After the Central Belt, the South is the second largest region, covering just over 24,254 km². It encompasses the modern administrative counties of Kent, Greater London, Surrey, East Sussex, West Sussex, Hampshire, the Isle of Wight, and Dorset, while it also encroaches on parts of Essex, Hertfordshire, Buckinghamshire, Berkshire, Wiltshire, Somerset and Devon (Fig. 4.1).

THE NATURE OF THE LANDSCAPE

The region is characterised by four main geographical units: the chalk downs, the Weald, the Hampshire Basin, and the London Basin, which can be broken down further into smaller landscape zones, based upon Natural England character areas (Fig. 4.2). The bulk of the chalk downs rises across much of southern Wiltshire and northern Hampshire, stretching south-west to the Dorset coast, and to the east to the North and South Downs, which together encircle the Weald. The chalk downs comprise rolling hills, capped with shallow but mildly alkaline soils which can be exploited for both arable and pasture. The downs are also drained by numerous river valleys containing highly fertile, alluvial soils and are particularly suited to arable agriculture. Many of the chalkland river valleys run through the Hampshire Basin, to drain into the Solent to the south, and through the London Basin to the north, to drain into the Thames and the Thames Estuary. These estuarine regions constitute a
mixture of geologies, essentially a variety of clay and sand ‘brickearth’ deposits that tend to be more acidic than the chalkland soils, but can be quite fertile in places.

Although numerous rivers drain into the south coast, the London Basin is dominated by the Thames and its tributaries. The Thames enters the South region as it runs south through the Chilterns and into a wide floodplain extending across much of modern Berkshire and Greater London. Though this landscape is more acidic than the chalkland and is more susceptible to seasonal influences, such as winter flooding, it still provides suitable land for both arable and pastoral farming. The Weald, however, is much less accommodating of intensive arable agriculture, consisting of an inner High Weald, predominantly of sandstone, and an outer Low Weald, formed of heavy clay, both of which are separated from the chalkland by a ridge of Greensand. The Weald is largely wooded today, with its name thought to derive from the Old English for ‘forest’ (Onions 1966). Just how far it was covered by wood in the Roman period is uncertain, but a recent survey of the pollen evidence suggests that it consisted of a mixture of woodland and grassland pastures (Rippon et al. 2015). At the south-eastern periphery of the Weald, the land runs down to the wetlands of Romney Marsh. Much of the latter has been gradually reclaimed during and since the medieval period, and it is uncertain how much was exploited and settled during the Roman period (Rippon 2002).

THE SOUTH DATASET

The South region is populated by 897 individual site records, comprising almost one quarter of the total dataset. The sites are spread widely, if unevenly, across the region with notable concentrations occurring north and south of the head of the Thames estuary, along the Sussex Coastal Plain, and in the hinterlands of some of the Roman towns in the region, for example, around Ilchester, Dorchester and Silchester (fig. 4.3, top). It is important to note here that, while the majority of sites have been excavated since 1990 under development-led conditions, the dataset also includes the results of twentieth-century antiquarian fieldwork (e.g. Wolseley *et al.* 1927; Curwen 1933; Parsons and Curwen 1933; Holleyman 1936), university-based research (e.g.
Fig. 4.3. Kernel density of South region records (n=897) and all excavation records (1910–2010) from National Monuments Records (NMR) index (n=17,582)
Cunliffe 2000; Cunliffe and Poole 2008a), and ‘rescue archaeology’ undertaken in the later 1970s and 1980s (e.g. Fasham 1980; 1983; 1987; Philip 1973; 1984; Smith et al. 1998).

Another aspect to consider is the expansion in the scale of some of the work that has been undertaken in the South, particularly since 1990. While most of the sites in the dataset stem from relatively small-scale, development-led work, an important number derive from major infrastructural projects. Significantly, these have moved the emphasis away from individual, site-based investigations towards multi-period, landscape-scale excavations. While, individually, such projects provide a better contextualisation of Roman rural settlements, collectively, their scale is now beginning to influence the overall distribution pattern of settlements within the region. Projects such as High Speed One (HS1; Booth et al. 2011), Heathrow Terminal 5 (Lewis et al. 2010), the Dorchester by-pass (Smith et al. 1998) and the East Kent Access Road (Andrews et al. 2015) have expanded the evidence base in areas where very little was known before, such as on the eastern stretch of the Wealden Greensand ridge along which HS1 now runs.

Despite the increased number of sites generated by developer-funded archaeology, gaps in our knowledge of the Roman rural settlement pattern remain. Comparison of our site distribution with the National Monuments Records (NMR) database shows that the two datasets broadly correlate (FIG. 4.3). Nonetheless, the area of greatest variation that stands out is within Greater London. It is clear from the NMR data that Greater London has received a substantial number of excavations during the twentieth and early twenty-first centuries, primarily due to the rapid rate of urban expansion. Yet, in the hinterland of the provincial capital of Londinium, Roman rural settlement sites are notably scarce, particularly in the areas away from the major Roman roads. A number of sites have been identified more recently around the Greater London/Essex border, largely through extensive gravel quarrying (e.g. Howell et al. 2011; Lyons 2012), but otherwise the roadside settlements, such as those at Brentford and Old Ford, provide much of our evidence for rural settlement around Londinium. The relative absence of rural settlement evidence in these low-lying areas appears to be real, further exemplified by the recent publication of the Olympic Park excavations around the Lea Valley where, despite large areas being opened up for investigation, almost no evidence for Roman farming settlement was encountered (Powell 2012).

The large expanse of the Weald is another area with few settlement sites. Consisting of a comparatively infertile terrain, the Weald is known mostly for its early Roman iron production sites, as well as for some sites involved in quarrying and tile manufacture, all demonstrating the importance of the natural resources available in the region and the suitability of its environment to support such industries (Cleere and Crossley 1985; Hodgkinson 2008; see vol. 2). There is emerging evidence that arable expansion onto the Low Weald took place in the later Roman period; a watching brief at Eastlands Farm near Burgess Hill revealed the remains of a T-shaped corn dryer dating to the later fourth century A.D. (Sawyer 1999), but such sites are currently rare. It is possible that much of the Wealden population in the Roman period was more commonly engaged in industry than farming, though this would not explain how food production and procurement was managed in the Weald. It may be that settlements whose economic basis perhaps involved a mixture of small-scale pastoralism, woodland management and hunting are simply not as archaeologically visible as the known industrial sites in the area. It remains to be seen whether future survey and excavation will uncover further evidence of farming settlements.

ROMAN RURAL SETTLEMENT PATTERNS

It is important to recognise that the rural settlement of Roman Britain did not exist in isolation from the provincial infrastructure of towns, military sites and roads, much of which became established in the second half of the first century A.D. The South region contained a number of major urban centres, most notably the provincial capital at Londinium (London), five civitas capitals, Calleva Atrebatum (Silchester), Durovernum Cantiacorum (Canterbury), Durnovaria (Dorchester), Venta Belgarum (Winchester), Noviomagus Reginorum (Chichester), and the colonia at Camulodunum (Colchester). Other major settlements included the ports at Clausentum (Bitterne), Rutupiae (Richborough) and Portus Dubris (Dover), the latter two of which became forts of the Saxon Shore, and the walled towns at Durobrivae (Rochester) and Lindinis (Ilchester). Alongside Rutupiae and Portus Dubris, Saxon Shore Forts were also erected in the third century A.D. at Regulbium (Reculver), Portus Lemanis (Lymne), Anderitum (Pevensey Castle), and Portus Adurni (Portchester Castle). The precise role which the major towns and ports played in administering their rural hinterlands and the scale of their economic impact upon them is much debated. However, while it might be assumed that the presence of urban and military settlements would have significantly impacted upon rural populations, the degree to which this occurred...
probably varied across different regions of the country (cf. Taylor 2013).

The 897 rural site records from the South region relate to 627 individual settlements (FIG. 4.4; TABLE 4.1). Farmsteads and villas are counted as single site records, while nucleated settlements may include a number of site records reflecting the greater extent of some of these settlements. The remainder include industrial sites, field systems, isolated buildings and sites of a religious nature, where no evidence for domestic settlement was encountered during their excavation. Farmsteads dominate the dataset (70.6 per cent), followed by villas, which are represented with a greater frequency in the South than in other regions (18.0 per cent). Nucleated settlement is comparatively
<table>
<thead>
<tr>
<th>Landscape zone</th>
<th>Farmstead (all)</th>
<th>Farmstead (complex)</th>
<th>Farmstead (enclosed)</th>
<th>Farmstead (open)</th>
<th>Villa</th>
<th>Roadside settlement</th>
<th>Village</th>
<th>Vicus</th>
<th>Hilfort</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackdowns</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td>Wessex Vales</td>
<td>24</td>
<td>6</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>42</td>
<td>6.7</td>
</tr>
<tr>
<td>Dorset Heaths</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>1.9</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td>Isles of Portland and Purbeck</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>New Forest</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>South Coast Plain and Hampshire Lowlands</td>
<td>36</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>7.3</td>
</tr>
<tr>
<td>London Basin</td>
<td>113</td>
<td>17</td>
<td>30</td>
<td>10</td>
<td>8</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td></td>
<td>138</td>
<td>22.0</td>
</tr>
<tr>
<td>North Kent Plain</td>
<td>43</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td>9.7</td>
</tr>
<tr>
<td>Greater Thames Estuary</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>13</td>
<td>2.1</td>
</tr>
<tr>
<td>High Weald</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Low Weald</td>
<td>14</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>3.8</td>
</tr>
<tr>
<td>Romney Marsh</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Wealden Greensand</td>
<td>30</td>
<td>1</td>
<td>7</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>7.7</td>
</tr>
<tr>
<td>Hampshire Downs</td>
<td>45</td>
<td>5</td>
<td>26</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>8.9</td>
</tr>
<tr>
<td>North Downs</td>
<td>23</td>
<td>6</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>5.4</td>
</tr>
<tr>
<td>South Downs</td>
<td>28</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>6.1</td>
</tr>
<tr>
<td>South Wessex Downs</td>
<td>51</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>13</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td>82</td>
<td>13.1</td>
</tr>
<tr>
<td>Total</td>
<td>443</td>
<td>(43)</td>
<td>(111)</td>
<td>(19)</td>
<td>113</td>
<td>34</td>
<td>21</td>
<td>2</td>
<td>9</td>
<td>627</td>
<td>100</td>
</tr>
</tbody>
</table>
well represented in the region, predominantly in the form of roadside settlements which are relatively common around London and along Watling Street, stretching eastward across the North Kent Plain to Canterbury and Richborough at the coast. Roadside settlements are also recorded in the Low Weald, particularly on its southern and western margins, areas where farmsteads are not well attested. Village settlement is most notable in the western part of the South region, occurring in particular on the South Wessex Downs (Salisbury Plain), mostly owing to the preferential survival of identifiable earthworks (McOmish et al. 2002; Fulford et al. 2006).

Variation in the frequency of different settlement types across different landscape zones is illustrated in Fig. 4.5. This shows that considerable differences occur in the distribution of those sites that developed villa architecture, for example. The North Downs, the Wealden Greensand and the Wessex Vales each contain relatively high numbers of villa sites, though they are very poorly represented in the London Basin. Considering the extent of gravel extraction that has occurred on the lower Thames terraces, the general absence of villa settlement appears to reflect a real difference between this area and the Upper Thames Valley where this settlement type is more common (cf. Booth et al. 2007, 42–79). Of course, one aspect of the settlement archaeology which is masked by taking these data at face value is the change that occurred through time across the region, and to understand the intra-regional variation more clearly we must first assess the chronological data.

REGIONAL CHRONOLOGY

Along with coins, the well-studied, regional pottery industries in the South (e.g. Alice Holt wares, New Forest wares, Dorset Black-Burnished wares (BB1), etc.), and the comparatively widespread consumption of early Roman continental imports, such as samian, has enabled a relatively high resolution in dating a large proportion of rural settlements. Combining these data from all sites in the South facilitates the construction of a broad chronology which illustrates the relative proportions of settlements that were inhabited from the late Iron Age through to the end of the fourth century A.D. (Fig. 4.6). The data show an increase by about 25 per cent in the number of sites occupied from the late Iron Age into the later first century A.D. The period from the later first century A.D. to the mid-second century then sees a peak in settlements, after which numbers gradually reduce to the later fourth century when the figure reverts to a similar number to that recorded for the late Iron Age.

The late first/second century A.D. peak in rural settlements in the South is similar to that in the East region, but is quite different to that seen across the Central Belt where the high point is not reached until the late second/third century A.D. (see Chs 5 and 6). However, observing these chronological trends across such large and diverse landscapes undoubtedly masks a considerable degree of inter-regional variation, as evidenced by the synthesis of dating patterns across different landscape zones in the South. These demonstrate a distinct geographical patterning, broadly on an east–west alignment (Fig. 4.7). Settlements in the eastern part of the region – the North Kent Plain, the North Downs, the Wealden Greensand, and the Low Weald – all show increasing settlement numbers from the late Iron Age through to the first half of the second century A.D., after which numbers decline steadily through to the second half of the fourth century A.D. Remarkably, the number of settlements of later fourth-century A.D. date recorded in the Low Weald and on the Wealden Greensand is less than half that known to have been inhabited during the late Iron Age. An increasing frequency of settlement also
characterises the London Basin, the South Downs, the South Coast Plain and the Hampshire Downs from the late Iron Age into the late first century A.D. However, the rate of decrease thereafter is generally less marked than in the Weald and in North Kent.

It is possible that the reduction in settlement numbers around the periphery of the Weald was related to the decline in the Wealden iron industry, thought to have occurred towards the middle of the third century A.D. (Hodgkinson 2008). Two of the most important iron-producing sites identified at Bardown and Beauport Park are thought to have ceased production between A.D. 220 and A.D. 240 (Cleere and Crossley 1985, 84–5), events that occurred soon after abandonment of the Classis Britannica fort at Dover (Philp 1981, 94–7). Whether these changes were directly related is uncertain, and it is difficult to gauge how they may have impacted upon settlement numbers. It is possible that the declining number of farmsteads can be explained by an increase in settlement nucleation into the later Roman period. However, this is also difficult to substantiate from the available evidence. Two of the more recent and more extensively excavated roadside settlements in Kent at Westhawk Farm near Ashford and Springhead near Southfleet have demonstrated evidence for considerable settlement decline from the early or middle part of the third century A.D. A substantial contraction in both settlements occurred at this time, as evidenced by a reduction in pottery usage and coin loss, as well as building demolition, with almost complete abandonment by the mid-fourth century A.D. (Booth et al. 2008, 394; Andrews et al. 2011, 208–9). Of course, the situations in London and Canterbury at this time would have had a considerable effect on the amount of traffic on the road between the two towns, and the settlements that were located on it. That Watling Street was not the bustling thoroughfare it was in the early Roman period is also indicated at Ospringe where a large mixed-rite cemetery appears to have been used almost exclusively between the second and third century A.D. (Whiting et al. 1931). The dating of the cemetery suggests that its associated settlement may have been in decline or even abandoned by the beginning of the fourth century A.D. Overall, the data show that a pattern of settlement decline into the fourth century A.D. occurred across much of the South region, though further west the rate of settlement abandonment appears to have been far less marked.

