INTRODUCTION

The field system and associated earthworks, which include a valley bottom enclosure, at Eastwick Barn (Figs 1.1, 6.1, 6.2, 7.1 and front cover) was the only Scheduled Ancient Monument (East Sussex Sites and Monuments Record: Ancient Monument No. 10) on the line of the Brighton Bypass. The lack of modern cultivation had meant a large area of lynchets had survived extremely well. The site lies within the confines of the Eastwick dry valley (centred at NGR TQ 318 097) and is situated on Upper Chalk with colluvial deposits in the valley bottom. Although no major deposits of Clay-with-Flints are shown in the area (Geological Map Brighton: Sheet 318, Drift edition), a thin sporadic capping was noted in places during the excavations.

Eastwick valley starts as a wide, but fairly deep, valley on a north–south axis, bordered by the Ditchling Road on the eastern side (see Fig. 6.1). Towards the south however, it turns to the south-west on an alignment with Mackie Avenue. At this point the southern side is much steeper than the northern side, and it is on this steeper side of the valley that the larger lynchets had accumulated. The whole valley, however, is covered by smaller lynchets. Previous archaeological fieldwork at Eastwick Barn was undertaken by H.S. Toms and consisted of an earthwork survey (Toms 1924) and rescue work in association with the destruction of Eastwick Pond (Toms 1934, 1936).

Fig. 6.1 Eastwick Barn Field System: Location plan showing areas investigated in 1989 and 1991, soil marks and SMR details.
Fig. 6.2 Eastwick Barn Field System: 1989 trench location plan.
The excavations

Trench I (Fig. 6.2 only)

Trench I was an east–west trench, measuring 19.3m × 2m, cut across a small negative lynchet. The topsoil (Context 706) rested directly on the natural chalk for most of the trench’s length. The negative lynchet was cut into the natural chalk slope to a maximum depth of approximately 400mm and was filled by a dark yellow-brown silty loam with a high density of small to medium angular flint nodules with some chalk (Context 811). The only pottery located in this trench was from the machine stripping layer (Context 701) and consisted solely of Romano-British sherds. Full details of this trench form part of the archive.

Trench II (Figs 6.2 and 6.3)

Trench II was a north–south trench, measuring 18.8m × 2m, cut across a small positive lynchet. This lynchet formed the northern boundary to the field marked by the negative lynchet in Trench I and the large positive lynchet in Trench III. The lynchet, having a maximum height of approximately 600mm, is a good example of the smaller lynchets which tended to dominate the upper slopes of Eastwick valley. Above the natural chalk (Context 711) was a buff white, chalky loam layer with frequent small chalk pieces (Context 709), which may represent a weathered/disturbed natural layer. Above this were four layers which formed the main lynchet accumulation (Contexts 708, 808, 809 and 810). All these layers tended to merge at their boundaries and it is likely they represent one accumulation phase, although the layers on the downslope side (Contexts 809 and 810) tended to contrast with those on the upslope side by their colour (being grey-brown as opposed to light grey). All these layers contained a high percentage of chalk in their make-up suggesting the field to the south was subject to severe erosion at this time. If this was the case, much of the original soil in this field must have been transported/moved further downslope beyond this lynchet. (NB The lynchet in Trench III, on the western side of this field, contained a thick build-up of soil.) Resting above these layers was a thin layer of grey loam (Context 707), again with a high percentage of chalk in its make-up, but also with some large irregular flint nodules too. This layer rested immediately below the topsoil (Context 706). Contexts 707, 708 and 810 were the only...
layers to produce stratified pottery, all of which dates to the earlier Iron Age. Some Romano-British pottery was, however, recovered from the machining layer (Context 702). The artefact plot-outs and full details form part of the site archive.

Trench III (Fig. 6.2 only)

Trench III was an east–west trench, measuring 23m × 2m, cut across a large positive lynchet. This lynchet, measuring approximately 1.72m high, formed the lower, western boundary to the field marked by the lynchets sectioned in Trenches I and II. Above the natural chalk (Context 711) were thin layers of weathered parent material and Clay-with-Flints (Contexts 737 and 738). These may have been disturbed by cultivation of the field to the west of the lynchet, although no negative lynchet was noted in section. Above this level was a thick layer of buff/yellow/brown clay loam with small to medium angular flint nodules and small chalk fragments (Context 733). This initial layer of accumulation (measuring a maximum of 600mm thick) produced solely earlier Iron Age pottery. Above this were two layers forming flint banks (Contexts 736 and 735). Both these layers were very similar in nature, containing dense concentrations of small to large flint nodules in a brown dark silt loam matrix. Context 735, however, had noticeably less of this soil matrix than Context 736. Both these layers contained solely earlier Iron Age pottery and must be seen as a clearance bank/boundary formed by field clearance during this period. Context 735 had slumped downhill, towards the west, quite considerably, suggesting its original height would have exceeded 600mm. A similar flint bank was found in Trench IV (see below). Overlying the flint bank was another layer of flint nodules (Context 734). The nodules in this layer were, however, smaller, and were set in a yellow/buff/brown clay loam matrix with fairly frequent chalk pieces and flecks. Within this layer were some Romano-British pottery sherds as well as fair quantities of residual earlier Iron Age material. Above this were two further layers of accumulation (Contexts 732 and 731) measuring up to 400mm thick, which were also of Romano-British date. The full context details, artefact plot-outs and section of this trench form part of the site archive.

Trench IV (Figs 6.2 and 6.4)

Trench IV was a north–south trench, measuring 21.4m × 2m, cut across a large east–west lynchet close to the valley floor. At this point the lynchet, 1.3m high, was cut by the ditch of the valley bottom enclosure (see below). The earliest layers of lynchet accumulation (Contexts 730 and 725) consisted of a dark brown clay loam with occasional small to medium angular flint pieces. Both these layers (presumably both deriving from the same cultivation phase) contained solely earlier Iron Age pottery: Context 730 also produced a bronze fibula of this period (see Fig. 6.4 and report below). Above these layers a flint bank had been formed (Context 728). This consisted of a dense concentration of small to large flint nodules set within a loose, dark grey/brown silt loam matrix (although little soil was actually present between the flints). The flint bank, presumably representing field clearance, contained a single sherd of earlier Iron Age pottery. The bank had slumped toward the north, suggesting the original height was in excess of approximately 500mm. To the south of the main flint bank (and overlying it) was another bank/layer with a high concentration of flints (Context 729). This differed from the main bank in that the flints were not as densely packed and were set in a light yellow-brown clay loam matrix with frequent small chalk pieces and flecks. To the south of 729 was another layer of fairly dense flint set within a dark-grey/brown, silty loam matrix (Context 727). Both layers 729 and 727 were probably formed by cultivation heaping up soil against the clearance bank (Context 728), which now formed the downhill/northern boundary to the field. The fairly dense concentrations of flint found within Contexts 727 and 729 suggest that field clearance was still continuing throughout their formation period. Although no pottery was located in these layers, it seems probable that they represent Iron Age rather than Romano-British accumulation. Overlying the Iron Age accumulation were two layers (Contexts 726 and 724) containing Romano-British pottery with residual earlier Iron Age sherds also present. The lower of these layers (726) consisted of a yellow-brown silty loam, with occasional small to medium flint pieces and some small chalk fragments, and had partly formed over the original flint bank/field boundary with considerable slumping downslope to the north. The upper layer (Context 724) contained a high percentage of chalk fragments. It is likely this layer represents the bank of the valley bottom enclosure (see below) rather than a layer of lynchet accumulation. Cutting the layers of the lynchet was the valley bottom enclosure ditch (Context 831). Its fills (832 and 833) were very similar to layers 725 and 726, often making the edge of the ditch, particularly on the southern side, difficult to discern with certainty. Presumably much of these fills was derived from the surrounding layers anyway. Both fills contained residual Iron Age and Romano-British pottery. The depression formed by the ditch had been infilled by a layer of soil (Context 723) which lay directly below the modern topsoil (Context 706). Initial machining (Context 704) revealed a mixture of earlier Iron Age and Romano-British sherds. The full context details and artefact plot-outs form part of the site archive.

Trench V (Figs. 6.2, 6.4 and 6.5)

Trench V was an east–west trench, measuring 23m × 2m, cut across a large lynchet with a maximum height of approximately 1.3m. This lynchet formed the western boundary of the field to which the lynchet in Trench IV (see above) formed the northern boundary. At the base of the section (Fig. 6.4) were a number of pockets of dark-grey/brown loamy clay with medium irregular flints (Contexts 714, 715 and 716), which penetrated the top of the natural chalk. No finds were located in these pockets and they are presumed to be natural subsoil hollows rather than archaeological features. Above these pockets, resting on the natural chalk, was the primary accumulation of the lynchet (Context 713). This layer, of buff brown calcareous loam with occasional small to large flint nodules and some chalk pieces, produced solely earlier Iron Age pottery and a large quantity of worked flint (see Fig. 6.5). Resting above Context 713 was a similar layer (Context 712), which merged with a more flinty layer towards the downhill/westward side of the lynchet (Context 717). Molluscan analysis from Contexts 712 and 713 suggests some phases of pas-
Fig. 6.4 Eastwick Barn Field System, Trenches IV and V: Main sections.
ture within these predominantly arable layers (see below). The soil between the flints of layer 717 was dark brown in contrast to the light-grey/brown of layer 712, although the merging was gradual. Both layers 712 and 717 produced residual Iron Age pottery. Context 717 also produced an Early Iron Age brooch (see report below) mixed with Romano-British sherds. This must represent Romano-British accumulation. The fairly high density of flint in Context 717 is probably due to field clearance during the Romano-British period, although this clearance appears not to have been on a large scale. Above layer 712 a thin layer of light- to dark-grey/brown calcareous loam had formed (Context 710), also within the Romano-British period. Context 710 had a noticeable, but sporadic, concentration of flints suggesting either rill erosion or some worm-sorting had occurred. This layer lay below the modern topsoil (Context 706). The modern topsoil and machining layer (Context 705) produced solely Romano-British pottery. A molluscan column was excavated for Trench V (Fig. 6.4) and the results are discussed below.

Trench VI (Figs. 6.2 and 6.6)

Trench VI was an east–west trench, measuring 30.1m × 2m, cut across the lower section of a double-lynchet track. A further section was cut to the north (see Trench XI below). The trackway, which runs northward up the chalk ridge, was formed, within the excavation area, by a lynchet on its western side and a bank on its eastern side and conformed to the Curwens’ Type 3 trackway (Curwen 1923b: 9, pl. III). Beneath the lynchet forming the western side of the track were numerous Clay-with-Flint solution hollows in the chalk (Fig. 6.6). Immediately above these, and often merging with them, was a layer of medium orange/brown silty clay with a few medium to large irregular flints (Context 776). This layer contained solely earlier Iron Age pottery. Above layer 776 was the main body of the lynchet (Context 775). This layer, consisting of a medium grey-brown silt loam with irregular flints and some chalk fragments, contained predominantly earlier Iron Age pottery, suggesting this to be the main date of its accumulation. Towards the top of layer 775, however, were Romano-British sherds showing the upper portions of the layer to have formed during this period. No break was noted in the form of 775 between the earlier Iron Age and Romano-British levels, however, and it can only be assumed that any worm-sorted horizon which formed was subsequently destroyed by the Romano-British cultivation. The intermittent flinty horizon noted at the junction of layer 775 and the modern topsoil (Context 706) is a result of recent worm-sorting. An interesting feature of layer 775 was the large amount of fire-cracked flint found within it: 580 pieces weighing 23, 637g. Two distinct bands of fire-cracked flint were noted by Toms (during the 1930s) in this lynchet, where it turned westward around the site of Eastwick pond (Toms 1936; and see discussion, below). Although the zonation of the fire-cracked flint distribution in Trench VI was somewhat ill-defined, a fairly distinct horizon was noted just below the topsoil, and it is likely the burnt mound, excavated in Trench XXX (see below), was the source of this material. Lower down in layer 775 was another less distinct zone of fire-cracked flint. The source of this flint is harder to explain as this level predates the burnt mound in Trench XXX, being of earlier Iron Age rather than Romano-British date. Although it is possible that an earlier Iron Age settlement site was located in this area, the exact reason for the large quantity of fire-cracked flint in layer 775 has not been established.

The trackway within Trench VI had been cut/eroded into the chalk. A rise in the natural chalk on the track’s eastern side (Fig. 6.6: point A) suggests this area may have been protected from erosion by the bank, as is found in the

Fig. 6.5 Eastwick Barn Field System, Trench V: Flint and pottery plot-outs.
Fig. 6.6 Eastwick Barn Field System, Trenches VI and XXX: Main sections.
Curwens’ Type III trackways (Curwen 1923b). This area had a thin covering of weathered/disturbed natural chalk (Context 835), which also filled a slight depression in the undisturbed chalk (Fig. 6.6: point B) just to the east of the possible site of the bank. It seems likely this slight depression marks a negative lynchet to a field extending eastwards from the trackway. No positive remains of the bank were present; however, a larger slumping onto the trackway (Context 834) may be part of the bank. This slumped layer, consisting predominantly of re-deposited chalk, would have narrowed the width of the trackway, and it is tempting to postulate that two slight depressions in the chalk (Fig. 6.6: points C and D) are ruts formed through the use of this narrower track. The main layer of the lynchet (Context 775: see above) had slumped over the track, presumably after it had gone out of use, and was covered at this point by a dark grey-brown silty loam layer (Context 777), which lay directly beneath the modern topsoil (Context 706). No datable pottery was recovered from layers directly associated with the track, although an earlier Iron Age origin is suggested by the lynchet forming its western boundary. A late medieval buckle (see metalwork report below), was found in the machine clearance layer (Context 739) suggesting that the track was possibly utilised for a long period after the field system went out of use. The artefact plot-outs for Trench VI form part of the site archive.

