Characterisation studies of Anglo-Saxon pottery from Lundenwic: 4) Imported wares

Alan Vince

One of the characteristics of the mid Saxon settlement at *Lundenwic* is the high number of sherds of imported wares. These sherds are from wheelthrown vessels with few inclusions larger than 0.5mm, mostly quartz of fine sand and silt grades. Some of these vessels are visually identical in fabric, form and decoration to the products of the Vorgebirge region in the middle Rhine valley. These wares are divided into classes, Walbeburg ware and Badorf ware. Both are *types* of pottery, defined by the quantity of tempering material and the range of forms produced and are not the products of specific kilns. Fieldwork in the middle Rhine suggests that even in the 8th/9th centuries this industry was operating on a large scale and exporting pottery over vast distances, not simply to eastern England but also, for example, to Scandinavia and north-western Europe.

By contrast, the sources of the remaining wares found in *Lundenwic* are unknown, but probably lie along the French and Belgian coasts or on navigable rivers.

As a contribution towards the study of these wares a selection was chosen for x20 binocular microscope study and chemical analysis. It was decided that given the limited funding available there would be less value in undertaking thin section analysis than in having a larger body of chemical data.

The samples were chosen by L Blackmore and do not necessarily prove a representative sample of the imports found in Lundenwic but, rather, concentrate on wares whose source is unknown. Nevertheless, they include a number of samples of Badorf ware which are taken here to be securely identified and therefore are used as reference material to compare with other less certainly identified samples.

In addition, reference samples of Rouen area wares, of 10th and later 12th/13th centuries were compared with the *Lundenwic* samples.

Binocular microscope survey

Lower Seine Valley whitewares (MSWWA, MSWWB, NFSVB)

Five samples have a white or light brown body and contain abundant quartz of coarse silt to fine sand grade. Three of the samples contain rare larger quartz grains, subangular grains up to 0.5mm in two cases and rounded up to 1.5mm across in the third. Other than those minor differences the samples appear identical at x20 magnification. Three of these samples were from cooking pots, with sooting on the exterior, one was from a jar and the last from a lamp.

This fabric is visually identical to that of 10th-century Early Rouen Glazed ware, wasters of which have been found in Rouen itself, and to late 12th/early 13th-century Rouen whiteware which although not

necessarily made in Rouen is the most common whiteware used in the city and was therefore made in the city's hinterland.

Walberburg ware (BADOJ, NFSVA)

Two samples of Walberburg ware were examined. They contained abundant, well-sorted subangular quartz sand grains c.0.5mm across in a groundmass of baked clay containing no visible inclusions. The ware also contains moderate rounded pellets of light coloured clay, up to 6.0mm across.

Badorf wares (BADOB, BADOC, BADOD, BADOE, NFSVB)

Eight samples of Badorf wares were examined. They could be classified into two groups on the basis of the texture and character of the groundmass. The first, BADOB (2 samples), has a groundmass containing abundant quartz silt and moderate ill-sorted subangular quartz grains up to 0.5mm across. The second has a slightly coarser textured groundmass, with grains of fine sand grade, but is usually poorly mixed, with lenses of differing in colour and the amount of inclusions, or their texture. All the samples contain ill-sorted subangular quartz inclusions up to 0.5mm but in some cases larger grains are also present. Mostly these are quartz but in two instances (V1720 and V1729) they are sandstone. These two samples both come from the same site, BRU92, and both have a coarser sand than the remainder. They may therefore be sampled from the same vessel. Two of the other samples in this group, V1746 and V1747, may also be from the same vessel although they differ slightly at x20 magnification. One sample contains rounded light-coloured clay pellets whilst the other contains rare rounded quartz grains up to 4.0mm across.

Other wares (MSWWB, NFBW, NFBWC, NFGWB, NFSVA)

Thirteen other samples were examined. They range from inclusionless white-bodied wares to sandtempered red earthenwares and although there are similarities between the samples at x20magnification there are no clear groups present, nor any examples which are so similar as to demonstrate either that they are from the same vessel or made from the same batch of clay.

