Assessment of Mixed Finds from the Easington to Ganstead Pipeline (EAG)

Alan Vince and Kate Steane

Description	1
Ceramic Building Material	1
Fabrics	2
Roman	3
Medieval to post-medieval	3
Fired Clay	5
Fabrics	5
Featureless fragments	6
Loomweights	6
Salt-production waste	7
Daub?	7
Stone	7
Unworked and unmodified	7
Possibly Burnt Stone	8
Burnt Stone	9
Querns	10
Column	11
Roofing Tile	11
Hammerstone	11
Pivot Stone?	11
Whetstone	11
Assessment	11
Further Work	11
Costing	12
Retention	13
Bibliography	14

The ceramic building material, fired clay and stone finds from the Network Archaeology excavations and other fieldwork in advance of the Easington to Ganstead pipeline were submitted to the authors for identification, recording and assessment. The material ranges in date from the prehistoric period (Bronze Age or later) to the late 16th century or later.

Description

Ceramic Building Material

72 fragments of ceramic building material were recorded. They include material of definite Roman date as well as later medieval or later material (Table 1).

Table 1

Cname	Fragments	Objects	Weight (gm)
CBM	9	9	3
MTIL	29	21	740
PMTIL	27	23	5386
RTIL	7	7	1260
Grand Total	72	60	7389

Key: CBM – undatable; MTIL – Medieval (or later); PMTIL – post-medieval or later; RTIL –

Roman.

The Alan Vince Archaeology Consultancy, 25 West Parade, Lincoln, LN1 1NW http://www.postex.demon.co.uk/index.html A copy of this report is archived online at http://www.avac.uklinux.net/potcat/pdfs/avac2008119.pdf

Fabrics

The fabric of all of the CBM was examined by eye, with the occasional use of a stereomicroscope. Eight fabric groups were identified (Table 2).

Table	2
-------	---

Fabric No	Main inclusion types	Character of groundmass	Comments
CBM1	Off-white mudstone pellets up to 15.0mm long Rounded and subangular moulding sand <0.3mm	Poorly mixed with lenses of various colours	Jurassic in Lincolnshire.
CBM2	Moderate subangular rock fragments (flint, red sandstone, white sandstone) Rare rounded quartz with matt surface <0.3mm	Abundant subangular quartz <0.2mm	Boulder clay, probably Holderness (Beverley?)
СВМЗ	Rare rounded red iron ore pellets < 4.0mm Rare rounded and subangular quartz with mat surface < 0.3mm	Moderate burnt-out calcareous grains <0.2mm, Moderate muscovite	Probably local
CBM4	No large inclusions Rounded quartz, subangular quartz, white sst, red sst moulding sand	Abundant calcareous, micaceous silt < 0.1mm	Local? marine clay
CBM5	No large inclusions	Micaceous, calcareous silty clay	Marine clay
CBM6	No large inclusions	As CBM5 but light colour due to salt	Marine clay
CBM7	Moderate spherical burnt-out calcareous inclusions	Micaceous, calcareous silty clay, coarser than CBM5 and CBM5	Marine clay
CBM8	Moderate rounded quartz <0.3mm Rounded quartzose moulding sand, cf CBM1	Poorly mixed. Rare off- white lenses. Very little silt visible	Probably Lincolnshire Jurassic

The most surprising feature of the EAG fabrics is that two of them appear to be of

Lincolnshire origin, having exactly the same range of inclusions and other traits as can be

seen in material from the Washingborough tilery, situated close to the Witham immediately to the east of Lincoln. It has recently been realised that tiles from this area were being traded but boat down the Witham to its mouth, near Boston, and have been noted at sites in the Lindsey Marshes. These examples, however, are the first to be identified north of the Humber. They are all the more surprising because of the existence locally of Roman tileries, for example at Beverley.

The remaining fabrics mostly have characteristics which indicate that they were made from estuarine or marine clays, such as those which occur to both the north and south of the Humber estuary. Visually identical fabrics were being produced at Beverley, and at Barton-upon-Humber and without chemical analysis it is not possible to positively attribute any brick to a specific centre. However, documentary sources suggest than in the late medieval period Beverley was far and away the largest producer of brick and tile in the Humber estuary region and earlier examples are likely to be Beverley products. Unfortunately it is impossible to date these bricks and tiles closely except by their archaeological context.