FIG. 4.7. Variations in settlement chronology by selected landscape zone within the South region.
There, in the South Wessex Downs and the Wessex Vales, the peak in settlement numbers does not occur until the late third/early fourth century A.D., at least 150 years later than in all the landscape zones to the east. In fact, the settlement chronologies of the Wessex sub-regions are more closely aligned to those of areas immediately to their north in the Central Belt, such as the Cotswolds (see Ch. 5). This pattern exists despite the fact that the South Wessex Downs form part of the same chalkland zone as the Hampshire, North and South Downs. The variation in dating across the chalkland suggests that the dynamics of settlement establishment and abandonment were perhaps more influenced by social or political factors than by geological and environmental constraints.

Settlement continuity and abandonment

Taking account of settlements that were established earlier in the Iron Age, FIG. 4.8 shows that around 65 per cent of sites occupied in the late Iron Age (c. first century B.C.–early first century A.D.) were founded during that period. This figure is substantially higher than the frequency of settlement establishments seen in the centuries that followed, the rate reducing consistently into the fourth century A.D., when only c. 3 per cent of the sites occupied in that phase were also founded then. The proportion of sites (32.5 per cent) that were newly set up in the late first century A.D. appears relatively high, but, rather than being a direct consequence of the Roman conquest, this might perhaps be seen as the continuation of a longer-term pattern of settlement expansion that was already underway during the late Iron Age. This possibility has been previously suggested for parts of the Sussex Coastal Plain and Kent (Davenport 2003; Hill 2007, 24). Not only did the period from the first century B.C. see a high frequency of new settlements being established, but there was also a high degree of settlement continuity through to the second century A.D. with a correspondingly low level of settlement abandonment.

As already demonstrated by the chronologies of all settlements in the South, there exists considerable intra-regional variation, particularly in the establishment of new farmsteads in the late Iron Age, which ranges between c. 85 per cent in the Weald to only c. 35 per cent on the Hampshire Downs (FIG. 4.9). The ratio of settlement establishments and abandonments in each phase on the Hampshire Downs and the South Wessex Downs appears to have been more balanced compared with landscapes zones to their east, which display comparatively high numbers of foundations in the late Iron Age and the late first century A.D., but more frequent abandonments in the second and third century A.D.

The very high incidence of settlement abandonment at the end of the fourth century A.D. appears to signify a major change in the settlement pattern, but it is no doubt partly a consequence of the invisibility of conclusive fifth-century A.D. dating evidence on many late Roman sites. Certainly, the loss of the major pottery industries in southern Britain with their datable wares, in parallel with the dramatic reduction in coin loss by the beginning of the fifth century A.D. has influenced these data to an unknown degree. Through the use of radiocarbon-dating and the identification of post-Roman material culture, 29 farmstead/villa sites show continued occupation beyond the fourth century A.D. and, of these, 15 provided evidence for activity that might be identified as, culturally, early ‘Anglo-Saxon’. At Laleham, Spelthorne, an upsurge in activity was noted by increasing quantities of material into the late Roman period, which the excavator related to renewed economic prosperity at Staines (Taylor-
Early Saxon pottery was also discovered, but without any obvious break in occupation or change in site organisation. Indeed, two features contained both late Roman and early Saxon pottery, indicating that both types were being used at the same time.

In most other cases, the evidence for post-Roman continuity on farmsteads and villa sites is far more scanty. Better evidence for continuity is occasionally observed on religious or funerary sites, such as at Tolpuddle Ball, Dorset, where radiocarbon dating of several inhumations showed that the cemetery was in use from the fourth century A.D. to the seventh century (Hearne and Birbeck 1999). The relationship between this cemetery and the nearby Roman farmstead is difficult to explain, considering the latter appeared to be abandoned at the end of the fourth century A.D.

FARMSTEADS: MORPHOLOGY, CHRONOLOGY AND DISTRIBUTION

The settlement patterns noted across the region are complicated by the diverse range of farmsteads that developed in different parts of the region. Just under 40 per cent of farmsteads in the South region have been classified according to the morphological criteria of open, enclosed and complex, as set out in Chapter 2. It must be noted here that some of the classified farmsteads counted in Table 4.1 may relate to the same sites. For example, if a farmstead began as an open settlement and then later developed into an enclosed settlement, both phases of the site are counted. Enclosed farmsteads are the most frequently identified type in the South, dominating the sample with 64 per cent of sites, with lesser numbers of open farmsteads, at 11 per cent, and complex farmsteads, at 25 per cent (Fig. 4.10). Analysis of the relative frequencies of the three main forms of farmstead over time shows that the relative proportions of enclosed and complex types changed markedly across the Roman period, while open farmsteads were poorly represented throughout. The general trend sees a reduction in the relative frequency of enclosed farmsteads from the late Iron Age to the fourth century A.D., coupled with an almost inverse increase in the frequency of the complex farmsteads over the same period (Fig. 4.11). Enclosed farmsteads are overwhelmingly the dominant farmstead type in the late Iron Age, but by the fourth century A.D. enclosed farmsteads and complex farmsteads are more equal in number. Open farmsteads are primarily recognised in the late Iron Age, constituting between 12.5 per cent and 15 per cent of the identified settlement prior to the Roman conquest, but by the late first century A.D. their relative frequency falls below 5 per cent and they remain very poorly represented compared with other types of farmstead thereafter. Together, these chronological developments are illustrated in the distribution maps in Fig. 4.12, which show the gradually evolving settlement landscape of the South region.
While enclosed farmsteads reduce in number over time in most areas, they appear to have been consistently present across the chalk downland, particularly on the Hampshire and South Wessex Downs, but also towards the head of the Thames estuary and on some of the gravel terraces of the Middle Thames (FIG. 4.13). In the eastern part of the region, the predominance of enclosed farmsteads on the North and South Downs also extends onto the Wealden Greensand ridge and to a lesser extent onto the Low Weald. A few settlements classified as complex farmsteads are located in the region, such as the site at Mackie Avenue, near Hassocks, but generally these are fairly undeveloped compared with those seen on the Thames gravel terraces (Mullin et al. 2010). Complex farmsteads and open farmsteads, in contrast, are rarely found on the chalk downs, but instead are far better represented on the Thames gravel terraces, being prevalent around the major river systems of the Thames, the Colne, and the Kennet. By the third century A.D., complex farmsteads became the dominant form of farmstead in the London Basin, with a proliferation of large settlement complexes, such as those found at Hengrove Farm near Staines (Poulton 2007) and the Imperial College Sports Ground site near Harlington (Crockett and Nowell 1998). These types of site are frequently located on low-lying ground with enclosure systems integrated by trackways with external field systems (e.g. Johnstone and Bowden 1985; Wallis and Waughman 1998; Biddulph et al. 2007; FIG. 4.14). By contrast, the few complex farmsteads that are located on the chalk downs tend to be smaller settlements, perhaps with a particular focus upon livestock management, such as at Winnall Down/Easton Lane near Winchester.
(Fasham 1985; Fasham et al. 1989) or Rowbury Farm, Wherwell (Cunliffe and Poole 2008e) (FIG. 4.15). However, a few larger complex farmsteads do occur on the downs, such as at Owslebury (Collis 1970) and at Dunkirt Barn (Cunliffe and Poole 2008f) (FIG. 4.16).

A different pattern is beginning to emerge to the west of the chalk downland. Only six farmsteads identified to morphological class are located on the mixed sandstone and limestone formations of the Wessex Vales, but these are exclusively sites of complex farmsteads. Enclosed farmsteads are apparently completely absent from this landscape zone, while there is evidence that the sites at Lyde Road, Yeovil (Clelland 2011), and Royal Naval Air Station, Yeovilton (Lovell 2005) developed from earlier open farmsteads from the mid–late Iron Age and continued through the Roman period as larger complex settlements more akin to those found on the Thames gravels.

The virtual absence of open farmsteads in the Roman period is difficult to interpret. It is possible that this pattern is truly representative and that, as a form of settlement, they become largely extinct after the Iron Age. But the issue may also be one of visibility. Open settlements of the mid–late Iron Age in the South generally present a commonly recognised form, usually consisting of a number of associated roundhouses and adjacent pit groups with no obvious sign of surrounding boundary
marking, good examples of which can be found at Ashford Prison, Spelthorne (Carew et al. 2006; see South Case Studies), and Westhampnett, Area 5 (Fitzpatrick et al. 2008). However, excavation of the few open farmsteads that date to the post-conquest period in the South suggests that their settlement characteristics may have been quite different to those known from the later Iron Age. At Tolpuddle Ball in Dorset, Roman-period settlement activity was indicated by the construction of a small masonry, rectangular building with evidence for shale-working, corn-drying, and animal-processing, which are all comparatively visible activities in the archaeological record (Hearne and Birbeck 1999). Similarly, at Foxholes Farm, near Hertford, evidence for metalworking and agricultural-processing was found alongside slight traces of timber buildings (Partridge 1989; FIG. 4.17). At both of these sites, late Iron Age enclosure boundaries were not maintained post-conquest, but had these settlements not been fully excavated, their classification as ‘open’ would have been problematic (see Ch. 2 for issues with ‘fragmentary sites’). It is also notable that ten sites in the South are recorded simply as ‘isolated buildings’, with little further evidence to characterise them. Without substantial associated evidence for activities such as industrial or agricultural processing, which are highly visible in the archaeological record, many open settlements are likely to remain unclassified.

FIG. 4.13. Distribution of farmstead types in relation to geology in the South region

<table>
<thead>
<tr>
<th>Late Iron Age</th>
<th>Late first century A.D.</th>
<th>Second century A.D</th>
<th>Third century A.D</th>
<th>Fourth century A.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. dated farmsteads classified</td>
<td>120</td>
<td>117</td>
<td>105</td>
<td>75</td>
</tr>
<tr>
<td>Total no. dated farmsteads</td>
<td>271</td>
<td>337</td>
<td>341</td>
<td>262</td>
</tr>
<tr>
<td>% classified</td>
<td>44.3</td>
<td>34.7</td>
<td>30.8</td>
<td>28.6</td>
</tr>
</tbody>
</table>
Between the late Iron Age and the later Roman period, the proportion of farmsteads in the South region that are classified, whether as open, enclosed or complex, steadily reduces from just under 45 per cent to below 25 per cent (Table 4.2). When we consider that the total number of farmsteads also falls across the period we are left with a much-reduced sample of classified farmsteads for the fourth century A.D. Only more extensive excavations of late Roman settlements will help us to understand better the overall settlement landscape in the South region.
A number of settlements in the South region show evidence for significant changes to their form and layout through time. However, the developmental sequences of many sites are very difficult to disentangle, a problem made all the more difficult where there has been disturbance and truncation. Evidence of abandonment and dislocation of settlement is, however, more evident from the sample. Several sites show good evidence for late Iron Age open settlements being abandoned and overlain by field systems or open pasture in the early Roman period, particularly in low-lying areas such as in the Middle Thames valley (i.e. Ashford Prison, Middlesex (Carew et al. 2006); cf. Preston 2012) or on the Sussex Coastal Plain (i.e. Westhampnett Bypass (Fitzpatrick et al. 2008); Tinore Lane, Goring-by-sea (Clarke 2012)). It is possible that the changes evident at these sites reflect corresponding, significant alterations in wider land use soon after the conquest. Just how widespread such changes were is difficult to gauge, but repeated examples in these low-lying areas suggest that they may have been extensive. The majority of settlements where development is recorded relate to farmsteads that acquired villa architecture, with 46 villa sites in the South displaying clear evidence for a settlement phase prior to villa construction.
THE EMERGENCE AND DEVELOPMENT OF VILLAS IN THE SOUTH

In the South region villas have a long history of study, exemplified by the number of late antiquarian/early twentieth-century excavations recorded on the project database. These represent a minimum number, of course, since more villa sites are known from cropmark or field survey evidence (cf. Scott 1993). Others that have been insufficiently excavated have not been included in this study. The dating of villa sites, in terms of their initial construction and development over time, is central to our understanding of their social and economic role in the Romano-British countryside of the South, but this remains problematic in numerous cases. Several excavations have revealed elements of villa complexes that may only be later additions to the original building, leaving the dates of their initial establishment unknown (e.g. Fordcroft, Orpington (Philp and Keller 1995), and Teynham (Wilkinson 2011), both in Kent).

Of the 113 villa sites in the dataset in the South region one-third can, at best, only be approximately dated to a broad period of occupation, but with no certainty of the dates of their construction and abandonment, and some cannot be dated at all. With the remaining two-thirds of sites, dating evidence indicates that initial villa constructions occurred between the later first century A.D. and the mid-fourth century A.D. In FIG. 4.18 the chronologies of all the dated villas are shown divided between sites that are located in the eastern (Kent, East Sussex, West Sussex, Greater London and Surrey) or western (Hampshire and IoW, Berkshire, Dorset, Devon, Wiltshire and Somerset) half of the region. This division demonstrates substantial variability between different sites, including the period of occupation prior to the development of villa architecture, the date of their earliest villa building, and the length of subsequent use.

Later first century A.D. villa establishments are predominantly restricted to the North Kent Plain along Watling Street and in the adjoining river valleys of the North Downs, and similarly along the Sussex Coastal Plain (FIG. 4.19). The early coastal plain villas are a generally well-known phenomenon, argued by some as lavish investments by local elite groups in order to associate themselves with a new political authority (Cunliffe 1973, 79; Rudling 1998). It may be no coincidence that first-century A.D. villa establishments were located on the Sussex and Kent Coastal Plains, areas that would have sat at the interface between Britain and the continent, forming the main access routes for trade and other traffic across the channel. Investments of wealth in these areas would have been important for demonstrating local positions of power, though the development of these villas must also be considered against the context of late Iron Age elite activity and the central role of long-distance trade networks (Creighton 2000; Hill 2007). High-status, pre-conquest activity at these early villa sites has so far only been discovered at Fishbourne where the fill of a ditch produced feasting waste, luxury artefacts and imported dining wares (Manley and Rudkin 2005).
FIG. 4.18. Chronology of occupation on villa sites in the South region
Although northern Kent and southern Sussex led the way with most of the earliest villas, the eastern half of the South region then saw a substantial reduction in their number after a peak in the later third century A.D. (fig. 4.20). Villa settlement in the western half, in contrast, did not peak until the early fourth century A.D. and, by the late fourth century A.D., more villas were occupied overall in the west than in the east. Rudling (1998) has observed that several of the first-century A.D. Sussex villas, particularly those on the coastal plain, had declined by the end of the third century A.D., with a number abandoned by the beginning of the fourth century A.D., while those on the chalk downland of Hampshire and the Greensand of West Sussex, notably at Bignor, tended to witness increased investment and expansion over the same period. Explanations for the decline have focused upon coastal raiding, which may have affected the fortunes of some settlements, but not necessarily all.

In the second century A.D., villa construction had spread across the chalk downland into Hampshire and Dorset, including a group located just south of Lindinis (Ilchester), a town well known for having a cluster of villas in its hinterland (King forthcoming). However, a number of the second century A.D. sites were relatively modest establishments, certainly compared with some of the earlier Sussex villas. It was not until the third or fourth century A.D. that settlements such as Ilchester Mead (Hayward 1982), Dinnington...
(King forthcoming), and Rockbourne (Hewitt 1968), developed into grander establishments. Most of the sites that received villa architecture in the later Roman period (third and fourth century A.D.) had long histories of prior occupation. In some cases, for example at Bucknowle (Light and Ellis 2009), Grateley South (Cunliffe and Poole 2008c), and Beddington (Howell 2005; FIG. 4.21), settlements established in the Iron Age continued in use throughout the Roman period.

