LEAD AND STRONTIUM ISOTOPE COMPOSITIONS OF HUMAN DENTAL TISSUES AS AN INDICATOR OF ANCIENT EXPOSURE AND POPULATION DYNAMICS

The application of isotope source-tracing methods to identify migrants among British archaeological burials and a consideration of ante-mortem uptake, tissue stability and post-mortem diagenesis

Janet MONTGOMERY BSc

submitted for the degree of Doctor of Philosophy

Department of Archaeological Sciences

University of Bradford

2002
LEAD AND STRONTIUM ISOTOPE COMPOSITIONS OF HUMAN DENTAL TISSUES AS AN INDICATOR OF ANCIENT EXPOSURE AND POPULATION DYNAMICS.

Keywords: Lead, strontium, isotopes, archaeological enamel, migration, exposure, diagenesis, TIMS, ICP-MS

Abstract: This thesis employs lead and strontium isotope analysis of teeth by TIMS to identify migrants amongst British archaeological cemetery populations since the Neolithic. The study evaluates the benefits of combining two independent isotope systems with the exposure information obtained from elemental concentrations of lead and strontium. It demonstrates that they provide complementary information about mobility but highlights how their efficacy fluctuates both spatially and temporally in the periods investigated. Strontium was useful in all periods but heavily biased towards maritime $^{87}\text{Sr}/^{86}\text{Sr}$ (~0.7092) making it a poor discriminant between coastal habitats where lead was superior. Lead utility changes following the advent of large-scale mining and metallurgy, when anthropogenic ore lead severs the link between geographical origin and lead exposure. A cultural focussing of British enamel signatures ensues accompanied by a concomitant rise in lead burdens. British lead exposure during the last two millennia appears more indicative of status and the cultural sphere (e.g. rural/urban) than geographical origin. The results are assessed in the light of migration theory and traditional archaeological and osteological indicators.

Samples used are core enamel and co-genetic primary crown dentine, which neither model nor remodel in vivo and thus remain representative of a constrained period of childhood. Modern and archaeological teeth are investigated to assess isotope variability intra-enamel, intra-tissue, intra-antimere, intra-dentition, intra-sibling and between mother/child pairs. Recommendations for future tissue sampling and standardisation are made. The fundamentals of tooth biomineralisation are reviewed and clarified, chiefly that incremental enamel structures relate to initial formation not mineralisation; lead and strontium are principally incorporated during mineralisation. Macromorphological preservation proved no guide to biogenic strontium or lead isotope integrity. Mature, but not immature, enamel proved highly resistant to diagenesis whether well preserved or not. Dentine was highly susceptible to diagenesis irrespective of preservation state and is proposed as a proxy for the time averaged isotope signature of the soil. Moreover, it is argued that lead and strontium behave differently in teeth; uptake mechanisms are different and they respond independently to subsequent migration. Results suggest soil leaches were useful but complex and the most suitable leach reagent may be specific to the soil type and isotope system.

Two Norse Period immigrants (male and female) were identified at Cnip, Lewis; the $^{87}\text{Sr}/^{86}\text{Sr}$ signatures constrain their origin to Tertiary volcanics. In the North Atlantic these occur on Iceland, Faeroe Isles, and Antrim in Ireland but not Norway. No indubitable immigrants were identified at the Anglian cemetery at West Heslerton, Yorkshire but soil leaches and juveniles suggested a local $^{87}\text{Sr}/^{86}\text{Sr}$ signature range. “Non-locals” included both sexes, weapon burials and unaccompanied burials, providing no evidence for an immigrant group composed solely of male warriors. All analysed burials with wristclasps and cruciform brooches were non-local, supporting Hines’ (1984) hypothesis that wristclasps confirm the presence of Norwegian immigrants during this period.
CONTENTS

LIST OF FIGURES vii
LIST OF TABLES ix
PREFACE AND ACKNOWLEDGEMENTS x
PUBLICATIONS xii

CHAPTER ONE IDENTIFYING MIGRATION: THEORY AND METHOD 1

1.1 Introduction and aims 1
1.2 Migration or just simple mobility? 3
1.3 Indirect methods of identifying migrations 4
1.3.1 Historical evidence 4
1.3.2 Artefact, settlement and cemetery evidence 5
1.4 Direct methods of identifying migrants 8
1.4.1 Non-metric traits 9
1.4.2 Metric traits 12
1.4.2.1 Craniometry 12
1.4.2.2 Stature and robusticity 14
1.5 How useful are traditional methods? 15
1.6 Identifying migrants using skeletal isotope signatures: the hypothesis 16
1.7 Structure of the thesis 19