The most visible differences in these samples are due to their iron content and firing. Some are clearly made from a white-firing clay but in many cases the deliberate reduction and/or carbon enrichment of the surfaces makes it impossible to determine the iron content of the clay (furthermore, many of the white-firing vessels contain either iron-rich clay pellets or haematite-coated quartz sand temper, thus making impossible to determine the firing colour in oxidized conditions from bulk chemical analysis).

The texture of the groundmass also varies. A group of samples appear to be made from an inclusionless clay, which has a micaceous sheen in favourable conditions (V1757, V1758, V1759, V1760 and V1776). The remaining samples have groundmasses containing quartz of silt to fine sand grade. In two cases, V1730 and V1740, these inclusions appear to include calcareous grains, such as microfossils or finely-divided limestone or shell fragments.

Sparse larger grains, albeit less than 0.3mm across, occur in three samples: V1756 and V1766 contain sparse subangular quartz (and angular brown flint in the latter case) and V1760 contains sparse polished rounded quartz grains up to 1.0mm across.

Deliberate tempering is present in four samples and in each case the grains are haematite-coated. However, in three instances they are a well-sorted sand, in which some grains are polished and rounded (V1755, V1757 and V1759) and in the fourth case the grains are ill-sorted and included some larger, rounded grains, very similar to that seen in the Badorf ware sherds.

On the basis of these observations, together with the firing and treatment of the vessels they have been grouped into seven groups:

Black and Grey-burnished wares

NFBW, V1730 and V1740. Fine sand/coarse silt in groundmass, probably including calcareous inclusions

NFBW, V1766 and V1775. Fine sand/coarse silt in groundmass.

NFBWC, V1758, V1760 and V1770. Fine-textured groundmass with micaceous sheen. Sparse subangular and rounded quartz inclusions

Sandy whiteware

NFSVA, Low iron content with a fine-textured groundmass with micaceous sheen. Moderate, wellsorted subangular and rounded haematite-coated quartz sand, including polished rounded grains.

Early to mid Saxon imports

Evison Group I. V1742. lowish iron content, fine textured silty groundmass with abundant well-sorted subangular quartz sand up to 0.2mm across.

Miscellaneous

Possibly BADO? V1746. Silty, micaceous groundmass, including some biotite? Moderate, illsorted quartz grains up to 1.0mm across. The largest grains are rounded and the remainder subangular. Some have haematite coating. Also, rounded iron-rich clay pellets up to 2.0mm.

Possibly Roman whiteware? V1756. Fine-textured, silty white groundmass. Sparse subangular quartz, polished quartz and brown flint inclusions up to 0.3mm

Chemical analysis

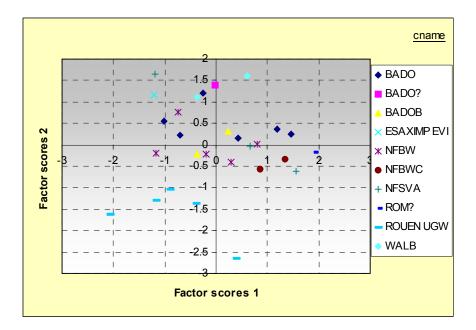
Subsamples of all the sherds were cut off and the outer surfaces removed. The remainder, a lump of c.1-2gm, was then crushed to a fine powder and submitted to Royal Holloway College, London, for

analysis using Inductively Coupled Plasma Spectroscopy (ICP-AES) under the supervision of Dr N Walsh.

Next, correlation coefficients were calculated between all of the measured elements and Al2O3, Fe2O3, CaO, P2O5 and 'silica' (that is, the result of subtracting all measured oxides from 100%).

For 'silica', only three positive correlations were noted, TiO, Zr and Pb, and even in these instances the elements had a higher correlation with Al2O3. This indicates that the main effect of increasing quartz silt or sand in the sample was to reduce the values of the other elements but that some inclusions rich in these three elements were probably present.

For Al2O3, positive correlations were found with 21 measured elements. However, of these, only two had correlations over 0.5 (Cr and V).