FIG. 4.20. Chronological variation in date of villa construction between eastern and western areas of the South region

FIG. 4.21. Phased plans of the site at Beddington, Surrey (Howell 2005)
The expansion, development and decline of villa settlement shows a considerable degree of variability through time across the South region, with some evidence that villas were more commonly found in particular landscapes (Fig. 4.22). This variation may reflect differences in site visibility between geologies, or the level of fieldwork undertaken on other types of settlement, particularly where developer-funded excavations are more or less intensive. While these are important factors, the availability and suitability of exploitable land must also have been a consideration for villa owners. Villas are recorded in their greatest relative frequency on the Wealden Greensand, mostly towards the northern edge of the Weald, with the lowest in the London Basin. Today, the suitability of the soils on the Greensand for arable farming varies between areas of lighter, better-drained land located in or near the river valleys, and areas of sandy or heavy clay soils that tend to be covered in heath and rough grazing vegetation. Variation in the local environment may have been an attractive prospect for villa owners. Applebaum remarked long ago that villa owners may have had a preference for land at the margins of different soils, where arable, woodland, and other environments might be exploited together (Applebaum 1958, 69–70), a point also raised by Frere in relation to Bignor villa (Frere 1987, 265). The assumption that arable farming produced the bulk of the wealth invested into Romano-British villas is perhaps an over-generalisation (see Millett 2007a; 2014), and the differences observed in villa location perhaps suggest that the sources of their wealth, if derived locally, varied between sites and between landscapes.

It has been stated previously that villas should not necessarily be seen in isolation from other forms of farming settlement (e.g. complex, enclosed or open farmsteads), because their classification is determined by their architecture rather than their overall settlement form (see Ch. 2). It is unfortunate that many villa excavations simply do not provide information on wider features, due to their focus on the buildings. The recent work at Brading on the Isle of Wight is a rare exception, where geophysical survey exposed a complex of late Iron Age and Roman field boundaries, surrounding the late Roman courtyard villa (Cunliffe 2013a; Fig. 4.23). No villas in the South can be strictly identified as being complex in form, though some variation in the layout of villa settlements can be highlighted. A number of villas include masonry walls that link separate buildings and thus provide a centrally enclosed space, thereby crystallising the rectilinear form of the complex. The villas at Sparsholt and Stroud, both in Hampshire, exhibit this type of arrangement with masonry buildings attached externally to the central walled area (Johnston and Dicks 2014; Fig. 4.24). Bignor villa in West Sussex is one of the best examples of a villa in the South that developed from a loose array of masonry structures in the early Roman period, to being formally enclosed by a wall, and eventually to become a complex, double-courtyard villa in the fourth century A.D. (Aldsworth and Rudling 1995). The villas at Halstock in Dorset (Lucas 1993) and Rockbourne in Hampshire (Hewitt 1968) show similarities with Bignor in their final form, encircling a courtyard with ranges around three sides (see more plans in the villa building section below).

While some villa settlements present evidence of enclosure, others provide evidence for internal division. At Keston in Kent the villa complex in its third-century A.D. phase includes at least two ditches that together partly enclose the main domestic area, while at the same time dividing it from a temple-mausoleum area immediately to the north (Philp et al. 1991; Fig. 4.24). Within the

Fig. 4.22. Villas as a percentage of the total number of settlements in different landscape zones of the South region.
main complex, fences delineate a loosely arranged set of masonry structures, setting out different areas of space and, perhaps, activity. Through a re-examination of the plan of the villa at Rapsley in Surrey, Smith (1980) argued that a central wall, which divided the complex, signified evidence for dual-ownership of the villa. Of course, the question of villa ownership is highly debatable and is largely tangential to the archaeological evidence, but it is important to observe that many of the villas in the South region were laid out or developed in different formats that varied over time.

It is difficult to quantify the range of villa forms in the South due to the varied and often restricted results produced by many villa excavations. The main problem with identifying the form of villa
FIG. 4.25. Excavation and interpretative plans of late Roman villas at Houghton Down (Cunliffe and Poole 2008b) (a) and Dunkirt Barn (Cunliffe and Poole 2008f) (b) in Hampshire
complexes is that, although many appear to have been ‘open’ in plan, the full extent of the settlement is rarely observed. Here, cases in point are illustrated by the Hampshire villas at Houghton Down (Cunliffe and Poole 2008b), Grateley South (Cunliffe and Poole 2008c), and Dunkirt Barn (Cunliffe and Poole 2008d), where evidence for much larger bounded enclosures have been identified from geophysical survey and cropmarks, each encompassing something in the region of 15 ha around the main villa complexes (Fig. 4.25). Undoubtedly, these were settlements of considerable size that would probably have extended out to wider field-systems. However, if the villa buildings had been investigated in isolation, as so many sites of this type were, the wider form of the settlement would have gone unrecognised.

NUCLEATED SETTLEMENTS

Roadside settlements and villages are the main forms of rural, nucleated settlement found in the South, although a few Iron Age oppida and hillforts are also included in the database because they have late Iron Age phases of activity (though not those that later develop into major Roman towns, such as Silchester, which are beyond the scope of this project). Roadside settlements are relatively evenly distributed across the region, being particularly prevalent on the major roads leading to and from London. Other village settlements are mainly, though not exclusively, recorded in the western half of the region and, as mentioned, this is primarily due to the exceptional survival and survey of earthworks and cropmarks on Salisbury Plain and the South Wessex Downs (McOmith et al. 2002; Fulford et al. 2006), which may have no bearing on their real distribution across the South. One notable absence from the dataset is the excavated evidence for vici associated with the Saxon Shore forts in the South. Very little work has been focused on their identification, though recent aerial and geophysics survey around Richborough demonstrates that these settlements could have been extensive (Small 2002).

In total, 68 nucleated settlements have been recorded from the South, with some known from a number of different excavations (see Ch. 2). In terms of broad dating, the late Iron Age includes a mixture of villages, hillforts and oppida, and though these are classified separately in this way, their respective character and function within the landscape may not have been very different from one another. Roadside settlements, of course, did not develop until the layout of the major road system when they became the predominant form of nucleated settlement from the later first century A.D. through to the later fourth century A.D.

Roadside settlements

In the South, nearly half of the nucleated settlements developed alongside roads. These vary between foci located at crossroads or road/river intersections and ribbon developments, sometimes located close to other major urban settlements (see Ch. 2). The full extent of roadside settlements is often poorly recognised, though some estimates gained through survey suggest that a wide range may have existed: 9 ha at Alfoldean (Thompson 2006a), 10 ha at Westhawk Farm (Booth et al. 2008; Chapter 2, Fig. 2.25), 14 ha at Neatham (Millett and Graham 1986), 18 ha at Yeovil (Reed 2000), 25 ha at Shapwick (Papworth 1994; Fig. 4.26) and up to 36–45 ha at Old Sarum (Sorviodunum) (James 2002). Unfortunately, only eight roadside settlements have seen single excavations in excess of 0.5 ha. These include Elms Farm at Heybridge (Atkinson and Preston 2000), Syon Park, Brentford (Cowie et al. 2013), Springhead (Andrews et al. 2011) and Westhawk Farm (Booth et al. 2008), which together stand out as the most extensively excavated examples in the South. Even though the excavated areas of these sites still do not cover the full extent of the settlements, they provide useful impressions of their form (additionally facilitated at Westhawk Farm by extensive geophysical survey). Although their layouts differ, each of these settlements shows evidence for side lanes, ‘property’ plots with buildings, hearths and wells, shrines and areas set aside for industrial and/or agricultural processing.

Eight roadside settlements show some evidence for activity prior to the Roman conquest and, presumably, before the construction of the road alongside which they continued to develop. At Springhead, late Iron Age enclosures and a ‘processional way’ leading from the river up the slopes overlooking the springs are all thought to have been elements of a ritual centre (Andrews et al. 2011, 13–31), whereas at Westhawk Farm a small cemetery, including a high-status burial, is the only landscape feature conclusively dated pre-conquest, but which may have served as an important focus for the later development of the settlement (Booth et al. 2008, 27–34). While ritual activity dating to the late Iron Age has been identified at both of these sites, categorical evidence for pre-conquest domestic settlement is more elusive. Only at Old Sarum, Sorviodunum, is late Iron Age settlement attested, albeit within the defended hilltop enclosure that later became incorporated into the roadside settlement during the Roman period (Rahtz and Musty 1960; James 2002; Moffat 2010). This bears some similarity with Poundbury, due east of Dorchester, though the evidence for settlement here does not appear
to have been focused on the nearby road. A possible late Iron Age defended site at Judd’s Hill, Kent, is also perhaps a precursor to the roadside settlement at Ospringe, Durolevum, best known for its large, mixed-rite, Roman-period cemetery (Harding 2003; Wilkinson 2008).

While the vast majority of roadside settlements in the South demonstrate occupation commencing in the later first century A.D. and continuing through to the second half of the fourth century A.D., this broad chronology masks much of the fluctuations in settlement activity that occurred over time. The decline in settlement activity at Westhawk Farm and Springhead through the late third and early fourth century A.D. has already been discussed in this chapter, yet our understanding of these settlements is well served by large-scale excavations. At sites with smaller areas of excavation, establishing their chronology is more problematic. The dating evidence from a range of sites in Staines, Surrey, shows that different areas of the Roman settlement were in use at different times in its history. Located along the London to Silchester road on a number of gravel islands, where the road crosses the River Thames close to its confluence with the Colne, Staines (Pontibus) was an important roadside settlement at a vital river crossing, which was established very soon after the conquest and continued to be occupied into the later fourth century A.D.

Figure 4.27 presents the date ranges of fourteen occupation sites in Staines, displayed from left to right as they were located from the west, at the crossing of the Thames, running eastward alongside or a little set back from the road. The central and westernmost sites constitute the earliest evidence for activity, mostly dating at least from the pre-Flavian period. Sites in the eastern part of the settlement come into use during the second century A.D. and appear to be used for burials rather than domestic occupation (Hayman and Ayres 2001). However, from the early third century A.D. the central and westernmost sites all appear to have been affected by periodic flooding so that, by the middle of the third century A.D., settlement activity closest to the river was abandoned (Crouch and Shanks 1984; McKinley 2004; Jones 2010). By the later third century A.D., evidence for occupation across the settlement as a

![Plan of the roadside settlement at Shapwick, Dorset (Papworth 1994)](image)
whole is characterised by less intensive activity, though the easternmost sites begin to show evidence of occupation into the fourth century A.D. (Hayman 2000). The shifting spatial patterns at Staines suggest that considerable fluctuations in the form, character and extent of roadside settlements could have occurred over time, and this point must be considered when these larger and more complex settlements are represented by a few or even only a single excavation.

Villages

Villages are represented by twenty individual settlements, predominantly in the western half of the South region with ten being located on the South Wessex Downs. The identification of these village settlements is mostly due to their visibility as earthworks on the chalk downland, which led to a number being investigated prior to the 1930s (Pitt-Rivers 1887; 1892; Cunningham 1913; Hawley and Goddard 1924; Kivell 1926). Some of the settlements are extensive and are larger than many of the roadside settlements in the region. Those within the military training area of Salisbury Plain have recently been subject to detailed survey and grouped as either 'compact' villages with sizes ranging from 26 ha (Charlton Down) to 6 ha (Knook Down West) and 3.5 ha (Knook Down East), or 'linear' villages such as Chapperton Down, Orcheston Down, Cheverall Down, Chisenbury Warren (5 ha) and Coombe Down (2 ha) (McOmish et al. 2002, 87–108; Fulford et al. 2006). In terms of their form, the Wessex Downland settlements appear to have been agglomerations of compounds with associated, sub-rectangular 'hut' platforms, which developed quite organically, with no obvious centre or focal point, while field systems/lynchets can usually be identified at their peripheries (Fig. 4.28). The 'linear' villages display similarities with roadside settlements in the way that they develop along a trackway, causing the settlements to develop in more of a linear form as a result, with partly excavated examples at Castle Farm (Tabor 2004), Chapperton Down (Malin and Martin 2007), Cheverall Down and Chisenbury Warren (McOmish et al. 2002, 99, 102).

Aerial and ground survey of the Salisbury Plain Training Area has revealed extensive evidence of field systems, with the molluscan evidence from excavations of lynchets pointing to a marked intensification of cultivation in the Romano-British period (Bradley et al. 1994, 108, 111; McOmish et al. 2002, 100–4, fig. 4.1; Fulford et al. 2006; Fig. 4.29). The importance of water storage and conservation in this relatively dry environment is demonstrated by the evidence for the provision of dams, cisterns and ponds (McOmish et al. 2002, 103–4, figs 4.6, 4.18). On the Hampshire Downs, the site at Chalton, surveyed and excavated in the 1970s by Cunliffe (1977), presents a comparable type of settlement. Though not as large as some of the South Wessex agglomerations, perhaps covering around 4–5 ha in extent, Chalton also exhibits 'hut' platforms, integrated trackways and surrounding field systems. In many ways these types of settlements bear some similarity with the complex farmsteads that dominate the river valleys to the north of the chalk landscape, particularly along the Thames, and it may be that they simply represent a slightly different, perhaps larger, form of agglomerated settlement in these chalkland landscapes.
Fig. 4.28. Site plans of Knook Down East (a), Charlton Down (b) and Cheverall Down (c) on the Salisbury Plain (McOmiss et al. 2002, 92, fig. 4.7; 96, fig. 4.11, 102, fig. 4.16)
Fig. 4.29. Aerial survey plan of the village settlements at Charlton Down, Upavon Down, and Compton Down, Wiltshire, showing multiple field systems and trackways (McOmish et al. 2002, 107, fig. 4.21)

Fig. 4.30. Plan of first-century A.D. settlement enclosures at Ower, Poole Harbour, Dorset (Sunter and Woodward 1987)
Other ‘village’ sites include three that probably also functioned as ports: Hamworthy and Ower in Poole Harbour (Sunter and Woodward 1987; FIG. 4.30), and the Royal Manor Arts College site on Portland on the Dorset coast (Palmer 2009). These sites are difficult to classify, but they appear to have also been engaged in substantial, non-agricultural activities with evidence for pottery production (Sunter and Woodward 1987), shale manufacturing (ibid.), salt production (Jarvis 1993; Coles and Pine 2009), and the processing of fish and wild fowl (Palmer 2009; see also Maltby and Hamilton-Dyer 2012). The continental pottery imports identified at these sites suggest that maritime trade played a part in their economies. Further variation in village settlement characteristics can be seen at Monkton on the Isle of Thanet. Here a road-scheme excavation revealed part of an extensive settlement with at least 23 ‘cellared buildings’ and ancillary structures, located alongside a trackway, and with a small rectangular structure on the settlement’s western fringes, which was interpreted as a shrine (Bennett et al. 2008). The agglomeration of so many cellared buildings dating to the Roman period is unusual for Britain. The settlement originated in the later first century A.D. and was primarily active during the second and third centuries A.D., producing considerable evidence for a diversified economy including the processing of arable surplus, metalworking and bone-working. On the basis of more limited excavation at Tothill Street, Mount Pleasant, it may even have extended c. 1 km further to the east (Nielsen 2010). Evidence from other local sites, in particular the recent and extensive excavations along the East Kent Access road-scheme (Andrews et al. 2015), suggests that the southern part of the Isle of Thanet may have been relatively densely occupied during the Roman period, perhaps giving rise to a number of nucleated settlements.

