# Characterisation of Late Medieval/Transitional Pottery from Ticknall, Derbyshire

#### Alan Vince

The late and post-medieval potteries at Ticknall were one of the major sources of blackwares in Midland England (2005). However, its products were made from similar clays to those used in the Staffordshire potteries and it is likely that they are under-recognised by archaeologists.

As part of an on-going historical and archaeological study of the Ticknall potteries, a series of samples from two excavated production sites were selected for characterisation, together with a sample of a vessel from a dissolution period context in Lincoln thought to be a Ticknall product and a sample of a possible Ticknall product of late medieval date from a site at Church Lane, Plungar, in Leicestershire (Table 1).

The samples from Ticknall consist of red earthenware "Cistercian ware" cups and Midlands Purple coarsewares made from poorly-mixed red- and white-firing clays. Various questions were raised by these samples:

- a) Was the Cistercian ware made from the red-firing Coal Measures clay?
- b) Can the products from Site 2 be distinguished from those from Site 6?
- c) Were the Lincoln and Plungar vessels Ticknall products?

Table 1

| TSNO  | drawing no | Context | cname | Sitecode        |
|-------|------------|---------|-------|-----------------|
| V4264 | 0          |         | MP    | PMHF07          |
| V4265 | 47         | 1597    | MP    | glb94           |
| V4266 | 0          |         | MP    | Ticknall Site 6 |
| V4267 | 0          |         | MP    | Ticknall Site 6 |
| V4268 | 0          |         | MP    | Ticknall Site 6 |
| V4269 | 0          |         | MP    | Ticknall Site 6 |
| V4270 | 0          |         | CSTN  | Ticknall Site 6 |
| V4271 | 0          |         | CSTN  | Ticknall Site 6 |
| V4272 | 0          |         | CSTN  | Ticknall Site 6 |
| V4273 | 0          |         | CSTN  | Ticknall Site 6 |
| V4274 | 0          |         | CSTN  | Ticknall Site 6 |
| V4275 | 0          |         | CSTN  | Ticknall Site 2 |

The Alan Vince Archaeology Consultancy, 25 West Parade, Lincoln, LN1 1NW

http://www.postex.demon.co.uk/index.html

A copy of this report is archived online at

http://www.avac.uklinux.net/potcat/pdfs/avac2007114.pdf

| V4276 | 0 | CSTN | Ticknall Site 2 |
|-------|---|------|-----------------|
| V4277 | 0 | CSTN | Ticknall Site 2 |
| V4278 | 0 | CSTN | Ticknall Site 2 |
| V4279 | 0 | CSTN | Ticknall Site 2 |
| V4280 | 0 | MP   | Ticknall Site 2 |
| V4281 | 0 | MP   | Ticknall Site 2 |
| V4282 | 0 | MP   | Ticknall Site 2 |
| V4283 | 0 | MP   | Ticknall Site 2 |
| V4284 | 0 | MP   | Ticknall Site 2 |

#### Visual Examination

The Cistercian ware cups have a very fine textured fabric with few inclusions over 0.1mm across visible, even at x20 magnification. Some of the waste was dark grey and vesicular but the intended firing colour appears to have been brick red.

The Midlands Purple vessels, by contrast, have a very poorly mixed fabric and contain lenses and streaks of red- and white-firing clays, together with subangular quartz sand up to 1.0mm across. The red-firing clays appear to be different in texture to the Cistercian ware fabric.

The Lincoln and Plungar samples have fabrics similar to those of the Ticknall Midlands Purple wares although the latter has a red slip, not seen on any of the other samples.

#### **Chemical Analysis**

The samples were prepared for chemical analysis by sawing an offcut and then mechanically removing the outer 1.0mm or so. The resulting block was then crushed to a fine powder and submitted to Royal Holloway College, London, where it was analysed under the supervision of Dr J N Walsh.

The frequency of a range of major elements was measured and expressed in percent oxides (App 1) and the frequency of a range of minor and trace elements was measured in parts per million (App 2). The frequency of silica was not measured but was estimated by subtraction of the total oxides from 100%.

Comparison of the estimated silica contents for the various groups (Fig 1) indicates that the two groups of Ticknall Cistercian ware have similar silica contents, both of which have higher means than those of the corresponding Midlands Purple ware samples. The two groups of Midlands Purple ware from Ticknall have different mean estimated silica contents, with that from Site 6 having less silica than that from Site 2. The Lincoln sample, finally, has a higher estimated silica content than that of any of the other samples.