Roman

Seven fragments of Roman ceramic building material were recorded. They consist of two pieces of imbrex tile, three pieces of tegula and two pieces which could be bricks or tegula fragments. They come from three separate plots (Table 3) and are of two fabrics, CBM1 and CBM8. Both of these fabrics, it is suggested here, were produced in Lincolnshire, quite possibly in the Witham valley, and traded downriver and along the coast. Building material in more recent times was often used as saleable ballast and if this was the case in the Roman period it would imply that equally bulky goods were returning to Lincolnshire to take the place of the brick and tile. Roman tiles of these Lincolnshire fabrics are not found in the Brough on Humber area, which one would have expected if they were being carried overland and ferried across the Humber, nor are they found further up-river at York, which had its own thriving tileries, at least in the earlier part of the Roman period.

Table 3

trench	Form	Fabric	Fragments	Objects	Weight (gm)
PL 35	IMBREX	CBM1	2	2	197
	TEG	CBM1, CBM8	3	3	599
PL 36 TR 59	TEG/BRICK	CBM8	1	1	42
PL 104 TR 172	TEG/BRICK	CBM1	1	1	422

Medieval to post-medieval

Fifty-six fragments of medieval and later ceramic building material were recorded (Table 4). They come from fourteen separate locations but show no strong concentrations (being most common on Plots 25, 35 and 86 Trench 141).

Potentially, the earliest material consists of flat roof tiles, in fabrics 2 and 4, both of which have moulding sand which suggests a local origin, but whose textures suggest were utilising different clay resources, boulder clay and estuarine/marine clay. The earliest possible date for these tiles would be in the mid 12th century but they continued to be produced with little

difference in fabric, dimensions or suspension methods into the 16th or 17th centuries. None of the recorded fragments have either peg holes or nibs. However, the 17 fragments with measurable thicknesses do show a difference between the two fabric groups (Table 5) suggesting that they may have come from different sources.

Twenty-two fragments of brick were recorded. None show obvious signs of moulding sand or straw but all were made by hand. They could date to any period between the later medieval and the 19th centuries (or even later, given the survival of the traditional Barton-upon-Humber brickworks into the late 20th century). . Eight bricks had measurable thicknesses, ranging from 48 to 55mm. Bricks occurred in four fabrics (CBM2, CBM5, CBM6 and CBM7) but only those in the first two fabrics had measurable thicknesses, and these showed no different in mean thickness (52.5mm for CBM2 and 50.33 for CBM5).

Table	94
-------	----

trench	Form	subfabric	Fragments	Objects	Weight (gm)
PL 108	BRICK	CBM5	1	1	63
PL 110 TR 183	BRICK	CBM5	1	1	17
PL 111 TR 187	PANT	CBM2	2	2	128
PL 25	BRICK	CBM5	2	2	91
		CBM7	2	1	73
	FLAT	CBM4	2	2	28
	FLAT/PANT	CBM4	2	2	37
	PANT	CBM4	1	1	8
PL 26	BRICK	CBM5	1	1	27
PL 3	FLAT	CBM4	2	2	54
	FLAT/PANT	CBM4	1	1	82
	OBJECT	CBM4	1	1	98
PL 31	BRICK	CBM2	2	1	1348
PL 31 TR30	BRICK	CBM2	2	1	1876
PL 35	BRICK	CBM7	1	1	19
	FLAT	CBM4	4	4	198
	FLAT/PANT	CBM4	5	5	20
	PANT	CBM3	2	2	20
PL 47	BRICK	CBM5	1	1	7
PL 63 TR 111	BRICK	CBM5	2	1	1144
PL 86 TR 141	BRICK	CBM5	4	4	451
		CBM6	1	1	47
		CBM7	2	2	67
	FLAT	CBM2	2	2	127
PL 88 TR 157	FLAT	CBM2	9	1	91
PL 88 TR 3	FLAT/PANT	CBM4	1	1	5

TH	CBM2	CBM4
11		1
12		1
13		1
15		3
16	9	

Five pantiles were recorded, in three fabrics (CBM2, CBM3 and CBM4). These tiles came from three localities (Table 6). Pantiles were introduced into the British Isles from the Low Countries in the later 16th century and continued to be produced into the 20th century.

Table 6

trench	CBM2	CBM3	CBM4
PL 111 TR 187	2		
PL 25			1
PL 35		2	

A single unidentified object was produced in a fabric used for medieval and later tiles, CBM4. It is difficult to describe and impossible to guess at its function or complete form. However, it appears to have a flat base with a sloping side at a 75 degree angle and an edge, possibly a circular piercing, 20mm from the base. It does not look like any known roof furniture and may have been a specialised item made by tilers for a specific task. In Lincoln, for example, there are a range of vessels made in tile fabrics, but apparently used for non structural purposes (Young and Vince 2005, TILE).