BUILDINGS

As is becoming clear from the excavated evidence, there is a great variety of settlement types across the South region, and this diversity can be examined further through the remains of late Iron Age and Romano-British rural buildings. In total, 1042 structures from 340 sites, spread relatively

![Fig. 4.31. Distribution and frequency of rural buildings on excavated sites in the South region](image-url)
evenly across the region, are recorded on the project database (Fig. 4.31), providing a sample that ranges from small timber buildings to the late first century A.D. palatial villa at Fishbourne, which remains one of the most grandiose buildings ever to have graced Roman Britain (Cunliffe 1971). However, there is considerable variation in the percentage of settlements that produce evidence for structures in the different sub-regions, from as low as 29 per cent of sites on the Hampshire Downs to as high as 81 per cent in the Wessex Vales (Fig. 4.32). Equally, the number of buildings identified on different sites can vary significantly, depending on conditions of preservation and the size of the settlement. As we shall see, the types of site where buildings have been identified, the form of the buildings, their construction techniques and the materials used, were all contributing factors to their recognition and rate of survival.

CONTEXT, FORM AND CONSTRUCTION

Of the 1042 buildings recorded from sites in the South, over 30 per cent derive from farmsteads, over 20 per cent from villas, and over 15 per cent from farmsteads with good evidence for later villa phases (Table 4.3). Nucleated settlements also contribute a significant proportion of the sample, with roadside settlements and villages accounting for 13.5 per cent and 11.1 per cent respectively. The remaining structures are spread among sites that could only be categorised as ‘isolated buildings’, industrial sites, and religious sites.

TABLE 4.3: QUANTIFICATION OF BUILDINGS AT DIFFERENT SITE TYPES IN THE SOUTH REGION

Note: It was not always possible to identify timber and masonry buildings with certainty so the numbers of each may not equal the total.

<table>
<thead>
<tr>
<th>Site type</th>
<th>Circular buildings</th>
<th>Rectangular buildings</th>
<th>Timber buildings</th>
<th>Masonry buildings</th>
<th>Total buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmstead (n=140)</td>
<td>158</td>
<td>165</td>
<td>217</td>
<td>251</td>
<td>323</td>
</tr>
<tr>
<td>Villa (n=90)</td>
<td>4</td>
<td>209</td>
<td>275</td>
<td>6</td>
<td>207</td>
</tr>
<tr>
<td>Farmstead/villa (n=25)</td>
<td>35</td>
<td>122</td>
<td>160</td>
<td>58</td>
<td>207</td>
</tr>
<tr>
<td>Roadside settlement (n=20)</td>
<td>27</td>
<td>114</td>
<td>150</td>
<td>95</td>
<td>144</td>
</tr>
<tr>
<td>Village (n=16)</td>
<td>36</td>
<td>80</td>
<td>105</td>
<td>92</td>
<td>116</td>
</tr>
<tr>
<td>Hillfort (n=4)</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>Isolated building (n=6)</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Industrial (n=16)</td>
<td>3</td>
<td>32</td>
<td>4.2</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>Shrine (n=5)</td>
<td>2</td>
<td>6</td>
<td>0.8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>R-C temple (n=18)</td>
<td>5</td>
<td>1.8</td>
<td>2.9</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>281</td>
<td>761</td>
<td>549</td>
<td>488</td>
<td>1042</td>
</tr>
</tbody>
</table>
Roadside settlements and villages stand out as having the highest average number of buildings per site, reflecting their status as nucleated settlements with higher populations of people and, presumably, animals that required stabling, and, perhaps, a greater diversity of commercial and industrial activities compared with smaller farming establishments.

Further differences emerge between different forms of settlement in terms of the ratio of circular to rectangular buildings. While circular and rectangular forms are found in broadly equal quantities at farmsteads, at all other site types rectangular forms dominate. Circular buildings are rare on villa sites, but they are slightly better represented in villages than in roadside settlements. These variations partly result from chronological factors, since the number of sites with circular architecture gradually decreases in the South after the late Iron Age, whereas sites with rectangular architecture become more common by the later first century A.D. (fig. 4.33). The establishment of early villas and roadside settlements in the later first century A.D. certainly impacts on the proportion of sites with rectangular architecture. However, the uptake of rectangular architecture is also readily noticeable on farmsteads and these show a very similar trend to the overall pattern of change.

The use of masonry and timber architecture also varies significantly between different types of site. It is of course very difficult to identify which buildings were ‘fully’ masonry-constructed and those that had masonry foundations with a timber superstructure. Timber-based (and mass-walled) buildings are also more difficult to identify than masonry structures, tending to rely on the presence of well-preserved postholes, beam slots and/or drainage gullies, and are probably relatively poorly represented in the archaeological record (see Ch. 3). Only at villas is masonry architecture, unsurprisingly, used extensively in preference to timber building, whereas on all other types of site, timber tends to dominate. However, the uptake of masonry as a basic construction material can be traced through the dating of sites where it is first recorded. The use of stone is restricted to three sites in the late Iron Age, all of which are located in south Dorset: Maiden Castle (Wheeler 1943), Compact Farm, Worth Maltravers (Graham et al. 2002) and Rope Hole Lake, Corfe Castle (Sunter and Woodward 1987). Each of these examples comprises similarly sized, drystone, circular buildings whose close geographic distribution suggests that they formed part of a local architectural tradition. At Rope Hole Lake, Corfe Castle, the presence of circular masonry structures was first evidenced in the early or middle Iron Age and appeared to continue into the late Iron Age. Based upon the finds recovered, the site appears to have been primarily engaged in shale manufacture, and similar evidence was derived from two similar structures at Compact Farm. The Maiden Castle example was later interpreted, based upon its finds assemblage, as a late Iron Age shrine (Drury 1980; Wait 1985).

In the late first century A.D. masonry buildings are almost exclusively restricted to the east of the region, predominantly on villa sites, but also on roadside settlement and, to a lesser extent, on farmstead, temple and industrial sites (fig. 4.34). In the second century A.D., their distribution spreads right across the region, particularly on sites on the chalk downs and in the Wessex Vales. By the third century A.D., masonry architecture was well established in the eastern half of the region with, by then, very few sites adopting masonry architecture for the first time, unlike further west where its uptake was now considerable. It is notable that very few roadside settlements developed masonry architecture for the first time later than the later first century A.D., with examples...
on farmsteads, particularly those that developed into villa establishments and, to a lesser extent, villages and industrial sites occurring in the second and third century A.D.

The intra-regional variation in the use of timber or masonry buildings at farmsteads is also evident from FIG. 4.35, which shows a high proportion of masonry structures on farmsteads on the South Wessex Downs and the Wessex Vales, while timber buildings tend to dominate in most other zones to the east. This pattern partly results from chronological factors, owing to the comparative lack of early Roman farmsteads from the western areas of the South region where timber building might be expected. Timber buildings overwhelmingly dominate on farmsteads in the London Basin and the South Downs and Coastal Plain, even into the later Roman period.
Types of timber buildings

Owing to the poor survival of evidence of timber buildings in the archaeological record, it is difficult to appreciate their full range and variety. This issue has recently been brought into sharper focus by the discovery of later first-century A.D. clay-floored areas set alongside the Roman road at the Prudential 1989 site in Staines, which provided evidence of box-framed timber buildings with no trace of postholes or beam slots (Jones 2010). Since the basic foundations of timber buildings are often difficult to identify, the recognition of internal division is even more challenging. In the majority of cases, we might assume that timber buildings were single-roomed, with flimsier partitions leaving little trace. This seems to have been the case with the five rectangular buildings excavated at Park Brow on the South Downs in the 1920s. Though thought to have been of simple, wattle and daub construction, some painted plaster and window glass were also recovered (Wolseley et al. 1927).

Rare examples of timber structures with internal partitions include at least two first–second century A.D. posthole buildings at Winnall Down, Hampshire (Fasham 1985), and several first-century A.D. rectangular, beam-slot structures in the hillfort at Cadbury Castle (Barrett et al. 2000). Excavations at the roadside settlements at Bourne Place, Neatham (Graham 1992), and at Elms Farm, Heybridge (Atkinson and Preston 2000), have revealed floor plans of structures that may have consisted of more than one room, while the enigmatic, cellared buildings excavated at Monkton, Thanet, also provide indications of internal partitioning (Bennett et al. 2008). At Chichester Harbour a timber building, dating to the later first century A.D., with corridors surrounding a range of at least two rooms, was replaced in the second century A.D. by a large, masonry-footed, aisled building (Rudkin 1986; Fig. 4.36).

Sites with evidence for cellared buildings are generally rare, though they are located widely across the South region, from Essex to Dorset (see Ch. 3, Fig. 3.17 for national distribution). Their distribution, however, shows a marked concentration in eastern Kent, notably on the Isle of Thanet, where the recent discovery of at least 23 buildings at Monkton, predominantly dating to the second and third century A.D., has been followed by further examples at Tothill Street, Mount Pleasant (Nielsen 2010) and along the East Kent Access Road scheme (Andrews et al. 2015). Together, they suggest a localised building tradition on the Isle of Thanet.

Farmsteads with masonry buildings

Sites with insubstantial timber buildings may well be heavily under-represented in the archaeological record compared with masonry structures, which are reported from 22 per cent of farmsteads. While there has been an assumption on the part of some excavators that the presence of a masonry building signals a villa, this is often on the basis of limited investigation. In the first place we should consider buildings of un-mortared, drystone footings (to

Fig. 4.36. Plans of internally partitioned posthole structures at Winnall Down, Hampshire (Fasham 1985), (a) and late first-century A.D. timber-framed structure at Chichester Harbour, Sussex (Rudkin 1986) (b)
FIG. 4.37. Site plan of the late Roman building complex at Woodhouse Hill, Dorset (Field 1965)

FIG. 4.38. Plans of aisled buildings with later modifications (Cunliffe 2013b, 99, fig. 6.2)
support a timber-framed or cob superstructure) such as the extensively excavated complex of first- to fourth-century structures found at the site of Woodhouse Hill, Studland, Dorset, which possibly formed part of a larger, nucleated settlement (fig. 4.37). The simple, rectangular cottages lacked any associated refinement such as tessellated flooring, window glass, or painted wall plaster (Field 1965).

One of the more recognisable structural forms common to the Roman period is the aisled building, the definition of which is detailed in Chapter 3 (fig. 4.38). While tending to be a feature of villa complexes, aisled buildings are also represented on nine farmsteads, two roadside settlements and a village site in the South (fig. 4.39). Of the buildings at the nine farmsteads, six

FIG. 4.39. Distribution of aisled buildings across the South region

FIG. 4.40. Plans of timber aisled buildings at Furfield Quarry, Boughton Monchelsea, Kent (Mackinder 2006) (a), and Bower Road near Smee, Kent (Diez 2006) (b)
Fig. 4.41. Plans of cottage/strip-house villas at Houghton Down, Hants (Cunliffe and Poole 2008b) (a) and Shillingstone, Dorset (Corney and Robinson 2007) (b).

Fig. 4.42. Plans of winged-corridor villas at Barcombe, Sussex (Rudling et al. 2011) (a), Lullingstone, Kent (Meates 1979) (b), and Sedgebrook Field, Plaxtol, Kent (M. Davies 2009) (c).
were masonry-footed, while those at Bower Road near Smee and Boughton Monchelsea, Kent, were timber-built (Diez 2006; Mackinder 2006; Fig. 4.40). Booth et al. suggest that the Bower Road example displays only ‘similarities with aisled buildings’, and argue that the postholes actually represent a wall line, with the surrounding trench being a ditch rather than a wall footing (Booth et al. 2011, 275). The example at Boughton Monchelsea may be of a similar type, perhaps reflecting a construction tradition that was local to Kent (Booth pers. comm.). Only two other aisled buildings of timber are recorded from the South, one at the roadside settlement at Neatham, Hampshire (Millett and Graham 1986), the other at the villa at Little Oakley, Essex (Barford 2002). Those with masonry footings may have either had masonry walling to roof level or timber superstructures. The aisled building at Meonstoke, Hampshire, with its fallen but well-preserved gabled end, provides evidence of such a masonry-constructed aisled building in the South (King 1987). The care taken in the coursing of the flint and tile in the elevations of this building suggests that the exterior of the walls were not plastered, but meant to be seen as decoration.

At least ten aisled halls, mostly on villa sites in Hampshire, have been interpreted as the main residential building of the settlement, an indication of their social significance in the region. Indeed, the impressive aisled building at West Blatchington, West Sussex was the only masonry building at the site. As Cunliffe (2013b, 98) has suggested, the size and function of these structures may provide further indications of the social status of their owners and of their role within settlements. Indeed, there does appear to be a correlation between the larger examples and those apparently used for residential purposes; aisled buildings measuring in excess of 600 m² tend to be interpreted as domestic buildings, while those smaller than 600 m² are more commonly thought to have had an agricultural function (the latter is often supported by the presence of agricultural features, such as corndryers).

Fig. 4.43. Plans of courtyard/palatial villas at Eccles, Kent (Detsicas 1989) (a), Fishbourne, Sussex (Cunliffe 1971) (b), and Darenth, Kent (Philip 1984) (c)
FIG. 4.44. Plans showing the development of the villas at Bignor, West Sussex (Aldsworth and Rudling 1995) (a), and Rockbourne, Hampshire (Hewitt 1968) (b)
Villa buildings

In Chapter 3, we outlined the main villa building types: cottage-style/strip-house (FIG. 4.41: (a) Cunliffe and Poole 2008b; (b) Corney and Robinson 2007), corridor/winged-corridor (FIG. 4.42: (a) Rudling et al. 2011; (b) Meates 1979; (c) M. Davies 2009), courtyard and palatial (FIG. 4.43: (a) Detsicas 1989; (b) Cunliffe 1971; (c) Philp 1984). Analysis of their incidence in the South shows that all types are represented between the late first and the fourth century A.D. Of the few that can be assigned to the later first century A.D., the diminutive cottage-style or strip-house type villa building is marginally the most common, while the second century A.D. sees a significant increase in the number of corridor and winged-corridor villas across the region. The overall number of cottage/strip-house villas and the larger courtyard types also increases in number but to a lesser extent, a trend that continues into the third century A.D., after which the total number of villas decreases slightly. By the fourth

FIG. 4.45. Plan of the ‘villa’ complex at Chiddingfold, Surrey (Cooper et al. 1984)
century A.D., only courtyard villas and those classified as ‘palatial’ increase in number, representing late Roman developments of earlier establishments, such as at Bignor (Aldsworth and Rudling 1995) and Rockbourne (Hewitt 1968), where significant expansion and investment in these villa complexes occurred (fig. 4.44). A detailed analysis to demonstrate the diversity of villas in the South region is beyond the scope of this chapter, but the largely unparalleled building-complex at Chiddingfold, Surrey, is an example of a site that may have performed a religious rather than secular function (Cooper et al. 1984; Bird 2002; fig. 4.45).

The distribution of villas according to their final form varies across the South (fig. 4.46). In broad terms there appears to be comparatively less diversity across the North Downs and its hinterland, where corridor and winged-corridor villa houses dominate the sample. Cottage-style villas are generally rare, at least at sites where they occur without further development, while a few of the larger establishments appear to be located on prominent, riverside locations, such as at Northfleet (Andrews et al. 2011), Darenth (Philp 1973; 1984), and Eccles (Detsicas 1989). In the Wessex sub-region and on the Hampshire Downs and South Downs, villas are generally more varied, with more examples of the smaller, cottage-style and the more elaborate courtyard villas. Scott (2004) has suggested that the investment of wealth may be linked to competitive display on behalf of local elite families/communities. This is difficult to qualify based purely upon the form of villa houses alone, but the level of aggrandisement found at sites in different landscapes of the South may, to some extent, reflect the degree to which economic success was being invested into the villa building. Other additions to settlements, such as bathhouses, or some of the more elaborate circular, polygonal or octagonal masonry buildings found in the South, also played a prominent role in expressing levels of wealth and the social identity of the occupants, such as at Bax Farm, Teynham (Wilkinson 2011) and the circular temple-mausoleum at Keston (Philp et al. 1991; see also Meates 1979; fig. 4.24b).

fig. 4.46. Distribution of excavated villas according to their final ‘type’ in the South region.
TOPOGRAPHY

The location of settlements in the South varied topographically according to type. Farmsteads and roadside settlements are more commonly located on lower-lying ground, particularly the latter, with less than 10 per cent being situated on land higher than 100 m OD. Village settlements in the South tend to show a very different topographic pattern to roadside settlements, with nearly half located at heights above 100 m OD. This variation is largely explained, on the one hand, by the relationship of roadside settlements with river crossings (see above, p. 97 and Ch. 2) and, on the other, by the relatively high elevation of the larger, chalk-downland villages found on Salisbury Plain and in the Wessex hinterland.

