Mapping Project 2005-10’. This includes: GIS files, a digital version of the foldout plan, and a multi-layered PDF where different layers of information can be turned on and off to see how the interpretation links to the aerial photography, etc.

http://archaeologydataservice.ac.uk/
doi: 10.5284/1038434
ACKNOWLEDGEMENTS

Funding for this work came from three main sources. First, the University of Reading provided me with the time and space within which to conduct the research. The resource ultimately comes from the Higher Education Funding Council for England, which provides us with research funds based on our overall departmental research quality, so I have to thank all of my colleagues for helping create the well-resourced environment within which to work. Secondly, a HEFCE initiative creating Centres of Excellence in Teaching and Learning led to a major investment programme. I set up an interdisciplinary centre promoting undergraduate research engagement, and one strand of that involved significant funds to purchase the kind of equipment which undergraduates would not normally gain access to. Within the Department of Archaeology this led, amongst other things, to an increase in the amount of geophysical equipment we could use. Students began research placements and dissertations involving geophysics and through this we managed to survey the interior of the town. Thirdly, a British Academy Research Development Award enabled the survey to ‘go-large’ and extend out beyond the walls. Much of this later work was carried out by Rob Fry whose productivity, in the days before vehicle-based multi-probe arrays, was extraordinary and his contribution has been immense. Surveying the town and its environment was just the beginning. What followed was the digitisation of past excavations and all the other datasets to help to interpret all of the features which were emerging, for which there was no external funding. Bringing the volume together and drafting the final sections of synthesis would not have been possible without a visiting fellowship of the Deutsches Archäologisches Institut at the Römisch-Germanische Kommission in Frankfurt, for which I thank the DAI President, Professor Dr Friederike Fless, the RGK Director, Eszter Bánffy, and David Wigg-Wolf.

The fieldwork would not have been possible without the community and consent of the people of Silchester, the landowners, managers and tenants of the living landscape within and around the walls. In particular I would like to thank: Robin Edwards, Hampshire County Council; Roy and Graham Best, Clappers Farm; Nick and Biddy West, Old Manor House; John Cook and Jon Stacey, Church Lane Farm; Alastair Blacknell and the Englefield Estate; Charles and Ben Kolowoski of Chitty Farm; and the owners of many of the horses whose paddocks we occasionally invaded: Duncan Hodge, Brocas Lands Farm; Paddy and Mel Bowring, The Mount; Mr Carlini and Tony Martin of Rye House; Charles Smythe of Rye Cottage; Graham Hutton, the Old House; Stella Balderston, Sawyers Land; and Richard Massey, West End Farm. Mike Fulford kindly introduced me to many of them.

I would like to thank English Heritage for their permission to work on the scheduled area, and their inspector, Richard Massey for his continued encouragement.

In relation to the fieldwork: during the summer of 2006 Laura Cripps assisted by Rob Fry supervised participants from the Silchester Field School in the collection of data from the interior of the city, the data being processed by myself; and in 2008–9 the survey of the exterior was undertaken, led by Rob Fry with the assistance of Nick Crabb, Lee Calderbank, Alice James, Matt Berry and other occasional volunteers, the data being processed by Rob Fry. Throughout the project Dave Thornley provided invaluable support, and helped us optimise our walking techniques, significantly reducing the time it took to survey grids. Tim Astin provided advice
on the use of Ground Penetrating Radar and Electrical Resistance Tomography. Tim Phillips provided occasional and valued support throughout various stages of the project.

Over the years three undergraduates undertook surveys as part of their dissertations, Rob Fry (2007, pl. X) trying out multiple techniques in what became our ‘test area’ spanning Insulae II and IX; Jenny Saffrey (2008) exploring the temple area in the paddocks south of Manor Farm; and Nick Crabb (2009) in the area around the Amphitheatre. Their raw data have been incorporated within this project.

In relation to the digitisation, Duncan Sayer spent many hours on the initial processing of the Society of Antiquaries’ plans. Pete Brewer helped set up the initial GIS framework for the project. Rob Fry carried out the initial digitisation and first-line interpretation of the geophysical results with subsequent work integrating the dataset being done by myself. Elements of the GIS, where copyright permits, will be deposited within the Archaeology Data Service.

Library research: I want to thank Adrian James and Heather Rowland at the Society of Antiquaries of London as well as Gabriele Rasbach at the Römisch-Germanische Kommission.