For Fe2O3, there were 22 positive correlations, but only six greater than 0.5 (MgO, K2O, Li, Ni, V, Zn).

For CaO there were 10 positive correlations, but only one over 0.5 (Sr). CaO has a negative correlation with Al2O3 and an even lower correlation with 'silica' and is therefore probably present mainly as calcareous contamination.

Finally, for P2O5 there were 9 positive correlations but only one over 0.5 (Ba). P2O5 also has a negative correlation with Al2O3 and a slight positive correlation with 'silica' and therefore probably mainly occurs as phosphatic contamination but perhaps also in phosphate-rich inclusions, such as phosphatic nodules, bone or apatite.

The dataset was then normalised, by dividing each value by that of Al2O3, and examined to see if any of the measurements were outliers, lying more than 4 standard deviations from the mean for that element in the dataset. Four such values were noted: V1730 has a high P2O5 value, either due to post-burial contamination or the presence of phosphate nodules or bone in the sample. V1758 has a high MnO value. This may be due to the presence of a Mn-rich grain in the sample or to post-burial contamination (there are green/brown concretions on the sherd). Sample V1759 has high CaO and Sr values. There are sparse rounded calcareous inclusions in the sherd and it is likely that one or more of these were present in the sample. Finally, V1776 has a high Na2O value.

Fig 1 shows the results of factor analysis for the un-transformed data, including Al2O3 but excluding CaO, Sr, P2O5 and Ba. It can be seen that the Lower Seine valley whitewares (here coded 'ROUEN UGW) are separated from the remaining samples.

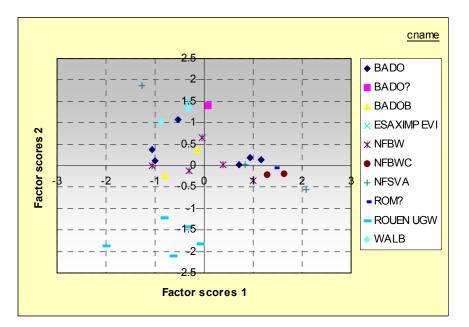
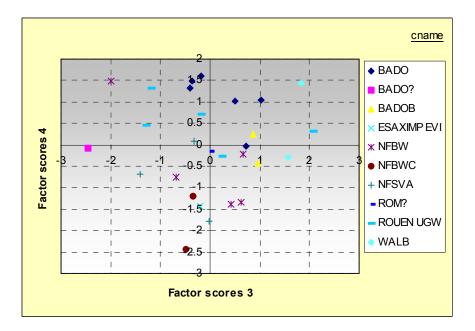
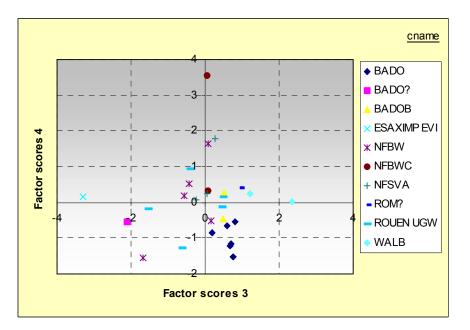
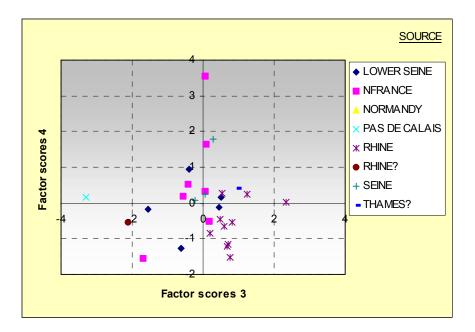




Fig 2 shows the same procedure for the normalised dataset. The separation of the Lower Seine valley whiteware is still clear but for the remaining samples there is no separation of Rhenish from other samples.


Next, the same procedures were carried out for the next two factors, F3 and F4 (Fig 3 – untransformed data and Fig 4 – normalised data). It can be seen that although the separation between the Lower Seine valley whitewares and the rest is lost the normalised data distinguishes between Rhenish and other samples (if we assume that sample V1776 is not indeed a BADO sample or that its atypical Na2O value is responsible for it not being placed in this group.

