A LATE MEDIEVAL HISPANO-MORESQUE VASE FROM THE CITY OF LONDON (Figs. 6, 7, Pls. III, A, B)

The discovery in 1990 of a lustreware vase on the N. bank of the Thames foreshore under Cannon Street Bridge (NGR TQ 326 807) has highlighted the existence of a relatively uncommon class of Hispano-Moresque export wares. The vessel was subsequently acquired by the British Museum, and is now housed in the reference collection of medieval and later Spanish lustreware from British sites in the Department of Medieval and Later Antiquities.¹

The following note is intended as a postscript to the full and detailed typochronology of Iberian pottery exported to the British Isles² and north-west Europe³ during the late medieval period.

Description

The fabric is buff-red in colour (Munsell 7.5YR 6/4), and examination under a binocular microscope shows sparse inclusions of quartz, limestone and iron-ore, with flecks of mica. The vase has a tall, flaring neck, and probably had a simple, rounded rim. The top of the neck has been smoothed down, subsequent to chipping or other damage, since the surface of the break is smoother and more worn than the other fractured edges, producing a maximum height of 155 mm. The vessel has a bulbous and slightly irregular body, with a girth diameter of 96 mm, and a solid, thickly-potted base, somewhat distorted, with a bevelled edge, 72–74 mm in diameter, and spiral wiremarks beneath the base. The irregular body and base, which make the vessel slightly uneven, and several small irregularities in the surface of the clay beneath the glaze, demonstrate that the vessel was not well finished by the potter prior to decoration. A small scar in the glaze at the girth was probably caused by contact with another vessel during firing.

Decoration

The vase is covered internally and externally with a white tin-glaze, over which the decoration was painted. The glaze and decoration have decayed in some areas to a glossy black, whilst elsewhere the decoration has faded to a faint, colourless, ghost lustre, visible only in reflected light. However, X-ray fluorescence analysis by Dr M. Hughes of eight separate areas of decoration detected copper but not cobalt. In contrast, the decoration on a vase from London Wall, London (Pl. III, A) showed cobalt and nickel in the blue areas and copper in the lustre. The absence of cobalt in the Cannon Street Bridge vase indicates that the decoration was painted in copper lustre only. The decoration consists of two panels of foliage around the neck and girth, and a narrow, decorated panel just above the base, the design of which is unclear. Each panel is bordered by two narrow lines, occasionally broken by the foliage, and separated by wider horizontal bands, one each at the rim and shoulder, and four between the girth and footing. The band at the rim is matched by a band of similar width on the interior surface. The bevelled edge of the base is also lustred.

Discussion

The decoration in the panels comprises ‘blobbed’ leaves or scrolls, with small, hooked tendrils, painted with broad brushstrokes. Interspersed among them are thin scrolls, lines, stalks and dots, produced with finer brushstrokes. The ‘blobbed’ leaf or scroll motif appears...
on a number of Valencian flatwares dated on stylistic grounds to the second half of the 15th century,⁴ although it is regrettable that no examples have been recovered from archaeologically datable contexts. The Valencian attribution for this vessel is confirmed by the neutron activation analysis outlined below.

The form and decoration are similar to three other vases all found in the City of London⁵ (e.g. Pl. iii, a). They are also decorated with wide horizontal bands of copper lustre and large leaf or scroll motifs, but differ from the Cannon Street Bridge vase in that each motif is encircled by either two or three finely painted lines, with dots between each element; moreover, they lack the exuberant foliage of the Cannon Street Bridge vase.