CHAPTER TWO STRONTIUM AND LEAD IN THE BIOGEOSPHERE 22

2.1 Introduction 22
2.2 Strontium and lead in the geosphere 22
2.2.1 Strontium geochemistry 22
2.2.2 Lead geochemistry 27
2.3 Strontium and lead in the biosphere 33
2.3.1 Strontium uptake in plants 35
2.3.2 Lead uptake in plants 36
2.3.3 Strontium metabolism and uptake in mammals 36
2.3.4 Lead metabolism and uptake in mammals 39
2.4 Biokinetics of strontium and lead in skeletal tissue 41
2.5 Conclusions 44

CHAPTER THREE HUMAN TEETH AS ANALYTICAL SAMPLES 46

3.1 Introduction 46
3.2 Dental notation system 48
3.3 Formation and eruption of dentitions 49
3.3.1 The deciduous dentition 50
3.3.2 The permanent dentition 51
3.4 Formation and maturation of enamel and dentine 53
3.4.1 Formation versus maturation 54
3.4.2 Mature enamel and dentine - description and composition 56
3.4.3 Formation of enamel and dentine 60
3.4.3.1 Dentine formation 61
3.4.3.2 Enamel biomineralisation 62
3.4.4 Structure of mature enamel 66
3.4.5 Timing of enamel maturation 68
3.5 Lead and strontium incorporation in enamel and dentine in vivo 70
3.5.1 Distribution of Sr in modern human teeth 71
3.5.2 Distribution of Pb in modern human teeth 72
3.5.3 Implications for Sr and Pb tooth analysis 74
3.6 Post-mortem behaviour of enamel and dentine 77
6.3.3 Samples
6.3.4 Results for Blackfriars, Gloucester
 6.3.4.1 Sr results
 6.3.4.2 Pb results
 6.3.4.3 Pb and Sr combined
6.3.5 Archaeological outcomes of the Blackfriars case study
6.4 Archaeological pilot study II: Sites 4, 5 and 6 Late Roman burials from Mangotsfield, Winchester and Spitalfields
 6.4.1 Introduction
 6.4.1.1 Mangotsfield, Bristol
 6.4.1.2 Eagle Hotel, Winchester
 6.4.1.3 Spitalfields, London
 6.4.2 Site geology
 6.4.2.1 Mangotsfield, Bristol
 6.4.2.2 Eagle Hotel, Winchester
 6.4.2.3 Spitalfields, London
 6.4.3 Samples
 6.4.3.1 Mangotsfield, Bristol
 6.4.3.2 Eagle Hotel, Winchester
 6.4.3.3 Spitalfields, London
 6.4.4 Results for Late-Roman burials
 6.4.4.1 Sr results
 6.4.4.2 Pb results
 6.4.4.3 Sr and Pb combined
 6.4.5 Outcomes of the Late-Roman studies
 6.4.5.1 Mangotsfield, Bristol
 6.4.5.2 Eagle Hotel, Winchester
 6.4.5.3 Spitalfields, London
6.5 Archaeological pilot study III: Site 8 Neolithic burials from Monkton-up-Wimbourne
 6.5.1 Introduction
 6.5.2 Site geology
 6.5.3 Samples
 6.5.4 Results from Monkton-up-Wimbourne
 6.5.4.1 Sr results
 6.5.4.2 Pb results
 6.5.4.3 Sr and Pb combined
 6.5.5 Outcomes of the Monkton study
6.6 Discussion and methodological developments
 6.6.1 Diagenesis
 6.6.1.1 Inter-tissue comparisons
 6.6.1.2 The Pb coffin burials
 6.6.1.3 Soil leaches
 6.6.2 Implications for archaeological studies of migration and exposure
 6.6.2.1 Sr
 6.6.2.2 Pb
 6.6.2.3 Sr and Pb
 6.6.2.4 Inter- and intra-tooth variation
 6.7 Conclusions
 6.7.1 Conclusions drawn from modern teeth
 6.7.2 Conclusions drawn from archaeological teeth
CHAPTER SEVEN IDENTIFYING ANCIENT MIGRATION CASE STUDIES I: ANGLIAN BURIALS AT WEST HESLERTON