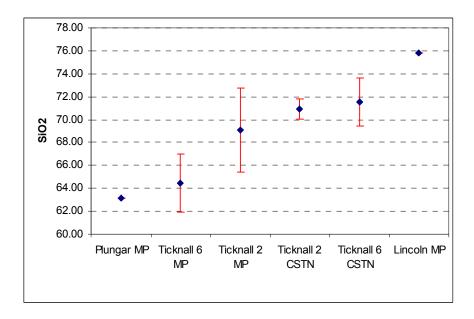



Figure 1

To take account of the dilution factor caused by variations in silica content, which can reflect differences in the parent clay or the use of variable amounts of sand tempering, the element values were normalised to aluminium. The normalised data were then examined using Factor Analysis, a multivariate statistical technique in which the original variables are replaced by a smaller number of factors, each of which is calculated by determining weightings for each element. The proportion of the variability in the dataset which is "explained" by each factor is also calculated. For the Ticknall data and the two comparanda, five factors were found. Between them these account for 79% of the variability in the data (Table 2).

Table 2

| Factor | Eigenvalue  | Variance (percent) | Percent cumulative |
|--------|-------------|--------------------|--------------------|
| 1      | 8.597185122 | 31.84142638        | 31.84142638        |
| 2      | 5.80062452  | 21.48379452        | 53.3252209         |
| 3      | 3.614783682 | 13.38808771        | 66.71330861        |
| 4      | 1.825219751 | 6.760073152        | 73.47338176        |
| 5      | 1.746584826 | 6.468832688        | 79.94221445        |

Factor 1 has high weightings for seven rare earth elements, together with cobalt, titanium and nickel. High F1 scores distinguish all but one of the Site 2 Cistercian ware from the other samples.

Factor 2 has high weightings for potassium, magnesium, sodium, manganese and iron. All the Site 6 Cistercian ware samples have high F2 scores, as does one of the Site 2 samples and one of the Site 2 Midlands Purple ware samples. The remaining samples, mainly the two groups of Ticknall Midlands Purple ware and the comparanda, have low scores for both of these factors.

Factor 3 has high weightings for phosphorus, calcium and strontium, a combination which suggests contamination with calcium phosphate after burial. Only one sample, that from Lincoln, has a high F3 score.

Factor 4 has high weightings for vanadium and scandium and distinguishes all the Ticknall samples and the Lincoln sample from that from Plungar but does not distinguish Site 2 from Site 6 nor Midlands Purple from Cistercian ware samples.

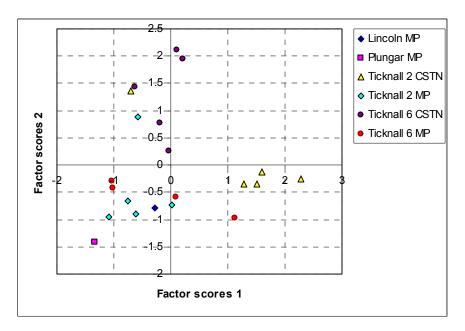



Figure 2

#### Conclusions

These results suggest that there are chemical differences between the two groups of Cistercian ware and the Midlands Purple ware from Sites 2 and 6. The latter appear to have similar chemical compositions but different amounts of sand temper. One of the Site 2 Cistercian ware samples has a composition which is typical of the Site 6 samples and this may suggest that somehow a waster from Site 6 ended up on Site 2. The two sites are discrete but not far apart.

The difference between the Lincoln Midlands Purple ware and that from Ticknall appears to be solely due to post-burial contamination of the Lincoln sample where as the Plungar sample is actually separated by its Factor 4 score and, as a glance at Fig 2 shows, by its lower F1 and F2 scores. It therefore seems likely that the Lincoln vessel is a Ticknall product but that the Plungar vessel is not. Or, at least, that it was made from raw materials different from those used on Sites 2 and 6.

It is clear that the Cistercian ware was made from a different clay from that used for the Midlands Purple ware which, given the difference in visual texture and colour is not a surprising result. However, the clear difference between the two groups of Cistercian ware

### AVAC Report 2007/114

was not expected. This suggests that for finewares such as the Cistercian ware it should be possible to use chemical composition to investigate details of the manufacturing process, such as the production of vessels in batches, as well as being able to determine the site on which vessels were made.

