INDEX DATA	RPS INFORMATION
Scheme Title Wure piddue Bupass	Details Geophys surv.
Road Number	Date
Contractor $\mathrm{H}+\omega \mathrm{CC}$	
County $\mathrm{H}+$ Worcester.	
OS Reforonce SOCl	
Single sided	
Double sided	
A3 19	
Colour 0	

NGR: S 968479 (centre)

Location, topography and geology

The proposed course of the Wyrc Piddle Bypass extends northeast from the present B4084 road oppositc Furzen Farm. It runs eastward, crossing George lane to the north of Wyre Piddle and rejoins the $\mathbf{B} 484$ at Upper Moor. The work was carried out over a number of arable fields in various states of cultivation. There is a range of soil types prevailing within the road corridor; from east to west these are: typical brown earths; typical calcareous pelosols and stagnegleyic argillic brown carths. The pelosols are formed over Jurassic or Crctaceous clay; the remaining two groups are formed over a parent of river terrace or glaciofluvial terrace drift (SSEW, 1983).

Archaeology

Recent evaluation excavations by Hereford \& Worcester County Council (HWCC) have identified archaeological remains at two locations along the proposed bypass. One group of features was located to the north of Furzen Fann, at the westem extreme of the road corridor. A second and more complex set of archacological features was recorded 500 m to the east of George Lanc. In addition, a number of cropmarks have been identified on aerial photographs at Upper Moor, at the western end of the proposed read.

Aims of Survey

A geophysical survey was undertaken as part of an archaeological evaluation being carried out by HWCC. in advance of a proposed bypass. The work was undertaken using gradiometers in both scanning and detailed survey modes. The aim of the survey was to locate any anomalies of possible archaeological interest. In particular it was hoped that the survey might determine the pattern and extent of the archaeological remains identified by HWCC to the east of George Lanc.

Summary of Results *

An initial scan with gradiometers was undertaken over the entire length of the proposed road corridor. Responses from ferrous debris was encountered in several places, but few anomalics of potential archaeological interest were identified. Two significant responses were observed, adjacent to the arca investigated by HWCC trial trenches, to the east of George Lanc.

Detailedrecordedsurvey was concentrated in those arcas where archaeological featurcs had been recorded by HWCC. and over the cropmark site at Upper Moor. The gradiometer survey detected a complex of ditch type responses in Area D, to the east of George Lanc. The magnitude of the responses recorded in Area D were not of sufficient strength to be detected during the scan. Survey in Area C, over the two scamned anomalies, may have identified two ring ditches. Flsewhere, survey recorded a few magnetically weak trends and isolated pit anomalies tentatively interpreted as archaeological.

[^0]
SUR YEY RESULTS

1. Wunyey Area

1.1 The entire length of the road corridor was investigated with gradiometers in scanning mode. The detailed gradiometer survey, totalling 4ha, was concentrated in six areas, A to F. Arcas E and F are adjoining survey blocks but they have different alignments. For ease of display the data fiom Area D has been reproduced in two parts. However, the results will be discussed as a whole in Scction 5. of the report. The location of the survey arcas are shown in Figure 1 at a scale of $1: 2500$.
I. 2 The survey grid was set out by Ceophysical Surveys of Bradford and detailed tie-in information has been lodged with the client.

2. Dispay

2.1 The results arc displayed as $\mathrm{X}-\mathrm{Y}$ traces, dot density plots and greyscale images. These display fommats are discussed in the Technical information section at the cnd of the text. A list of the figures included in the report precedes the diagrams.
2.2 Figures 1B to ID are sumunary greyscale plots produced at a scale of $1: 1250$. Figures 2 to 13,16 and 17 are data plots and interpretation diagrams of the results produced at a scalc of $1: 500$. Figures 14 and 15 are a summary data plot and a summary interpretation of the results from Area D at a scale of 1:1000.
2.3 Letters in parentheses in the text of the report refer to anomalies highlighted on the relevant interpretation diagram.