7.1 Introduction
7.1.1 Aims of the study
7.1.2 The paradox of the adventus Saxonum
7.2 Archaeological background, context and samples
7.2.1 Site geology
7.2.2 Settlement and subsistence evidence
7.2.3 The skeletal remains
7.2.4 Burial practice
7.2.5 Grave goods
7.2.6 Samples
7.3 Results
7.3.1 Sr results
7.3.2 Pb results
7.3.3 Pb and Sr results combined
7.4 Discussion of results and data analysis
7.4.1 Diagenesis
7.4.2 Pb and Sr data
7.4.3 Pb data analysis
7.4.4 Sr data analysis
7.5 Discussion of archaeological indicators of migration
7.5.1 Cemetery development and grave location
7.5.2 Skeletal
7.5.3 Burial practice
7.5.4 Grave goods
7.5.5 Provenancing – possible origins
7.6 Conclusions

CHAPTER EIGHT IDENTIFYING ANCIENT MIGRATION CASE STUDIES II: IRON AGE AND NORSE BURIALS ON THE ISLE OF LEWIS

8.1 Introduction
8.1.1 Aims of the study
8.1.2 Cnip and Galson in the wider archaeological context
8.2 Archaeological background, context and samples
8.2.1 Iron Age long cist cemetery at Galson
8.2.2 Norse cemetery at Cnip, Uig
8.2.3 The geology of Lewis
8.2.4 Settlement and subsistence evidence
8.2.5 The skeletal remains
8.2.5.1 Stature
8.2.5.2 Pathology
8.2.5.3 Familial traits and grouping
8.2.6 Burial practices
8.2.6.1 The Iron Age cemetery at Galson
8.2.6.2 The Norse cemetery at Cnip
8.2.7 Grave goods
8.2.8 Samples
8.3 Results
8.3.1 Sr results
8.3.2 Pb results
8.3.3 Pb and Sr combined
8.3.4 Diagenesis

v
List of Figures

Chapter One
1. Simplified geology map of Northern Europe and the North Atlantic region 2
2. Illustration of cranial morphology 10
3. The movement of Pb and Sr through the biogeosphere 17
4. Simplified geology map of Great Britain and Ireland showing sample and site locations 20

Chapter Two
1. Plots of \(^{206}\text{Pb}/^{204}\text{Pb}\) versus \(^{208}\text{Pb}/^{204}\text{Pb}\) showing the relative fields for Pb ores from Scotland, Wales, England and Ireland 32

Chapter Three
1. Longitudinal tooth section with anatomical terms used in this study 47
2. Schematic diagram of enamel biomineralisation 63
3. Schematic diagram of initial enamel mineral spacing and growth, on existing dentine surface 65
4. Micrograph of fractured human deciduous molar enamel 67

Chapter Five
1. Time resolved analysis \(^{208}\text{Pb}\) profiles across the enamel of two halves of a longitudinally sectioned tooth. 133

Chapter Six
1. Plan of the excavated 20m trench at Blackfriars, Gloucester 156
2. Section and plan of the Neolithic site at Monkton-up-Wimbourne 173
3. Plot of \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio versus Sr concentration for modern subjects 194
4. Plots of \(^{206}\text{Pb}/^{204}\text{Pb}\), \(^{207}\text{Pb}/^{204}\text{Pb}\) and \(^{208}\text{Pb}/^{204}\text{Pb}\) ratios for modern subjects 199
5. Plot of \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio versus \(^{207}\text{Pb}/^{206}\text{Pb}\) ratio for modern subjects 202
6. Plot of Sr versus Pb concentrations in enamel and dentine of modern subjects 203
7. Plots of \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio v Sr concentration for Late-Roman samples 204
8. Plots of \(^{87}\text{Sr}/^{86}\text{Sr}\) ratio v Sr concentration for Monkton samples 205
CHAPTER SEVEN
7.1 Map showing the distribution of Anglian cemeteries in northern and eastern Yorkshire
7.2 Plan of the West Heslerton settlement and cemetery sites
7.3 Plan of the West Heslerton Anglian and Neolithic / EBA burials in areas 2B and 2BA showing the location of individuals analysed in this study
7.4 Plan of the Anglian weapon burials in part of area 2B and 2BA
7.5 Histogram illustrating the relationship between the type of burial soil and enamel preservation at West Heslerton
7.6 Preliminary statistical analysis of the $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for West Heslerton enamel samples
7.7 Box and whisker plots of the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio data for West Heslerton enamel samples
7.8 Plan showing the locations of “local” and “non-local” burials at West Heslerton
7.9 Plot of $^{87}\text{Sr}/^{86}\text{Sr}$ ratio v Sr concentration for West Heslerton enamel samples
7.10 Plots of $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios for West Heslerton enamel samples
7.11 Plot and histogram of $^{207}\text{Pb}/^{206}\text{Pb}$ v Pb concentration for West Heslerton enamel samples
7.12 Plots of $^{87}\text{Sr}/^{86}\text{Sr}$ v $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios for West Heslerton enamel samples
7.13 Pb mixing diagram for West Heslerton enamel samples