Villas in the South are located in a range of different landscape zones. Over 11 per cent are found explicitly in coastal locations, such as at Fishbourne, West Sussex, where the high-status complex was situated around the head of Chichester Harbour (Cunliffe 1971). Other villas with prominent coastal locations include Brading (Cunliffe 2013a) and Gurnard Bay (Motkin 1990), both on the Isle of Wight. The majority of villa sites were located in river valleys, with some placed on low-lying land close to the banks of rivers or streams, such as Fullerton, Hampshire (Cunliffe and Poole 2008d), and Snodland, Kent (Ocock and Syddell 1967; Birbeck 1995), while others were situated some way up valley slopes with potential panoramic views, of which Bignor (Aldworth and Rudling 1995) and Plumpton (Allen 1984) are good examples. Of course, it is very difficult to know for certain that the landscape was a deciding factor in the placement and orientation of villa buildings, but the precise situation of many villa sites is unlikely to have been mere coincidence. At East Wear Bay, Folkestone, Kent, the winged-corridor villa was constructed at the top of a cliff and orientated to overlook the English Channel (Winbolt 1925; Coulson 2013), while the villa at Minster in Thanet would have had a view over the Wantsum Channel and out to sea past Richborough (Perkins and Parfitt 2004).

Considerable differences can be observed between the spot height ranges of excavated examples of villas, open farmsteads, enclosed farmsteads and complex farmsteads (fig. 4.47). Few villas are found above 100 m OD, though many are located on elevated ground, particularly those on the chalk downs. Open farmsteads almost exclusively occupy lower ground, which is, as already observed, reflected by their distributions in the Middle Thames Valley and on the south coast plain. Complex farmsteads also tend towards low-lying ground, with most being recorded <50 m OD, although a small group is observed on land between 50 m and 100 m OD. In contrast, enclosed farmsteads are far more commonly located on higher ground with a large proportion of sites found between 50 m and 130 m OD, and a small number located on even higher ground. Such variation may reflect differences in the ways that these types of farmsteads operated in the landscape and the relative importance of proximity to water and to transportation routes.

![Graph](image-url)
TRANSPORTATION: RIVERS, ROADS AND TRACKWAYS

The metalled road system of Roman Britain along with a multitude of trackways provided the province with its principal transportation network, allowing people, livestock and materials to travel more efficiently between settlements and landscapes. The relationship between settlements and routeways has rarely been analysed in any detail, but some recent studies are beginning to address the question (e.g. Booth 2011a; Livarda and Orengo 2015). Current understanding of the major Roman road system is primarily founded upon the pioneering survey work of Ivan Margary (1955), which provides us with the basic framework of metalled roads known from across the province. The source of the dataset used here is the National Monuments Record, which is largely based upon Margary’s original work. However, since the position of many of Margary’s roads is recorded using only a four-figure NGR, greater precision in locating them and measuring distances to settlements cannot always be achieved.

Bearing this in mind, FIG. 4.48 shows a close correlation between the positioning of villas and the major roads, with the greatest proportion located within 1 km of a primary arterial route. The number of villas decreases considerably thereafter up to a distance of 3 km, after which there are smaller but relatively equal numbers every kilometre up to 10 km. As might be expected, farmsteads also show a strong correlation with roads. Although a very small number of outliers exist, the great majority are found within 7 km, in contrast to villas where a larger proportion is located at greater distances (17 per cent of villas are located over 7 km from a major road, compared to 7 per cent of complex farmsteads and 4 per cent of enclosed farmsteads). Those villas found at a greater distance (e.g. >10 km) perhaps suggest that a level of isolation was a desired factor in their location, for example the villas at Fifhead Neville (Oliver 1928), Hinton St Mary (Painter 1964; 1965), and Shillingstone (Corney and Robinson 2007), which are all located on the Stour floodplain in Dorset. The villa at Chiddingfold in Surrey has already been mentioned with regard to its possible religious function (Bird 2002), but its unusual position on a hilltop, along with its location over 13 km from the nearest known road, may further suggest that a level of isolation was a deliberate

![Graph showing distances of villas and farmstead types from the major road network in the South region](image1)

FIG. 4.48. Distances of villas and farmstead types from the major road network in the South region

![Graph showing distances of villas, enclosed farmsteads and complex farmsteads from a major walled town in the South region](image2)

FIG. 4.49. Distances of villas, enclosed farmsteads and complex farmsteads from a major walled town in the South region
decision. However, more importantly, perhaps, these villas show that distance from a major road was not an inhibiting factor in their development. The same may also be true of the distance between villas and major walled towns. Less than a quarter of villas are located within 10 km of a major town, and there is no greater association between villas and towns than for other types of farmsteads (fig. 4.49), unlike the situation nationally (see Ch. 12). A slightly higher proportion of complex farmsteads are closer to towns compared with villas and enclosed farmsteads, which, if significant, may be associated with agricultural provisioning. These data are somewhat surprising, however, given the known distributions of villas around some towns, such as Ilchester. The relationship between towns and villas may have been stronger around some urban settlements than others.

Although some villas were located at relatively long distances from the major roads, they may well have been connected to the transport infrastructure by trackways or by rivers. Of the villa sites recorded across the South, 22 (19.5 per cent) are found within 200 m of a river or stream and a further 17 (15 per cent) within 400 m; it is noteworthy that many of these sites are located in north Kent, where the rivers drain northwards into the Thames estuary (fig. 4.50). The seemingly close relationship of villas and rivers must at least in part reflect where the best agricultural land was, along with provision of drinking water for cattle, although use of the river as an economic resource is also likely in many cases. Although we do not know the extent of the navigability of the rivers or changes in their courses and how much they might actually have been used for transport, some villas do show direct evidence for the use of the riverside. Northfleet villa in Kent currently lies just under 200 m from the banks of the River Ebbsfleet, due south of its confluence with the Thames, and recent excavations have shown evidence for harbour facilities lying just 10 m from the complex (Andrews et al. 2011). Substantial evidence for malting as well as the recovery of millstones suggests that the Northfleet villa not only used the river to export beer and perhaps bread and/or flour, but also to operate a watermill nearby. More conclusive evidence for the use of streams for milling at villa establishments is found at Fullerton in Hampshire, where the River Anton was canalised to run past the villa house southwards to a mill (Cunliffe and Poole 2008d). This would...
have been a considerable investment, implying the extensive processing and export of an arable surplus. Non-villa farmsteads of differing type show little variation in their distance from rivers. Open farmsteads, in particular, are almost all found within 2 km of a river and it is rare to find complex and enclosed farmsteads more than 3 km from a river, though small numbers are located as far as 6 km away.

In between settlements, roads and rivers, the landscape would also have been veined by numerous tracks and droveways. Some 298 sites include evidence for trackways ranging across all the main site types, though they have a particular affinity with complex farmsteads, since trackways form part of their classification criteria (see Ch. 2). Generally, the visibility of trackways depends upon the maintenance of drainage ditches on either side of the track, though some routes are defined by hollow-ways, which are formed by gradual erosion of the track surface over time. Trackways can function in the same way as, or in conjunction with, field-systems in applying order on the landscape, by defining boundaries and enforcing the direction of travel. Indeed, Booth (2011a, 6–8) suggests that the evidence for clearly defined trackways could reflect changes in property ownership, agrarian development, increased mobility, and/or new modes of transport. A long linear trackway at North Bersted on the Sussex Coastal Plain can be seen extending from a substantial enclosure, while also forming the primary boundary for a large-scale co-axial field system (Taylor et al. 2013; fig. 4.51). The formalisation of a trackway at the site of Lea Farm near Hurst in Berkshire saw the abandonment of a semi-enclosed settlement and the development of a new complex farmstead (Manning and Moore 2011; fig. 4.52). It would seem that the laying out of new trackways had the potential to influence fundamentally changes and developments in local settlement patterns, as well as reflecting social integration as networking avenues between settlements (e.g. Booth 2011a, 3).

FIELD SYSTEMS

The analysis of field systems in the South increases our understanding of how the population managed and organised land beyond the settlement itself. Unfortunately, fields are poorly understood compared with settlements, because they are generally perceived as being relatively unimportant and tend not to draw the same attention through commercial archaeology or research-led excavations (though see Fowler 2002, 127–60; Chadwick 2007; 2008; Allen 2008). While there has been concentrated, large-scale mapping of field systems on chalk landscapes in the South region, such as the Danebury Environs, Salisbury Plain and the South Downs (Palmer 1984; McOmish et al., 2002, fig. i.1; Carpenter 2008), the excavated evidence for late Iron Age or Roman field systems has been recorded from 201 sites widely dispersed across the South region (fig. 4.53). The distribution of these sites does not completely mirror the distribution of all rural sites.
FIG. 4.52. Plan of Lea Farm, Hurst, Berkshire (Manning and Moore 2011), showing late Iron Age enclosed farmstead (a) and an early Roman complex farmstead with trackway (b)
recorded on the database, and there exist some areas where field systems are poorly represented. Analysis of the spot heights of excavated field systems demonstrates that the vast majority have been identified on low-lying ground, providing a useful comparative dataset to chalk downland surveys. Clusters of sites with field systems appear along the gravel terraces of the River Kennet and the middle Thames, around the Thames estuary, on the South coast plain, and in eastern Kent, and this may be a reflection of the intensity of developer activity in these areas. Some sites are also known from urban hinterlands such as around Chichester, Dorchester and Ilchester. While the low-lying plains and river valleys were host to considerable areas of land division, upland areas, notably on the chalk, were also extensively cultivated and, where the survey evidence has been tested by excavation, this consistently shows use of the field systems during the Roman period (Allen 2008 for Danebury Environs; Carpenter 2008, 26, for the South Downs; Fulford et al. 2006 for Salisbury Plain). Mapping of the field systems west of the villa at Fullerton, Hampshire shows their integration with the two farmsteads at Flint Farm and Rowbury Farm. Both originated in the Iron Age, but only Rowbury shows evidence of late Iron Age and early Roman occupation (Crutchley 2008, fig. 2.13).

Direct dating of field systems is problematic, relying heavily upon the recovery of pottery, generally heavily weathered from re-working, from the lynchets and field ditches. Assemblages tend to be small when fields are located at a distance from the settlements, where domestic refuse is less concentrated. Pottery from the topsoil can also be useful for dating periods of land use, but less valuable for identifying episodes of change and reorganisation of field systems, though here the molluscan evidence can be very informative, as on Salisbury Plain (Fulford et al. 2006, 12–21 (surface collection), 143–52 (molluscan evidence)). Of the field systems that have been dated to periods of use, distinct chronological patterns can be observed. Across the South region as a whole, the number of sites at which field systems are identified broadly doubles between the late Iron Age and the later first century a.d. This number then steadily decreases through to the fourth century a.d. until it reaches a level last observed in the late Iron Age. Within these data, however, there is considerable intra-regional variation, as is demonstrated by the
evidence from the London Basin compared with the Wessex Downs and neighbouring Vales (Fig. 4.54). A substantial expansion in the number of fields is evident by the later first century A.D. in much of the eastern part of the South region, while the number of sites with fields in the Wessex regions, by contrast, increases only marginally through to the third century A.D., with a slight reduction into the fourth century A.D. The distinctiveness of these patterns is similar to the regional settlement chronologies already discussed and may suggest that the intensity of land division partly correlates with the density of settlement.

Variations in field shape and size provide subtle indications of the differing ways in which the land was organised. Numerous small fields perhaps suggest that the land was more intensively managed, while larger fields may indicate a more extensive system of land management (Van der Veen and O’Connor 1998). However, our ability to identify large fields is very dependent on large, open-area excavation, or extensive aerial or geophysical survey. An example of large fields dating to the Roman period has been discovered at the site of Thanet Earth, Kent, where an extensive area of land is divided by a few long field boundaries (Rady 2010). Although the site may have suffered to a degree from truncation by later activity, including cultivation, there is almost no evidence for domestic settlement from the largest part of the excavation, which covered c. 45 ha.

Field systems that enclose small pockets of land are more commonly identified than large fields, but these systems can also spread over relatively wide areas. The fields at Long Lane near Ickenham, Greater London, are interpreted as stock pens, though the presence of charred plant remains and quernstones suggests that arable farming was also practised in the vicinity (Lakin 1994). Perhaps an intensive system of land management was in place, involving a rotational system of crop husbandry alongside seasonal pasturing of livestock to feed off the cereal stubble after harvest. Such an arrangement would also allow for re-fertilisation of the fields through manuring (Van der Veen and O’Connor 1998, 132–4). It is possible that smaller fields and more intensive land management regimes reflect denser populations of people with limited availability of land. Another system of small, co-axial fields has been identified at the roadside settlement site at Syon Park, Brentford (Cowie et al. 2013), where small fields and a droveway connected the road and the riverside, allowing people and livestock access to the water but with restricted movement on the adjacent land (Fig. 4.55).

While there appears to have been a great deal of variation in the presence, form, and size of fields across the South, the overall reduction in the number of sites with field systems between the first and fourth century A.D. may indicate that larger, but less archaeologically visible, fields were becoming more common over time, not that less land was under cultivation. However, this appears not to have been the case in the Wessex region, which shows evidence for gradually increasing numbers of sites with fields up to the third century. It is rare to observe changes in field arrangements at individual sites, where large, open areas of excavation are required. However, Bestwall Quarry, Dorset, provides a relevant example (Ladle 2012). Probably better known as a production site of SE Dorset Black-Burnished ware (BB1), excavation plans of the surrounding area reveal a constantly changing landscape, where a closely divided, late Iron Age/early Roman field system gradually became more open in the third and fourth centuries. Just how far this type of change occurred elsewhere is unknown, but the reduction in the number and spacing of field boundaries may partly account for the reducing number of sites with evidence for fields across the South region.
The settlement and landscape evidence has, so far, shown an extraordinary level of intra-regional and chronological variation across the South region, with clear differences between the eastern and western halves. To determine how much of this variation was rooted in the social and economic activities of the inhabitants of these settlements, we must take account of the considerable wealth of material culture and environmental remains that has been generated from excavations. These data are analysed here at both the regional and sub-regional level to broadly characterise the different types of settlements that have been considered in this chapter.

MATERIAL CULTURE

Pottery

Pottery is by far the most ubiquitous type of artefact recovered from sites in the South region. Unfortunately, the number of sites where the pottery assemblage has been quantified varies between different types of settlement. Basic sherd counts of pottery fragments are reported from 69 per cent of farmsteads, 63 per cent of villages, 57 per cent of roadside settlements, and only 37 per cent of villas, and even fewer site reports include the weight of the pottery. The low proportion of villas is undoubtedly due to the number of pre-1990 excavations, when it was perhaps considered less important to directly compare material culture assemblages from different sites. There is also a lack of quantification of particular types of pottery. Less than 50 per cent of villas that have produced samian also provide a corresponding sherd count, though this rises to 68 per cent of farmsteads.