## Bibliography

Spavold, J. and Brown, S. (2005) Ticknall Pots and Potters, Landmark Publishing,

Appendix 1

| TSNO  | Al2O3 | Fe2O3 | MgO  | CaO  | Na2O | K20  | TiO2 | P2O5 | MnO   |
|-------|-------|-------|------|------|------|------|------|------|-------|
| V4264 | 26.96 | 5.36  | 0.83 | 0.12 | 0.16 | 2.38 | 0.95 | 0.06 | 0.018 |
| V4265 | 15.01 | 4.45  | 0.62 | 1.17 | 0.12 | 1.92 | 0.71 | 0.2  | 0.021 |
| V4266 | 25.89 | 7.65  | 1.1  | 0.18 | 0.16 | 2.52 | 1.22 | 0.08 | 0.037 |
| V4267 | 22.62 | 6.9   | 1.13 | 0.22 | 0.17 | 2.92 | 1    | 0.09 | 0.035 |
| V4268 | 25.71 | 4.74  | 1.05 | 0.18 | 0.17 | 2.55 | 1.15 | 0.06 | 0.025 |
| V4269 | 22.15 | 4.94  | 1.23 | 0.16 | 0.16 | 2.87 | 1.03 | 0.06 | 0.032 |
| V4270 | 16.58 | 7.14  | 0.98 | 0.21 | 0.16 | 2.91 | 0.86 | 0.06 | 0.029 |
| V4271 | 16.95 | 7.12  | 1.23 | 0.23 | 0.2  | 3.76 | 0.76 | 0.09 | 0.069 |
| V4272 | 14.59 | 6.36  | 0.73 | 0.2  | 0.14 | 2.22 | 0.76 | 0.07 | 0.016 |
| V4273 | 15.66 | 6.41  | 1.22 | 0.19 | 0.32 | 3.48 | 0.72 | 0.08 | 0.051 |
| V4274 | 16.67 | 7.11  | 1.19 | 0.15 | 0.2  | 3.74 | 0.79 | 0.06 | 0.031 |
| V4275 | 15.32 | 6.54  | 1.09 | 0.13 | 0.19 | 3.45 | 0.69 | 0.06 | 0.03  |
| V4276 | 19.55 | 5.22  | 0.94 | 0.22 | 0.13 | 2.44 | 1.2  | 0.04 | 0.027 |
| V4277 | 17.38 | 7.74  | 0.72 | 0.15 | 0.11 | 1.92 | 1.13 | 0.05 | 0.012 |
| V4278 | 19.32 | 5.34  | 0.92 | 0.19 | 0.14 | 2.31 | 1.23 | 0.04 | 0.024 |
| V4279 | 19.75 | 4.6   | 0.96 | 0.21 | 0.15 | 2.45 | 1.19 | 0.05 | 0.023 |
| V4280 | 21.72 | 5.21  | 0.78 | 0.12 | 0.13 | 2.16 | 1.02 | 0.05 | 0.017 |
| V4281 | 16.95 | 5.21  | 0.68 | 0.11 | 0.11 | 1.8  | 0.92 | 0.04 | 0.016 |
| V4282 | 20.99 | 7.23  | 1.76 | 0.36 | 0.18 | 3.56 | 0.69 | 0.06 | 0.054 |
| V4283 | 19.25 | 5.35  | 0.78 | 0.23 | 0.13 | 2.03 | 0.93 | 0.05 | 0.022 |
| V4284 | 22.03 | 7.44  | 0.86 | 0.15 | 0.14 | 2.13 | 1.03 | 0.06 | 0.033 |