The vase shape is similar to the blue-painted vessels made by tin-glaze potters in the South Netherlands during the period c. 1475-1525,⁶ examples of which are seen in the collection portrayed in the Master of Mary of Burgundy Book of Hours executed between
Table 3

RESULTS OF NEUTRON ACTIVATION ANALYSIS OF THE CANNON STREET BRIDGE VASE AND COMPARISON WITH FIVE OTHER PIECES AND THREE SUB-GROUPS OF HISPANO-MORESQUE POTTERY FOUND BY ANALYSIS

<table>
<thead>
<tr>
<th>Recd</th>
<th>Provenance</th>
<th>Cat no.</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Sc</th>
<th>Cr</th>
<th>Fe</th>
<th>Rb</th>
<th>Cs</th>
<th>La</th>
<th>Ce</th>
<th>Sm</th>
<th>Eu</th>
<th>Yb</th>
<th>Lu</th>
<th>Hf</th>
<th>Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cannon St., London</td>
<td>1991, 5-6, 1</td>
<td>.323</td>
<td>3.08</td>
<td>11.9</td>
<td>12.6</td>
<td>78.1</td>
<td>3.50</td>
<td>155.</td>
<td>9.32</td>
<td>36.6</td>
<td>4.98</td>
<td>6.98</td>
<td>1.51</td>
<td>2.58</td>
<td>.441</td>
<td>5.40</td>
<td>13.8</td>
</tr>
<tr>
<td>2</td>
<td>London Wall, London</td>
<td>1896, 2-1, 79</td>
<td>.208</td>
<td>3.97</td>
<td>14.2</td>
<td>12.4</td>
<td>75.6</td>
<td>3.81</td>
<td>213.</td>
<td>6.76</td>
<td>37.5</td>
<td>78.9</td>
<td>7.10</td>
<td>1.42</td>
<td>2.72</td>
<td>.428</td>
<td>6.30</td>
<td>15.1</td>
</tr>
<tr>
<td>3</td>
<td>Angel Court, London</td>
<td>MOL 2946</td>
<td>.162</td>
<td>2.40</td>
<td>13.3</td>
<td>12.6</td>
<td>79.1</td>
<td>3.80</td>
<td>135.</td>
<td>7.32</td>
<td>37.6</td>
<td>81.4</td>
<td>7.32</td>
<td>1.52</td>
<td>2.64</td>
<td>.448</td>
<td>5.94</td>
<td>14.3</td>
</tr>
<tr>
<td>4</td>
<td>Trig Lane, London</td>
<td>TL74/368/E</td>
<td>.244</td>
<td>2.51</td>
<td>13.1</td>
<td>12.4</td>
<td>75.2</td>
<td>3.43</td>
<td>172.</td>
<td>12.0</td>
<td>38.1</td>
<td>74.1</td>
<td>7.34</td>
<td>1.57</td>
<td>2.75</td>
<td>.428</td>
<td>5.27</td>
<td>14.8</td>
</tr>
<tr>
<td>5</td>
<td>Trig Lane, London</td>
<td>TL74/368/D</td>
<td>.252</td>
<td>2.74</td>
<td>11.9</td>
<td>12.2</td>
<td>72.4</td>
<td>3.61</td>
<td>174.</td>
<td>16.9</td>
<td>38.1</td>
<td>74.9</td>
<td>7.46</td>
<td>1.53</td>
<td>2.76</td>
<td>.402</td>
<td>5.60</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>Sun St., London</td>
<td>MOL 4674</td>
<td>.184</td>
<td>3.08</td>
<td>15.6</td>
<td>11.6</td>
<td>70.9</td>
<td>3.39</td>
<td>148.</td>
<td>6.21</td>
<td>35.4</td>
<td>70.5</td>
<td>7.02</td>
<td>1.41</td>
<td>2.68</td>
<td>.424</td>
<td>5.28</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>Valencia cluster A (mean)</td>
<td></td>
<td>.252</td>
<td>2.77</td>
<td>12.8</td>
<td>13.0</td>
<td>85.0</td>
<td>3.82</td>
<td>176.</td>
<td>11.9</td>
<td>37.1</td>
<td>78.4</td>
<td>7.24</td>
<td>1.52</td>
<td>2.66</td>
<td>.421</td>
<td>5.44</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>(standard deviation)</td>
<td></td>
<td>.089</td>
<td>1.7</td>
<td>.9</td>
<td>21.4</td>
<td>.24</td>
<td>28</td>
<td>2.7</td>
<td>1.3</td>
<td>3.0</td>
<td>.37</td>
<td>.05</td>
<td>.21</td>
<td>.020</td>
<td>.50</td>
<td>.50</td>
<td>.9</td>
</tr>
<tr>
<td></td>
<td>Valencia cluster B (mean)</td>
<td></td>
<td>.218</td>
<td>2.56</td>
<td>14.5</td>
<td>11.0</td>
<td>69.7</td>
<td>3.20</td>
<td>148.</td>
<td>9.11</td>
<td>34.2</td>
<td>68.9</td>
<td>6.48</td>
<td>1.32</td>
<td>2.38</td>
<td>.387</td>
<td>5.35</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>(standard deviation)</td>
<td></td>
<td>.075</td>
<td>1.5</td>
<td>.5</td>
<td>4.4</td>
<td>.11</td>
<td>15</td>
<td>1.3</td>
<td>1.0</td>
<td>2.0</td>
<td>.17</td>
<td>.05</td>
<td>.15</td>
<td>.026</td>
<td>.33</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>Malaga cluster C (mean)</td>
<td></td>
<td>.777</td>
<td>2.26</td>
<td>9.8</td>
<td>14.7</td>
<td>112</td>
<td>4.68</td>
<td>138.</td>
<td>6.42</td>
<td>35.3</td>
<td>73.0</td>
<td>6.77</td>
<td>1.51</td>
<td>2.52</td>
<td>.417</td>
<td>5.40</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>(standard deviation)</td>
<td></td>
<td>.235</td>
<td>1.1</td>
<td>.8</td>
<td>10</td>
<td>.25</td>
<td>22</td>
<td>.82</td>
<td>1.2</td>
<td>2.9</td>
<td>.37</td>
<td>.08</td>
<td>.12</td>
<td>.023</td>
<td>.37</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