Despite the obvious improvements that could be made in the reporting of pottery assemblages, a considerable dataset does exist, allowing for intersite type comparisons of pottery consumption to be made. Overall, roadside settlements and villages produce the greatest quantity of samian ware, averaging 451 and 325 sherds per site respectively. These compare to site averages of 138 sherds from villas, 76 sherds from complex farmsteads, and 46 sherds from enclosed farmsteads. The discrepancy between different types of site is also mirrored by the average number of mortaria sherds. Again, roadside settlements and villages are the most productive, averaging 218 and 106 sherds respectively, while villas produced an average of 38 sherds, complex farmsteads 19 sherds, and...
enclosed farmsteads 21 sherds. The much higher average sherd counts from roadside settlements and villages no doubt reflect their status as nucleated settlements, where greater numbers of people would have been using and depositing pottery. If some nucleated settlements also functioned as market centres, then this too would potentially account for higher sherd counts, since greater numbers of pottery vessels would more often be circulated around the settlement.

Some of the differences between settlement types may be partly influenced by chronological factors. A large number of enclosed farmsteads are late Iron Age in date, and many were abandoned before samian was widely circulated in the south region. The similarity of the average sherd counts of mortaria between complex and enclosed farmsteads, however, suggests that the adoption of some Roman wares was more equal. Variation in the consumption of samian ware may partly reflect social and economic status, particularly at villas compared to farmsteads, if samian ware was more greatly valued (see Willis 2011). This is likely if we consider the quantity of samian as a percentage of the overall pottery assemblage from different sites, which is rarely above 2–3 per cent at most sites.

Small finds

Overall, sites across the South region tend to be relatively productive in terms of artefacts other than pottery. Yet within individual assemblages, there exists considerable variation in the frequency of occurrence of different major classes of finds (fig. 4.56). Coins stand out as the most commonly occurring class, being represented on almost 50 per cent of sites, and they are followed by food-processing items (querns and millstones), brooches, knives and other tools, and items explicitly associated with textile-processing (e.g. loomweights, spindlewhorls, sewing needles, wool combs and weaving boards). Thereafter, an ‘intermediate group’ of finds is found on around 20 per cent of sites. This includes items of personal adornment, such as finger rings, hairpins, and bracelets, as well as toilet instruments such as nail cleaners and tweezers. The least frequently found artefacts are religious objects, writing equipment and lighting equipment.

The ordering of commonly found artefacts (e.g. coins, querns, brooches, etc.) against infrequently recovered artefacts (e.g. lighting equipment, religious objects, etc.) is generally the same in each landscape zone in the South, though with some variation in their relative frequencies. The South Wessex Downs stands apart from the London Basin and the North Kent Plain, for example, with most artefact classes being more commonly recovered (fig. 4.57). Exceptions to this are coins and hairpins, which occur in relatively equal numbers on both North Kent Plain and South Wessex Downs sites. Variation in frequency of occurrence can also be observed by examining individual categories of artefact across all landscape zones. For example, agricultural tools and food-processing objects are more frequently reported from sites on the Hampshire Downs and on the South Wessex Downs, though the differences between these and other landscape zones is less marked for food-processing items (fig. 4.58). Finger rings, on the other hand, are better represented on sites on the South Wessex Downs and in the Wessex Vales, rather than on the Hampshire Downs, yet weighing objects such as steelyards – mostly used for trade and exchange – are slightly more commonly found on sites in the Wealden Greensand, where few finds are generally

![Fig. 4.56. Frequency of major artefact categories on all sites in the South region](image-url)
recovered. These intra-regional variations between different categories of artefact are unlikely to be explained by factors relating to preservation and visibility alone, because they are made of similar materials. Rather, they may reflect real differences in the frequency or intensity of certain activities or occupations, as well as in fashion, in different areas.

Clear variation between broad classes of rural settlements can also be observed through the percentage of each producing different classes of finds (FIG. 4.59). In general, roadside and village settlements produce most types of artefacts, while farmsteads tend to be the least productive class of site. In the case of coins, villas behave similarly to roadside settlements and villages, but they are more like farmsteads where items such as brooches or artefacts associated with textile-processing are concerned. Household items, knives/tools and toiletry objects are well represented on roadside settlements, while items of personal adornment such as hairpins and bracelets tend to be well represented on villas. Artefacts of a more utilitarian nature, however, such as food-processing (quernstones) and textile-processing (needles,

FIG. 4.57. Frequency of major artefact categories recovered across selected landscape zones in the South region

FIG. 4.58. Frequency of selected categories of artefact on sites in selected landscape zones in the South region
loomweights, spindlewhorls, etc.) items stand out on farmsteads.

One explanation for the difference in the representation of utilitarian objects between villas and farmsteads is that excavations of the former have tended to concentrate on the residential buildings rather than on peripheral structures and areas where utilitarian activities may have been carried out (FIG. 4.60). There is comparatively little variation between farmsteads of different types, though a greater number of complex farmsteads tend to produce items of personal adornment, such as brooches, bracelets and rings, compared with their enclosed and open counterparts. Other classes of finds, however, are very poorly represented on all farmsteads in comparison to villas, such as security items (locks and keys), writing equipment (styli), recreational items (dice, game counters, etc.) and religious objects (clay pipe figurines, lead tablets). When these classes of artefacts are recovered on farmsteads they often come from burial contexts, such as a late first century A.D. inhumation from Northumberland Bottom near Gravesend, which contained 23 gaming pieces, an associated board and two bone dice, as well as other high-status items (Allen et al. 2012). Such evidence emphasises the social importance and value placed upon items such as these. Writing equipment is especially rare from farmsteads, the recovery of three styli from the enclosed settlement at Alington Avenue in Dorset being a notable exception (Davies et al. 2002), suggesting that much of the rural population remained illiterate and had little need for writing. This site is very close to Dorchester, so it is perhaps not typical of rural settlements in general.
ENVIr ONMENTAL REMAINS

Animal bones
The South region can also be characterised through its environmental record, particularly of its zooarchaeological and archaeobotanical assemblages, both of which have seen a significant number of assemblages being recorded over the past 25 years. The animal bone dataset includes 266 assemblages with at least 100 identified specimens (NISP) from 183 sites. Where possible these assemblages have been separated into chronological phases of: late Iron Age (30 assemblages), late Iron Age/early Roman (41), early Roman (48), middle Roman (25), and late Roman (68). When assemblages cannot be assigned to date in this way, they are simply phased as ‘Roman’ (54). Smaller assemblages are recorded on the database and are available through the online resource, but are omitted from the analysis in this chapter. The assemblages included represent a considerable dataset for rural settlement in the South region (see Maltby 2010 for an overview of urban data). However, it must be noted that the distribution of faunal assemblages is very uneven and is dominated by the number from sites on the South Wessex Downs (26 per cent), the London Basin (24 per cent), the Hampshire Downs (17 per cent), and the North Kent Plain (14 per cent). This distribution is primarily due to favourable survival on the chalk downland and in the alluvial river valleys. The Weald, by contrast, is almost completely devoid of faunal assemblages, firstly because settlement evidence is sparse and, secondly, the underlying clay soils are more acidic, providing poor preservation conditions for most organic remains.

The concentration on the southern part of the Hampshire Downs is primarily due to the exceptionally large faunal assemblage from the settlement at Owslebury, which spans the middle Iron Age to the end of the Roman period (see Collis 1968; 1970, for overviews of the site and Maltby 1987 for the animal bone report). Another assemblage from a rural settlement at Oakridge II, Hampshire, close to Owslebury, is also exceptionally large, consisting of nearly 25,000 fragments from an estimated 840 animals of 38 different species (Maltby 1994). However, this group of animal bones derives exclusively from whole or partial skeletons deposited into the shaft of a single well. A simple comparison of these two faunal assemblages exemplifies the greatest problem affecting any synthesis of animal bone data. The composition of each assemblage is context-specific: it can reflect one or a range of cultural practices; it will be influenced by post-depositional processes; and each must be interpreted accordingly. Just how far the placement of animal body parts into the well at Oakridge II reflects ‘normal’ consumption patterns is, of course, highly questionable. In order to counter some of these issues, assemblages that appear to be anomalous are omitted from broad surveys of the type undertaken here, but are highlighted to demonstrate their individual importance.

In the areas where faunal assemblages are more common, there exists considerable variation in cattle, sheep/goat and pig relative frequencies, but the general trends are brought into sharper focus when the data from farmsteads located in the London Basin, the Hampshire Downs and the South Wessex Downs are viewed together (FIG. 4.61). Of the 29 farmsteads located in the London Basin, 24 include assemblages that produce 50 per cent or more cattle remains. On farmsteads on the Hampshire Downs this drops to only 8 assemblages out of 32, and on the South Wessex Downs to only 4 out of 25 assemblages. Of the eight farmsteads in the Hampshire Downs with higher cattle proportions, six are located close to one another in the Basingstoke area due south of Silchester. Allowing for such exceptions there is an otherwise clear difference between the higher proportions of cattle in the London Basin compared to a dominance of sheep/goat on the chalk downlands of Hampshire and South Wessex.

While pig remains are generally uncommon on most farmsteads compared to cattle and sheep/goat, this is particularly true of sites on the South Wessex Downs south to Dorset where they generally account for less than 10 per cent of the assemblage. In this context, the discovery of high proportions of pig remains, particularly of cranial elements and teeth, at the nucleated settlement of Ower on the Dorset coast is intriguing. Linking to the evidence for salt production at the site, Maltby (2006, 119–20) has drawn attention to the possibility that the remains represent the processing of pigs, with cured bacon and other pork products then being transported out of the settlement.

While we can see differences in representation of the main domestic taxa between different landscape zones in the South, irrespective of the type of settlement, when we come to consider assemblages from the different types of settlement, disregarding the sub-regional context, we find that the relative frequencies of major livestock taxa are remarkably similar (FIG. 4.62). Only at villa and roadside settlements are cattle noticeably more frequent overall compared to sheep/goat, with pig bones being more frequent at villa sites, a feature commonly cited as reflecting a preference for pork among higher-status or more ‘Romanised’ sites (c.g. King 1991). Assemblages with the highest frequencies of pig bones come from the early Roman palace at
Fig. 4.61. Relative frequency of major livestock taxa from farmsteads in the London Basin, Hampshire Downs and South Wessex Downs landscape zones.
Fishbourne, and the later villas at Lullingstone and Liss. At the latter site, it was suggested the high proportion of pig could imply a local focus on pig husbandry, with feasting being indicated in some features (Hamilton-Dyer 2008). Pig bones are also recovered in greater quantities at sites where a religious focus is clear, such as at the temples at Hayling Island and Chanctonbury Ring, both of which provided evidence for the very specific selection and deposition of pig carcass parts, suggesting that pork meat played a crucial role in ritual feasting practices at these sites (King 2005, 337–44).

After the three major livestock taxa, equids are the next most common mammals represented in most faunal assemblages. While mules and donkeys have been identified in Romano-British assemblages (see vol. 2), the vast majority of bones are likely to derive from horses (Johnstone 2008). Horse bones are generally better represented on farmstead and village sites than on roadside settlements and villas. High proportions of horse have been recovered from a few farmsteads such as Copse Farm, West Sussex (Bedwin and Holgate 1985), while evidence for horse-breeding is also becoming increasingly recognised from the bones of immature animals found on farmsteads. Dog bones are regularly found on all types of site, but generally in small quantities, while cat bones are sparsely represented, though sometimes identified as whole or partial burials in prominent features, such as the six animals placed in the well at Oakridge II (see above, p. 127). The bones of wild mammals are equally rare, but there appears to be a significant difference between the frequencies of deer and, to a lesser extent, hare bones recovered from villas compared with other types of site. Antler is frequently found on most types of site where it may have been collected after being shed from stags and bucks, though the identification of butchered deer bones on numerous villa sites suggests that hunting may have been a regular pastime of local elites (Allen 2015).

Plant remains

In total, 324 phased assemblages of plant remains have been recorded from 284 sites in the South. The remains of spelt wheat dominate most cereal assemblages and are the most frequently identified of all cultivated plant taxa across the South (FIG. 4.63). Barley and oats are also relatively common,
though barley tends not to dominate assemblages as much as spelt wheat, while oats are rarely found in any quantity and are commonly referred to in specialist reports as a ‘weed’ growing alongside the main wheat or barley crops (see vol. 2 for more detailed analysis). Oats may well have been selected for livestock foddering, and therefore do not feature as much in assemblages that reflect crops intended for, or disposed after, human consumption. Livestock foddering was the interpretation of a proportionally high representation of oats at Innova Park, near Enfield, where a small settlement with a droveway and enclosures were identified on the banks of the River Lea (Ritchie 2008). Less frequently recovered cereal taxa include emmer wheat, free-threshing wheat (such as club wheat and bread wheat), and rye. The cultivation of emmer wheat is generally considered to have been common in prehistory, but replaced by spelt wheat in many areas during the Iron Age (M. Jones 1981). Some late Iron Age/early Roman assemblages in the South suggest that a few settlements continued to place an emphasis upon emmer.

Although it seems clear that spelt wheat was the dominant cultivar of the Roman period in the South, identifying the relative abundance of different plant taxa is fraught with difficulties. Glume wheats such as spelt and emmer tend to be well represented because the chaff is largely composed of glume bases, which are removed at a relatively late stage of processing, while the chaff of free-threshing cereals, such as barley and bread/club wheat, is largely represented by rachis, which are removed earlier in the processing sequence (Hillman 1981; Van der Veen and Jones 2006, 219). Increased use of radiocarbon dating is now also demonstrating contamination from later farming practices (e.g. medieval) (Pelling et al. 2015).

With these issues in mind it is worth observing the intra-regional differences seen across the South in terms of the relative presence of cultivated plants in botanical assemblages (FIG. 4.64). Examination of the data across the five landscape zones with the most sites (London Basin, South Coast Plain, North Kent Plain, the Hampshire Downs and the South Wessex Downs) shows that, at about 80 per cent, the percentage of assemblages in which barley is identified varies very little. Beyond the ubiquitous cereals of spelt and emmer, however, some considerable variation can be identified in lesser-grown crops, which appear to have been favoured, or less favoured, in different zones. In the London Basin, rye is identified in nearly 20 per cent of assemblages but in no more than 6 per cent of assemblages in any other of the main landscape zones. On the South Coast Plain, free-threshing wheat (c. 45 per cent), pulses (c. 52 per cent) and flax (c. 20 per cent) are comparatively well represented, while on the North Kent Plain, emmer wheat (c. 58 per cent) and fruits (c. 33 per cent) stand out as being better represented compared to other sub-regions.

FIG. 4.64. Percentage presence of cultivated plant taxa on sites in selected landscape zones in the South region (includes charred and waterlogged remains)
Most horticultural crops such as vegetables and fruits are likely to be under-represented because they require waterlogged or other favourable conditions, such as mineralisation, for preservation (Van der Veen et al. 2007). Fruit seeds are best represented at villa sites, though a slightly higher proportion of assemblages from roadside settlements have fruit remains (as well as herbs and nuts) compared with all other farmsteads (Fig. 4.65). Four pit or well features dating from the late third century to the mid-fourth century A.D. at the roadside settlement of Neatham, Hampshire, produced the remains of cherries, plums, walnut, and coriander (Murphy 1986, 149–50). Apple and bullace may have been cultivated, but edible wild fruits, including sloe, blackberry, elder, rose, hawthorn and hazel were also abundant in the samples. At the Tobacco Dock site, Shadwell, on the eastern outskirts of London, remains of fig, elderberry and carrot were recovered from late third- and fourth-century A.D. waterlogged deposits (Branch 2011, 141–3).