Fired Clay

A total of 536 fragments of fired clay were recovered, weighing in total 3408 gm. The material comes from a number of plots. Twenty-one of these collections consist of less than ten fragments but twelve produced larger collections, with the largest coming from Plot 35 (134 fragments, weighing 814 gm.

Fabrics

The fragments were each assigned to a fabric group, and a sample of each fabric was extracted to form a site fabric series. In total, eight fabrics were present (Table 7).

Fabric No	Main inclusion types	Character of groundmass	Comments
FC1	Subangular quartz (mostly overgrown) up to 0.5mm Subangular white flint up to 1.0mm Organics up to 10mm long	Silty	Untempered estuarine clay?
FC2	Rare rounded quartz up to 1.0mm Rare sandstone up to 1.0mm	Variegated, with off-white lenses; fine subangular quartz sand.	Boulder clay? Possibly including Middle

T	able	7

			Jurassic
			clay from
			North York
			Moors
FC3	Moderate rounded rock fragments (basic igneous rock; fine-grained sandstone; angular white flint) up to 4.0mm	Silty with muscovite and biotite up to 0.1mm	Boulder clay
FC4	Moderate rounded quartz up to 1.0mm Burnt-out organics up to 10.0mm	Silty	Probably similar to Fabric 1
FC5	Moderate rounded chalk fragments up to 4.0mm Rounded quartz up to 1.0mm	Abundant subangular quartz up to 0.2mm across	Boulder clay Calcareous version of Fab 3
FC6	Moderate angular and rounded rock fragments (including veined altered volcanics and coarse- grained igneous rocks) Rounded dark brown clay pellets up to 4.0mm across	Abundant subangular quartz up to 0.2mm across	Boulder clay
FC7	Moderate subangular quartz up to 1.0mm across Burnt-out organics	Abundant subangular quartz up to 0.2mm across	

Featureless fragments

Most of the fragments have no sign of their original function and no original surfaces. In some cases the pattern of oxidation and the dark grey to black core indicates that the clay was highly organic when burnt and that the objects were fragmentary whilst burning. This argues for their being from daub structures or similar rather than hearths which might be expected to withstand burning without breaking. The dark cores are consistent with the burnt out organic inclusions present in many of the fragments.

However, it is likely that the fragments include material from a variety of sources, including those, described below, where the original function can be determined.

Loomweights

Fragments of at least four loomweights were identified.

One of these (PI 104 Tr 170, context 10410) has a flat base and cylindrical body. Such weights have been found in Bronze Age contexts and are thought to date to the Bronze Age and early Iron Age. The weight is in Fabric 5.

Another example (Plot 25, context 25112) comes from a pyramidal weight with four flat sides, tapering towards the top which appears to have been rounded (in some weights the top is formed into two peaks with a trough between. This does not seem to have been the case in this instance). A single horizontal hole, 30mm in diameter is present. The weight is in Fabric 3 The other two examples (Plot 25, context 25138, Fabric 2, and Plot 140, context 12060, Fabric 1) are probably fragments of pyramidal weights.

Pyramidal weights occur in Iron Age and, perhaps, early Roman contexts.

Salt-production waste

Four fragments were probably associated with salt production. One of these, from Plot 104 context 12005, is a pedestal, used in groups of four to support the containers in which the brine is heated (Morris 1994). These pedestals were subjected to heat and probably to splashing with brine and consequently are often found to have whitened surfaces, "salt surfacing", formed when brine, clay minerals and calcium carbonate are heated together. It is made from a Fabric 2 clay with prominent fine-textured organic inclusions.

The others form a small group from Plot 47, context 4707. they are too fragmentary to identify the form but the presence of a thick salt surface indicates that they were probably associated with salt production. They are made from Fabric 2 clay.

It should be noted that some East Yorkshire clays are naturally calcareous and salt-rich marine/estuarine silts and therefore have a salt surface when fired. It is not therefore certain that the Plot 47 items were associated with salt working. They could, alternatively, be fragments of loom weight.

Daub?

There are not clear-cut examples of daub but a few examples from Plots 3 and 35, contexts 3190 (Fabric 6) and 35505 (fabric 3), might be from wattle and daub structures since they have flat surfaces and have broken backs, with possible wattle impressions.