Trench VII (Fig. 6.2 only)

Trench VII was a random north–south trench, measuring 50m × 1.5m, cut to locate any traces of occupation or agricultural features which may have been situated in the vicinity. No archaeological features were found in this trench. The machine-stripping layer (Context 740) produced a few Romano-British sherd. Full details of this trench form part of the site archive.

Trench VIII (Fig. 6.2 only)

Trench VIII was a north–south trench, measuring 11m × 2m, cut across an east–west lynchet with a maximum height of approximately 1.2m. The lynchet consisted of one major layer of accumulation (Context 773), which appeared to have slumped slightly downhill toward the south (Context 774). Context 773 consisted of a light orange-brown silt loam with occasional small to medium flint pieces and a little chalk. This layer produced predominantly Romano-British sherd, with a few residual earlier Iron Age sherd also present, suggesting a Romano-British date for the accumulation of this lynchet. The topsoil layer (Context 706) and machine clearance (Context 741) produced almost exclusively Romano-British sherd. The full context details, artefact plot-outs and section form part of the site archive.

Trench IX (Fig. 6.2 only)

Trench IX was a random north–south trench, measuring 37m × 1.5m, cut in order to locate any occupation site situated next to the lynchet trackway at this point. No archaeological features were located and only a single sherd of Romano-British pottery was found from the machine clearance layer (Context 742). Full details of this trench form part of the site archive.

Trench X (Fig. 6.2 only)

Trench X was another random north–south trench, measuring 50m × 1.5m, cut for the same reasons as Trench IX, but situated on the western side of the trackway. No archaeological features were present and only three sherd of Romano-British pottery were located in the machine clearance layer (Context 743). Full details of this trench form part of the site archive.

Trench XI (Fig. 6.2 only; Plate 6.1)

Trench XI was an east–west trench, measuring 30m × 2m, cut through the lynchet track sectioned lower downslope by Trench VI (see above). The natural chalk within this trench had a number of solution hollows filled from the natural Clay-with-Flints layer (Context 772) which capped the chalk in this area. The lynchet forming the western boundary of the track had accumulated to a maximum height of approximately 900mm on the Clay-with-Flints layer (Plate 6.1). Two accumulation layers were present within this lynchet. The first layer (Context 771) tended to vary considerably in thickness ranging between 60mm and 420mm. Above this layer was the main build-up of the lynchet (Context 770) which consisted of a dark grey clay loam with a dense concentration of medium to large flint nodules. This layer, which was 500mm thick, was interesting in that it contrasted the relatively flint-free layer forming the main body of the lynchet further down the track in Trench VI (see above). The reason for this variation remains unclear as the lynchet in this trench appeared to form part of the same field boundary as the lynchet in Trench VI (Fig. 6.2). It seems unlikely that so much more flint would occur naturally in this upper portion of the same field unless the Clay-with-Flints layer at this point was a major contributor. The nature of the flint in layer 770, being nodular with cortex, suggests the Clay-with-Flints layer was not the source. Trench XI was however, cut close to the northern boundary of the field (marked by a small lynchet running east–west: see Fig. 6.2) and it is possible that flint was encroaching onto the lower field from the northern boundary lynchet. If this was the case, the clearance of this tumbled flint from the lower field could explain why so much more flint.
was incorporated into the lynchet at the north-east corner of this field. Above the flinty layer (770) was modern topsoil (Contexts 706 and 807).

The base of the trackway, to the east of the lynchet, was on the Clay-with-Flints (Context 772) and was covered by a thin dark-grey/brown silt loam layer (Context 805), itself lying beneath the topsoil (Context 706). To the east of the trackway were a number of layers (Contexts 806, 804 and 803) to a maximum depth of approximately 600mm. No clearly definable bank was present on the eastern side of the track, although layer 804 may have been the last traces of one. It seems likely the Clay-with-Flints in this area hindered the identification of the bank. No artefact column was excavated for this trench as the evidence from Trench VI was deemed sufficient. A mixture of earlier Iron Age and Romano-British pottery was recovered from the machine-stripping layer (Context 744). The full context details and section form part of the site archive.

Trench XII (Fig. 6.2 only)

Trench XII was a north–south trench, measuring 30m × 2m, cut across a small lynchet with a maximum height of approximately 600mm. No artefact column was excavated, although four Romano-British sherds and a 4th-century coin were collected from the machine-clearance layer (Context 786). The lynchet contained one layer (Context 786) which appeared to mark a continuous phase of accumulation. Full details of this trench form part of the site archive.

Trench XIII (Figs 6.2 and 6.7)

Trench XIII was a north–south random trench, originally measuring 25m × 2m. The trench was extended to the south (by 11m) and east (by 2m) due to the location of a large feature at the southern end of the original trench. Once the southern edge of the feature was exposed a section was cut through it by machine; the section was then cleaned and recorded.

The feature proved to be a large pit (Context 750) cut into the natural chalk slope. The pit, which had a maximum depth in excess of 1.5m and a length/diameter of approximately 8m, probably represents a marling pit. A similar example was excavated at Bullock Down, Eastbourne (Rudling 1982: Fig. 47). As most of the surrounding area is chalk it seems odd that a marling pit was needed, however there are areas of Clay-with-Flints within the field system (i.e. Trenches XI and XVII: see above and below) and it may be these areas that the marling pit was intended to serve.

The natural chalk on the southern side of the pit was badly decayed (Context 823), possibly as a result of exposure and ‘traffic’ wear, as the access to the pit must have been from this side. The primary fills had come from the edges and represent different periods of weathered material slumping into the pit. All these layers had a very high percentage of chalk within them (Contexts 819, 818, 817, 816, 815, 814, 813, 822). The northern, steeper edge of the pit had been the most severely weathered (Contexts 813 to 819). After this period of weathering the pit had been deliberately infilled with a number of dumped layers/fills (Contexts 769, 821, 820, 768 and 767). The lowest fills (Contexts 820 and 768) contained a high percentage of large flint nodules. These may have originally come from the excavation of the pit and/or field clearance in the area. Following the initial infilling a slowly accumulated layer formed over the top (Context 766). At the southern end of 766 was a thin dump of black/grey-brown clay loam with a high percentage of charcoal (Context 765). Above this level were two further layers which appeared to have also accumulated slowly (Contexts 762 and 760), possibly through wind action and/or downhill movement of soil collecting in the depression. Context 762 contained a distinct band of small flint, suggesting worm-sorting had taken place within it. Above this was a small flinty deposit (Context 764). Covering the whole pit above this level was a thin dark brown clay loam layer with virtually no flint or chalk (Context 751). This layer must represent a buried turf-line. Above this was a thick layer of various modern dumps of clay material (Context 749) containing modern brick. This layer, on which the modern turf-line had formed, was probably deliberately deposited in order to level up the slight depression left by the infilled pit. Although no artefact column was excavated, a few sherds of Romano-British pottery were found in the initial infill of the pit (Contexts 768 and 769) and it seems likely the pit dates to this period. The buried turf-line (Context 751) produced Post-Medieval sherds, as did the machine clearance layer (Context 746).

Trench XIV (Fig. 6.2 only)

Trench XIV was a north–south random trench, measuring 27m × 2m. No archaeological features were present and

![Fig. 6.7 Eastwick Barn Field System, Trench XIII: Main section.](image)
little was recovered from the machining layer (Context 836). Full details form part of the site archive.

Trench XV (Figs 6.2 and 6.8; Plate 6.2)

Trench XV, measuring 7.7m × 10m, was excavated over a low north–south linear ridge which was visible in the field running downslope (Fig. 6.2). Below a shallow covering of topsoil (Context 706), a linear arrangement of large irregular flint nodules was located (Context 778). A similar example was located in Trench XX (see below). This flint bank was cleaned by hand and was found to average between 1.6m and 1.8m wide with a maximum height of approximately 300mm (Fig. 6.2; Plate 6.2). The bank consisted of flints, randomly set, in a loose light to medium brown silt loam matrix. After recording, a section was excavated through the bank (at the northern edge of the trench) to obtain dating evidence. The flint bank yielded ten pottery sherds; nine of these were of earlier Iron Age date, but one Romano-British sherd was also present. A broken barbed-and-tanged arrowhead and a flint scraper were also located (see flint report below; Cat. nos 7 and 11). Below the flint bank was a very similar soil layer but with noticeably less flint (Context 812). The pottery from this layer (seven earlier Iron Age sherds and one Romano-British) was of a similar nature to that in the flint bank (see above), suggesting the bank probably dates to the Romano-British period. A third-century plated denarius was located in the machined layer (Context 752).

It seems likely the bank was formed during clearance of flints from fields to the east and west and can therefore be seen as a field boundary. Similar examples were noted on Park Brow (Curwen 1923b: 31). No soil accumulation had formed against the bank as it ran with, rather than across, the slope. The same flint bank was sectioned further downslope in Trench XVII (see below), but at this point it was badly disturbed. Either side of the bank, in the natural chalk, were a number of roughly north–south linear pockets of Clay-with-Flints which were also oriented with the slope. These deposits are probably in Pleistocene landforms, i.e. involutions which adopt a stripe form on a slope as at Newhaven (M. Bell pers. comm.; Bell 1976: 222–30).

Trench XVI (Figs 6.2 and 6.9)

Trench XVI was a north–south trench, measuring 9.3m × 2.8m, cut across a 1.3m high lynchet. This lynchet formed the northern boundary to the fields of which the flint bank located in Trench XV formed the eastern/western edge. As well as the lynchet cross-section being drawn, the north trench edge section was also recorded in order to show a portion of the accumulated layers which had suffered no slumping down the face of the lynchet (Fig. 6.9). A large subsoil hollow/cut was present in the northern section of the trench (Context 793). Its fills (Contexts 797, 796, 795 and 794) contained no archaeological finds and were angled in such a way as to suggest this feature was of natural occurrence (for further discussion of this feature see environmental report, below). Other natural deposits were noted in the section: Contexts 802 and 801. These appeared to be the remains of weathered chalk (802) and degraded Clay-with-Flints (801). Above this level was the start of the lynchet accumulation. A 500mm thick layer of grey brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation. This layer gave way, on its southern side, to a similar layer of yellow brown calcareous loam (Context 792) formed the initial layer of accumulation.
south flint bank (excavated in Trench XV: see above), which was sectioned along its axis by Trench XVI (see Fig. 6.2). Such a stratigraphic position for the northern terminal of the flint bank certainly reinforces the suggestion it was of Romano-British origin. The last two layers of accumulation below the modern topsoil both consisted of brown silt loams (Contexts 788 and 787). The lower layer, 788, contrasted 787 in having fairly abundant small to medium flints, suggesting this may represent the base to the worm-sorted soil marked by 787. Both contained solely Romano-British
pottery. A molluscan column was excavated through the northern section of the trench and the results are discussed below.

Trench XVII (Fig. 6.2 only)

Trench XVII was an east–west trench measuring 30m × 2m. It was originally cut to investigate a circular mound situated at this point (Fig. 6.2) and was subsequently extended to section the flint field bank located further to the north in Trench XV. Above the natural Clay-with-Flints (Context 784) were a number of accumulated layers to a maximum thickness of approximately 800mm (Contexts 783, 782, 780 and 781). These layers probably represented Iron Age accumulation, as what appeared to be the last vestiges of the Romano-British flint bank rested above them. The flint bank (Context 785) was of a similar form to the section exposed in Trench XV. The circular mound (Context 779) proved to be of modern occurrence. No artefact columns were excavated for Trench XVII, although five Romano-British sherds were recovered from the machine-clearance layer (Context 826). The full details and section of this trench form part of the site archive.

Trench XVIII (Fig. 6.2; and see Section 8)

During excavations of the field system at Eastwick Barn, a trench (XVIII) was excavated in the valley bottom. This excavation formed part of the programme of environmental investigations of dry valleys along the route of the Brighton Bypass. For detailed information about the excavation of Trench XVIII at Eastwick Barn, see Section 8.

Trench XX (Fig. 6.2 only)

During a resistivity survey of the valley bottom enclosure (see below) a line of slightly higher resistance was located. Some evidence of this could be seen on the ground in the form of a very low bank which ran across the interior of the enclosure. Trench XX, which measured 3m × 2m, was excavated across the line of the bank to determine its nature. A poorly defined band of flint nodules (Context 1326) about 1.2m wide was recorded below the topsoil (Context 1304) in the direction of the area of higher resistance. On either side of it were less flinty soils (Contexts 1327, 1341). On the south side this was removed and revealed a more chalky, less flinty soil (Context 1348), which presumably represented colluviation/solifluction deposits.

The band of flint nodules appears to be another field bank, which by analogy with the field bank identified in Trench XV may be dated to the Romano-British period.