As well as distinctions that may be related to cultural choice or differing degrees of affluence, such as the wider range of fruits detected at villas, there also appear to be chronological factors at play. The higher proportion of open farmsteads with emmer wheat tend to be settlements at which occupation had ended by the beginning of the Roman period, while the later Roman occurrence of a greater representation of fruits and vegetables at roadside settlements perhaps suggests that such foods had become more common in diets by the third and fourth centuries A.D.

The combination of the analyses of aspects of the material culture, the zooarchaeological and the botanical data from settlements in the south region complements and enriches the differentiation of types of settlement on the basis of their ground plan, at the same time as revealing change over time.

CASE STUDIES: MIDDLE THAMES VALLEY AND THE HAMPSHIRE DOWNS

During the late Iron Age, the Middle Thames Valley contained a number of small, open settlements located on the flood plain. Many of these appear to have been swiftly abandoned and replaced by new, more complex, settlement forms and co-axial field systems during the later first century A.D. These changes partly coincide with the construction of the main London to Silchester road and the development of the important roadside settlement at Staines (Pontibus) by a crossing point of the Thames. Staines is located c. 43 km east of Silchester, and c. 30 km west of London. Using data from all the excavated settlements in this sub-region, these changes in the rural landscape are argued here to reflect intensification in the production and marketing of domestic livestock. A very different pattern of settlement development is observed on the chalk downs of Hampshire. Here, small, enclosed
farmsteads were prominent during the late Iron Age and early Roman periods, perhaps involved in relatively small-scale arable and pastoral farming. By the later Roman period, villas were more common, alongside new types of field system and a proliferation of corn-drying structures, found at a range of different settlements. Together, the evidence suggests that an intensification of arable farming occurred in this sub-region.

An important distinction between the two case study areas is that the Middle Thames Valley has been mainly investigated through developer-funded work, while the Hampshire study area is heavily dominated by the research of Barry Cunliffe on the Danebury environs (Cunliffe and Poole 2008a). However, it is the purpose of these case studies to show that these two sub-regions clearly contrast in terms of the nature and timing of the changes that took place, with each appearing to show very different developments in farming techniques and strategies.

THE MIDDLE THAMES VALLEY

The Middle Thames Valley case study area covers approximately 300 km², containing 42 site records on the project database, though fourteen of these relate to individual excavation records from the roadside settlement at Staines (FIG. 4.66). In total 25 farmsteads are represented, twelve of which have evidence for associated field systems, while three records relate specifically to field systems. Excavated villas are completely absent in the sub-region. One funerary site is also present, a small cremation cemetery at Prospect Park, Harmondsworth, which lies close to the junction of two Roman roads and may relate to nearby roadside settlement (Farwell et al. 1999). Geographically, the area focuses on the gravel terraces of the Rivers Thames and Colne, with most of the settlements being located within close proximity of one of these rivers or their tributaries.

The number of farmsteads in use in the sub-region remained fairly static between the late Iron Age and the third century A.D., with only a slight drop in the fourth century. However, a number of open farmsteads were either abandoned or had changed in form by the later first century A.D., at the point when an increasing number of complex farmsteads were developing. The open settlements were quite similar in plan, generally consisting of

FIG. 4.66. Distribution map of sites in the Middle Thames Valley case study area
small clusters of timber-built roundhouses, sometimes with four-post structures, while others included small enclosed areas within the main settlement (e.g. Hengrove Farm (Poulton 2007); Ashford Prison (Carew et al. 2006); Imperial College Sports Ground (Crockett and Nowell 1998); FIG. 4.67). A number of these gravel terrace sites show good evidence for significant reorganisation of the settlement, with some transforming into complex farmsteads, or else for replacement by rectilinear field systems. Examples of settlement expansion and increased complexity can be observed at the sites of Kingsmead Quarry, Horton (Chaffey 2009), Cranford Lane, Harlington (Elsden 1996), and at Hengrove Farm, due south of Staines (Poulton 2007). The latter expanded in the later first century A.D. into a large complex complete with multiple enclosures and trackways surrounded by field systems. Together, these developments demonstrate a repeated pattern of considerable settlement reorganisation during the early Roman period in this sub-region (FIG. 4.68).

FIG. 4.67. Plans of three late Iron Age open farmsteads in the Middle Thames Valley at Hengrove Farm, Staines, Surrey (Poulton 2007) (a), Ashford Prison, Spelthorne, Surrey (Carew et al. 2006) (b), and Imperial College Sports Ground, Harlington, Greater London (Crockett and Nowell 1998) (c)

FIG. 4.68. Plans of three Roman-period complex farmsteads in the Middle Thames valley at Hengrove Farm, Staines, Surrey (Poulton 2007) (a), and Cranford Lane, Harlington, Greater London (Elsden 1996) (b), and Kingsmead Quarry, Horton, Berkshire (Chaffey 2009) (c)
Alongside settlement expansion, the introduction of co-axial field systems implies considerable changes to the way in which land and resources were managed. Although these changes accompany the emergence of the Thames gravel complex settlements, evidence for fields pre-dating the conquest have been identified at Heathrow Terminal 5 (Lewis et al. 2010) and at Cippenham, Slough (Preston 2012). However, during the first century A.D. there was a substantial increase in the frequency of sites with evidence for field systems. In some cases, the evidence clearly demonstrates a post-conquest origin for the field boundaries, with, on occasion, some field systems expanding over later Iron Age farmsteads, indicating significant changes in local settlement and land-use patterns.

Assessment of the extent of these new field systems is impossible without large-scale excavation or partially excavated cropmark evidence (for example, at Mayfield Farm, East Bedfont: Jefferson 2003). Perhaps the best example was revealed during the excavations at Heathrow Terminal 5, which covered over 75 ha (Lewis et al. 2010; FIG. 4.69). Here, a middle Iron Age open settlement, consisting of numerous roundhouses and associated enclosures, was either developed or abandoned and reoccupied by a complex farmstead during the late Iron Age/early Roman period. At the same time, a rectilinear field system covering several hundred square meters to the east of the settlement was laid out on a different alignment over an earlier Bronze Age field system. At Ashford Prison, Spelthorne, a similar field system dating to the later first century can also be seen cutting through a late Iron Age open settlement (Carew et al. 2006; FIG. 4.70), and it is quite possible that the change in land use found at this site was related to the development of the large complex farmstead at Hengrove Farm located only 400 m to the north. In addition, at Wood Lane, Slough, an early Roman field system extends from a later Iron Age enclosed settlement which remained in use into the first half of the third century A.D. (Ford 2003). Alongside Heathrow Terminal 5, this site is one of the few examples of settlements in the sub-region that continued across the late Iron Age/RomaNo-
British transition, but which incorporated new forms of land division instead of being replaced by them.

Evidence for later Roman developments is more limited, though the construction of enclosure complexes around large droveways is identified from third- and fourth-century A.D. phases at Imperial College Sports Ground and at Heathrow Terminal 5 (fig. 4.71). These types of site are reminiscent of 'ladder complexes', but they are not evident in this sub-region prior to the third century A.D. The droveway at Imperial College Sports Ground measured over 40 m across, while the Heathrow example was around 100 m wide, positioned between a series of linear enclosures and a possible field system. Both of these routeways must have been able to support substantial traffic if required. Domestic activity was identified at Imperial College Sports Ground from late Roman timber-lined wells and deposits of pottery and animal bone (Crockett and Nowell 1998), but it appears to have been more elusive at Heathrow (op. cit.), where settlement evidence was found to the east of the droveway complex, perhaps suggesting that it was primarily used for the trafficking and corraling of large numbers of livestock.

It is notable that evidence for arable processing varies across the case study area. Only relatively recently have remains of small corndryers been identified at Coldharbour Quarry, Thorpe (Margetts and Robertson 2013), and Eton Area 16 (Allen 2013), both of which contained quantities of charred grain. Evidence for cereal processing was also identified at Kingsmead Quarry, Horton (Chaffey 2009, 59–60). However, evidence for an increase in arable farming at Heathrow Terminal 5 in the late Iron Age/early Roman period, associated with the imposition of the rectilinear field system, is partly attributed to the production of fodder crops for livestock consumption. Carruthers highlights the introduction of cultivated oats in the late Iron Age as a 'significant advance', being well suited to acidic, damp soils, and the increasing proportion of barley in the Roman period as being linked to the increased use of horses (Carruthers 2010, 35). In addition, an increase in grass pollen in the mid–late Iron Age perhaps reflected an intensification of hay production, which lasted through to the end of the Roman period, while evidence for the storage of hay was identified in early–mid-Roman deposits and was argued to have supported livestock through the winter (ibid. 34).

Archaeobotanical samples were analysed from a further eleven sites in the case study area, all of which were lacking in cereal remains, with no evidence for arable processing being identified.
cereal remains from the site was recovered from the floor of a second-century A.D. masonry structure suggesting that it was, at least for some part of its history, used as a granary (ibid. 43). The site also produced remains of bread wheat, spelt, emmer, barley and rye, indicating the importation of a range of crops to the settlement, since the location of Staines itself and the nature of the soils would have been unsuitable for the cultivation of these crops. However, some evidence for local cultivation of plants was provided by the remains of peas, beans, strawberries, elderberries and Prunus sp. (sloes, cherries, plums, etc.) recovered from waterlogged deposits, and it is possible that a local ‘market garden’ economy prospered in Staines during the early phases of the settlement. The identification of fig seeds is also evidence for longer distance trade networks (ibid. 48).

Although the identification of a granary represents the storage of surplus cereal production, there is no evidence for large-scale cereal processing at Staines, as suggested for other roadside settlements in Britain (e.g. Springhead, Kent: Andrews et al. 2011). At present, there is a total lack of evidence for corndryers from the settlement, despite a relatively large number of sites being excavated. This correlates with the paucity of grain-drying structures noted from the rest of the case study area. The local landscape and the availability of meadowland appears more suited to the grazing of livestock than large-scale cereal production. Indeed, Bird has suggested that Staines may have functioned as a centre for cattle trading, ultimately serving London (Bird 1996, 224; see also Lewis et al. 2010, 298). The faunal assemblages recovered from sites in Staines and from farmsteads within the case study region are generally dominated by cattle bones, though the samples vary between sites (Table 4.4). For example, higher frequencies of sheep/goat remains have been recovered from the rural settlements at Hengrove Farm and Eton Area 16, and they were notably abundant from the Elmsleigh Centre site in Staines, particularly from early Roman deposits. Pig bones are generally better represented at sites in Staines compared to farmsteads, often at the expense of sheep/goat remains, though again the data demonstrate the variability of the samples even within the roadside settlement.

Significantly, cattle bones from all of the assemblages recovered from Staines show evidence for distinctive cleaver butchery marks (cf. Chapman 1984, 115–17; McKinley 2004, 29). Cattle scapulae frequently showed evidence for multiple chops around the fossa and trimming marks along the spine, indicative of meat-filleting,

<table>
<thead>
<tr>
<th>Farmsteads</th>
<th>Phase</th>
<th>Total NISP</th>
<th>%cattle</th>
<th>%sheep/goat</th>
<th>%pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorpe Lea Nurseries, Egham</td>
<td>Late Iron Age</td>
<td>183</td>
<td>52.5</td>
<td>33.3</td>
<td>14.2</td>
</tr>
<tr>
<td>Eton Area 16</td>
<td>Late Iron Age</td>
<td>756</td>
<td>47.8</td>
<td>43.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Kingsmead Quarry, Horton</td>
<td>LIA/ER</td>
<td>210</td>
<td>58.6</td>
<td>33.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Manor Farm, Horton</td>
<td>Early Roman</td>
<td>242</td>
<td>77.3</td>
<td>14.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries, Egham</td>
<td>Early Roman</td>
<td>155</td>
<td>72.9</td>
<td>21.9</td>
<td>5.2</td>
</tr>
<tr>
<td>Eton Area 16</td>
<td>Early Roman</td>
<td>1317</td>
<td>43.4</td>
<td>49.2</td>
<td>7.4</td>
</tr>
<tr>
<td>Lake End Road West</td>
<td>Middle Roman</td>
<td>116</td>
<td>62.1</td>
<td>34.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Kingsmead Quarry, Horton</td>
<td>Late Roman</td>
<td>242</td>
<td>75.6</td>
<td>19.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries, Egham</td>
<td>Late Roman</td>
<td>317</td>
<td>70.7</td>
<td>26.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Coldharbour Quarry, Thorpe</td>
<td>Late Roman</td>
<td>107</td>
<td>57.0</td>
<td>6.5</td>
<td>36.4</td>
</tr>
<tr>
<td>Wood Lane, Slough</td>
<td>‘Roman’</td>
<td>251</td>
<td>59.0</td>
<td>34.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Laleham, Spelthorne</td>
<td>‘Roman’</td>
<td>136</td>
<td>57.4</td>
<td>27.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Hengrove Farm, Staines</td>
<td>‘Roman’</td>
<td>494</td>
<td>46.8</td>
<td>48.6</td>
<td>4.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staines sites (roadside settlement)</th>
<th>Phase</th>
<th>Total NISP</th>
<th>%cattle</th>
<th>%sheep/goat</th>
<th>%pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friends Burial Ground site</td>
<td>Early Roman</td>
<td>1184</td>
<td>64.3</td>
<td>26.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Former Central Trading Estate</td>
<td>Early Roman</td>
<td>448</td>
<td>52.2</td>
<td>38.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Elmsleigh Centre 1975–78</td>
<td>Early Roman</td>
<td>428</td>
<td>25.7</td>
<td>62.9</td>
<td>11.4</td>
</tr>
<tr>
<td>Friends Burial Ground site</td>
<td>Middle Roman</td>
<td>1451</td>
<td>66.5</td>
<td>23.6</td>
<td>9.9</td>
</tr>
<tr>
<td>Former Central Trading Estate</td>
<td>Middle Roman</td>
<td>582</td>
<td>62.9</td>
<td>23.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Former Central Trading Estate</td>
<td>Late Roman</td>
<td>515</td>
<td>68.9</td>
<td>19.4</td>
<td>11.7</td>
</tr>
<tr>
<td>42–54 London Road</td>
<td>Late Roman</td>
<td>89</td>
<td>58.4</td>
<td>27.0</td>
<td>14.6</td>
</tr>
<tr>
<td>Old Police Station, 10–16 London Rd</td>
<td>Late Roman</td>
<td>186</td>
<td>55.9</td>
<td>41.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Friends Burial Ground site</td>
<td>Late Roman</td>
<td>433</td>
<td>55.4</td>
<td>18.5</td>
<td>26.1</td>
</tr>
<tr>
<td>Elmsleigh Centre 1975–78</td>
<td>Late Roman</td>
<td>640</td>
<td>50.8</td>
<td>40.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>
while blade punctures suggested that shoulders were being hung, perhaps for smoking or salting. Cattle vertebrae tended to have been axially chopped where carcasses had been split, while numerous hyoid bones and marks on the posterior of a number of mandibles suggest that the removal of tongues was common. Similar cleaver butchery marks have also been found on sheep/goat and pig bones, and horse butchery has been noted from several assemblages, highlighting the organised marketing of livestock. These types of mark are particular to towns and forts in Roman Britain and are indicative of large-scale and rapid processing of livestock (Dobney 2001; Maltby 2007). The redistribution of body parts within the settlement is illustrated by the presence or absence of cattle horncores. Although good evidence for cattle-processing remains can be found at the Friends Burial Ground and Elmsleigh Centre sites, horncores were largely absent, whereas at the Former Central Trading Centre, relatively large quantities were recovered, indicating the movement of horn around the settlement for tanners and/or horn-workers after primary butchery.