30. General Conididerations Conplicatidy factors

3.1 In general, the ground conditions were suitable for survey; the fields being gently sloping or flat and free of obstructions. However, some had recently been ploughed at the time of the survey. These conditions made steady walking more difficult and contributed to the increased recorded background noise levels.
3.2 The levels of magnetic response will vary between the different soil groups, though all three should be suitable for gradiometer survey. The stagnogleyic argillic brown earths and the calcarcous pelosols would tend to give a moderate response. The typical brown earths, as they comprise coarse loams and sands over gravels, may be more problematical. The response from the sands and gravels may interfere with those from any archacology within the soil.

Results of Scan

4.1 The whole length of the road corridor was investigated with gradiometers in scanning mode. It was traversed at intervals of approximately 10 to 15 m and the instruments display observed for magnetic variation. The locality of any significant variations was subjected to a more detailed scan to assess their archaeological potential. Anomalies of interest were then marked with a cane for detailed recorded survey.
4.2 In gencral, the gradiometer scan found the road corridor to be magnetically quiet. A scatter of small scalc ferrous anomalics was identified, as well as field drains and pipes. Two pit type responses were detected in the castenn part of the field to the east of George Lane. No other anomalies of archacological potential werc identified.
2. . Resule of Detalled Gradiometer Sorxey (Agures 2 to 17

Area A

5.1 The dominant responses detected in Mrea A are those produced by two pipes or drains in the eastem cerner of the strvey area. A large area of disturbance in the southeastern comer is due to an clectricity pole and a bracing wire.
5.2 Several other weaker linear trends are indicated on the interpretation diagram. Two of these responses are thought to be duc to disturbance caused by backfilled excavation trenches. The excavations revealed features at each end of the survey area, including cremations at the eastem end. However, two very weak anomalies at the western end of the survey block have been interpreted as archaeological.

Arca B

5.3 As with Area A , the strongest response is that produced by a pipe running almost the entire length of the survey arca.
5.4 A number of anomalics have been interpreted as archaeological and, of these, the short lincar anomaly (A) appears to be the morc promising. A number of magnetically strong, pit type responses wore recorded. It is likely that ferrous objects in the ploughsoil have produced these anomalies, Cremation burials have been recorded nearby in Arca $\boldsymbol{\Lambda}$. Such features are not often located by gradiometer survey because cremations tend to be small and produce low magnetic responses. However, an archacological interprelation for the strong pit anomalies cannot be dismissed.

Arca C

5.5 Arca C occupied a ficld that had been freshly ploughed al the time of survey, As a consequence the poor walking conditions have increased recorded background noise levels.
5.6 A cluster of archacological type responses were recorded in the eastem half of the survey area. Although, the pattern is not absolutely clear the results give the impression of one or possibly two ring ditches (B). These are flanked by linear responses that may represent parts of an enclosure. These anomalics coincide with the two pit type responses recorded during the scan.

Area D

5.7 Excavations by HWCC in this arca identified numerous ditch features in addition to a circular dwelling. The gradiometer survey confinus the complexity of the archaeology present in this area. The anomalics were not observed during the scan; they had relatively weak magnetic responses and the ploughed condition of the ficld made scanning difficult.
5.8 The anomalies (C) appear to fom an irregular shaped cnclosure with evidence of subdivisions or features associated with occupation activity. To the northcast of (C) is a dense cluster of lincar responses, aligned approximately north-south (D).
5.9 Although a number of weak linear trends extend across the field, the strongest responses are situated along the northern edge of the survey arca. The results suggest that these features occupy part of a settlement focus and that they contain higher levels of magnetically enhanced material. Their location in the corner of the field may have protected them from severe plough damage.
5.10 Several areas of increased magnetic activity are bighlighted on the interpretation diagram. These anomalous regions may represent the presence of conhanced material from archacological features that have been disturbed by ploughing.
5.11 A number of short linear responses in the same orientation as the ploughing and a similar response along the northwestern edge of the survey (E) are interpreted as anomalies produced by recent ploughing.
5.12 A strong ferrous response in the western extreme of the survey area is due to a pipe and/or material forming a modern trackway. Ferrous disturbance along the northern edge of the survey area is due to the adjacent field boundary

Area E

5.13 A series of weak linear ircods was recorded in this area, aligned approximately north-south. The majority of these are responses due to surface cffects from changes in cultivation and minor tracks. All of the responses are of a magnetic strength that would have made them undelectable during the scan.
5.14 Two linear trends (F) and (G) are considered to be responses from features that have produced cropmarks. Of these, anomaly (G) appears to be the most promising, while (F) may be a due to recent cultivation practices.