## Appendix 2

| TSNO  | Ва    | Cr  | Cu | Li  | Ni | Sc | Sr  | V   | Υ  | Zr* | La | Ce  | Nd | Sm | Eu | Dy | Yb | Pb     | Zn | Co |
|-------|-------|-----|----|-----|----|----|-----|-----|----|-----|----|-----|----|----|----|----|----|--------|----|----|
| V4264 | 1,027 | 118 | 48 | 419 | 42 | 24 | 117 | 160 | 26 | 99  | 64 | 116 | 63 | 8  | 1  | 3  | 3  | 177    | 60 | 13 |
| V4265 | 730   | 82  | 25 | 200 | 35 | 13 | 333 | 111 | 17 | 61  | 58 | 98  | 57 | 7  | 1  | 3  | 2  | 241    | 36 | 11 |
| V4266 | 874   | 137 | 69 | 427 | 69 | 28 | 95  | 177 | 48 | 214 | 62 | 115 | 65 | 10 | 2  | 7  | 5  | 277    | 76 | 23 |
| V4267 | 1,307 | 122 | 30 | 289 | 62 | 23 | 144 | 169 | 30 | 116 | 51 | 88  | 52 | 7  | 1  | 4  | 3  | 132    | 59 | 17 |
| V4268 | 991   | 119 | 81 | 463 | 68 | 26 | 102 | 160 | 56 | 129 | 77 | 144 | 80 | 15 | 3  | 9  | 5  | 121    | 92 | 22 |
| V4269 | 1,239 | 108 | 34 | 262 | 40 | 22 | 101 | 144 | 29 | 93  | 49 | 75  | 50 | 7  | 2  | 4  | 3  | 119    | 51 | 15 |
| V4270 | 715   | 86  | 23 | 132 | 35 | 17 | 125 | 113 | 24 | 166 | 46 | 78  | 46 | 7  | 1  | 3  | 2  | 158    | 44 | 14 |
| V4271 | 676   | 77  | 18 | 65  | 37 | 15 | 176 | 111 | 24 | 86  | 46 | 77  | 47 | 8  | 2  | 4  | 3  | 251    | 51 | 13 |
| V4272 | 530   | 82  | 17 | 87  | 30 | 14 | 94  | 94  | 16 | 54  | 42 | 68  | 42 | 7  | 1  | 2  | 2  | 459    | 40 | 11 |
| V4273 | 598   | 78  | 20 | 77  | 33 | 16 | 163 | 108 | 21 | 74  | 46 | 81  | 46 | 7  | 1  | 3  | 2  | 470    | 50 | 11 |
| V4274 | 557   | 76  | 20 | 71  | 25 | 14 | 171 | 108 | 19 | 86  | 44 | 73  | 43 | 5  | 1  | 2  | 2  | 8,246  | 50 | 10 |
| V4275 | 532   | 71  | 25 | 65  | 26 | 13 | 162 | 100 | 16 | 81  | 41 | 73  | 40 | 5  | 1  | 2  | 2  | 4,137  | 46 | 11 |
| V4276 | 490   | 106 | 19 | 249 | 74 | 19 | 71  | 127 | 31 | 81  | 59 | 110 | 60 | 12 | 2  | 5  | 3  | 4,236  | 53 | 23 |
| V4277 | 600   | 97  | 26 | 159 | 51 | 18 | 63  | 117 | 35 | 85  | 56 | 99  | 58 | 10 | 2  | 6  | 3  | 732    | 46 | 17 |
| V4278 | 639   | 107 | 23 | 257 | 73 | 19 | 71  | 127 | 41 | 97  | 62 | 126 | 65 | 13 | 3  | 7  | 4  | 987    | 51 | 24 |
| V4279 | 461   | 107 | 20 | 245 | 82 | 20 | 66  | 128 | 29 | 94  | 56 | 97  | 58 | 11 | 2  | 5  | 3  | 13,534 | 56 | 24 |
| V4280 | 773   | 114 | 31 | 300 | 33 | 22 | 88  | 160 | 26 | 99  | 50 | 74  | 51 | 6  | 1  | 4  | 3  | 1,301  | 50 | 14 |
| V4281 | 817   | 86  | 37 | 245 | 37 | 16 | 72  | 108 | 24 | 81  | 45 | 79  | 46 | 7  | 1  | 4  | 2  | 232    | 62 | 15 |
| V4282 | 829   | 92  | 38 | 148 | 52 | 20 | 106 | 134 | 26 | 68  | 46 | 85  | 47 | 7  | 2  | 4  | 3  | 81     | 72 | 17 |
| V4283 | 934   | 92  | 40 | 302 | 48 | 18 | 85  | 129 | 22 | 77  | 48 | 76  | 48 | 7  | 1  | 3  | 2  | 381    | 67 | 17 |

The Alan Vince Archaeology Consultancy, 25 West Parade, Lincoln, LN1 1NW http://www.postex.demon.co.uk/index.html A copy of this report is archived online at http://www.avac.uklinux.net/potcat/pdfs/avac2007114.pdf

V4284 1,415 113 48 301 56 22 86 153 31 96 53 88 54 7 2 4 3 308 93 19