It is important to note that there is very little evidence that these distinctive butchery patterns were employed on rural farmsteads in the sub-region, where butchery evidence is recorded by specialists as being scarce or restricted to knife-filleting or skinning marks. Articulated limbs also appear to have been more commonly recorded, possibly indicating that carcasses were less intensively processed (Chaffey 2009, 54). At Thorpe Lea Nurseries, Egham, for example, skinning marks were common on bones from a number of species, while horncores were generally not removed from cattle skulls (Iles and Clark 2012, 175). Butchery practices on these sites differed from the carcass-processing techniques found at Staines, leaving less frequent markings on the bones as a result.

In summary, the excavated evidence from the Middle Thames Valley case study area indicates that considerable expansion and reorganisation of settlement occurred during the late Iron Age/Romano-British transition, in particular the abandonment of open settlement and an increase in complex farmsteads. At the same time, there is more evidence for field boundaries, with extensive rectilinear field systems revealed by large-scale excavations, dividing farm land into more regular and organised plots. Features that relate to the husbandry and trafficking of livestock are also encountered more regularly, such as waterholes and tracks or droveways, these becoming more prevalent in the later Roman period. This evidence can be viewed in parallel with the development of the roadside settlement at Staines, where an emphasis upon large-scale livestock processing, as shown by butchery evidence, suggests a role as a market centre. In contrast, evidence for processing of arable surplus is comparatively rare, although evidence for grain storage is present. Overall, the Middle Thames Valley appears to have developed a more intensive livestock husbandry economy through the Roman period. However, there is very little evidence for wealth being reinvested in architecture, as reflected by the absence of excavated villas from the case study area. This can be contrasted with the chalk downs to the south, where there is much greater evidence for investment in arable agriculture and the more common development of villas alongside larger roadside settlements.

THE HAMPSHIRE DOWNS

The Hampshire Downs case study area covers approximately 700 km², around twice the extent of the Middle Thames Valley study area, and contains 38 site records in total (fig. 4.72). This sub-region lies predominantly within modern Hampshire but also crosses into the eastern side of Wiltshire, on an area of chalk downland within which flow the courses and tributaries of the Rivers Avon and Test. Settlements include 29 farmsteads, 7 of which develop into villas, 2 roadside settlements and 1 village settlement. Evidence for field systems is recorded at eight sites. Many of the settlements are located within a triangle of three Roman roads. Located at the three crossing points of these roads are the two roadside settlements of East Anton and Old Sarum (Sorviodunum), and the civitas capital at Winchester (Venta Belgarum), which lies just beyond the case study area.

Chronological evidence from the Hampshire Downs indicates a small increase in the number of farmsteads in use from the late Iron Age to the fourth century A.D. It is notable that open farmsteads are absent from the dataset, unlike in the Middle Thames Valley, and the late Iron Age settlement pattern is dominated by enclosed farmsteads, many of which are of the easily recognisable, ‘banjo’ enclosure form. This type of site has been described in Chapter 2, but essentially consists of a sub-circular ditched boundary that funnels out from the entrance. Not all enclosed settlements of late Iron Age date conform to this type, though others are generally of a similar size and tend to have either funnelled entrances or trackways leading to them, implying some level of controlled access (Cunliffe and Poole 2000b; 2008d; 2008e; fig. 4.73). Complex farmsteads do make an appearance during the Roman period, though these are few in number, while villas develop initially in the second century A.D., becoming most prominent in the third and fourth centuries A.D.
FIG. 4.72. Distribution of sites in the Hampshire Downs case study area

FIG. 4.73. Plans of late Iron Age enclosed farmsteads in the Hampshire Downs region at Nettlebank Copse, Wherwell (Cunliffe and Poole 2000b) (a), Rowbury Farm, Wherwell (Cunliffe and Poole 2008c) (b), and Fullerton (Cunliffe and Poole 2008d) (c)
It has been noted previously in this chapter that settlements across the Hampshire and Wiltshire downland show strong evidence for continuity and development into the third and fourth centuries. Many of the sites with late Iron Age banjo enclosures exhibit continued occupation through the Roman period, though not necessarily within the banjo itself, and some of these settlements underwent considerable reorganisation. At Grateley South, geophysical survey, supported by small-scale excavation, revealed settlement features covering around 15 ha, at the centre of which a banjo enclosure was encircled by a complex of field boundaries and other enclosures (Cunliffe and Poole 2008c). The late Iron Age phase is thought to have been succeeded by a large rectilinear enclosure defined by a more substantial ditch, with field systems to the south that appear to have been associated with both early and late Roman features. In the fourth century A.D., a villa complex of four or five large masonry structures was constructed that respected the central area where the banjo enclosure stood. Phased plans of the site at Dunkirt Barn, Abbots Ann, demonstrate a very similar pattern of development to that seen at Grateley South (Cunliffe and Poole 2008f). The core of this settlement is shown by survey to have been c. 14 ha, and, despite distinct phases of development being identified, excavation showed that the settlement was continuously occupied from the first century B.C. to the end of the fourth century A.D. Once more the position of the banjo enclosure was respected by later Roman features, suggesting its continued importance at these sites (fig. 4.74). Other examples of this type of settlement development can be observed within or beyond the case study area, such as at Bramdean located to the east (Perry 1972; 1982; 1986).

Of the nineteen rural settlements in the case study area that were occupied in the late Iron Age, thirteen continued into the fourth century, most undergoing substantial reorganisations in form. In addition to these developments, over half of the 34 sites in the area (including nucleated settlements) also adopted corndryers, quite different to the Middle Thames Valley where such structures were rare. Almost all the corndryers in this case study area were late Roman in date, though possible second-century examples were excavated at Houghton Down and Grateley South (Cunliffe and Poole 2008b; 2008c). The two structures at Houghton Down were built in the widely recognised T-shaped form, while at Grateley South a more developed, V-shaped corndryer was constructed. These features may suggest an increased focus on the processing of surplus grain, implying an expansion in arable agriculture.

Of the eighteen sites with corndryers, twelve produced archaeobotanical evidence which showed that spelt wheat consistently dominated most samples, though some variation between different sites is evident. Three plant assemblages included samples with high proportions of germinating grain, providing good evidence that
the corndryers were being used as malting ovens (Campbell 2008a, 169–72; Campbell 2008b, 162; Campbell 2008c, 203–4). However, Marijke van der Veen has argued that corndryers were multi-functional structures (Van der Veen 1989), a point that is supported by evidence from Grateley South where the twin flues of the V-shaped corndryer each contained significantly different proportions of sprouting grain, suggesting that each assemblage was being processed for different products (Campbell 2008a, 174). Although spelt wheat was the most common cereal identified in most assemblages, barley also appears to have been common in many samples. It is possible that spelt and barley were both grown for malting, such as at Dunkirt Barn where a mixed-grain malt may have been preferred (Campbell 2008c, 204).

At the roadside settlement of East Anton, excavation of a peripheral area revealed activity beginning in the first century A.D. but with evidence for a major intensification of agricultural/industrial activity from the mid-third century (Firth 2011). At least twelve malting kilns/corndryers, dating c. A.D. 240–400+, were excavated across the site, ten of which were sampled for archaeobotanical material (Fig. 4.75). The assessment results showed very high numbers of cereal grains, principally of barley and wheat, and wood charcoal (Allen 2011). Unfortunately, very little else is known about the roadside settlement at East Anton since excavation has been limited. However, the number of corndryers found in such a restricted area, assuming that their use was broadly contemporary, indicates that substantial quantities of grain were being processed, either being malted for the production of beer or charred for consumption or storage (cf. Reynolds and Langley 1979; Van der Veen 1989).

Evidence for storage structures is more difficult to identify than corndrying structures (see Ch. 3), though several sites are recorded with potential evidence of this type of agricultural feature. Four-post structures have been identified in Roman-period phases at Woolbury (Cunliffe and Poole 2000a), Balksbury Camp (Wainwright and Davies 1995), and Ashley (Neal 1980), which may be indicative of comparatively small-scale storage facilities more commonly associated with later Iron Age practices, while aisled halls at the late Roman villas at West Dean (Master 1885) and Houghton Down (Cunliffe and Poole 2008b) may have provided much larger storage facilities.

While there is good evidence for an increased emphasis upon arable processing on the Hampshire Downs, it is difficult to determine how much of the landscape in the study area was turned over to arable production. Excavated evidence for Roman-period field systems is lacking and we are currently more reliant upon cropmark evidence. In the 1980s, aerial photography recorded a regular system of rectilinear fields on the chalk at Cockey Down near Salisbury. A pipeline excavation in an area of the site revealed evidence for domestic activity spanning the Iron Age and Romano-British periods (Lovell 1999). Owing to the restricted nature of the excavation it was unclear if settlement was continuous, though late Roman activity comprised a corndryer, boundary ditches and a possible ditched trackway. Unfortunately, without further excavation the dating and phasing of the field system cannot be determined. A possible exception to this comes from the cropmark evidence adjacent to the villa at Fullerton where a configuration of elongated strip fields, each averaging 40 × 150 m in area, can be seen running parallel to the River Anton behind the villa complex, which was established in the mid-third century A.D. (Fig. 4.76). The lynchets of the field system were found to be slight and denuded by later disturbance, making them difficult to date. However, the orientation of the field system and its proximity to the villa led Cunliffe to suggest that they may have been ‘the home fields of the estate’ (Cunliffe and Poole 2008d, 143). As mentioned earlier in this chapter, the river at Fullerton had been canalised to run in front of the villa to operate a mill located to the south, while a hall house was converted during the middle of the
fourth century, with a corndryer and ovens being inserted. This occurred at the same time as the construction of a winged-corridor villa house, with its baths and extensive mosaic flooring, implying that a substantial investment of wealth occurred at the site, probably financed by the agricultural activities of the settlement (ibid. 166).

CASE STUDY SUMMARY
The case studies presented here provide evidence for two distinct sub-regions, both of which demonstrate evidence for considerable changes in the form and use of domestic space and in wider patterns of land use from the later Iron Age through to the end of the Roman period. These changes have been shown to be fundamentally linked to the agrarian economy, and were probably associated with the development of markets through the emergence of roadside settlements and larger towns, which were established at the junctions of major communication routes.

However, the developments observed in each case study area can be seen to have differed markedly. Open settlements were replaced by large enclosure and trackway complexes on the gravel terraces of the Middle Thames Valley, and some sites witnessed the establishment of extensive droveway systems, enabling the trafficking of large numbers of livestock across the landscape. A comparative lack of corndryers and storage facilities at many of these settlements suggests that these changes were concerned with an intensification of livestock husbandry rather than arable expansion, and it was shown through zooarchaeological evidence that the roadside settlement at Staines likely provided an important redistribution centre for the trade and exchange of animals and their associated products. The chalk downs of Hampshire and Wiltshire, by contrast, appear to have witnessed an expansion in arable agriculture over the same period of time, with a number of settlements engaging in large-scale crop-processing. Once more, towns and roadside settlements provided marketing opportunities, with wealth clearly being reinvested back into some rural settlements, which later began to adopt villa-style architecture.

REGION SUMMARY
Owing to its proximity to the continent, its numerous urban centres, villas, and late Roman forts, the South region has long been a focus for studies of Roman Britain. But what is clear from the results presented in this chapter is that the rural settlement pattern across the region was highly varied. There were considerable differences in the types of settlements located in different landscape zones, as well as in the rate of their establishment and abandonment. This is exemplified by the rapid expansion and decline in settlement activity in the easternmost part of the region, compared to the slower, but more sustained settlement expansion in the western part. It is possible that this variation occurred due to a range of factors, including differences in social organisation, political stability, fluctuations in the local and regional economy, and differences between landscapes.

Although patchy, the available historical evidence suggests that the political situation across the region was complicated and changeable, made all the more complex by the involvement of the Roman state, both before and after the conquest of A.D. 43. Considerable changes in the settlement pattern, alongside the rapid adoption of continental imports, on the South Coast Plain in the first century A.D. has been argued to reflect the growing power of elite groups (Cunliffe 1973; Davenport 2003). Certainly, the establishment of a number of early, elaborate villas with clear evidence for Mediterranean influence indicates major investments of wealth. Other direct results of Roman influence are indicated in the eastern part of the region, such as the increase in iron production in the Weald, which has been suggested to have been orchestrated by the Classis Britannica
The construction of Watling Street and the establishment of London and Canterbury as major centres for commerce must have also facilitated trade and exchange, which was perhaps responsible for the establishment of early villas along the Medway and Darenth rivers. Early Roman economic development in the south-east led Mattingly (2006, 386) to state that much of this land became ‘prime real estate for investment by incomers to Britain’. Although it is difficult to gauge the actual movement of people, it does appear likely that the economic developments were at least partly responsible for the rapid expansion of rural settlement in that part of the South region.

The rise in settlement numbers in the east is matched by an almost equally dramatic decline in the later third and early fourth centuries. At the same time, a number of villas were also abandoned on the Sussex Coastal Plain (Rudling 1998). Political instability and threats from piracy have been identified as possible factors for these changes and, certainly, the establishment of the Saxon Shore Forts along the south coast appears to have been a consequence of the insecurity of the third century (Mattingly 2006, 241–3). In addition, the town walls of London also received bastions in the fourth century and a riverside wall to complement the land-side defences, though whether these reflected a response to real threats or were intended to reflect the status of the settlement is uncertain (ibid. 330–3). The importance of Watling Street appears to have waned during this period, and the decline of the Wealden iron industry from the mid-third century may also have impacted upon settlements, as has been suggested at Westhawk Farm (Booth et al. 2008). However, while the number of settlements was reducing, the great majority of villas in Kent continued to be occupied into the fourth century, and some villas, such as Bignor, received significant levels of investment during this period. Overall, the changes witnessed in the eastern part of the South region were not uniform, and it is possible that they reflected developments in land use and economic reorganisation, perhaps signifying a greater intensification of agricultural production in the fourth century A.D. (cf. Gerrard 2014).

Compared to the situation in the east, the settlement pattern in the western part of the region is quite different. Here, settlement numbers also increased from the late Iron Age to the early Roman period, though this was far more gradual and, rather than declining after the second century A.D., was maintained into the late third and early fourth centuries. Other developments also took longer to become widespread in the western part of the region such as the adoption of masonry buildings, which were not common until the third century. The large, agglomerated villages found on the Salisbury plain seem to typify much of the settlement evidence in this area, and the inhabitants there were clearly engaged in extensive arable cultivation of the chalk-downs. These settlements appear to represent a long-lived pattern of settlement, originating in the Iron Age and maintained right through the Roman period. The regional chronology of the area is similar to adjacent areas of the Central Belt, particularly between the Fosse way and the Severn Estuary, and between Ilchester and the Cotswolds (see Ch. 5; and Mattingly 2006, 393–9, fig. 14).

In one sense, the chronological and inter-regional settlement patterns in the South are quite clear, and there are obvious differences between the eastern and the western parts of the region. These may reflect considerable differences in lifestyle, farming, trade, and many other aspects of daily life. However, even at this scale, some of the nuances of this variation remain masked, and the two case studies, of the Middle Thames Valley and Hampshire Downs, have demonstrated regional variability within specific landscapes in far greater detail.