Trench XXX (Figs 6.2 and 6.6)

Trench XXX was located on a circular mound set within the field system to the west of the lynchet track (Fig. 6.2). The mound was subjected to a 50% sample using two 6.6m² quadrants: the south-east quadrant formed Trench XXXA, the north-west quadrant forming Trench XXXB. Separate context numbers were used for the same layers located in opposing quadrants of the trench. Once excavation was complete the two full sections were recorded; although only the east–west section has been published (Fig. 6.6; the other section forms part of the site archive). A molluscan column was also excavated, but virtually no molluscs were found, probably due to the decalcified nature of the soil. No features were located in the natural chalk below the mound, and resting directly on the chalk was an orange-brown silt clay layer with a few small to medium flints (Context 759/825). This layer yielded Romano-British, as well as earlier Iron Age, pottery. Above this was a layer of mid-brown silt clay, again with small to medium flint pieces (Context 757/824). Within layer 757/824 were patches of sandy material (Context 758/763) although these did not appear in section. Romano-British and earlier Iron Age pottery was found throughout this layer. The main composition of the mound...
was formed by a mid-brown silt clay layer with abundant small to large flint nodules (Context 755/756). Large quantities of fire-cracked flint were found within this layer (5,413 pieces weighing 321,458g), as well as numerous small pieces of sarsen sandstone, many of which also showed signs of burning: this mound accounted for 52.2% by weight of all the sarsen stone recovered from the whole field system excavations. Despite all the signs of burning, little charcoal was found within the mound. Earlier Iron Age and Romano-British pottery was recovered from layer 755/756. A very thin covering of modern topsoil (Context 753/754) sealed the burnt layer 755/756. The topsoil produced modern pottery as well as earlier residual material.

The 1991 excavations

After a programme of systematic fieldwalking, the area of the 1991 archaeological assessment (see Fig. 6.1) was sampled by the cutting of 11 trial trenches ranging between 20m and 60m long. Three of these trenches cut lynchets which, upon examination, proved to have been badly damaged by recent cultivation. The remaining eight trenches were randomly cut and, with the exception of a single post-hole, were archaeologically sterile. The poor preservation of these lynchets and their similarity to the ones excavated during the 1989 excavations means that the 1991 assessment excavations add little to the data documented above or published elsewhere. Full details of the 1991 assessment therefore form part of the site archive.

THE FINDS

The pottery sequence from the lynchet systems and valley bottom enclosure

Sue Hamilton

Introduction

The assemblage of pottery recovered from the lynchet systems at Eastwick Barn provides a significant number of stratified sherds and the best dating evidence for the emergence and development of these prehistoric and later field systems. The assemblage comprises 342 two-dimensionally plotted sherds, together with 453 sherds recorded according to stratigraphic layer. The further 197 sherds recovered from the valley bottom enclosure complement this data base.

The pottery from Trenches V and XVI has already been considered in the context of their specific stratigraphic position (see Figs 6.5 and 6.9). The full pottery data from all the 1991 assessment trenches together with the pottery from the valley bottom enclosure, are detailed in the archive. The collective implications of this pottery evidence are discussed below.

Pottery fabrics: general discussion

The sherds from the Eastwick Barn lynchet system comprised Fabrics 1–9 inclusive (LBA/earlier Iron Age), together with Fabric 10 (Late Iron Age), Fabrics 11–16 inclusive (Roman), Fabric 22 (Medieval) and Fabrics 26 and 27 (Post-Medieval). Fabrics 10, 16, 22, 26 and 27 were only present in minor quantities. Fabrics 22, 26 and 27 came from surface collection and topsoil. Only the Later Bronze Age/earlier Iron Age and Romano-British fabrics are securely stratified. Fabric 10 occurred alongside the Romano-British fabrics and can be interpreted as residual.

Fabrics 1–5, 9–16, 22 and 26–7 were also present in the dry valley accumulations and are described in some detail in Section 8 below. Fabrics 6–8 inclusive, however, did not occur in the dry valley accumulations and are described below. Some of these LBA/earlier Iron Age fabric traditions have a relatively broad time span of usage. Two metalwork associations (see below) from the Eastwick Barn lynchet system provide pointers towards the dating/chronology of these fabrics in the specific locality of Eastwick Barn. Some of these fabrics also occur locally at Hollingbury hillfort where the pottery assemblage has diagnostic form sherds which provide dating evidence (Hamilton 1980). Most of the sherds from the Eastwick Barn assemblage were body sherds lacking diagnostic features of form.

Fabric types

All descriptions of inclusion size in the fabrics outlined below are based on measurement of inclusions along their longest axis. Inclusions are classified according to the Wentworth sedimentological scale (Krumbein and Pettijohn 1938: 80) as is given below (Table 8.9, Section 8).

Fabric 6: ‘Finer’ quartz sand

The fabric is dominated by moderately abundant, sub-rounded, medium and fine sand-size grade quartz. The quartz is generally transparent. The fabric is generally reduced dark grey/black throughout. Sherd cross-sections measure approximately 6mm.

Fabric 7: ‘Finer’ quartz sand and medium flint

Fabric 7 contains moderately abundant quartz grains which are similar in size, shape and transparency to those of Fabric 6. Additionally, the fabric has moderately abundant coarse and medium sand-size grade flint tempering. As with Fabric 8 (see below), sherds are generally coloured dark grey/black throughout, but some sherds have oxidised orange-red surfaces. Sherd cross-sections measure approximately 7mm.

Fabric 8: ‘Finer’ quartz sand and medium-fine flint

Fabric 8 contains moderately abundant quartz grains which are similar in size, shape and transparency to those of Fabrics 7 and 6. In addition, medium sand-size grade flint tempering is present in moderate abundance. Sherds are
mostly dark grey/black in colour throughout, but some sherds have orange-red oxidised surfaces. The fabric has some comparison with the flint-tempered variant of Bishopstone Fabric 3c (Hamilton 1977: 90), which is associated with late earlier Iron Age pottery forms. Sherd cross-sections measure approximately 7mm.

Fabrics 1–9: dating of the earlier Iron Age sherd

The Late Bronze Age (LBA) dating of Fabric 1 is discussed below (see Section 8). Fabric 1 occurs in very minor quantities at Eastwick Barn and is found alongside Fabrics 2–9. Its rarity might suggest that it is residual, given that the other earlier first millennium BC fabrics at Eastwick Barn are interpreted as dating towards the end of the earlier Iron Age.

Fabrics 2, 3 and 9 also occur in minor quantities and are associated with the earlier Iron Age assemblage rather than the Roman assemblage. Sherd of Fabrics 2, 3 and 9 are possibly residual, later Bronze Age sherd, but it is possible to interpret them as contemporary with Fabrics 4–8 which comprise the majority of the earlier Iron Age assemblage.

The LBA dating of Fabric 2 is discussed below (see Section 8), as is the continuity of this fabric tradition into the later Iron Age at sites such as Hollingbury (Hollingbury Fabric 3: Hamilton 1984: 57).

Fabric 3 of the valley bottoms/Eastwick Barn fabric series has no local well-contexted parallels. Technologically, it would fit equally well into an LBA or earlier Iron Age chronology.

Fabric 9 at Eastwick Barn is most consistently found alongside Fabrics 7 and 8. This could weigh in favour of a late earlier Iron Age dating for Eastwick Barn Fabric 9 (see below for the discussion of the dating of Fabrics 7 and 8). At Eastwick Barn this fabric occurs as small, eroded sherds. These are often fired red-orange rather than dark grey/brown. Fabric 9 at Eastwick Barn may be a variant identified at Bishopstone as Fabric 2b (Hamilton 1977: 89); Bishopstone Fabric 2b is found in association with large shouldered jars with out-turned, slightly beaded, rims (see Hamilton 1977: Fig. 4.8, Feature 790). The latter are considered to be contemporary with saucepan vessels on style comparisons with accessory form types at other sites (e.g. Morris 1978: Fig. 18, 84–89, 92–95). In south-central England saucepan pottery perhaps first occurs as early as the fourth century BC, and is current by the third century BC (Middle Iron Age). The earliest saucepot caps are undecorated (Cunliffe 1991: 82). For example, pit 657 at Danebury, Hampshire, which is ascribed to Danebury ceramic Phase 6 and contains undecorated saucepan pottery, has a single result of 410–90 cal BC (HAR-964: 2230±70 BP) (Cunliffe 1984: 316, Fig. 6:90). The chronological sequence at Danebury is complex and difficult to resolve. Explicit modelling of the ceramic phases at Danebury is more fully explored in Buck et al. (1992). Danebury ceramic Phase 6 overlaps with Danebury ceramic Phase 4–5 (Orton et al. 1995) which has been estimated to 370–190 cal BC (Buck and Lidton 1995). At Gussage All Saints, Dorset, the Middle Iron Age settlement with undecorated saucepan pots has been ascribed a third- and second-century BC dating (Wainwright and Switsur 1976: 37).

Fabric 4 is discussed below in the context of a later fourth-century BC dating at Bishopstone (see Section 8). Nearby, at Hollingbury hillfort the pisolithic iron oxide fab-

Summary and implications of the pottery evidence

The excavated field system to the east of the double-lynchet track: Trenches II, III, IV and V

The pottery plot-outs from Trenches II–V indicate that the eastern part of the excavated field system was established by the earlier Iron Age. The iron brooch from Trench V, Context 717, found in association with earlier Iron Age pottery (see below) may date the beginning of this process. The fibula has a date of c.500–450 BC. Some Roman pottery, however, occurred below this layer, suggesting that both the earlier Iron Age pottery and the fibula must be treated as residual and not necessarily related. The c. fourth-century BC bronze brooch from the bottom (Context 730) of Trench IV, however, provides a firmer stratigraphic terminus post quem for the earlier Iron Age assemblage from the lynchets, and for the beginnings of lynchet formation.

Trench II has exclusively earlier Iron Age pottery from Contexts 707 and 810 directly below the topsoil, and from layer 708 which comprised the middle of the lynchet build-up. No pottery was recovered from the lowermost layer (Context 709) of Trench II.

The pottery from the lowermost layers of Trench III (Contexts 735, 736 and 733) comprised exclusively earlier Iron Age sherds, as did the pottery from the lowermost layers (Contexts 725, 727, 728 and 730) of Trench IV, and the lowest pottery-producing layer (Context 713) of Trench V. The greater depth of stratigraphy associated with earlier Iron Age pottery in Trenches III and IV could indicate that the upper end of the excavated field system was nearest to the focus of earlier Iron Age settlement/activity. It is equally possible that this marked depth of accumulation relates to the greater steepness of slope at this point. The presence of Romano-British pottery in the upper layers of Trenches II, III, IV and VIII, and also from the top-stripping of Trench I, suggests that this part of the field system was subsequently reused in the Romano-British period. The lack of c. post-third century BC Iron Age pottery from the sequence of accumulation is interesting. A break in ploughing/manuring by the Middle Iron Age is indicated. This interpretation is
complemented by the pottery evidence from the nearby hillfort of Hollingbury (Hamilton 1980) which suggests desertion of the site by the end of the earlier Iron Age. A single documented findspot of pottery north of the excavated area (see discussion) notes the presence of ‘La Tène III’ pottery indicating at least some activity by the end of the Iron Age.

Trenches VII, VIII and IX

These three trenches are within the eastern area of the excavated lynchet system which is interpreted as being under cultivation by the earlier Iron Age. The only pottery sherd recovered from Trenches VII and IX (from JCB stripping) were Romano-British. The base (Context 773) and topsoil (Context 706) of Trench VIII both contained predominantly Romano-British sherds with a few residual earlier Iron Age sherds. Collectively, the pottery sherds from Trenches VII, VIII and IX are coincident with a subsequent Romano-British reuse of the field system east of the double-lynchet trackway.

The double-lynchet trackway: Trenches VI and XI

The pottery from Trenches VI and XI across the double-lynchet trackway suggests that this trackway forms part of the earlier Iron Age field system, and that the trackway was established contemporaneously with this field system. Trench XI has no stratified pottery. Both earlier Iron Age pottery and Romano-British pottery was recovered from the JCB stripping of Trench XI. Trench VI has exclusively earlier Iron Age sherds from its base (Context 776), while the major layer of accumulation (Context 775) produced substantial quantities (71 sherds) of earlier Iron Age pottery, with just a few Roman sherds (9) from the very top of this layer.

The excavated field system to the west of the double-lynchet track: Trenches X, XII, XV, XVI and XVII

The sherds from Trench XVI, together with those from Trenches XIII and XXX (see below), suggest the earlier Iron Age field system extended west of the lynchet trackway, but possibly in a less intense and formalised way than east of the lynchet trackway. The distribution of Romano-British sherds indicates that subsequently this area became a focus for Roman activity (e.g. Trench XIII) based around the creation of new field boundaries (Trenches XV, XVI and XII).

Trenches XV and XVII section the flint bank which abuts, at right-angles, the western end of the earlier Iron Age west–east lynchet (see Trench XVI). Trench XVII was only topsoil-stripped and produced a total of five sherds, all Romano-British. Trench XV produced a total of eight sherds from Context 812 and ten sherds from Context 778. These layers are sealed by the flint bank. The sherd sherds from Contexts 812 and 778 were exclusively earlier Iron Age excepting the presence of one Romano-British sherd in each layer. The presence of these two Romano-British sherds suggests that the flint bank is of Roman date, incorporating construction material derived from the earlier Iron Age field system.

Trench XIV produced no sherds. All sherds recovered from Trench X were Romano-British and came from JCB stripping.

Features within the field system west of the double-lynchet track: Trenches XIII and XXX

Two sectioned features within the western excavated field system may also be of Romano-British date. The first of these features was the marling pit in Trench XIII which, except for two earlier Iron Age sherds and two Post-Medieval sherds (from the JCB stripping and upper layer), produced only Romano-British sherds. The second feature was the flint mound in Trench XXX. Sectioning recovered earlier Iron Age sherds and Romano-British sherds throughout the mound, including the original land surface (Context 759), suggesting a Roman formation date, and using mound material derived from the earlier Iron Age field system.