CHAPTER EIGHT
8.1 Map of Lewis & Harris showing simplified geology and machair locations
8.2 Map of the early historic Kingdoms of Scotland
8.3 Map of northern Europe showing sailing routes during the Viking period
8.4 Map of the British Isles showing the areas settled by Scandinavians
8.5 Site location map of the Iron Age cemetery at Galson
8.6 Map showing the location of Viking burials A-G on the Cnip headland
8.7 Plan of Bronze Age cist burial at Cnip
8.8 Combined plan of all reported burials at Galson
8.9 Schematic section through the Galson cemetery
8.10 Schematic section showing the stratigraphic location of a stone cist burial in the Galson raised beach
8.11 Plan of Norse kerbed burials at Cnip (C-E)
8.12 Plot of $^{87}\text{Sr}/^{86}\text{Sr}$ ratio v Sr concentration for Galson and Cnip samples
8.13 Plot of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of intra-tooth tissues for Galson and Cnip samples
8.14 Plots of $^{206}\text{Pb}/^{204}\text{Pb}$ v $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios for Galson and Cnip enamel and soil samples
8.15 Plots of $^{206}\text{Pb}/^{204}\text{Pb}$ v $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios for Galson and Cnip enamel samples
8.16 $^{207}\text{Pb}/^{206}\text{Pb}$ ratio v Pb concentration for Galson and Cnip enamel samples
8.17 $^{87}\text{Sr}/^{86}\text{Sr}$ v $^{207}\text{Pb}/^{206}\text{Pb}$ for Galson and Cnip enamel samples
8.18 Plot showing grouping of Galson Iron Age samples by $^{87}\text{Sr}/^{86}\text{Sr}$ v $^{207}\text{Pb}/^{206}\text{Pb}$ and Sr and Pb concentrations

CHAPTER NINE
9.1 $^{87}\text{Sr}/^{86}\text{Sr}$ ratio v $^{207}\text{Pb}/^{206}\text{Pb}$ plot of combined case study data showing differential variability of enamel-Sr and Pb
9.2 $^{207}\text{Pb}/^{206}\text{Pb}$ v $^{208}\text{Pb}/^{206}\text{Pb}$ plot of combined case study data showing cultural focussing of the enamel-Pb isotope ratios with increasing concentration
9.3 $^{207}\text{Pb}/^{206}\text{Pb}$ v $^{208}\text{Pb}/^{206}\text{Pb}$ plot of combined case study data showing cultural focussing of the enamel-Pb isotope ratios through time
LIST OF TABLES

CHAPTER TWO
Table 2.1 Estimated range of Pb isotope ratios for anthropogenic English Pb 31

CHAPTER THREE
Table 3.1 Dental shorthand system used in the study 48
Table 3.2 Deciduous tooth formation timing 50
Table 3.3 Permanent tooth formation timing 52
Table 3.4 Composition of permanent enamel and dentine 59

CHAPTER FIVE
Table 5.1 Enamel preservation classification 120
Table 5.2 Dentine preservation classification 121
Table 5.3 Attrition classification 122
Table 5.4 Stages of root formation and resorption 122

CHAPTER SEVEN
Table 7.1 Notable burials which could not be analysed 235
Table 7.2 Statistical analysis of 207Pb/206Pb enamel ratios 247
Table 7.3 Anglian burials separated into Local and Non-local groups 254
using 87Sr/86Sr ratios
Table 7.4 Distribution of dated burials between local and non-local groups 255
Table 7.5 Distribution of grave goods in jewellery burials 260

CHAPTER EIGHT
Table 8.1 List of known burials from Galson Iron Age cemetery 290
Table 8.2 Summary of selected developmental and environmental traits 292
observed amongst Lewisian adults
Table 8.3 Grave and burial attributes of Lewisian individuals 298