Stone

Unworked and unmodified

Six hundred and seventy-nine fragments of stone have no obvious signs of working or modification and are either present naturally in the site's subsoil or were deliberately brought to the site but not altered by this use (Table 8). They are classified here as being of geological interest only (GEO in catalogue).

Table 8

Trench Fragments Objects Weight (gm)

PL 003	3	3	660
PL 025	11	11	6306
PL 025 TR 9	1	1	5
PL 026	48	48	4057
PL 026 SQ 11	1	1	507
PL 026 SQ 121	24	24	167
PL 026 SQ 2	2	2	3
PL 026 SQ 220	7	7	167
PL 026 SQ 222	3	3	316
PL 026 SQ 230	24	24	113
PL 026 SQ 238	14	14	93
PL 026 SQ 244	2	2	80
PL 026 SQ 252	24	24	99
PL 026 SQ 26	5	5	576
PL 026 SQ 262	25	25	38
PL 026 SQ 262	20	20	34
PL 026 SQ 264	50	50	47
PL 026 SO 270	27	27	160
PL 026 SQ 276	13	13	100
PL 020 SQ 270	10	10	4
PL 020 SQ 270	21	21	102
PL 020 SQ 200	21	21	62
	23	23	02
PL 020 SQ 200	15	ID 4	10
PL 026 SQ 288	4	4	10
PL 026 SQ 29			403
PL 026 SQ 290	14	14	108
PL 026 SQ 292	19	19	87
PL 026 SQ 294	41	41	154
PL 026 SQ 298	18	18	134
PL 026 SQ 300	1	1	1
PL 026 SQ 302	10	10	51
PL 026 SQ 310	30	30	83
PL 026 SQ 314	6	6	26
PL 026 SQ 316	71	71	259
PL 026 SQ 318	33	33	64
PL 031	11	10	260
PL 035	29	28	3486
PL 035 TR 49	1	1	7
PL 035 TR 9	1	1	410
PL 036 TR 55	1	1	60
PL 051	2	2	405
PL 073	1	1	5
PL 073 TR 121	3	3	23
PL 088	4	4	413
PL 088 TR 157	1	1	9
PL 104	1	1	12
PL 104 TR 170	1	1	6
PL 108	2	2	35
Grand Total	679	677	20389

Possibly Burnt Stone

Sixty fragments of stone were possibly burnt and fire-cracked. However, in each case the evidence was not overwhelming and a natural origin for the stone was equally possible,

perhaps through frost shattering, oxidation of a naturally reduced rock or concretion with iron or manganese (Table 9).

Table 9

Trench	Fragments	Objects	Weight (gm)
PL 025	4	4	726
PL 026	7	7	106
PL 031	2	2	50
PL 035	5	4	314
PL 035 TR 9	1	1	211
PL 051	10	8	245
PL 063	1	1	12
PL 073	1	1	124
PL 088	16	1	1374
PL 104 TR 170	4	4	63
PL 108	9	9	160
Grand Total	60	42	3385

Burnt Stone

Ninety-eight fragments of stone were most likely to have been burnt. Some of these had shattered and in these cases this might have been due to their being thrown into water or having water splashed on them. In those cases, the stone may be a by-product of either heating water by indirect heat (pot boilers) or the generation of steam for therapeutic or religious purposes ("prehistoric saunas"). In the remaining cases, where there is no cracking of the stone, the heating might have been due to the stone being used as a hearth base or surround. Interpretation depends on the size of the stone and, to some extent, its associations as well as with the quantity of stones found ("prehistoric saunas" required a large quantity of stones, which usually resulted in the build-up of mounds of burnt stones).

Trench	Fragments	Objects	Weight (gm)
PL 003	18	18	1287
PL 025	4	4	405
PL 025 TR 9	1	1	72
PL 026	5	5	1364
PL 026 SQ 220	1	1	133
PL 026 SQ 222	3	3	16
PL 026 SQ 230	1	1	98
PL 026 SQ 256	1	1	3
PL 026 SQ 270	5	5	33
PL 026 SQ 278	1	1	20
PL 026 SQ 280	3	3	11
PL 026 SQ 310	1	1	50
PL 031	32	19	1632
PL 035	15	15	4127
PL 051	2	2	712
PL 051 TR 86	1	1	227
PL 088	1	1	176
PL 108	3	3	50
Grand Total	98	85	10416

Querns

Fragments of eight rotary querns were recovered. Most were of the standard form, adopted in the early Roman period and used from then into the medieval period, and one (made from basic igneous rock) was a beehive quern, a type with a number larger, dome-shaped upper stone.