Other unstratified pottery

Exclusively Romano-British and Post-Medieval sherds were recovered from the 1991 surface collection of fields to the north-west and north-east of the excavated field systems. Roman settlement activity (post-holes and quantities of East Sussex Ware) is recorded (see below) just south of the excavated area. This emphasises the more extensive nature of Romano-British activity/manuring, compared to earlier Iron Age landscape exploitation, in the area under assessment.

The valley bottom enclosure

The majority of the pottery from the valley bottom enclosure came from unstratified deposits and the sherds are of the same fabric range as those discussed for the field system. For this reason the material is only referred to in the trench descriptions (see below) and not included here. A full list of the pottery forms part of the archive.

The worked flint

David Underwood, incorporating comments by Chris Butler

A total of 1,674 humanly struck flints were recovered from the 1989 excavations at Eastwick Barn. A further 247 pieces were recovered during the 1991 fieldwalking, assessment

Section 6 – 121
and topsoil-stripping. The 1991 finds have been analysed by Chris Butler whose findings are contained in a separate archive report, although points arising from them are incorporated in the discussion at the end of the present summary. The 163 pieces from the valley bottom (Trench XVIII) are discussed by Robin Holgate (see below, Section 8).

A slightly different analytical procedure was applied to this material in comparison with the other flint assemblages from the A27 project. Rather than applying detailed multivariate analysis of technological and metrical attributes to a limited sample of the unretouched débitage, a simple classification into flakes and blades (the latter being parallel-sided flakes with a breadth:length ratio of 1:2 or less) and identification of soft-hammer struck pieces (according to the criteria defined by Ohnuma and Bergman 1983) was carried out for all pieces. In the limited time available this provided a more satisfactory overview of the whole assemblage, while not permitting the investigation of finer variability within the broad categories, such as had been identified at Mile Oak (Underwood 1991). The full catalogue forms part of the archive with a selection described in the catalogue below.

Raw material

The raw material for the Eastwick Barn assemblage was nodular chalk flint with unabraded cortex, presumably derived from locally occurring primary flint deposits. Flaked surfaces were patinated bluish-white to white.

Technology and typology

The composition of the excavated assemblage is shown in Table 6.1 (excluding material examined by Chris Butler and Robin Holgate). Numbers in brackets indicate the number of soft-hammer struck pieces in each category. The representation of tool types is given in Table 6.2.

One retouched blade comes from the valley bottom enclosure – all other tools were from trenches sampling lyncheshs and the flint mound.

<table>
<thead>
<tr>
<th>Table 6.1 Eastwick Barn: List of flintwork categories.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Main excavations</td>
</tr>
<tr>
<td>Valley bottom enc.</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6.2 Eastwick Barn: Flintwork tool types.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Convex scraper</td>
</tr>
<tr>
<td>Straight scraper</td>
</tr>
<tr>
<td>Backed knife</td>
</tr>
<tr>
<td>Retouched flake</td>
</tr>
<tr>
<td>Used flake</td>
</tr>
<tr>
<td>Retouched blade</td>
</tr>
<tr>
<td>Arrowhead</td>
</tr>
<tr>
<td>Hammer stone</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The relative proportions of flakes, blades, and hard- and soft-hammer struck pieces, are similar in all lynchet and flint mound contexts. The very high proportion of flakes and hard-hammer struck pieces is a point of similarity with the known LBA sites excavated in the course of the Bypass project (see flintwork reports for Mile Oak and Downsview, this volume). This impression is reinforced by the technology of the cores, most of which bear irregular flake removals. The majority of cores were discarded in a partially worked state. The retouched tool assemblage is also comparable with those from Mile Oak and Downsview, consisting as it does largely of a very restricted range of non-standardised types formed by non-invasive retouch on hard-hammer flake blanks.

There are some exceptions to this general picture: the broken barbed-and-tanged arrowhead (Cat. No. 7) is of Green’s ‘Sutton’ type (Green 1980: 138), prevalent throughout the EBA. The obliquely truncated bladelet (Cat. No. 10) along with the single-platform blade core (Cat. No. 15), are evidence of a more controlled mode of blank and tool production more common in the earlier Neolithic.

The material from the valley bottom enclosure is similar in character to that from the rest of the site in terms of the proportions of the various classes of debitage, apart from a slight over-representation of soft-hammer flakes. The presence of two bladelet cores and a retouched soft-hammer blade combine with this fact to suggest that some of this assemblage may be earlier (i.e. Neolithic) in date than the bulk of the material from the site.

Discussion

From his examination of the flint recovered from fieldwalking and topsoil stripping, Chris Butler noted two groups: one set of material from both fieldwalking and topsoil which appeared to be LBA in date, and a second range of pieces from topsoil which were suggested to be Late Neolithic or EBA. A single core tool (pick) of Neolithic date was found during fieldwalking (Cat. No. 12).

The material analysed by the author reinforces these suggestions. The overall nature of the assemblage fits into what is known of Later Bronze Age flint industries in the region: prevalence of hard-hammer percussion; high proportion of flakes to blades; non-standardised blank production with little core preparation; tool formation by minimum necessary non-invasive retouch; lack of tool standardisation; restricted range of tool types (cf. Drewett 1982b; flintwork reports for Mile Oak and Downsview, this volume). Against this general background there are indications of earlier activity on the basis of both of individual artefacts (example: the barbed-and-tanged arrowhead) and of the overall composition of the valley bottom enclosure assemblage and the valley bottom assemblage from the valley’s colluvial deposits. In all cases the material recovered is suggestive of the small-scale domestic manufacture and use of flint tools.

Flintwork catalogue (Fig. 6.10)

1 Transverse scraper: straight scraper edge on distal end of broad hard-hammer flake. Trench IV, Context 726.

3 Backed flake knife: elongated flake; one edge convex with very coarse bifacial backing retouch, opposite edge unretouched. Trench V, Context 712.

4 Crude sidescraper: straight scraper edge on left lateral edge of hard-hammer flake. Trench V, Context 713.

5 Utilised flake: irregular hard-hammer flake. Convex portion of right lateral edge bears small flake fractures on ventral face and slight rounding. Other edges are sharp and unworn. Trench V, Context 713.

8 Sidescraper: straight scraper edge on lateral edge of very thick flake. Flake truncated by inverse retouch at distal end. Trench XXX, Context 755/756.

10 Retouched blade: blade with oblique truncation on right side of proximal end. Remainder of right side straight.

Fig. 6.10 Eastwick Barn Field System 1989 and 1991: Flintwork.

12 Neolithic pick: from 1991 fieldwalking (c. TQ 321098: Fig. 6.1).

13 Single platform bladelet core with removals part way round. Trench VIII, Context 773.

14 Single platform flake core with flakes removed all round. Trench XXX, Context 755/756.

15 Single platform box blade core with removals part way round. Trench XIII, Context 749.

16 Polygonal (multiplatformed) core. One platform has parallel bladelet removals, others have irregular flake removals. Trench XXX, Context 755/756.

Two Early Iron Age brooches from Eastwick Barn

Sue Hamilton

Introduction

Two brooches (or fibulae) were recovered from lynchet accumulations forming part of the Iron Age field system. Both brooches were stratigraphically associated with Early Iron Age pottery (see above). Fibula A was recovered from Context 717 of the lynchet sectioned by Trench V (Fig. 6.5). Some Romano-British pottery occurred below this layer and Fibula A, and its associated Early Iron Age pottery, must therefore be considered as residual. Fibula B is stratigraphically secure, however, and comes from the base layer (Context 730) of the lynchet sectioned by Trench IV (Fig. 6.4).

Fibula B (Fig. 6.11: No. 1)

Fibula B (copper alloy) belongs to Hull type I Bb which has a c. fourth/third-century BC date range (Hull and Hawkes 1987: pl. 32). It is an insular La Tène I type described by Hodson (1971) and distinguished by its flat bow profile, near horizontal foot, short catch-plate and skeuomorphic spring. Viewed from above the bow is a broad leaf-shape with a multiple pointed-oval grooved decoration. The foot is reverted with a snouted disc terminal. The ‘mock spring’ comprises four coils with an external cord. The coils are partly corroded but appear to be wound round a solid rod of squarish section. The pin is pivoted, being wound round the rod to form the third ‘coil’ of the spring from the top. The brooch is a small version of its type and may be a child’s brooch.

The decoration on the bow is distinctive and compares with a number of other brooches of the same La Tène I type from southern and south-central Britain. Two other such brooches are known from Sussex, namely one from Bognor Regis which is discussed in detail by Pitts (1979) and one from Lancing (Fox 1927: n.3). Other brooches of this type with the same motif are the four from the River Thames, London (including two from Hammersmith and one from Syon brooches, the Eastwick Barn brooch is a most significant find.

Fibula A (Fig. 6.11: No. 2)

This iron fibula is badly corroded and has been drawn to show both the present outline as well as the features present on the radiographs. The pin and coil mechanism is lost, as is the foot catch-plate. The bow is arched high and in section appears to be flattened like a leaf. The foot is short and turned upward at the end in a straight, slender column. The latter ends in two small knobs (Fusszier decoration), the upper of which is the terminal. The corrosion pattern on top of the bow might suggest the presence of a top-knob perhaps of coral or imitation coral (coloured chalk or limestone). The radiographs, however, show no evidence of an emplacement or a vertical fixing rivet.

The brooch is a Late Hallstatt continental form (Hull type Lx.: Hull and Hawkes 1987: 56 and i) and is unlikely to be later than c.500–450 BC (Hull and Hawkes 1987: 54). Only two other British examples of this general type are known (one from St Paul’s Cray, north-west Kent and one from the London foreshore of the Thames: Hull and Hawkes 1987: pl. 21) and both of these are bronze, not iron as is Fibula A. The St Paul’s Cray brooch closely compares with Fibula A in form and is complete enough to evidence a bilateral ‘crossbow’ spring with five remaining coils on one side. In the light of the rarity of British finds of such Late Hallstatt
Reach), one from Barrington, Cambridgeshire, one from Wood Eaton, Oxfordshire and one from Sahun Toney, Norfolk (Hodson 1971; Hull and Hawkes 1987: pl. 32). The morphological and decorative unity of this group of brooches is striking (Pitts 1979). Although the number of recovered brooches of this type is low (8), they could be considered to be the small-scale output of an individual workshop or crafts person, possibly centred in the Hammersmith area where the greatest concentration of the type has been found, and from which the brooches are distributed over a c.90km radius. For comparison, Cunliffe (1991: 456) has suggested the existence of a Wessex workshop producing a distinctive local version of a La Tène I fibula with incised lines and impressed dots on the bow (Hull and Hawkes 1987: 98–101) distributed within a c.50km radius of Salisbury.

Conclusion

Both of the Eastwick Barn fibulae contribute significantly to the database of British Early Iron Age brooches. Fibula A is a rare British example of a Late Hallstatt type. Fibula B is the third Sussex example of a specific La Tène I type which possibly relates to the output of a workshop situated in the London Hammersmith area. For Sussex as a whole it is worth mentioning that there is now a significant number of securely stratified associations of Hallstatt and La Tène fibulae, notably with pre-Roman Iron Age pottery (Hamilton 1993: Ch. 13).

Coins

David Rudling

The excavations and a metal detector survey of the ploughed field to the west of the field containing the lynchets, revealed a total of 25 coins. Of these, five coins are Roman and the rest are Post-Medieval/Modern. A full list of the coins forms part of the archive. The Roman coins are listed below.

 Obverse: ANTONONINVS AVG PIVS P P, Laureate bust right.
 Reverse: Legend illegible, S.C., Victory flying right, holding trophy.
 Ref. Type as RIC 715 and BMC 1607: (AD 143–4).
 South-east corner of field: approximately TQ 322096

2 Second or early third century. Illegible plated denarius.
 Obverse: Legend illegible, head of emperor right
 Reverse: J AVG, female figure standing left, holding cornucopiae.
 Trench XV, Context 752.

3 Helena. Commemorative issue struck after her death, c. AD 337–40. Ae 15mm. Much edge damage.
 Obverse: IHE [, bust of Helena right
 Ref. Type as RIC 78 (Trier).
 Reverse: Legend missing, Pax standing left.
 Trench XII, Context 745

4 Late third or fourth century. Illegible Ae 18mm.
 Probably barbarous
 Obverse: Legend illegible, bust right
 Reverse: Illegible
 Ploughed field to west of lynchets: approximately TQ 313095

5 Fourth century. Illegible Ae 13mm. Probably barbarous
 Obverse: Legend illegible, bust right
 Reverse: Illegible
 Ploughed field to west of lynchets: approximately TQ 308 094

The slag

Luke Barber (incorporating comments by Paul Harrison)

A single piece of slag was recovered from the excavations (Context 755/756, Trench XXX). From a visual examination the piece appears to be a fragment of tap slag from an iron smelt.

The other metalwork

Luke Barber

The majority of metalwork from the excavations came from either unstratified or topsoil contexts. Most of this material dated to the nineteenth and twentieth centuries (ammunition and shrapnel from World War II was particularly apparent in all areas). A full list of the metalwork forms part of the archive. Some earlier pieces were encountered, however, the Iron Age brooches reported on above being by far the most important. Other metalwork and coins came from a limited survey of a ploughed field to the west of the main excavations. The presence of a Medieval brooch and buckle is interesting in that few other artefacts of this period were encountered during the excavations.

Fig. 6.12 Eastwick Barn 1989: Copper alloy objects.
Catalogue (Fig. 6.12)

1. Copper alloy ring formed from round-sectioned tapering wire. A similar example, described as a penannular ring of the twelfth or thirteenth centuries was found in Lewes (Freke 1975: Fig. 8, no. 59). The Eastwick Barn example may be of similar date, although coming from unstratified deposits its date must remain uncertain. Ploughsoil in field to west of main excavations. Approximately TQ 313095.