APPENDIX I
A1 Results table for archaeological human tooth samples
A2 Results table for archaeological animal tooth samples
A3 Results table for modern human tooth samples
A4 Results table for soil and rock leaches

APPENDIX II
A5 List of archaeological sites investigated
A6 List of archaeological human tooth samples
A7 List of archaeological animal tooth samples
A8 List of modern human tooth samples
A9 List of soil and rock samples
My interest in science was nurtured from an early age by my father, Harold Gordon Keighley, a mountaineer, potholer, pilot and practical scientist who filled our home with books, chemistry sets and microscopes and our holidays with museums, caves and mountains. What drew me to archaeology was the opportunity to study many subjects with time depth and there are surely very few modern disciplines where this remains possible. However, my concern has been that whilst never aspiring to become a polymath in the great tradition of da Vinci, Dürer, Darwin, and Dodgson, I was merely incapable of making up my mind and have inadvertently become a dabbler instead. Throughout, my worry was that I had missed something so fundamental it is left unsaid in the literature of an unfamiliar subject. If I have, it is certainly not the responsibility of the many colleagues from all those disciplines who gave me the benefit of their learning and guidance.

Firstly I thank the Department of Archaeological Sciences, University of Bradford for awarding me the NERC studentship (GT04/97/19SBA) and to NERC itself for giving me the opportunity to carry out doctoral research. I acknowledge the contribution of my supervisors: Dr. Paul Budd, particularly for initial encouragement, obtaining the NIGL measurement grants that enabled me to carry out the analysis of my chosen samples and for advice on aspects of archaeometallurgy and lead isotopes. Dr. Charlotte Roberts, University of Durham, inspired my initial undergraduate interest in human remains and gave me access to the Blackfriars teeth. From the beginning, her astute supervision ensured I never lost sight of the intended “end product” of a trained, independent researcher. Latterly, I thank Charlotte and Dr. Carl Heron for reading my drafts and offering invaluable advice and positive encouragement that greatly improved the final version. Also, I thank Dr. Christopher Knüsel for stepping in whilst Charlotte undertook a Nuffield Foundation research sabbatical and for imparting his extensive knowledge on the finer points of tooth anatomy and the biomechanics of skeletal tissue. He and Dr. Randy Donahue served as my PhD advisory committee at Bradford.

I am indebted to geochemists Drs. Barbara Barreiro and Jane Evans at the NERC Isotope Geosciences Laboratory for their painstaking guidance and endless patience during my laboratory training in the intricacies of strontium and lead isotope analysis and the preparation of my samples. They performed all the TIMS analyses in this thesis. To Jane Evans and geologist Dr. Rona McGill, NIGL, I also owe an immeasurable debt of gratitude for their great good sense and clarity of vision and for commenting on various chapters. Many other scientists at NIGL made me welcome and treated me with considerably more respect than I am sure my inexperience deserved. In particular, Carolyn Chenery, Steve Noble, and Pamela Kempton all gave their time to answer questions and demonstrate laboratory procedure. Dr. Richard Thomas, University of Western Sydney, Nepean, Australia, originally suggested using lead as a complementary system to strontium for this project and he and Jo Jaric were enthusiastic collaborators on many aspects of the work.

Dr. Randolph Haggerty, my undergraduate tutor, gave me my first strontium isotope off-prints (Price et al. 1994; Sealy et al. 1995) that ignited my interest in human migration studies. Thanks are due to Dr. Dave Lucy who taught me to thin-section and dissect teeth and Dr. David Whittaker and Lionel Rawle, Dental School, University of Wales College School, Cardiff, for practical help and insights into oral biology. I am grateful for assistance given by Dr. Cathy Batt, Dr. Julie Bond, Anthea Boylston, Simon Blockley, Jean Brown, Dr. Mary Lewis, Jason Maher and Professor Mark Pollard, University of Bradford and Dr. Andrew Millard and Mark Trickett, University of Durham. In particular, I thank my “partners in crime” Dr. Nigel Melton and Dr. Ruth Young who submitted before me (as I knew they would) and gave me continual personal and professional support. Nigel also read drafts, making many suggestions that greatly improved the archaeology in Chapters Six, Seven and Eight.