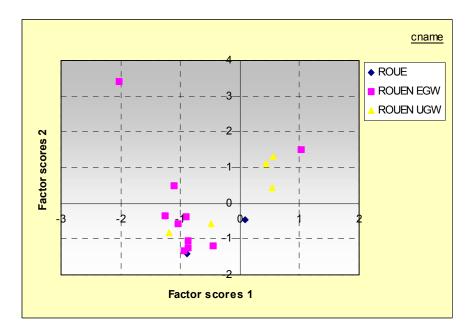
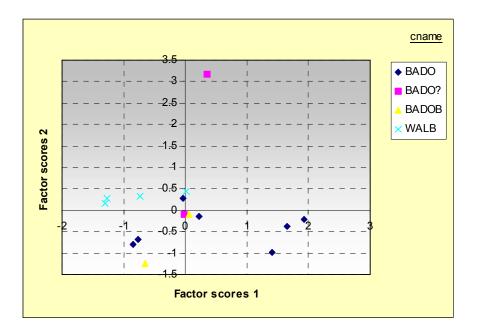
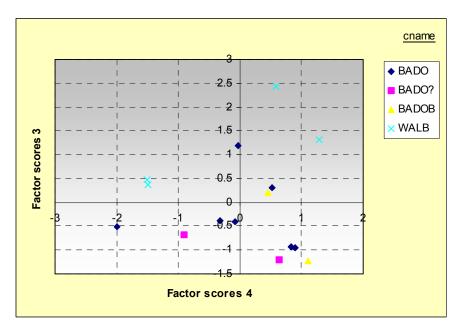


Figure 4

This pattern is clearer if we re-plot the Fig 4 data by suggested source (Fig 5).


To explore further the similarities of the Lower Seine whiteware with the later Rouen wares, data from samples from Rouen and Viborg were compared with them (Fig 6). There is no clear distinction between these Lundenwic finds, 10th-century glazed wares from Rouen and Late 12th/early 13th-century glazed wares from Viborg. Unfortunately, no chemical data is available for the Carolingian pottery production site at La Londe which would be the most likely known source for the Lundenwic finds.


Figure 6

Next, those Lundenwic samples for which a Rhenish source is suggested were compared with samples of Badorf ware from Flixborough (Fig 7). Of the two putative BADO samples in this analysis one is indistinguishable from the BADO samples and the other (V1776 from Lundenwic) is not. This analysis

not only confirms the attribution of the Lundenwic samples (or, at least indicates that both Lundenwic and Flixborough were receiving Badorf-type wares which are chemically indistinguishable) but also shows that the Walbeburg wares for a distinct sub-group within the Badorf cluster. This separation is shown more clearly in a plot of F3 against F4 (Fig 8). However, that plot places the two putative Badorf ware samples in the Badorf cluster.

Figure 8

Finally, the remaining Lundenwic samples were analysed alongside samples of Evison Group I imports from two sites in Suffolk and from Castledyke South, Barton-upon-Humber and samples of Black and grey burnished wares from Flixborough. The black burnished ware samples from Flixborough are not

matched by any from Lundenwic (although none of the typical examples of this ware were included in the sample selection). Three examples of sandy greyware imports from Lundenwic have a similar composition to these burnished wares, although the tempering and surface treatment of these types show them to be quite different in the hand. The four samples of Evison Group I imports plot close together, alongside one of the Lundenwic black burnished wares, V1730, which could indeed be from the neck of one of these bottles. The remaining Lundenwic black burnished wares and a sample of a black-surfaced whiteware from Flixborough plot in a line governed by their low F2 and high F1 scores apart from one NFSVA sample (V1759) which plots with the Evison Group I and the Flixborough black burnished wares samples. This sample, however, is that for which anomalous values for CaO and Sr were obtained, which may have affected the other measurements.