2. Copper alloy hexagonal brooch with slightly concave sides and ornate moulded decoration. The frame has a cast recess on the apex of the join of two sides to house the pin hinge. The pin is missing. There is no parallel in the Medieval Catalogue (London Museum), although it is very similar to Callander’s second type brooches of brass or bronze (Callander 1924: 179–81). Probably fourteenth or fifteenth century. Ploughsoil in field to west of main excavations. Approximately TQ 314095.

3. Copper alloy figure-of-eight buckle with remains of iron pin. There are three incised lines at each end of the frame. A common type of buckle dating from the late fourteenth to sixteenth centuries. Trench VI, Context 739 (general clearance).

The geological material

Luke Barber (incorporating comments by John Cooper)

A total of 287 pieces of geological material (weighing 15,499g) were collected during the excavations of both the field system and valley bottom enclosure. In addition, a large quantity of natural iron ore was also located consisting mainly of clay ironstone, iron pyrites and haematite. A full list with identifications of the geological material and iron ore forms part of the archive.

Of the 287 pieces of stone collected, by far the most common type was sarsen sandstones: 256 pieces (89.2%), weighing 12,879g. Sarsens (siliceous sandstones of the Cenozoic Beds) often contain other bodies such as flint in their matrix and have been discussed in detail elsewhere (Summerfield and Goudie 1980). The presence of these erratics in the Brighton area has been known for many years (Mantell 1822: 253–5; Dixon 1878), usually being large boulders, many of which are still present. Their actual source is still unknown, although it has been suggested they may have derived from either the Woolwich and Reading Beds or the Clay-with-Flints (Young and Lake 1988). It is likely therefore that this stone occurred naturally on and around the site at Eastwick Barn.

The sarsen examples found during the excavations ranged greatly in colour – many varied from a sugary white to grey. Other iron-rich examples ranged from orange to brown or purple, and occasionally even black. Many of the pieces, particularly from the burnt mound, showed a zonation of colour suggestive of burning. These examples tended to be more friable.

Although sarsen pieces were found scattered over the whole area of the excavations (usually in small pieces of 20–60g: the largest single piece, which weighed 310g, was from Trench V), there was a noticeable concentration within the burnt mount (Trench XXX). Here 98 pieces were found (38.3% of the sarsen total for the site), weighing 6,725g (52.2% of the total by weight). Context 755 was particularly prolific, containing 84 pieces. The largest piece from the burnt mound weighed 285g, although most were much smaller. The presence of so many pieces of sarsen in such a small area, some of which show signs of burning, suggest Trench XXX may have been the site of one of the large erratics in the area which was subsequently broken up using heating and cooling.

The remaining pieces of stone from the site consist mainly of Welsh and West Country slate, iron silicates, beach pebbles and jasper – none in great quantity. A single piece of Wealden mudstone was located in Trench XXIX, Context 1339, as well as two fine-grained Wealden sandstone quern fragments from JCB clearance in Trenches XXII and XXIII. These fragments – both top-stones from flat rotary querns – are likely to be of Romano-British date. Similar examples have been found at Bishopstone (Bell 1977: 181, Nos 5 and 6).

The seeds

Pat Hinton

The only ancient seeds recovered from the Eastwick Barn soil samples were two charred grains of hulled barley (Hordeum vulgare) from the burnt mound (Context 757) in Trench XXX.

The wood charcoal

V. Berzins

Charcoal fragments from several layers in the lynchets in Trenches III, IV, V, VI and XVI were examined, as well as a very small amount of material from the burnt mound in Trench XXX. All the material had been collected by hand in the course of excavation.

Methods

The methods used were the same as those described in the report on wood charcoal from Mile Oak (see Section 2) except that 5mm, instead of 4mm, was chosen as the minimum size of fragments for examination. Also ‘twigginess’ was assessed at magnifications of both 24× and 60× (see Downsview report on wood charcoal, Section 7). No sub-sampling was necessary.

Results

The following is a list of the taxa identified in the charcoal, together with a list of the native British species that these taxa include:
• Identified to genus level:
 Ash (Fraxinus) common ash (F. excelsior L.)
 Oak (Quercus) pedunculate oak (Q. robur L.), sessile oak (Q. petraea (Matt.) Liebl.)
 Hazel (Corylus) hazel (C. avellana L.)
 Holly (Ilex) holly (I. aquifolium L.)
 Birch (Betula) silver birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.)

• Identified to sub-family level:
 Pomoideae common hawthorn (Crataegus monogyna Jacquin.), woodland hawthorn (Crataegus oxyacanthoides L.), crab apple (Pyrus malus L.), pear (Pyrus communis L.), whitebeam (Sorbus aria (L.), Crantz.), rowan (Sorbus aucuparia L.), wild service (Sorbus torminalis (L.) Crantz.).

Table 6.3 (Appendix 4) shows the representation of the different taxa in the various types of contexts in the lynchets. Almost all the charcoal comes from the initial layers of lynchet accumulation dating from the earlier Iron Age. Only 32 fragments in total were identified, and no weights or numbers of fragments have been given in the table, since it is considered that with such a small number of fragments these figures would be meaningless. For the same reason the results from the assessment of ‘twiggeness’ for each context have not been presented. In total 8 ‘twiggy’ and 11 ‘non-twiggy’ fragments were recorded at 24× magnification, and 5 ‘twiggy’ and 17 ‘non-twiggy’ fragments at 60×.

In Trench XXX, layer 757 below the main burnt accumulation of the mound produced a small amount of oak charcoal, while from sandy patches within this layer (Context 758) small amounts of maple and oak were recovered.

Discussion and conclusions

It would appear that three main modes of origin could contribute to charcoal deposition on cultivated ground and subsequent incorporation into lynchet accumulations:

1. Wood may be burnt in the course of vegetation clearance prior to cultivation.
2. Wood charcoal from domestic hearths may be spread on fields along with ash or organic rubbish. This is the same mode of origin that is often assumed for finds of potsherds in lynchet accumulations.
3. Charcoal may be re-deposited in lynchet accumulations from fires associated with previous human activity in the area which have been ploughed out.

It seems likely that in most cases the first two suggested modes of origin would be more important than the third.

The initial lynchet accumulations that contained most of the charcoal were presumably formed fairly soon after the clearance of vegetation for the purposes of cultivation, and so the charcoal from these layers, along with the material from the subsoil hollow in Trench V, can be considered as probably being derived from vegetation clearance.

Most of the wood taxa from these layers are also well-represented in Bronze Age contexts at the sites of Mile Oak and Downview, and it seems likely that the vegetation was, at least in very broad terms, of the same general character as it was near those sites. It is worth remarking that beech, yew (Taxus baccata L.) and juniper (Juniperus communis L.), which are dominant in many areas of downland vegetation today, are completely absent here, as they are on the Bronze Age sites.

There is not really sufficient material from the later lynchet layers and the burnt mound to allow any meaningful interpretation, except to say that the oak and maple fragments in the burnt mound are presumably the remains of fuel wood.

The shell

Penelope Hasler

Only five fragments of marine shell were recovered during the excavations at Eastwick Barn, representing three species: limpet (Patella vulgata), Oyster (Ostrea edulis) and mussel (Mytilus edulis). Only two fragments were stratified within lynchets, both were from mussels (Trench IV, Context 728; Trench V, Context 710). The full list of shells forms part of the archive.

Mollusc and sedimentological report

Keith Wilkinson

Introduction

During the excavations of the field system at Eastwick Barn every excavated lynchet was sampled in the field for both mollusc and sedimentological analysis. Of these samples, however, only those from two lynchets with the best dating evidence were studied – Trenches V and XVI. This report focuses on the results of analysis carried out on material from both trenches, and compares it with work on dry valleys in the Brighton area (see Section 8) and other lynchets (e.g. Bishopstone: Thomas 1977). A sample through the burnt mound in Trench XXX was also analysed, although no meaningful results were obtained.

Methods

Sampling was carried out by the excavators after the sections had been cleaned/ excavated by hand and drawn. Sampling was carried out according to the procedures outlined by Carter.
the fill of the hollow. This is based on the fact that it contained 70% chalk rocks in the greater than 16mm fraction, and over 90% chalk granules in fractions smaller than this, whereas all other samples were largely composed of flint, particularly in fractions greater than 16mm. It is thought likely that this chalk is derived from the sides of the hollow, which being a solifluction gravel is largely composed of such material.

Mollusc analysis of Trench V

Preservation of mollusc shell was generally good throughout the sequence except in the bottom two samples (25 and 26) where fewer than 30 shells were found per sample. The data are tabulated in Table 6.5 (Appendix 4) and presented as a percentage histogram in Figure 6.13.

The basal two samples did not contain enough shells to reliably convert the data to percentages. However, there is no mistaking the fact that the assemblage from the bottom-most sample is of a shade-loving character. This supports the interpretation stated above, that material from the base of Context 713 is actually from the subsoil hollow (labelled 715 and 716 in Fig. 6.4). The shade-loving component is similar to that recovered from Trench XVI (see below). The upper of the two basal samples has a few shells of shade-loving species, in an assemblage otherwise of an open country character.

Throughout the remainder of Context 713 the characteristics of the assemblage remain similar, in being of a generally open country nature. Four species seem to dominate, which in descending order of magnitude are Vallonia excentrica, Vallonia costata, Helicella itala and Trichia hispida. This combination of species is typical of that found in colluvial dry valley fills by Bell (1983), who interpreted it as being characteristic of arable cultivation. Indeed the assemblage present from 104cm to 114cm is particularly reminiscent of those found in valley colluvium in the Brighton area, which is also postulated as being caused by ploughing (Wilkinson 1993). However, above this is evidence that suggests a change to the system. Initially there is a large decrease in Trichia sp. and V. costata, and an increase in H. itala, which could be due to a spread of grassland. Following this there is a steady increase in V. costata throughout the rest of 713 (and into 712), and a corresponding decrease in H. itala. This could have been caused by an increase in vegetation height, as while the former is tolerant of some shade, the latter prefers mainly unvegetated areas (Evans 1972). In this respect the decline in Papilla muscorum may also be an indicator, as this species normally lives in unvegetated, disturbed ground. Therefore it is probable that either the arable regime became less intense with time, or possibly, pastoral phases were interspersed with the arable.

The trends started in Context 713 continue into Context 712, in which unit V. costata peaks. However, a slight rise in P. muscorum could indicate that some areas were being overgrazed or had been left free of crops.

In Context 710 there is a major faunal change with the rapid decline of V. costata, a slight increase in V. excentrica and large increases in P. muscorum and Vertigo pygmaea. This probably indicates a return to instability and more intense erosion, as the species which increase in proportion prefer more open conditions (than V. costata). Indeed similar faunal changes have been observed in upper ‘Romano-British’ colluvial deposits in the Brighton area, and could represent the return to an intensive arable-based
economy (Wilkinson 1993). The sedimentological information similarly shows a coarsening of average particle size in this context, perhaps indicating more intense erosion (see above).

The assemblage from 706 is of typically short grassland character (as was in existence prior to excavation), although the large numbers of P. muscorum present indicate some disturbed ground, probably caused by overgrazing.

Trench XVI

Figure 6.9 illustrates the section of Trench XVI, while the sedimentary layers comprising it are tabulated in Table 6.6 (Appendix 4).

Dating and basic interpretation of the sediments in Trench XVI

Interpretation of the sedimentological sequence recorded in Table 6.6 (Appendix 4) is relatively straightforward for all contexts except 791. Other than this context, which is possibly a truncated worm-sorted soil (Barber, pers. comm.), all other contexts are colluvial. Contexts 796 and 797 have accumulated in a subsoil hollow which is probably the result of tree growth, whereas Contexts 792, 790, 789, 788 and 787 are almost certainly colluvial in origin and have built up against the lynchet. A basic grain size analysis demonstrates that other than 787, all other contexts have very high proportions of large clasts. In fact the sample with the highest proportion of material greater than 16 mm is from Context 791. Indeed Figure 6.9 shows this context to be defined by its high lithic content. Therefore it is possible that Context 791 is the result of rill erosion further upslope, which process has commonly been found to result in the deposition of gravel fans (Allen 1991; Boardman 1992). For such severe erosion to have occurred the area would have had to be intensively ploughed and therefore an arable farming regime is hypothesised. The gentle nature of the slope in the area, however, does not rule out Context 791 as being a B horizon of a former soil. All other samples, except those from Context 788 (which also contains a high proportion of material greater than 16 mm) and Context 787 (which being a soil and therefore sorted by microfaunal action contains only a small quantity of material greater than 2 mm and none above 16 mm), demonstrate a similar grain size distribution. However, if the subsoil hollow (contexts 796 and 797) is discounted, material from Context 792 is generally finer than that from any other colluvial deposit, possibly indicating a more gentile means of deposition.

During mollusc analysis an approximate and qualitative record was kept of different lithologies found in the samples. This demonstrates that material eroding into the hollow was primarily composed of chalk, probably derived from the periglacial deposits in which the hollow had formed. However, all subsequent contexts contained large sub-angular flints, and a mixture of smaller angular flint and sub-rounded chalk granules. This implies a different source of sediment for the upper contexts, possibly as a result of erosion of Clay-with-Flints deposits.