I would like to thank Paul Bidwell, Simon Esmonde Cleary, Hella Eckardt, Steve Preston and Rob Fry for their comments on the full text, and John Pearce and Richard Bradley for comments on individual chapters; the work has benefited significantly from their attention. I would also like to thank Paul Bidwell, John Peter Wild and especially Lynn Pitts for their work and support throughout the editorial and production process with the Roman Society.

Finally, I would like to thank Alejandro Bria Mas, to whom this volume is dedicated, for his support and encouragement.

IMAGE PERMISSIONS

I would like to thank the following for the use of their images or data: Jean and Martin Norgate for their image of Isaac Taylor’s map (FIG. 3.3); Adrian James at the Society of Antiquaries of London for arranging the photography of some early prints (FIGS 2.1, 3.4, 3.5, 3.9); the Environment Agency’s Geomatics division for the LiDAR data (FIG. 3.14, and the background to other images); John Gater and Chris Gaffney for the reproduction of their early geophysical survey at Silchester by GSB (FIG. 3.15); English Heritage/Historic England for the reproduction of their geophysical surveys over the Forum area and the western cemetery (FIGS 3.16, 4.2, 4.3, 13.4); the NMR/Historic England for the reproduction of the photographs in FIG. 14.5 (© Crown copyright HE).

The cartography behind all the modern maps and plans is derived from the OS Landline and Digimap Carto datasets. These are © Crown Copyright 2008. These are Ordnance Survey/EDINA supplied services.
SUMMARY

Silchester (*Calleva Atrebatum*) is a Roman town in Hampshire, in central southern Britain. Unlike many, the site was abandoned in the post-Roman period leaving it as a largely greenfield site now. The Amphitheatre, Town Wall and some Outer Defences all remain visible for the visitor to see. The town has been highly influential in the development of Romano-British archaeology due to the large-scale excavation by the Society of Antiquaries in 1890–1908 which developed an overall plan of the site.

This volume draws together for the first time all the fieldwork known to have taken place, from the earliest located trenches in the 1720s up until the modern campaigns of Michael Fulford (1974–present). The cut-off date is 2013. It integrates this work with a new geophysical survey of the interior and vicinity to provide a new overarching narrative for the town.

The volume starts with a historiography of work on the city from earliest antiquarian investigations through to recent campaigns; and this sense of historiography and changing interpretations of the site permeates the later discussion, showing how new discoveries have transformed understandings.

The core of the volume contains the empirical data. Work has taken place digitising all the past excavation plans, and combining this with other datasets including: two major fieldwalking campaigns, the aerial photographic plots, landscape analysis from earlier maps from the Ordnance Survey and earlier sources, LiDAR, other mapping data, and finally 217 ha of new geophysical prospection in and around the town. An atlas has been created which shows these data in a variety of formats, together with a detailed text outlining all the past interventions within each sheet, and providing a summary of the discoveries together with references to their later reinterpretation where relevant.

The final sections provide essays in interpretation, with thematic reviews of: the defences and linear earthworks; the development of the *oppidum*; the interpretation of Roman military metalwork; an interpretation of the evidence for the mortuary landscape of the town; discussions of urban infrastructure, trade, industry and public entertainment. Finally, a narrative overview is provided reviewing how the town’s remains have been interpreted within an historical setting.

There are methodological innovations differentiating the signal strength of features in the fluxgate gradiometry data to map ‘hotspots’ representing possible cremation pyre areas, middens, and industrial activities to develop our understanding of the mortuary landscape and also that of shops and workshops within the town; these techniques could readily be applied to other large-scale surveys of Roman cities which have already been undertaken.

The work provides the first overall synthesis of the city since Boon (1974). The new work includes a significantly revised impression of the development and chronology of the earthworks surrounding the town and maps all the Later Iron Age finds and evidence for the development of the street-grid from both excavation data and geophysics. Several new cemetery areas have been discovered, including a series of large Later Iron Age or Early Roman burial enclosures. Features have been identified which may represent elusive evidence for large-scale tanning operations near the town. Finally, there are traces on the gravel terrace edge of a series of parallel lines which may be indicative of a circus, though ground-truthing is required to test that.
The overall urban assessment and synthesis enable Silchester to be seen alongside the other recent comprehensive reviews of major cities in south-east Britain, such as Verulamium (Niblett and Thompson 2005) and Colchester (Radford et al. 2013).