Arca F

5.15 A single curvilincar anomaly of archacological interest was recorded along the eastern edge of the survey area. Ilowever, it's position adjacent to the field edge suggests that it may be of recent agricultural origin.

Cordusions

6.1 The gradiometer scan along the length of the proposed road corridur detected responses from ferrous objects, but few anornalics of possible archacological significance. Two responses were identified to the east of George Lane, adjacent to an arca investigated by HWCC trial trenches.
6.2 Due to the lack of response observed during the scan, detailed gradiometer survey was concentrated in those arcas where archaeological features had been located by HWCC and over a cropmark site at Upper Moor. The gradiometer survey detected a complex of ditch type responses in the evaluated arca to the east of Ceorge Lane in Area D. The magnitude of the responses recorded in Area D were not of sufficient strength to have been observed during the scan. Survey immediatcly to the west in Arca C, over two scanned anomalies, may have detected two ring ditches. Elsewhere, survey recorded a few magnetically weak trends and isolated pit anomalies tentatively interpreted as being archacological.

Project Co-ordinator:
Project Assistants:
Start of Survey: Date of Report:

D Shiel
I. Harvey, A Shiclds C Stephens and D Weston
1.5th January 1997

14th Febmary 1997

Reference

TECHNICAL INFORMATION

The following is a description of the equipment and display formats used in (iSB Prospection (GSB) reports. It should be cmphasised that whilst all of the display options are regularly uset, the diagrams produced in the final reports are the most suitable to illustrate the data from each site. The choice of diagrams results from the expericnec and knowledge of the staff of GSB.

All survey reports are prepared and submitted on the basid that whilst they are based on a thorough survey of the site, no responsibility is accepted for any errors or omissions.

Magnetic readings are logged at 0.5 m intervals along one axis in 1 m traverses giving 800 readings per $20 \mathrm{~m} \times 20 \mathrm{~m}$ grid, unlcss otherwise stated. Resistance readings are logged at 1 m intervals giving 400 readings per $20 \mathrm{~m} \times 20 \mathrm{mgrid}$. The data are then transferred to portable computers and stored on 3 . 5 " floppy discs.

Instrumentation

(a) Fluxgate Gradiometer - Geoscan FM36

This instrument comprises of two fluxgates mounted vertically apart, at a distance of 500 mm . The gradiometer is carried by hand, with the bottom sensor approximately $100-300 \mathrm{~mm}$ from the ground surface. At each survey station, the difference in the magnctic field between the two fluxgates is conventiønally measured in namoTesla ($n T$) or gamma. The fluxgate gradiometer suppresses any diurnal or regional effects. Generally features up to one metre deep may be detected by this method.

(b) Resistance Mcter - Geoscan RM4 or RM15

This measures the electrical resistance of the earth, using a system of four electrodes (two current and two potential.) Depending on the arrangement of these elcctrodes an exact measurement of a specitic volume of earth may be acquired. This resistance value may then be used to calculate the carth resistivity. Tho
"Twin Probe" arrangement involves the paring of electrodes (onc current and one potential) with one pair remaining in a fixed position, whilst the other measurcs the resistance variations across a fixed grid. The resistance is measured in Ohms and the calculated resistivity is in Olm-mettes. The resistance method as used for arca survey has a depth resolution of approximatcly 0.75 m , although the nature of the overburden and underlying geology will cause variations in this gencrality. The technique can be adapted to sample greater depths of earth and can therefore be used to produce vertical "pseudo sections".