Mollusc analysis of Trench XVI

Table 6.7 (Appendix 4) shows the species found during examination of the 13 samples from Trench XVI. Preservation of mollusc shell was generally poor throughout, except in Contexts 790 and 789 where in excess of 200 shells per sample were found. The data are not illustrated as a percentage histogram (e.g. as Fig. 6.13) as the few shells recovered would render this unreliable. This makes interpretation difficult although general trends can be recognised. However, considerable faunal changes do occur in the sequence. The basal samples from Contexts 796 and 797 have a mollusc assemblage of a predominantly shade-loving character, whereas in contexts above this the assemblages are dominated by open country and cathic species. The shade-loving assemblage was found in a subsoil hollow, excavated into periglacial solifluction debris and Upper Chalk bedrock. The mollusc species found indicate the presence of woodland rather than long grassland, as species such as Discus rotundatus and Oxylithus cellarius were found, which are today absent from grassland habitats (Cameron and Morgan-Huws 1975). The two open country species found in Context 796/797, Vallonia costata and Pupilla muscorum, have commonly been found in early post-glacial woodland assemblages (Evans 1972; Wilkinson 1993). The interpretation of a woodland habitat correlates with current ideas on how such subsoil hollows formed, i.e. through tree fall; the actual area of the hollow being the space once occupied by the tree’s bowl (Evans 1972; Bell 1983). Once formed the hollows are thought to have filled with contemporary soil by colluvial processes. If this is the case, it is likely that material from both Contexts 796 and 797 is of a similar age, although it is by no means certain when they were deposited. Bell (1983) and Evans (1971, 1972) both interpret such features as being a pre-Neolithic phenomenon, when southern Britain is thought to have been covered by climax deciduous woodland (Godwin 1975; Rackham 1986). However, at Toadeshore Bottom East two AMS radiocarbon determinations (2140–1690 cal BC, OxA-3078; 3550±80 BP; 2180–1680 cal BC, OxA-3079; 3550±90 BP) were obtained from such features and indicate Bronze Age dates of formation (H: see Section 8). On purely faunal grounds, and if theories of mollusc colonisation are to be believed (Kerney 1977; Kerney et al. 1980), deposition of the infilling sediments cannot have occurred prior to 7,500 BP, as both Acicula fusca and Pomatias elegans, which were found from Contexts 796/797, colonised after this date. As the context above (792) has been dated to the earlier Iron Age on the grounds of ceramic inclusions, the sediments from the hollow could have formed at any time from c.6300 cal BC to c.1200 BC (cal 7500 BP to c.3000 BP). One particularly interesting inclusion in the assemblage is Helicodonta obvoluta, a single shell of which was found in Context 797. This anthropophic species is today rare in Britain (and has a southerly distribution in continental Europe) and is only found in Hampshire and Sussex (Kerney 1976; Kerney and Cameron 1979). Therefore this could be an indication that people were not heavily exploiting the woodland in which the hollow was formed.

Unfortunately, only four shells were found in the two samples from Context 792. However, these are all of species of open country preference, which when combined with the poorly sorted nature of sediments, probably indicate that the deposit is colluvial and was therefore most likely to have been caused by agriculture. It is therefore probable that a
hiatus exists between the period during which Context 796/797 was deposited and that when Context 792 formed, as no trace was found of a palaeosol relating to the woodland phase.

Context 791, which again has been dated to the earlier Iron Age, has been interpreted as being a B horizon of a former soil (see above). If so this would indicate a period of stabilisation, during which the agricultural regime was presumably altered to stop erosion. As soils take some tens of years to form to the depth indicated on Figure 6.9, possibly this stable period may have lasted for some time. However, as also suggested above, this deposit is possibly the result of an intensive or a series of high-energy erosional events, in which case it would have formed over a very short timescale. The molluscan assemblage indicates open conditions, and as such large-scale erosion occurs mainly as a result of cultivation, this was possibly the contemporary land-use. From the data available it is difficult to be sure of the actual formation processes connected with Context 791.

Deposits stratigraphically above Context 791 (i.e. 790, 789, 788 and 787) have all been dated from their pottery inclusions to the Romano-British period. Mollusc shell preservation is high in Contexts 790 and 789 and low thereafter. The assemblages recorded in 790 and 789 are similar. They are both dominated by *Vallonia excentrica*, a species found in profusion on open, short turf grassland (Cameron and Morgan-Huws 1975; Evans 1991). *Vallonia costata*, a species more tolerant of shade and humidity (Evans 1972) is of lesser numbers, while *Pupilla muscorum* and *Trichia hispida*, both common in arable conditions, occur at a still lower frequency. The comparatively high percentage of *Helicella itala* (i.e. this species only ever occurs at low frequencies) would tend to suggest the short grassland hypothesis as it lives in areas bare of vegetation on south-facing slopes (Evans 1972). Therefore it is possible that Contexts 789 and 790 accumulated as a result of pastoral activities further upslope. The fine nature of the deposits indicate that it was deposited by soil creep and overland flow, consistent with overgrazing by herbivores (Butzer 1982), rather than mass movement and rilling which tends to be associated with autumn sowing of cereals (Boardman 1992). However, as with Trench V, it is possible that this pastoral activity was interspersed with arable farming.

Contexts 787 and 788 contained only one mollusc shell between them, so it is impossible to comment on the environment of deposition.

Synthesis

Material accumulating against the two lynches has been shown to be almost universally colluvial in nature, implying a continuation of farming. However, the earliest features at the site are the subsoil hollows which underlie the first colluvial deposits. These features were found in both trenches, but could not be dated owing to the lack of ceramic inclusions. Unfortunately, the recovered woodland mollusc fauna cannot be used as a dating tool as recent evidence has demonstrated that such conditions probably lasted from the early post-glacial into the Bronze Age in certain localities around Brighton (although this may have been of secondary nature, which is indistinguishable from the limited molluscan record). Therefore it can only be stated with any confidence that woodland existed at some point prior to lynchet accumulation.

The earliest lynchet material at both sites dates from the earlier Iron Age. Although shell preservation was variable between the trenches, it is nevertheless possible to state that this phase is likely to have been an arable one. However, in Trench V there is some evidence to suggest that at some time prior to the Romano-British period this became less intense and a longer vegetation developed. Sedimentological evidence from Trench XVI points to the existence of a gravel fan or buried B horizon dating to a similar time span. It is possible that a mixed farming economy was in existence at this time.

Deposits relating to the Romano-British period were found in both trenches, and proved to be highly fossiliferous. The assemblages of mollusc shells relating to this period indicate that a short grassland habitat existed at times. This was probably associated with a pastoral activity interspersed between arable cultivation. It is by no means certain if this practice lasted until after the Romano-British period, although both sedimentological and molluscan data from Trench V indicate heavy erosion associated with a mollusc assemblage indicative of disturbed ground. This phase of sedimentation has associated Romano-British pottery, but as accumulation is likely to have been a result of rill erosion or sheet flow, some of this could be either residual or derived.

Perhaps the most surprising feature of the sediments accumulating against the lynches at Eastwick Barn was the absence of any material that could definitely be classified as Middle to Late Iron Age. This observation is mirrored in several of the dry valley accumulations investigated during the project (see Section 8, below). A possible explanation could be that a pastoral economy was being practised at this time which caused little erosion. Another reason could be that either no potsherds of this period have been found (for whatever reason), and/or the ceramic chronology is uncertain for this period and in this particular locality. If this were the case, deposits relating to this period may have been found, but not recognised.

Discussion: the field system

Previous work

The only previously published work carried out within Eastwick valley, with the exception of Toms’ earthwork survey (Toms 1924), was during the destruction of Eastwick Pond (Toms 1934, 1936). The pond was filled in during May 1935 and is now the site of the roundabout at the end of Mackie Avenue (Fig. 6.1). The lynchet forming the western side of the lynchet track sectioned in Trench VI at this time continued further downslope to the south where it turned west around the pond. Toms used this as evidence to suggest that the pond predated the lynchet. It is possible however, that the pond was constructed at a later date in a convenient corner formed by existing lynches. Unfortunately, the relationship can no longer be ascertained as both features are now destroyed. This lynchet, which bordered the pond on the north side, was cut back during the pond’s infilling, giving Toms the chance to study the section. He noted that within this 9-foot high lynchet was a layer of fire-cracked flint, associated with a little Romano-British pottery, just below the turf-line (a similar layer was noted in Trench VI – see above). It is probable this flint may have
come from the burnt mound excavated in Trench XXX. At a depth of 8 feet Toms noted another layer of fire-cracked flint, together with unpatinated flintwork of the Beaker period. In the light of the 1989 excavations (see below) we now know the lynchets in Eastwick valley were not forming until the Early Iron Age and, with the exception of a few pieces (for example the barbed-and-tanged arrowhead from Trench XV), most of the flintwork recovered was of LBA/Early Iron Age date. It is possible, however, that a Beaker settlement existed in the valley bottom near this point. The flintwork from the valley transect (Trench XVIII – see Section 8) certainly suggests some activity during this period and such valley bottom locations are now well known for Beaker settlement (Bell 1982; Allen 1987). Without further evidence, however, such a suggestion must remain tentative.

The date and development of the excavated field system

The recent excavations at Eastwick Barn have given a rare opportunity to study a sizeable block of fields in order to gain a fuller picture of the initial date of formation and, perhaps more importantly, to study the changes and modifications the field system was subjected to in later periods of cultivation.

Although the various finds of Neolithic and EBA flintwork during the recent excavations suggest some activity in the area at an early date (see flintwork report, above), the majority of the flintwork is of LBA or Early Iron Age date. This tends to complement the ceramic evidence for the start of more intense activity in the area. Both the flintwork and the pottery from the excavations therefore suggest that most of the lynchets started formation by the earlier Iron Age. This seems to be particularly the case with the lynchets sectioned in the eastern area (Trenches II, III, IV and V), where the majority of accumulation contained solely earlier Iron Age pottery. This area, on the steeper slopes of Eastwick Bottom, appears to have been the original focus of Iron Age cultivation and was flanked on its western side by the contemporary double-lynchet track (sectioned in Trenches VI and XI). To the west of the track there is further evidence of earlier Iron Age cultivation: Trenches VI and XVI in particular. The lower layers of both these lynchets produced exclusively pottery of this period. Cultivation here may not have been as intense as in the area to the east of the track, however, as generally the lynchets in the western area were both smaller and fewer in number. It is possible this area was a more sporadically farmed extension to the main field system which ran down the main north–south axis of the Eastwick valley. The more gentle gradient in this western area, however, would not have facilitated the formation of large lynchets. This fact, together with the relatively large quantities of residual earlier Iron Age pottery found in this area generally, suggests the western area may have been cultivated more intensively than the earthwork evidence suggested. The economy of this initial period seems to have been one of fairly intense arable agriculture, which caused severe erosion. The sedimentological and molluscan evidence does also, however, suggest that pasture/fallow periods may have been interspaced between the main arable phases (see above).

The lack of Middle and Late Iron Age pottery from the excavations is interesting. A number of possible explanations can be suggested, although unfortunately there is little conclusive environmental evidence to suggest one in particular:

(a) the field system was still cultivated but without manuring
(b) the field system was used exclusively for pasture
(c) the field system was abandoned completely during this period
(d) the field system was alternated between short periods of pasture and cultivation with no manuring.

The first suggestion seems unlikely, as no particular reason can be found for the cessation of manuring unless the associated settlement site shifted so as to render this block of fields onto the periphery of its cultivated territory. The lack of any definite buried worm-sorted horizons in most trenches (with the possible exception of Trench XVI, Context 791) tends to discount the second suggestion. The third explanation is quite possible – indeed the abandonment of the nearby hillforts at Hollingbury to the south (see pottery report) and at Ditcheating Beacon to the north (Rudling 1985a) tends to correlate well with such a hypothesis. However, the cultivation of the surrounding land cannot be directly linked with any certainty to either hillfort and any associations must remain tentative. The possible site of a Middle to Late Iron Age and Romano-British settlement site/pottery scatter (see Fig. 6.1: point A) noted on the Sites and Monuments (Ref: TQ 30 NW 35) cannot be ignored. This site, although unproven by excavation, is reported to have produced ‘La Tène III’ material from surface collections (Holleymans: SMR correspondence) and thus suggests a continuing presence in the area throughout this period. It is for this reason the fourth explanation seems more plausible. If cultivation continued in short periods, interspersed with periods of pasture, no manuring would be required due to the intermittent presence of livestock. If the rotation of land-use was fairly regular there would only be time for a thin worm-sorted topsoil to form which would quickly be removed by the subsequent re-cultivation (Bell 1977: 266). There is a chance, however, that no pottery from this period survived (for whatever reason) and thus Late Iron Age deposits were not recognised.

The Romano-British period saw a resumption of intense cultivation/manuring, possibly with some pastoral phases interspersed. All areas of the earlier Iron Age field system were re-cultivated on both sides of the lynchet trackway. The eastern area (Trenches I, II, III, IV and V) consistently show layers of Romano-British accumulation over the earlier deposits, although often incorporating much residual earlier Iron Age material. A similar picture is gained from the lynchet forming the western edge of the trackway (Trench VI). Modifications to the existing layout of fields within the area to the east of the trackway were also made during this period: the lynchet sectioned by Trench VIII was solely of Romano-British accumulation, suggesting the creation of a new field boundary at this point during this period. A similar situation is seen in Trench XX with the creation of a flint bank boundary (similar to that in Trench XV).

To the west of the trackway the picture is more complex. Although cultivation of this area during the earlier Iron Age has already been proved, it was during the Romano-British period that this area was modified and intensively used. The low lynchet sectioned by Trench XII (Fig. 6.2) produced solely Romano-British material. Further towards the west...
however, the lynchet dramatically increases in size. This higher stretch of the lynchet (sectioned by Trench XVI) has definite Iron Age origins with subsequent intense Romano-British use. It therefore seems likely that this original field boundary was extended towards the east in the Romano-British period, where cultivation caused the formation of the small lynchet sectioned by Trench XII. Further evidence of modifications during this period comes from the flint bank excavated in Trench XV (and XVI/VII). The fact that this bank, although producing a majority of earlier Iron Age sherd, is of Romano-British date adds force to the suggestion that this area was extensively modified/subdivided during this period.