Examination at x20 magnification suggests that five rock types were used. Two of these might have been found in the local boulder clays (basic igneous rock and coarse-grained metamorphic rock). However it is quite surprising that boulders of suitable size to produce both the upper and lower stones of a rotary quern would be present in the boulder clay since most of the erratic rocks seen in the sea cliff along the Holderness coast are too small for such a use. It is also quite surprising that basic igneous rock would have been used for this purpose since the grain size is so small that the working face would become polished and cease to grind the grain. However, in this particular instance there is no doubt at all that the object is part of a rotary quern.

Coarse-grained metamorphic rock is much better-suited to quern manufacture although it is even less likely that a stone or stones suitable for quern making would have been available in the local boulder clay. Here, there is a possibility that the quern is an import. Hyllestad, on the western Norwegian coast, to the north of Bergen, was a major producer of quern stones from the beginning of the 8th century into the medieval period (Carelli and Kretsen 1997). The Hyllestad querns are petrologically distinctive in thin section and this example should be thin-sectioned for comparison with the Norwegian material. Other Scandinavian sources either operated on a local scale or are much later in date and unlikely to have been exporting querns to the British Isles (Grenne et al. 2008).

One stone was made from a medium-grained Carboniferous rock, either a particularly fine Millstone Grit or a Coal Measures sandstone. In either case, the quern is likely to have been made somewhere along the Pennines.

Fragments of three querns made from Mayen lava were recorded. Most were small, amorphous pieces, identified by the distinctive vesicular lava from which they were made. Mayen lava querns were exported from the Niedermendig area of central Germany from the Roman period into the medieval period.

A final example of a Spilsby Sandstone quern was recorded. This rock outcrops along the western scarp of the Lincolnshire Wolds, from Market Rasen southwards to the Witham. Spilsby Sandstone querns were produced in large quantities from the pre-Roman Iron Age into the Roman period but not, apparently, any later.

Rock type	Trench	Fragments	Objects	Weight (gm)
BASIC IGNEOUS	PL 088 TR 3	1	1	3400
COARSE GRAINED METAMORPHIC	PL 025	1	1	2400
FINE CARBONIFEROUS	PL 035	1	1	442
SANDSTONE				
MAYEN LAVA	PL 035	5	3	2317

	PL 073	3	1	32
SPILSBY SANDSTONE	PL 035	1	1	6600
Grand Total		12	8	15191

Column

A single fragment of a cylindrical column, 95mm in diameter, made from Millstone Grit, was recovered from Plot 35 Trench 53. The object is broken (and is at least 55mm long) but has one flat end, more roughly finished than the cylindrical sides.

It is most likely that this object is architectural but exactly how it was used is unclear. Similarly, it could be of Roman date or any period from the medieval or later.

Roofing Tile

A single small sliver of metamorphic grey slate from Plot 88 is most likely to be of postmedieval or later date and to come from a roofing slate. However, it is a small, featureless fragment and might conceivably be an erratic fragment of unworked slate (although slate is not a noted element in the erratics found in Yorkshire boulder clays).

Hammerstone

A roughly ovoid boulder of basic igneous rock from Plot 25 shows signs of impact at opposed ends.

Pivot Stone?

A boulder of basic igneous rock from Plot 25 has a pecked upper surface with a cylindrical hole, 30mm in diameter and 52mm deep. It may have been used to support a door or window or might possibly have been part of a piece of equipment such as a potters' wheel.

Whetstone

A micaceous sandstone whetstone was recovered from Plot 3. It is complete and measures 258mm long, 41mm wide and between 14 and 45 mm thick. It has a suspension hole with an hour-glass profile, being 16mm in diameter at the surfaces narrowing to 6mm in diameter in the centre.

Assessment

Further Work

The ceramic building material includes five fragments of Roman date, each of which is likely to be of Lincolnshire origin. The lack of similar tiles further west suggests that they were not transported overland but around the coast, implying that there was an equivalent material, perhaps agricultural produce, which was shipped back to the Witham valley. This is remarkable and the identification of the fabrics involved, CBM1 and CBM8, should be confirmed through analysis of the clays (Task 1).

An example of each of the other CBM fabrics should be thin-sectioned and a chemical analysis obtained in order to document the collection (Tasks 2 and 3).

The most interesting fired clay objects found are the loom weights and the clay associated with salt production. It would be possible through analysis of the clay to establish whether the salt production waste is likely to be of local origin, and therefore evidence for nearby salt production in the later prehistoric or early Roman periods, or brought to the site, and therefore possible evidence for the transport of salt (and accidental transport of ceramics associated with its production) (Task 4).