Many archaeologists, curators and osteologists gave me the opportunity and permission to carry out destructive analysis on teeth from burial sites under their control. Notably, I thank Tim Neighbour, CFA Archaeology, Edinburgh who directed excavations at Galson and together with Andrew Dunwell and Alastair Rees carried out the last excavations on the Norse cemetery at Cnip. Tim broached and organised
these Lewis case studies and provided me with pre-prints, references and site reports. Chapter Eight was
greatly improved by his positive criticisms and helpful pointers. I would also like to acknowledge the
help and permission to analyse the teeth from Lewis given by Dr. Alison Sheridan Assistant Keeper of
Archaeology, National Museums of Scotland and Richard Langhorne, Museum nan Eilean, Stornoway.
Mary McLeod, the Western Isles Archaeologist, Museum nan Eilean, and Mike Church identified and
took the soil samples I requested from Galson and Cnip.

Christine Flaherty, University of Columbia, New York and UMIST, kindly gave me access to her aDNA
results at West Heslerton and Monkton-up-Wimbourne and originally suggested the West Heslerton study
to me to complement her doctoral research using aDNA at the site. Through her, Dominic Powlesland
and Christine Haughton from the Landscape Research Centre, Yedingham kindly gave permission for my
work to go ahead and provided encouragement, information and a much appreciated pre-print of the West
Heslerton catalogue and synthesis. I am also grateful to Dominic for arranging for me to obtain soil
samples from the estate and to Prof. Margaret Cox, School of Conservation Sciences, University of
Bournemouth for discussions about the skeletal remains from this site. Archaeologist Martin Green
allowed me to take a wide range of samples from his unique Neolithic excavation at Monkton-up-
Wimbourne. Phil Greatorex at the Gloucester Archaeological Unit supplied me with unpublished reports
and site plans as well as a set of wonderful slides of the Blackfriars excavation in Gloucester. Paul
McCulloch, Winchester Museums Service, Historic Resources Centre gave permission for tooth samples
to be taken from the Eagle Hotel site in Winchester and Andy Young, Avon Archaeological Unit those
from the Roman limestone coffin at Mangotsfield, Bristol. Chris Thomas of MoLAS, then site supervisor
(now Project Manager for the Spitalfields Market site), gave permission to sample the female buried in
the Spitalfields Roman lead coffin as well as a sample of the coffin Pb and arrangements were kindly
made by Bill White, the osteologist at MoLAS. Also thanks are due to Jackie McKinley, Wessex
Archaeology and Gerry Barber, Rheumatology Unit, Bristol Hospital for providing details from their
skeletal reports on Monkton-up-Wimbourne and Mangotsfield respectively.

I thank John Le-Pelley, Cosmadent Dental Laboratory Ltd., Halifax, who enthusiastically crafted a false
tooth for a 5000-year-old lady, without charge, and subsequently produced several marvellous replicas, to
replace the ones I destroyed, that nobody could distinguish from the real thing. Dr. Petra Krause, CETAC
and Alan Cox, CAS, University of Sheffield gave me the benefit of their expertise in LA-ICP-MS and
analysed many samples for me. Julian Richards, BBC, opened doors that may otherwise have remained
shut and kindly gave permission for me to use his photographs in publications and presentations. Jane
Brayne generously provided slides of her reconstruction illustrations and gave me permission to use them
in a similar manner.

And finally, I am indebted to Professor Tony Fell, whose assistance went far beyond his official role as
Deputy Director of the Graduate School. Also, to my mother, Jean Keighley, for years of baby-sitting and
to my daughters, Constance and Abigail for providing me with samples, understanding and for not
complaining - much. Many of their schoolfriends, in particular Melissa Nash, also willingly sacrificed
their teeth for my project, as did Barbara Barreiro. Moreover, I am endlessly grateful to my youngest
daughter, Sophia for being the best of babies and giving us, in truth, not a single disturbed night since she
was born in July 2001. And finally to my husband, Peter, whose practical help in producing the final text
and all the illustrations was invaluable, but more importantly for his unceasing care and support and an
unwavering belief that I could do this. When I finished my undergraduate dissertation, I wrote
“Tomorrow we go fishing”. Well girls, hang the fishing, I know a few good caves I haven’t visited in
years………

Janet Montgomery March 12th 2002
LIST OF PUBLICATIONS AND PRESENTATIONS

ACADEMIC PUBLICATIONS

CONFERENCE PAPERS AND ABSTRACTS (presenter in bold type)

SEMINARS AND INVITED LECTURES

Montgomery, J. July 1st 1998. Humans – what can you do with them? Seminar given at The Natural History of Ancient People Day School held in the Department of Archaeological Sciences, University of Bradford.