Other modifications/improvements to the field system during this period include the marling pit and burnt mound. The location of the marling pit in Trench XIII is interesting in that it shows that despite the majority of the area being chalk, there were significant areas capped by Clay-with-Flints which required marling. It is likely most of these clay areas were to the west of the trackway in the vicinity of the marling pit (i.e. Trench XVII), and this may explain why earlier cultivation may not have been so intense in this area.

The ‘burnt mound’ quadranted by Trench XXX is somewhat more enigmatic. The evidence from other burnt mounds has been summarised elsewhere (Raymond and Darvill 1988). Although the Eastwick Barn example has similarities to previously excavated mounds (i.e. shape, size and burnt stone composition), it varies sufficiently for it not to be included in the same class of monument. For example, most other burnt mounds are sited by water or in areas of poor drainage (obviously not present at Eastwick Barn) and many have hearths and/or troughs for holding water around them. Nothing of this nature was found at Eastwick Barn, although admittedly the area around the mound was not extensively excavated. Large quantities of ash and charcoal, either in tip lines, or washed to the base of the mounds are also common in this class of monument – again this was lacking in the excavated example. Another criterion for not placing the Eastwick Barn mound in the same class of monument is its date. All previously dated examples of burnt mounds are of Bronze Age or possibly Early Iron Age date (Raymond and Darvill 1988: 4–5). The excavated example is, however, firmly dated to the Romano-British period. The suggestion of the function of these mounds as possible saunas or sites for the production of narcotic vapours (Raymond and Darvill 1988: 7) therefore seems unlikely to apply to the excavated example, particularly when one considers its situation in the middle of a field system. The single piece of iron tap slag from the mound (Context 755) is of little help in the identification of the function of the mound, for if metalworking took place here much larger quantities of waste products would be expected. The presence of large quantities of sarsen sandstone within the mound may, however, be of more use. The sarsens are well-known erratics in the Brighton area, usually occurring as large boulders (see geological report, above) and it is possible that such a boulder was located at this point. Obviously, it would be desirable to remove such an obstruction to cultivation. A potential method whereby this could be achieved would be through heating and cooling in order to weaken the boulder so as to facilitate its shattering and subsequent removal. Such an activity may be reflected in the layer of fire-cracked flint forming the main layer of the mound (Context 755/756); it is this layer that produced the majority of the sarsen stone. The layer of burnt deposits rested on two slightly domed layers containing both Iron Age and Romano-British pottery (Contexts 759/825 and 757/824: Fig. 6.10). The domed nature of these layers suggests ploughing took place in close proximity around the boulder before it was removed. The subsequent erosion would leave the obstruction sitting on a slight raised area which would be protected from erosion. The actual date of this possible clearance must have been close to the date of cessation of cultivation of this area, otherwise the burnt layer would have been entirely dispersed through subsequent agriculture. The fire-cracked flint layer noted in Trench VI suggests that at least some cultivation had taken place after the clearance of the obstruction. It is possible the boulder may have been removed after the Romano-British period; however, this seems unlikely and cannot be proven with the available ceramic evidence.

Field layout and valley bottom colluviation

No fencelines (as at Bullock Down: Rudling 1982: 129 and Pl. IX) or ditches were found marking out the original field boundaries in the excavated trenches, although the presence of flint banks suggests the existence of definite boundaries. These flint banks may be seen as the result of field clearance (of flints to the edges of fields) during the earlier Iron Age and Romano-British periods rather than deliberate marking-out lines. The banks would also provide a useful check to erosion, but are unlikely to have been constructed solely for this purpose. This is certainly suggested by the evidence from Trench XV where the flint bank ran with, rather than across, the slope: on a boundary which does not require erosion protection measures. Field clearance similar to that at Eastwick Barn has also been noted at Smacam Down, Dorset (Fowler and Evans 1967: 298, Fig. 6.2m), as well as in Sussex (Toms 1922; Curwen 1923b). The suggestion that these flint banks do not represent initial field layout is reinforced by the evidence from Trenches III, IV, V and XVI, where the flint banks/layers had been formed over existing lynchets. It therefore seems likely that the fields were originally separated by uncultivated strips onto which lynchet accumulation formed rather than being initially marked out in stone as was noted at Fyfield Down, Wiltshire (Fowler and Evans 1967: 296). The uncultivated strips would provide a convenient place to dump material from field clearance. The flint banks in Trenches III and IV were almost entirely composed of flints and probably represent a concentrated event of field clearance during the earlier Iron Age, possibly after a short period of disuse. The flint layers in other trenches (i.e. Trenches V and XVI) seem to have been formed gradually during continued cultivation, as these layers contained a much higher percentage of soil between the flints, and it is possible that the longer concentrations of flints in some of the other banks could have resulted from the washing away of finer sediment downslope (M. Bell, pers. comm.). Another explanation for the varying percentages of flints within lynchet banks is put forward by Toms (1922). During his work in Park Bottom (just south of Eastwick Barn) he also noted flint banks on the inclined edge of the lynchets. He suggested the banks containing a reasonably high percentage of soil represented the re-cultivation of existing fields (the flints marking field clearance before the onset of new agriculture). This however, does not explain why there should be large quantities of soil between the flints. Another possible explanation
for flint banks with a high percentage of soil is, of course, increased erosion. If erosion was taking place on the upper slopes of the fields then more flints would be eroded from the chalk as the topsoil thinned. With more flints appearing, field clearance would be a continual process leading to the formation of more flinty layers/banks above relatively flint-free accumulation. Banks almost entirely of flint, noted at Park Brow, were explained by Toms (1922) as a result of a new area with no former lynchets being taken into cultivation; the flint banks being the result of initial land clearance. This suggestion has already been discounted at Eastwick Barn as solid flint banks in Trenches III and IV were formed on pre-existing lynchets. The flint banks/strips located in Trenches XV and XX have parallels elsewhere in Sussex. At Park Brow, Sompting, Curwen noted similar examples measuring some 6 to 8 inches (146–190mm) high and 12 feet (3.7m) across (Curwen 1923b: 31). Forming part of the same field system were well-formed lynchets containing flint banks (both the low linear flint strips and flint lynchet banks were frequently followed by flint diggers during the nineteenth and twentieth centuries (e.g. at Itford Bottom – M. Bell pers. comm.), often causing the destruction of large areas of lynchets. The low-linear type flint strips noted in Trenches XV and XX may have been, in part at least, intentionally constructed as field boundaries. The suggestion that these flinty strips could be unintentional boundaries formed between two fields is an interesting one (Fowler and Evans 1967: 218). If the fields either side of an uncultivated strip suffered from colluvial processes then the flints in them would move downslope leaving the unploughed strip as a linear strip of undisturbed flint-filled soil. This explanation, however, seems unlikely to fit the case at Eastwick Barn as the topsoil at the site was not particularly flint-filled. The pottery found throughout and below the flint bank in Trench XV also suggests this is not merely an undisturbed baulk. It is a more realistic option to view these flint strips, again, as a result predominantly of field clearance: the boundary they formed being a useful side-effect. The fact that the flint strip/bank in Trench XV ran down, as opposed to across, the slope makes this suggestion probable, as soil would be moving from north to south rather than east to west and no lynchet accumulation would be expected at this point.

No plough marks were located during the excavations – this is not surprising as no definite prehistoric or Roman ploughsoil had survived in situ above the chalk (Fowler and Evans 1967: 294). More unusual was the lack of strong/defined negative lynchets associated with the positive lynchets. Although possible traces were found, none were conclusive (with the exception of Trench I). Some lynchets, for example in Trench IV, were probably close enough to the valley bottom to escape the formation of a negative lynchet due to the lessening of the slope gradient. Lynchets higher up the slopes however (e.g. that in Trench V), cannot be so easily explained.

Although the study of the valley bottom colluvial deposits in Trench XVIII is discussed under the dry valley section of this volume (see Section 8), it is worth mentioning the role the lynchets may have played in the formation of these deposits. The lack of Romano-British sherds in the colluvial deposits is both surprising and misleading when one considers the amount located within the lynchets on the valley sides. It is obvious the area was under cultivation during this period, despite the evidence from the valley bottom deposits suggesting otherwise. It seems likely this anomaly is due to the presence of the lynchets. Earlier Iron Age material, although admittedly sparse, was present in the colluvial deposits. By the end of the earlier Iron Age the lynchets to the east of the lynchet trackway were already well formed. It therefore seems likely that the subsequent downhill movement of soil during the Romano-British period was checked, by the already large lynchets, and prevented from reaching the valley bottom deposits. This would not only explain the lack of Roman pottery in these deposits, but also their relatively shallow depth, particularly when one considers the steep gradient of the valley sides at this point. If the lynchets had such a marked effect on the formation of the valley bottom colluvium it obviously stresses the care needed when considering periods of cultivation from pottery incorporated in such deposits.

The layout of the field system as a whole and its associated settlements

The area studied during the 1989 and 1991 excavations forms a small part of a much larger whole. Ancient field systems cover the area to the north, east and west (see Fig. 6.1) although most are now only visible as soil marks in the surrounding arable fields. Field systems also once continued toward the south, over Ladies Mile, and into Park Bottom. Although this southern area is now substantially covered by the Hollingbury industrial estate, it was mapped and studied prior to its destruction (Toms 1910, 1911, 1922, 1934). The field systems of the whole area were also studied and mapped from the air prior to much modern destruction (Holleyman 1935a). Although many of the lynchets/soil marks apparent today (Fig. 6.1) appear to be integral with the excavated block of field system, others appear not to be. Without excavation little can be said of the date of these anomalies (it is possible some of the noted soil marks have no connection with the field system at all). The main block of fields run down the north–south axis of the Eastwick valley. Where the valley twists toward the south-west the fields follow the new alignment so that their northern boundaries are oriented south-west to north-east on an alignment with Mackie Avenue (Fig. 6.2). The double-lynchet trackway (sampled in Trenches VI and XI), runs down the ridge to the west of the valley, although at a point near its southern truncated terminal (by the roundabout at the eastern end of Mackie Avenue) it actually enters the valley bottom. This track once continued past the site of Eastwick Pond (see above) where it became a terraced track which ran up the steep valley side to the south-west towards Ladies Mile. This section of track was destroyed during residential/development (Toms 1934: 490). Even in 1934 the northern section of this track (to the north of the 1989 excavation area) was badly plough-damaged. Soil marks suggest further tracks ran off this main north–south trackway, presumably serving the fields not bounded by the main track. Another track, a little to the east but running roughly parallel to the first, is also noted on the aerial photographs of the area. No trace of this second potential trackway was noted in the field.

With such a sizeable area of prehistoric/Roman field systems there must have been a number of agricultural settlements within the vicinity. Although the Sites and Monuments Record (SMR) lists numerous sites and findspots in the general area, only a few of these seem to be located conveniently close to the field system in Eastwick.
valley. A general scatter of Romano-British pottery was noted by Toms around and to the north of the valley bottom enclosure (Toms 1924: 65; and see below). The general location of the site as shown on the SMR (ref: TQ 30 NW 57: see solid triangle on Fig. 6.1) is on the ridge to the west of the main lynchet track. This sort of location was often favoured by agricultural settlements of the period (Holleyman 1935a: 446; Rudling 1982: 141) and although unproven by excavation, a settlement in this location, bordering the trackway, seems likely. Further to the north-west a number of La Tène III and Romano-British pottery sherds have been found (Fig. 6.1: point A). This site (SMR ref: TQ 30 NW 35), again unproven by excavation, lies just to the east of another north–south track which runs southwards towards the western area of the 1989 excavations. The potential date of this possible settlement is obviously of extreme interest with regard to the use of the field system at this time (see above).

Another two settlements, both proved by excavation, lay to the south of Eastwick valley. The first was situated along the ridge of Ladies Mile (Fig. 6.1: point B) at TQ 316 091. The site (SMR ref: TQ 30 NW 34) was investigated during the 1930s (Norris 1936: 843–4). A series of trenches was dug to investigate pottery scatters that had been noted on the surface. These excavations yielded a quantity of ‘pre-Roman soft soapy ware’ (i.e. Romano-British East Sussex Ware) and harder sandy wares along with a little Samian and Castor ware. Most of this pottery was obtained from circular depressions (ranging from 3 to 5 feet in diameter) in the chalk. Other finds included animal bones, shellfish and quern stones. It therefore seems likely a Romano-British settlement existed in this area whose inhabitants could well have farmed the block of fields investigated during the 1989 excavations. Coins from the vicinity of this settlement span the second to fourth centuries AD, which correlates well with the few coins found during the recent excavations. The second site to the south-west of Eastwick valley (not on Fig. 6.1) was again of Romano-British date. The site, until recently the location of Patcham Fawcett School, was located during the excavation of a barrow in 1956 (Yeates and Holleyman 1960: 137). The site, which consisted of a number of post-holes and palisade trenches, produced large quantities of Romano-British pottery.

Situated actually within the Eastwick valley is the last known occupation site in the immediate vicinity (Fig. 6.1: point C). The site, although listed on the SMR as a Romano-British village (ref: TQ 30 NW 38), has never been confirmed by excavation. A large quantity of Romano-British pottery was found here in the 1930s and again, after ploughing, in the 1960s. No trenches were cut across the site during the 1989 excavations as it lay just to the north of the area to be destroyed by the Bypass. The nature of the site therefore remains uncertain. The closest trench excavated to the site, Trench XVI, produced fair quantities of Romano-British pottery (Fig. 6.9), but not in sufficient quantities to prove the close existence of a settlement.