All the results are given as the element in parts per million except Na, K, Fe and Ca which are in per cent.
The analyses of items 2, 4 and 5 have been previously published in Hughes and Vince. Twelve-three elements were measured on each sample, but the sixteen most useful for provenance studies are listed here: these were used for the statistical tests.
NOTES AND NEWS

1477 and 1490 for Engelbert of Nassau. The form is also strikingly reminiscent of contemporary stoneware drinking vessels produced *en masse* for export at the Siegburg and Raeren kilns in the Rhineland (Pl. III, b). Along with the relatively ubiquitous shallow drinking bowls, this beaker form may also serve as evidence for the uniformity of ceramic morphology across international boundaries and potting traditions as a direct result of long-distance trade. That said, a far greater sample of beakers from known provenances is necessary before any direct correlation can be established. Despite their contemporaneous nature, no examples of Hispano-Moresque pottery are known from the Rhineland, nor have any Rhenish stoneware vessels of the late 15th century come to light in Spain.

Finally, of no less significance is the evident grinding-down of the rim of the vessel. This practice of rudimentary repair, also demonstrable for surviving Rhenish stoneware beakers, is indicative of the prolonged social and functional value of these highly decorative export wares.

DAVID R. M. GAIMSTER and BEVERLEY NENK

NEUTRON ACTIVATION ANALYSIS OF THE CANNON STREET BRIDGE VASE

A large database of over 200 neutron activation analyses have been assembled by the British Museum, Department of Scientific Research, on Hispano-Moresque and other medieval Spanish pottery, with ceramics representing Valencia, Malaga, Seville, Granada and Barcelona and other minor centres. This database contains analyses of recognizable...
stylistic types which can be attributed to these centres, as well as pieces of less certain attribution which can be classified by reference to the analyses of known pieces. It seemed very appropriate to carry out a similar analysis of the body fabric of the Cannon Street Bridge vase and compare it with this database. Preliminary results of the major British Museum analysis programme have appeared,12 and the analysis technique, which has also been applied to other medieval ceramics such as Surrey whitewares13 and post-medieval ceramics (e.g. stove tiles),14 has been described elsewhere.15