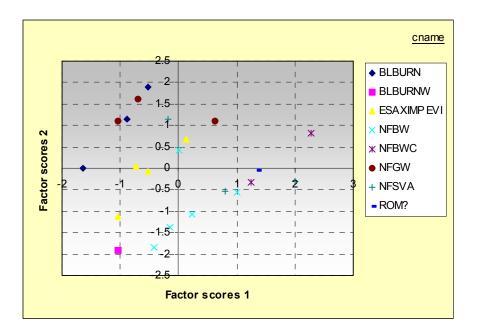
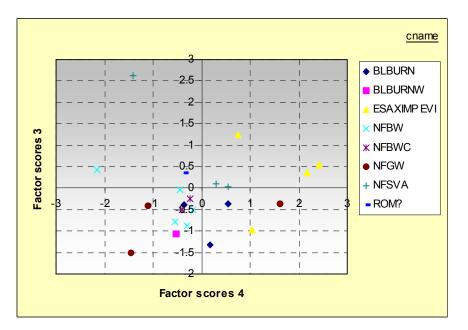
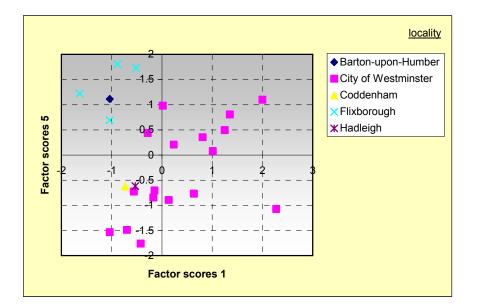




Figure 9

The plot of F3 against F4 scores (Fig 10) shows the same structure to the data except that the Flixborough and Lundenwic black burnished wares plot closer together. Finally, a plot of F5 against F1 separates samples from north Lincolnshire from the remainder (Fig 11). Factor 5 scores are mainly influenced by high loadings for Ce and La and by strong negative scores for Zr. In this case, a plot of Ce against La shows that the Lincolnshire samples have similar values to those from London and Suffolk but a plot of Ce against Zr reveals abnormally low values for the Lincolnshire samples. Clearly, further samples are required before one can actually say that the French/Belgian imports from north Lincolnshire are from a difference source from those in the south, especially since the result affects several distinct ware groups.

Figure 11

Conclusions

Despite the fact that the imported wares from Lundenwic are very fine-textured it is clear that the decision not to undertake thin section analysis alongside chemical analysis has made the interpretation of the results more difficult.

Nevertheless, the chemical analysis clearly shows that the imports divide clearly into two groups, one of which is from the Lower Seine valley and the other is not. These Lower Seine valley wares compare well with later samples from Rouen, but whether this should be taken to mean that they are indeed Rouen products or whether similar clays outcrop elsewhere in the valley, for example at La Londe, where a Carolingian pottery production site is known, is difficult to say without further comparative data.

The attribution of several samples to the Rhineland appears to be confirmed by a comparison of the Lundenwic samples with those from Flixborough. This analysis also distinguishes Walbeburg ware

from Badorf ware. This indicates that the distinction between these two groups is not simply due to the more abundant temper found in the former fabric but is also reflected in the composition of the clay itself. However, it still remains necessary to compare these samples directly with reference material from the middle Rhine production sites.

Finally, the lack of clear patterning within the residue of samples, which do not match the lower Seine groups but which overlap with the Rhenish groups (until the Lower Seine samples are removed from the analysis), can be interpreted in several ways. Visually, the material can be divided into at least seven groups but in most cases the group is represented by a single sample. In such circumstances it is impossible to use chemical analysis since there is no way of determining the variance in measured values. The data might therefore come from samples which were made at seven or more separate sources or the samples might all come from a single centre producing whitewares, black burnished wares greywares and oxidised red earthenwares, with or without added sand. Comparison of these samples with those from early Anglo-Saxon imports from Suffolk and Lincolnshire and from mid Saxon imports in Lincolnshire is again equivocal since it seems to show that there are three main chemical groups within the sampled data: (i) untempered black burnished wares from Flixborough and sandy greywares from Lundenwic, (ii) Evison Group I imports and some black burnished wares from Lundenwic and (iii) a range of black burnished wares and white-bodied wares from Lundenwic. However, this result is cast into doubt by the realisation that it is based, in part, on an element which appears to have been abnormally low in its occurrence in samples from sites in north Lincolnshire. Further samples of this group of wares would undoubtedly provide more clarity.