A study of the archaeological context of the fired clay, both identifiable artefacts and featureless fragments, might allow differences in fabric use through time to be determined and would, in any case, be useful to compare with the underlying drift geology and soil classification, to see whether there is any evidence for local movement of clay (Task 5). The fired clay fabrics should be documented by thin section and chemical analysis of the fabric series (Tasks 6 and 7).

Two of the loomweights and two objects associated with salt production should be drawn and photographed (Task 8).

The archaeological context of the burnt stone, possible burnt stone and worked stones should be determined to see if it can aid interpretation and dating of the finds (and, conversely, aid interpretation of the archaeological contexts) (Task 9).

The stone artefacts include eight which would repay illustration and photography (Task 10; Table 12). In addition, three of these should be thin-sectioned (Task 11). These consist of the coarse metamorphic quern; the column fragment and the beehive quern.

Action	REFNO	Context	Trench	Subfabric	Form
PHOTO; DR	1102	3091	PL 003	MICACEOUS SANDSTONE	WHETSTONE
PHOTO; DR		25138	PL 025	BASIC IGNEOUS	PIVOT STONE?
TS; DR; PHOTO	288	25138	PL 025	COARSE GRAINED METAMORPHIC	ROTARY QUERN
PHOTO; DR		35496	PL 035	SPILSBY SANDSTONE	ROTARY QUERN
PHOTO; DR		35183	PL 035	FINE CARBONIFEROUS SANDSTONE	ROTARY QUERN
PHOTO; DR		35194	PL 035	MAYEN LAVA	ROTARY QUERN
PHOTO; DR; TS		3508	PL 035 TR 53	MILLSTONE GRIT	COLUMN SEGMENT
PHOTO; DR; TS	30	8839	PL 088 TR 3	BASIC IGNEOUS	BEEHIVE QUERN

Table 12

Costing

Task Descript	tion N	Number and Unit Cost	Cost
---------------	--------	----------------------	------

Task 1	Analysis of Roman tile using TS and ICPS	7 @ £52.00 plus VAT	£364.00 plus VAT
Task 2	Thin section analysis of other CBM fabrics	6 @ £26.00 plus VAT	£156.00 plus VAT
Task 3	Chemical analysis of other CBM fabrics	6 @ £26.00 plus VAT	£156.00 plus VAT
Task 4	Thin section and chemical analysis of salt production waste	4 @ £52.00 plus VAT	£208.00 plus VAT
Task 5	Contextual study of fired clay	4 hours at £26.00 plus VAT per hour	£104.00 plus VAT
Task 6	Thin section analysis of fired clays	5 @ £26.00 plus VAT	£130.00 plus VAT
Task 7	Chemical analysis of fired clays	5 @ £26.00 plus VAT	£130.00 plus VAT
Task 8	Illustration and photography of selected fired clay objects	4 @ £20.00 plus VAT plus 2 @26.00 plus VAT	£132.00 plus VAT
Task 9	Contextual study of used and worked stone	4 @ £26.00 plus VAT	£102.00 plus VAT
Task 10	Illustration and photography of selected stone artefacts	8 @ £20.00 plus VAT and 4@ £26.00 plus VAT	£264.00 plus VAT
Task 11	Thin section analysis of selected stone artefacts	3 @ £26.00 plus VAT	£78.00 plus VAT
Total			£1824.00 plus VAT
VAT			£319.20
Grand total			£2143.20

Retention

All of the fired clay and ceramic building material should be retained for future re-examination. None requires any special storage conditions. The unworked and unmodified stone should be discarded. The remaining stone should be retained. No special storage conditions are required.

Bibliography

- Carelli, P. and Kretsen, P. (1997) "Give us this day our daily bread. A study of Late Viking Age and Medieval Quernstones in South Scandinavia." *Acta Archaeologica*, 68, 109-137
- Grenne, T., Heldal, Meyer, G. B., and Bloxham, E. G. (2008) "From Hyllestad to Selbu: Norwegian millstone quarrying through 1300 years." *Geology for Society*, Geological Survey of Norway Special Publication 11 47-66
- Morris, E. L. (1994) "Production and distribution of pottery and salt in Iron Age Britain: a Review." *Proceedings of the Prehistoric Society*, 60, 371-393
- Young, Jane and Vince, Alan (2005) *A Corpus of Anglo-Saxon and Medieval Pottery from Lincoln*. Lincoln Archaeological Reports Oxford, Oxbow