A sample of the body fabric of the Cannon Street Bridge vase was removed with a high purity alumina drill, and the analysis results are given in Table 3 (as item no. 1). These results were combined with the existing database and several statistical techniques were then applied, including cluster analysis using the programme CLUSTAN, principal components analysis and ‘mountain’ plots. Previous unpublished cluster analysis on the database had isolated six Valencia compositional sub-groups and three Malaga sub-groups, and on re-running the test the Cannon Street Bridge vase classified into one of the Valencia clusters (B in Fig. 7) which contained thirteen samples. Among the thirteen, most significantly, was item no. 2 in Table 3, a vase from London Wall, London (Pl. III, A), of very similar form to the Cannon Street Bridge vase, and item no. 3 from the Museum of London which is also a very similar vase.16 A third vase previously analysed (MOL 4574) falls into another Valencia composition sub-group, but as Table 3 shows, it is quite similar in composition to no. 1, although with lower concentrations of many elements (i.e. more non-plastics in the fabric). Also in this cluster is a cover knop from the Museum of London.17 Cluster analysis, using Euclidean distances, places two sherds from Trig Lane (nos. 4 and 5) from the database as the closest in composition to no. 1. The average composition of the thirteen samples of Valencia cluster B is given in Table 3 for comparison, together with one other Valencia cluster (A), representing one of the other slightly different compositional sub-groups in the database. Valencia A contains a number of the pieces of high-quality lustreware from the Godman collection in the British Museum.18

Cluster analysis produces dendrograms (although not with the Relocate option which we routinely use within CLUSTAN) which can be difficult to grasp, so as an alternative a principal components analysis plot is reproduced in Fig. 7.19 This expresses each full analysis as a single point on a graph and conveys the general relationships between individuals and clusters. The positions of the individual items of Table 3 have been marked, indicating, for example, that no. 1 falls into the Valencia, rather than Malaga, composition. Detailed publication of the results of the whole analytical programme is planned, but the present example illustrates some interesting relationships between form and decoration on the one hand and chemical composition (and therefore workshop/source) on the other.

MICHAEL HUGHES20

ACKNOWLEDGEMENTS

The authors are grateful to John Cherry and Sheridan Bowman for comments on a first draft of this paper, and to James Thorn and James Farrant for preparing the figures.

NOTES

1 B.M. MLA 1991, 5–6, 1.
4 A. W. Frothingham, Lustreware of Spain (New York, 1951), figs. 103–6.
EXCAVATIONS AND MEDIEVAL ENGLAND: THE EXCAVATION INDEX (Fig. 8)

Since 1978 the Royal Commission on the Historical Monuments of England (R.C.H.M.E.) has been conducting a thematic survey of archaeological excavations carried out in England. The survey has four main objectives: to compile a list of all excavations undertaken in England, to locate the original records relating to them, to locate the finds from them, and to indicate which have a published report.

The survey began in the North of England in 1978, and has been compiled on a county basis. With the completion of surveys for Greater London and Suffolk in 1989, the Index has covered the whole of England. Work has now begun on updating those counties first compiled, prior to initiating a programme of annual maintenance. Now that initial coverage has been completed, it seems appropriate to draw to the attention of those engaged in research the potential of this national archaeological database.

At the time of writing in May 1991 the Index includes over 25,000 excavations, ranging from rare instances of excavation during the medieval period, through the antiquarian explorations of the 18th and 19th centuries, to the present day. Of these, over 6,500 excavations are noted as having produced material and/or structures of medieval date (c. A.D. 1066–1539). In addition, 2,400 excavations include evidence dating from the early medieval period (c. A.D. 450–1066). The survey has located the archives from over 13,000 excavations (53% of the total) and finds from over 14,000 excavations (57% of the total).

The information contained in the Index has drawn on the records of the former Ordnance Survey Archaeology Division, now incorporated into the National Archaeological Record (N.A.R.) of R.C.H.M.E., and the County Sites and Monuments Records, as well as a wide range of publications, and information derived directly from excavators, societies, museums and other institutions. These other sources have greatly increased the number of ...