Acknowledgements

Samples were selected by L Blackmore, MoLSS. Sample preparation was carried out by Peter Hill and the chemical analysis was carried out by Dr N Walsh, Department of Geology, Royal Holloway College, London. I am grateful to Dr D Dufournier, Laboratoire de Ceramologie, Centre de Researches Archaeologiques Medievales at the University of Caen for supplying samples of the Rouen early glazed wares and J Hjermind of Viborg Museum, Denmark, for supplying samples of the medieval Rouen glazed ware. The Flixborough samples were analysed for Humber Archaeology Partnership.

Appendices

Appendix One

TSNOSitecodeoutlie	rContex	kt cname	SOURCE	Form	Action
V1716 BOB91	327	ROUEN UGW	LOWER SEINE	СР	ICPS
V1720 BRU92	317	BADO	RHINE	JAR	ICPS
V1722 BRU92	407	BADOB	RHINE	JAR	ICPS
V1725 BRU92	497	WALB	RHINE	AMPH	ICPS
V1726 BRU92	511	BADOB	RHINE	AMPH	ICPS
V1729 BRU92	604	BADO	RHINE	JAR	ICPS
V1730 BRU92 yes	655	NFBW	NFRANCE	E SPP	ICPS
V1732 BRU92	725	BADO	RHINE	SPP	ICPS
V1739 DRY90	171	WALB	RHINE	JAR	ICPS
V1740 DRY90	171	NFBW	NFRANCE	E JAR	ICPS
		FSAXIME	P PAS DE		
V1742 DRY90	198	EVI	CALAIS	JAR	ICPS
V1746 DRY90	271	BADO	RHINE	JAR	ICPS
V1747 DRY90	276	BADO	RHINE	JAR	ICPS
V1748 DRY90	3	ROUEN UGW	LOWER SEINE	LAMP	ICPS
V1751 JUB85	29	BADO	RHINE	JAR	ICPS
V1754 ROP95	4389	ROUEN UGW	LOWER SEINE	JAR	ICPS
V1755 SGA89	1102	NFSVA	SEINE	JAR	ICPS
V1756 SGA89	1164	ROM?	THAMES?	9 JAR	ICPS
V1757 SGA89	274	NFSVA	SEINE	SPP	ICPS
V1758 SGA89 yes	465	NFBWC	NFRANCE	E SPP	ICPS

V1759 SGA89 yes	599	NFSVA	SEINE	SPP	ICPS
V1760 SGA89	773	NFBWC	NFRANCE	-	ICPS
V1763 SOT89	14	ROUEN UGW	LOWER SEINE	СР	ICPS
V1765 SOT89	15	ROUEN UGW	LOWER SEINE	СР	ICPS
V1766 SOT89	172	NFBW	NFRANCE	SPP	ICPS
V1770 SOT89	23	NFBW	NFRANCE	JAR	ICPS
V1775 BOB91	153	NFBW	NFRANCE	SPP	ICPS
V1776 Rop95 yes	455	BADO?	RHINE?	JAR?	ICPS

Appendix 2a ICPS Data	for major elements	(percent oxides)