(c) Magnetic Susceptibility

Variations in the magnetic susceptibility of subsoils and topsoils occur naturally, but greater enhanced susceptibility can also be a product of increased human/anthropogenic activity. This phenomenon of susceptibility enhancement can therefore be used to provide information about the "level of archaeological activity" associated with a site. It can also be used in a predictive manner to ascertain the suitability of a site for a magnetic survey. The instrument employed for measuring this phenomenon is either a field coil or a laboratory based susceptibility bridge. For the latter 50y soil samples are collected int the ficld.
\because Display Options

The following is a description of the display options used. Unless specifically mentioned in the text, it may be assumed that no filtering or smoothing has been used to enhance the data. For any particular report a limited tumber of display modes may be used.

(a) Dot-Density

In this display, minimum and maximum cut-off levels ate chosen. Any valuc that is below the minimum cut-off value will appear white, whilst any valuc above the maximum cut-off value will appear black. Any value that lics between these two cut-off levels will have a specified number of dots depending on the relative position between the two levels. The focus of the display may be changed using different levels and a contrast factor (C.F.). Usually the C.F. -1 , producing a linear scale between the cut-off levels. Assessing a lower than normal reading involvcs the use of an inverse plot, This plot simply reverses the minimum and maximum vahes, resulting in the lower values being presented by more dots. In either representation, each reading is allocated a unique area dependent on its position on the survey grid, within which numbers of dots arc randomly placed. The main limitation of this display method is that multiple plots have to be produced in order to view the whole range of the data. It is also difficult to gauge the true strength of any anomaly without looking atthe raw data valucs. This display is much favoured for producing plans of sites, where positioning of the anomalies and leatures is important.
(b) X-Y Plot

This involves a linc representation of the data. Each successive row of data is equally incremented in the Y axis, to produce a stacked profile elfect. This display may incorporate a hidden-line removal algorithm, which blocks out lines behind the major peaks and can aid interpretation. Advartages of this type of display are that it allows the full range of the data to be viewed and shows the shape of the indiviual anomalies. Results are produced on a flatbed plotler.

Display Options cont'd

(c) Grcy-Scale

This format divides a given range of readings into a set number of classes. These classes have a prcdetined arrangement of dots or shade of grey, the intensity increasing with value. This gives an appearance of a toned or grey scale.

Similar plots can be produced in colour, either using a wide range of colours or by selecting two or three colours to represent positive and negative values. While colour plots can look impressive and can be used to highlight certain anomalies, grey-scales tend to be more informative.

(d) Contour

This display format is commonly used in cartographic displays. Data points of equal value are joined by a contour linc. Closely packed contours indicate a sharp gradient. The contours therefore highlight an anomaleus region. The range of contours and contour interval arc selected manually and the display is then gencrated on the computer screcen or plotted directly on a flat bed plotter / inkjet printer.

(e) 3-D Mesh

This display joins the data values in both the X and Y axis. The display may be changed by altering the horizontal vicwing angle and the angle above the plane. The output may be either colour or black and white. A hidden linc option is occasionally uscd (see (b) above).

Glossary of terms commonly used in the graphical interpretation of gradiometer data

Ditch / Pit

This category is used only when other cvidence is available that supports a clear archaeological interprctation e.g. cropmarks or excavation.

Archaeology

This term is used when the form, nature and pattern of the response is clearly atchacological but where no supporting evidence exists. Thesc anomalies, whilst considered anthropogenic, could be of any age. If a morc precise archaeological interpretation is possible then it will be indicated in the accompanying text.

? Archaedlogy

The interpretation of such anomalies is often tentative, with the anomalies exhibiting either weak signal strength or forming incomplete archaeological patterns. They may be the result of variable soil depth, plough damage or even aliasing as a result of data collection orientation.

Natural

These rcsponscs form clear pattems in geographical zones where natural vaiations ane kirwin to product significant magnetic distortions e.g. palaeochannels or magnetic gravels.