To conclude, although various probable settlement sites lay close to or within Eastwick valley, few have been conclusively proved and/or closely dated. The predominance of Romano-British sites in the vicinity suggests the area was intensively utilised during this period. Whether these sites were contemporary or represent a shifting farmstead cannot be proved without a systematic programme of detailed fieldwork and excavation. Their precise relationship to the excavated field system must also remain uncertain at this time. The lack of Iron Age settlements within the same area (with the exception of SMR TQ 30 NW 57) is peculiar. From the evidence gained during the recent excavations there must have been Early Iron Age settlements in the vicinity. The pottery of this period however, is less robust than the Roman material, and is more likely to disintegrate rapidly once in the modern ploughsoil. This obviously does not facilitate the location of sites of this period and it can only be assumed at present that these early settlement sites have yet to be discovered.

The valley bottom entrenchment

Mark Gardiner

Introduction

During the 1910s and 1920s Herbert Toms (see Section 1) identified and planned a group of enclosures on the Downs in the vicinity of Brighton, including that at Eastwick Barn (Toms 1924: Pl. XII) The enclosures were rectilinear in shape, with slight banks and external ditches. Toms noted the presence of pottery, where apparent on the surface, but expressed no views about the date of the enclosures. He did, however, suggest that they were possibly the remains of folds for cattle or sheep.

In subsequent work the view has gradually gained ground that these earthworks were probably post-Roman in date (e.g. Bedwin 1983: 201), although the evidence in support of this is insubstantial, for few excavations have specifically attempted to date these enclosures. Work at Bramble Bottom near Eastbourne showed that the enclosure predated a thirteenth-century building. The building was aligned with the enclosure, but had been cut into its bank (Toms 1913; Musson 1955). At Eastwick Barn there was a prima facie case in favour of a Roman or later date for the earthwork, for it overlay the lynchets and therefore must post-date the field system which dates to the Early Iron Age and Roman periods (see above).

The enclosure at Eastwick Barn straddled the base of a valley, which rose steeply on the southern side (Fig. 6.2). The eastern bank ran along the crest of a lynchet and the south side of the enclosure partially utilised the slope of another. The position of the north side seemed to have been determined by the presence of a low lynchet. The enclosure was trapezoidal in shape and had a very slight external ditch and inner bank. A modern trackway along the base of the valley crossed the enclosure on the west and north sides, but the original entrance appears to have been near the southwest where a sunken trackway running between two lynchets approached the earthwork. Toms records a recent storage mound for mangel wurzels in the north-west angle, but this was no longer apparent when the earthwork was surveyed.

Documentary evidence

The land at Eastwick and Tegdown formed part of the demesne (lord’s land) of the manor of Patcham Court. A lease mentions Eastwick among the downs belonging to the demesne, and, although it is undated, it must predate a court
of Michaelmas 1602 at which it was presented that Richard Shelley, the lessor, had died (East Sussex Record Office ACC 2953 140, f. 63r.; ACC 2953 1, f. 80r.). There are few Medieval records of Patcham Court to enable the land to be traced back further. However, Alice and William de Estwyke are among the contributors to the subsidy in Patcham in 1296 and it is possible that they were leasing the demesne or were tenants holding land subsequently incorporated into the lord’s holding (Hudson 1910: 41).

The element *wic* was commonly used in the place-names of isolated farms associated with cattle or sheep farming (Smith 1956 s.v.). Curwen and Curwen (1923b: 19) have noted that the element occurs in the place-name of a number of isolated farmsteads on the downs, including Thornwick Barn (Storrington), near to which they found another enclosure with a scatter of Medieval pottery.

Field evidence

A resistivity survey of the interior of three sides of the enclosure was undertaken to determine whether a Medieval building similar to the Bramble Bottom structure might be present. Medieval buildings on the South Downs were generally constructed with flints walls (e.g. Holden 1963; Drewett and Freke 1982) and any such building was likely to be readily located by resistivity. The survey did not locate any building. A series of trenches was then excavated across the enclosure to examine specific problems and in the interior to provide a general sample of the area enclosed by earthwork.

Trench XIX (Figs 6.2 and 6.14)

A trench measuring $7.4m \times 3.0m$ was cut across the west side of the enclosure to record a profile of the ditch at a point where it was not coincident with the earlier lynches and to determine whether there was any evidence of a fence. The section shows a spread bank (Context 1317), which had been constructed on the worm-sorted old ground surface (1319) (Fig. 6.15). The bank may have been revetted with flint nodules (1318) which had partly collapsed and fallen on top of the two fills of the enclosure ditch (1303, 1305). The ditch was only 0.6m deep. The old ground surface (1319) contained two sherds of East Sussex Ware pottery and the upper ditch fill (1303) one sherd of the same fabric.

Trench XXI (Figs 6.2 and 6.14)

Toms suggested that the entrance to the enclosure probably lay near the south-west corner and noted that a sunken trackway appeared to run from the direction of Eastwick Pond to this point. A trench was opened across the probable entrance to confirm its location and establish its character. The topsoil was stripped by machine and then the trench was cleaned by hand.
Fig. 6.15 Eastwick Barn Enclosure, Trench XXI: Plan and sections of the enclosure entrance. Exterior to the left.
Two lengths of enclosure ditch and a central causeway 3.8m wide could be clearly identified (Fig. 6.15). A surface of large flint nodules had been laid across the entrance way to provide a metalled surface (1307) for the track. The ditches either side were of unequal width measuring about 300mm wide on the north (Context 1308) and 900mm wide on the south (Context 1343). Both had been cut only 200mm into the colluvium at the base of the valley. Some evidence of a possible stone-fronted bank was found on the inner side of the south ditch (1352), the end of which coincided with the ditch terminals. No evidence was found for post-holes at the ditch terminals, although these were carefully examined. Traces of an earlier, outer line of ditches could be seen in plan on the north and, less certainly, the south sides of the entrance way, but no cuts could be detected in section. Roman pottery was present in most of the larger contexts. A single sherd from the ditch fill (1309) of the north ditch may either be Medieval or prehistoric.

Trench XXIX (Figs 6.2, 6.14 and 6.16)

The ditch of the enclosure was apparently continuous except at the entrance and possibly near the north-east corner. Toms noted that the earthwork was ‘mutilated’ at the latter point where it crossed the centre of the valley. This would be a likely position for a second entrance, should one exist, and indeed a modern track ran across the line of the enclosure and into the adjoining field at this point. Trench XXIX was excavated to determine whether there was a second entrance there.

The method of excavation was similar to that used for Trench XXI. The trench was stripped by machine and cleaned up by hand to reveal a scatter of flints cut very clearly by a ditch on the east side. The line was less clear on the west where it had been disturbed by farm traffic (Fig. 6.16). Careful recording of the ditch (1325) suggested that it could be subdivided into two parallel features with a slight internal flint bank. The ditches were box-sectioned to establish their relationships. The fills of these two features were not clearly distinguishable and were not separately numbered. There was some slight evidence that the ditch on the north cut that on the south. An internal flint bank (1339) is clearly identified on the section drawn along the eastern baulk (Fig. 6.14).

The likely sequence of events is that the bank and south ditch were constructed first. The ditch may have been eroded at this point, as it was an obvious point of entry into the enclosure. The boundary was renewed or reinforced by cutting a second ditch to the north. Both ditches were subse-
quently damaged by the passage of farm machinery. Pottery of eighteenth- or nineteenth-century date within the ditch fill suggests that it was filled at that time.

Trench XXXIV (Figs 6.2 and 6.14)

A trench was excavated by hand on the east side where the earthwork had been constructed on top of an earlier lynchet to complete the sampling of the enclosure bank and ditch. The section (Fig. 6.14) clearly shows the stone field bank (1351) against and over which colluvium (1340) had accumulated to form the lynchet. The ditch (1322) had been cut into this.

One of the main points of interest was that the ditch, which measured about 1.5m across, was considerably wider and more shallow than elsewhere. The bank could be divided into three parts, the two outer edges of flint facing (1331) and an inner core of less stony soil (1350). Some of the flints from the bank had rolled into the ditch (1328) during weathering, but otherwise the ditch fill (1323) was uniform. The latter context contained three sherds of Roman pottery.

Other trenches (Fig. 6.2 only)

The interior of the enclosure was examined by machine excavating a series of trenches (XX, XXII–XXVIII, XXXI–XXXIII). 1.5m wide at 10m intervals where the absence of scrub and woodland allowed. Only a single feature was found, in Trench XX. This is described with the field system (see above). No further features were located in these trenches.

DISCUSSION

The four sections cut across the enclosure bank and ditch showed that it was a slight earthwork with a shallow, generally rather narrow external ditch with a low, broad bank faced with flint. Trench XXXIV showed evidence of flint facing on the external and internal sides of the bank and Trench XIX of similar revetting on the outer face. There was a single entrance near the south-west corner. There is some evidence from Trenches XXI and XXIX for two parallel ditches, although this was not found elsewhere. The ditch alone, even though it utilised in part the earlier field banks, would have been inadequate to keep animals in. No evidence for a fence was found in any of the sections cut, but the bank may have been surmounted by a hedge of which no trace would have survived. The entrance of the enclosure, which measured 3.8m wide, would have been suitable for driving animals. This, and the paucity of finds, except for a scatter of Iron Age and Roman sherds, and of features within the interior tend to support Toms’ suggestion that it may have been a stock enclosure. The trench dug at the entrance way did not locate any evidence of a gate, but it is possible that this was closed with wattle hurdles, or with branches of hawthorn, a practice still used for animal enclosures in the Near and Middle East.

The dating evidence for the enclosure is slight. Only a single sherd of Medieval pottery was found (in Trench XXVI); the presence of Roman pottery in the ditch fills provides only a terminus post quem, not a date of construction. In the absence of clear excavated evidence, the best evidence for dating comes from the topography. During survey work on the land in and surrounding the enclosure, traces of low ridge and furrow were noted and where possible were recorded (Fig. 6.2). Evidence for these Medieval and Post-Medieval earthworks have rarely been recorded on the South Downs, although they were identified at Bullock Down, Eastbourne (Drewett and Freke 1982: Figs 70–1) and subsequently have been noted elsewhere. The ridge and furrow respects the enclosure, and it is also significant that the alignment within the enclosure is different from that outside it. The ridge and furrow thus clearly post-dates the enclosure.

The slight traces of the ridge and furrow were examined by taking levels at 0.5m intervals at right-angles to the direction of ploughing. The profile, after a correction had been applied to eliminate the general ground slope, is shown in Figure 6.17. The profile shows a complex pattern with possibly two systems of ridging having major peaks at intervals of about 20 yards (18.5m.) (A, B, ...). These may have been produced by two (or more) separate episodes of ploughing.

A possible sequence of events in the Medieval period is that the Eastwick area was first used as pasture and an enclosure constructed for animals. Subsequently, the arable was increased and the gentle slopes, the base of the valley and the interior of the enclosure were ploughed up. A possible
context for the extension of arable cultivation may be the thirteenth and fourteenth centuries when marginal land throughout England was brought under plough as the demand for cereals grew with the rising population (Miller and Hatcher 1978: 53–63). On the Downs there is clear evidence for an expansion of settlement with farmsteads and villages established during this period at, for example, Bullock Down and Hangleton, and also at Bramble Bottom where a building overlies an enclosure (Drewett and Freke 1982; Holden 1963; Hurst and Hurst 1964; Musson 1955). Although this is a plausible sequence, the grounds for dating the Eastwick Farm enclosure must be recognised as very insubstantial.

Toms observed that there were a number of features common to the earthworks he termed ‘valley entrenchments’. The enclosures were rectilinear and had banks with ditches which generally, although not invariably, were external. The profiles drawn of many of the enclosures suggest that the banks and ditches were never very substantial and a section cut across an earthwork to the east of Devil’s Dyke (Poyning) confirms this (Toms 1917, 1924, 1926). They were often constructed to utilise the slopes provided by existing lynchets. The size of the enclosures varied considerably from that at Home and Dencher Bottom (Ditchling) measuring about 20m square, to the earthworks at Well Bottom (Patcham) which measured about 180m × 115m and apparently was incomplete. Generally there was only a single entrance which was situated in the lowest side, near to the centre of the valley (Toms 1924: 67).

It has not been established that all the valley enclosures were contemporary. The enclosure at Belle Tout is dated to the prehistoric period (Bradley 1970, 1982; Toms 1912). Allen (1984a) has implied that the enclosure at Houndean Valley may be of similar date, although the section examined and dated by him appears to be connected with a lynchet, which Toms (1924: 53) suggested predated the enclosure. An enclosure excavated by Miss P.A.M. Keef at Bramshott Bottom near Harting Beacon in West Sussex is said to have produced a small quantity of Roman pottery, but her work does not provide conclusive evidence of date (Bedwin 1983: 201). It has been suggested that the earthwork at Eastwick Barn may be Medieval and similar enclosures have been found in association with Medieval pottery at Chantry Bottom, Leap Bottom and Thornwick Barn (Curwen 1923b: 11–13).

No single explanation will suffice for all these enclosures. Toms’ suggestion that the enclosures were for stock seems a likely interpretation of Eastwick Barn and for some of the other earthworks. He noted that the enclosure at Faulkner’s Bottom (Plumpton) contained two square ditched areas which he interpreted as rick stands (Toms 1926: 47; cf. Ramm et al. 1970: 54–60), and this might support his view of the function.