TSNO	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO
V1716	19.21	2.38	0.23	0.96	0.152	0.93	1.05	0.55	0.01
V1720	16.88	2.82	0.85	0.55	0.133	1.93	0.85	0.18	0.02
V1722	18.76	3.76	0.93	0.86	0.143	2.31	1.02	0.4	0.04
V1725	20.93	4.43	1.39	0.82	0.143	2.87	0.88	0.12	0.02
V1726	19.2	2.46	0.74	0.89	0.171	1.97	1.12	0.67	0.02
V1729	18.87	3.31	0.94	0.52	0.133	2.12	1.01	0.13	0.02
V1730	14.25	3.12	1.1	1.72	0.314	2.65	0.74	1.73	0.04
V1732	17.5	3.49	0.97	0.59	0.143	1.94	1.03	0.25	0.02
V1739	19.53	3.54	1.22	0.8	0.143	2.61	0.87	0.31	0.02
V1740	16.26	2.65	0.54	1.6	0.133	1.66	0.92	1.65	0.06
V1742	13.47	5.42	1.29	0.9	0.285	2.61	0.72	0.67	0.03
V1746	18.36	4.9	1.11	0.61	0.162	2.34	0.96	0.18	0.03
V1747	18.37	4.33	1.09	0.58	0.171	2.35	0.98	0.15	0.03
V1748	15.78	1.23	0.19	0.51	0.067	0.38	1.34	0.1	0.01
V1751	18.36	5.27	1.18	0.88	0.143	2.31	0.91	0.42	0.03
V1754	15.31	2.43	0.37	0.44	0.105	0.92	1.01	0.11	0.01
V1755	16.78	2.89	0.79	0.67	0.238	2.2	0.92	0.54	0.04
V1756	18.79	3.12	0.92	0.7	0.219	2.64	1.11	0.4	0.14
V1757	16.15	3	0.78	0.85	0.219	2.46	1.01	0.59	0.03
V1758	15.02	2.59	0.71	1.17	0.171	2.29	0.99	0.79	0.16
V1759	16.64	5.39	1.26	11.4	0.2	2.98	0.67	0.51	0.12
V1760	17.67	3.22	0.87	1.12	0.228	2.64	1.06	0.64	0.11
V1763	13.32	1.92	0.21	0.93	0.133	0.79	1.16	0.56	0.04

V1776	15.81	5.09	1.51	1.05	0.58	2.61	0.69	0.36	0.06
V1775	15.31	2.59	0.65	1.04	0.19	2.36	0.95	0.75	0.05
V1770	18.95	3.94	0.94	0.57	0.219	2.53	1.04	0.22	0.03
V1766	17.78	2.95	0.75	1.1	0.238	2.49	0.95	0.5	0.04
V1765	21.72	1.9	0.2	0.92	0.124	0.43	1.8	0.6	0.02

Appendix 2b. ICPS data for minor and trace elements (PPM)

TSNO	Ва	Cr	Cu	Li	Ni	Sc	Sr	V	Y	Zr*	La	Ce	Nd	Sm	Eu	Dy	Yb	Pb	Ag	Zn	Со
V1716	210	95	36	19	37	10	78	82	22	121	48	95	49.16	7.286	1.033	4	2.1	41.98	0	50	5
V1720	268	123	22	78	35	16	104	130	21	95	57	113	58.37	10.55	1.903	5	1.9	54.64	0	95	20
V1722	344	109	51	77	44	17	138	138	22	98	53	100	54.52	8.872	1.637	5	2.5	52.78	0	116	14
V1725	379	136	32	137	73	18	133	171	29	94	53	126	54.99	8.871	1.69	6	2.8	65.14	0	105	29
V1726	394	102	28	71	36	16	150	129	19	99	50	92	50.67	7.462	1.228	4	2.3	51.7	0	82	8
V1729	340	83	21	83	39	17	120	137	18	95	49	83	49.54	6.907	1.168	4	2.1	35.86	0	57	12
V1730	647	93	17	67	38	12	248	77	18	69	47	83	47.85	7.264	1.182	4	1.9	61.5	0	91	11
V1732	360	91	17	104	37	15	138	114	18	89	47	84	46.91	5.553	0.956	3	1.9	51.7	0	84	13
V1739	377	115	26	116	53	17	121	152	27	102	47	87	48.32	6.938	1.352	4	2.5	41.84	0	124	17
V1740	525	98	26	65	30	14	217	110	26	106	33	55	34.69	5.005	1.015	4	2.3	38.98	0	73	9
V1742	506	106	32	40	29	15	142	147	19	96	41	64	41.64	4.674	1.021	3	2.3	34.76	0	104	13
V1746	389	134	26	89	44	17	131	120	35	88	64	121	66.83	11.73	2.257	7	3.2	49.58	0	84	17
V1747	402	131	26	95	43	17	135	123	32	77	64	120	66.08	11.3	2.097	6	2.9	46.66	0	82	17
V1748	171	76	14	20	12	6	44	47	14	114	25	39	25.85	3.831	0.614	3	1.5	61.54	0	27	8
V1751	477	130	24	143	46	16	158	134	29	89	51	88	51.98	7.019	1.431	4	2.4	52.88	0	94	16
V1754	190	73	15	27	20	12	44	63	15	100	46	84	46.34	7.371	1.13	3	1.5	51.58	0	39	10
V1755	543	105	34	71	41	17	150	117	30	111	56	99	57.53	10.33	1.798	5	2.7	53.44	0	97	20
V1756	524	115	33	95	51	19	149	146	30	115	70	131	72.19	13.36	2.382	7	3.2	54.12	0	106	20
V1757	651	70	36	64	41	17	135	111	33	115	62	124	64.58	13.8	2.39	7	3.4	39	0	101	14
V1758	569	100	32	56	42	16	135	119	29	137	47	98	50.2	11.32	2.019	6	3.4	40.56	0	108	20