? Natural

These are anomalies that are likely to be natural in origin i.c geological or pedological.

Areas of Magnetic Disturhance

These responses are commonly found in places where modern ferrous or fircd materials are present e.g. fencelines, pylons or brick rubble. They are presumed to be modern.

Areas of Increased Magnetic Response

These responses show no visual indications on the ground surface and are considered to have some archaeological potential.

Ferrous Response

This type of response is associated with ferrous material and may result from small items in the topsoil or larger buried objects such as pipcs. Ferrous responses are usually regarded as modern. Individual bumt stones, fired bricks or igneous rocks can produce responses similar to ferrous material.

Glossary (continued)

Ridmand Guryuy

These are regular and broad linear anomalics that are presumed to be the result of ancient cultivation. In some cases the response may be the result of modem activity.

Ploughing Trend

These are isolated or grouped lincar responses. They are normally narrow and are presumed modern when aligned to current field boundaries or following present ploughing.

Linear Trend

This is usually a weak isolated linear anomaly of unknown causc or date.

(2,		
Figure 1^	Location of Survey Areas	1:2500
Figure 1B	^reas \wedge and B: Summary Greyscale	1:1250
Figure 1C	Ateas C and D: Summary Greyscale	1:1250
Figure 1D	Areas L and F: Summary Greyscalc	1:1250
Figurc 2	Area A: XY Trace \& Dot Density Plol	1:500
Figure 3	Arca A: Interpretation Diagram	1:500
Figure 4	Area B: XY Trace \& Dot Density Plot	1:500
Figure 5	Area B: Interpretation Diagram	1:500
Figure 6	Arca C: XY Trace \& Dot Density Plot	1:500
Figure 7	Area C: Intcrpretation Diagram	1:500
Figure 8	Area D1: XY Trace Plot	1:500
Figure 9	Arca DI: Dot Density Plot	1:500
Figure 10	Area D1: Interpretation Diagram	1:500
Figure 11	Area D2: XY Trace Plot	1:500
Figure 12	Arca D2: Dot Density Plot	1:500
Figure 13	Area 2: Interpretation Diagram	1:500
Figure 14	Area B: Summary Greyscale	1:1000
Figure 15	Arca D: Summary Interpretation	1:1000
Figure io		1:50u
Figure 17	Area F: XY Trace, Dot Density Plot \& Interpretation Diagram	1:500

$=-==$	WYRE PIDDLE BYPASS
	Location of Survey Areas

(1)

WYRE PIDDLE BYPASS
Areas A and B

3	3

WYRE PIDDLE BYPASS

Area A

?Archaeology
Ferrous

$\int^{\boldsymbol{e x} \text { e. }}$
SSVdXI GTOUID TYAM

$$
\begin{aligned}
& \text { ?Archaeology } \\
& \text { Ferrous }
\end{aligned}
$$

WYRE PIDDLE BYPASS
Area C

WYRE PIDDLE BYPASS

\qquad

WYRE PIDDLE BYPASS
 Area D1

what

$$
\cdots
$$

$$
\text { Wet }+ \text { x, }
$$

mi s

$$
\begin{gathered}
6 \\
t y
\end{gathered}
$$

$$
9
$$

$$
x
$$

$$
\begin{array}{r}
\text { 桨年 } \\
\therefore
\end{array}
$$

$$
\text { 6, }+ \text { then }
$$

WYRE PIDDLE BYPASS
Area D1
?Archaeology

??Archaeology

Increased Magnetic Activity

Cultivation Trends

Ferrous

WYRE PIDDLE BYPASS

Area D
Summary Interpretation
?Archaeology
??ArchaeologyIncreased Magnetic ActivityCultivation Trends

Ferrous

g basy

SSVdXG GTAOID TYXM

Snomed

$\mathrm{I}^{\mathrm{u}} \mathrm{zi}$ I

Hemp
 SSVAXG H'TGII 'T甘ХM

[^0]: * It is essential that this summary is read in conjunction with the detailed results of the survey.