V1759	474 72	23	116	71	15	391	110	19	103	36	75	37.69	5.783	1.223	4	2.2	32.62	0	111	15
V1760	699 105	31	62	44	19	165	134	31	113	64	115	65.89	11.93	2.175	6	3.1	33.46	0	93	15
V1763	274 69	14	26	16	9	92	69	15	104	42	72	42.58	6.224	0.766	3	1.7	46.66	0	45	10
V1765	313 120	18	19	18	12	99	105	25	174	58	88	59.13	7.73	1.267	5	2.5	61.16	0	54	8
V1766	515 107	30	51	34	18	145	132	21	125	51	86	51.89	7.415	1.394	4	2.6	36.94	0	83	9
V1770	463 119	30	69	40	20	130	147	27	116	61	105	62.32	10.42	1.924	5	2.8	42.2	0	86	16
V1775	535 102	28	43	36	16	146	116	26	105	49	96	50.85	9.623	1.819	5	2.9	38.38	0	73	14
V1776	642 74	27	79	50	15	125	101	29	75	47	80	49.54	8.473	1.644	6	2.8	50.38	0	102	15

Appendix 3. List of comparative samples consulted

TSNO	Locality	Sitecode	Context	REFNO	cname
	Barton-upon-				
AG086	Humber	CS89			ESAXIMP EVI
AG189	Flixborough	flx89	207	55	BADO
AG190	Flixborough	flx89	1833	42	BLBURNW
AG191	Flixborough	flx89	3915		BADO?
AG192	Flixborough	flx89	10772		BLBURN
AG195	Flixborough	flx89	5553		BLBURN
AG198	Flixborough	flx89	u/s	44	BLBURN
AG199	Flixborough	flx89	10337	13	WALB
AG200	Flixborough	flx89	u/s		WALB
V0698	Viborg	viborg		51 E1892/GB	ROUE
V0701	Viborg	viborg		51 E1881/E1	ROUE
V0702	Viborg	viborg		51 E2658/VD	ROUEN EGW

V1289	Rouen	rouen pp		1123-2	ROUEN EGW
V1290	Rouen	rouen pp		3067-3	ROUEN EGW
V1291	Rouen	rouen pp		1125-3	ROUEN EGW
V1292	Rouen	rouen pp		1125-21	ROUEN EGW
V1293	Rouen	rouen pp		1125-23	ROUEN EGW
V1294	Rouen	rouen cm		5138	ROUEN EGW
V1295	Rouen	rouen cm		5145	ROUEN EGW
V1296	Rouen	rouen pf		3575-а	ROUEN EGW
V1297	Rouen	rouen pf		13113-4	ROUEN EGW
V1626	Rouen	had 059	0410		ESAXIMP EVI
V1627	Rouen	cdd 050	0168		ESAXIMP EVI