N.B. There are very minot chifferenemes between this and th i file copy - to latter in lated the same, tun contain modiffintion. following Sue Colic hetero - $610 / 95$.
 Lee do not apes he

ST MARY ABBOTS HOSPITAL another region of

Phase II redevelopment
 Lith, other meath, so 9 Marloes Road W8
O2 -) an using then os of chef usa, the basic read of tr s
Royal Borough of Kensington and Chelsea ${ }^{\text {rewlet, }}$ n NOT different.
291997
Post excavation assessment and updated project design
LA9020/0020

Museum of London Archaeology Service
August 1995
museum of ${ }^{\text {b/ }}$
LONDON 亿

ST MARY ABBOTS HOSPITAL
 Phase II redevelopment Marloes Road W8

Royal Borough of Kensington and Chelsea

Post excavation assessment and updated project design

Site Code MAK 94
NGR : TQ 25677916

Museum of London Archaeology Service © Museum of London 1995
Number One London Wall, London EC2Y 5EA
Telephone 01719729111 Facsimile 01719729112

Project Manager Geoff Potter
Author Liz Howe

CONTENTS

Abstract. page 5
PART 1 - THE ASSESSMENT REPORT.

1. Introduction. page 6
1.1. The Scope of the Project. page 6
1.2. Circumstances and Dates of Fieldwork. page 6
1.3. The Organisation of this Report. page 6
2. Original Research Aims. page 6
3. Geological and Historical Summary. page 9
4. Interim Statement of the Results of Fieldwork. page 10
5. Summary of the Site Archive and Assessment page 15 Work Carried Out.
5.1. The Site Archive and Assessment Work. page 15
5.2. Summary of the Finds Assessment. page 15
5.3. Summary of the Environmental Assessment. page 16
5.4. Summary of the Documentary Research. page 17
6. Potential of the Data. page 18
6.1. The Original Research Aims. page 18
6.2. The Siginificance of the Data. page 18
6.3. Conclusions. page 19

PART 2 - THE UP-DATED PROJECT DESIGN.
7. The Revised Research Aims.
page 20
8. Proposed Methodology.
9. Preliminary Publication Synopsis.
10. Resource Requirements.

Appendices.
Bibliography.
Acknowledgements.
page 21
page 22
page 23
page 24
page 25 page 26

List of Figures.

Figure 1. Site Location Plan.
Figure 2. Trench Location Plan.
Figure 3. Late Iron Age Features.
Figure 4. Possible Roman Building.
Figure 5. Roman Features.
Figure 6. Roman Features.
page 7
page 8
page 11
page 12
page 13
page 14

Abstract
An archaeological evaluation was carried out by archaeologists from the Museum of London Archaeology Service(MOLAS) in July 1994. This was immediately followed (25th July 1994) by excavation of the productive area and was subsequently enlarged (28th August 1994 and 5th September 1995).
The site revealed the first evidence for late Iron Age and early Roman activity in the Kensington area. The Iron Age features consisted of two linear ditches aligned northsouth with cut features to the west. The Roman activity may have included an early clay-and-timber building to the west of a series of intercutting ditches. This may represent a farmstead.
The site remained as farmland/market gardens until the workhouse was built in 1848.

PART 1, THE ASSESSMENT REPORT

1. Introduction

1.1. The scope of the project.

The project covers the area in the second stage (phase II) of the redevelopment of the former St Mary Abbots Hospital in the Royal Borough of Kensington and Chelsea, London (Figure 1).
1.2. Circumstances and Dates of Fieldwork.

The first stage (phase I) of the redevelopment had already taken place over the southern part of the hospital precinct. The two phases are part of a coherent larger scheme. Archaeological issues were not planning considerations during the construction of phase I and no site evaluation took place. The phase II development comprised of the northern part of the former hospital site. An archaeological evaluation (site code MAK94) was carried out in July 1994 and was immediately followed by an archaeological excavation. The excavation was carried out on a rolling programme (Figure 2).

1.3. The Organisation of this Report.

This report has been structured following the guidelines laid down in MAP2 and the current MoLAS assessment specification ${ }^{1}$.

2. Original Research Aims.

Information available from the borehole survey carried out for phase I of the redevelopment revealed that relatively modern material represented a general make up dump designed to lift the prevailing ground level by about 1.5 m prior to the construction of the workhouse in 1848. This implied that the rural landscape of 1840, apparently unbuilt on for centuries, was buried intact, together with whatever prehistoric, Roman or Saxon remains it may have contained.

The archaeological impact assessment highlighted the need for archaeological evaluation trenches to be excavated within the footprint of the proposed basements for the phase II of the St Mary Abbots redevelopment.

The research design formulated for the archaeological evaluation listed three research aims which are discussed in section 7 .

[^0]

Figure 1. Site Location.
∞

Figure 2. Trench Location Plan.

3. Geological and Historical Summary

The site is positioned on Quaternary Upper Floodplain Terrace (Kempton Park) Gravels on a shoulder of land sloping down on three sides; to the south towards the Thames, to the east towards the River Westbourne, 2.2 km distant from the site, and to the west towards Counters Creek 1 km away. To the north the ground rises towards the gravels of the Taplow Terrace which underlies Hyde Park and Kensington Palace. The Kempton Park gravels were deposited in the Middle Devensian (45000-30000 BP) ${ }^{2}$. The gravels overlie London Clay, which is Eocene (60 million years BP) in date and of no archaeological relevance.

A general introduction to the archaeology of Kensington in the assessment report ${ }^{3}$ and it is not intended to repeat that here. Given the closer definition of the archaeological sequence following full-scale excavation it may be more useful to explore the potential parallels with other Romano-British rural sites in particular sites in West London e.g., Long Lane, Ickenham; Holloway Lane, Harmondsworth, as well as elsewhere.

[^1]
4. Interim Statement on the Results of Fieldwork

4.1 Prehistoric.

The earliest archaeological feature was a post hole which was sealed by a late Iron Age linear ditch, running north-south. Another ditch was to the south of this ditch but not the same having a slightly different alignment. Other features included post holes, pits and gulleys (Figure 3), all of which lie to the west of the ditches.
4.2 Romano-British.

The initial Romano-British activity consisted of a possible first century clay-and-timber building, comprising post holes and beamslots (Figure 4). To the east of these features there was a sequence of intercutting ditches, probably contemporary with the building sequence. The ditches are mainly aligned north-south, although one does appear to be curvilinear (Figure 5). To the south of the possible building there was another curvilinear ditch. Most of the ditches had been recut. The ditches probably represent field systems. A number of postholes and small pits were distributed across the site. The area appears to have gone out of use around the end of the second century. All the features were sealed by a post-Roman alluvial layer.

4.3. Post-Medieval.

The post-medieval features consisted of a north-south ditch in the main excavation and bedding trenches in Trenches 3 and 7 of the evaluation.

Figure 3. Late Iron Age Features.

Figure 5. Roman Features.

Figure 6. Roman Features.

5. Summary of Site Archive and Assessment Work Carried Out.

5.1 The Stratigraphic Site Archive and Assessment Work.

Contents of the Stratigraphic Archive ${ }^{4}$
13 Site context index sheets
441 Context sheets
5 A4 Plan sheets with additional machined areas at 1:100
10 A4 Trench plans at 1:100
23 A4 Sheets with sections at 1:20
9 A4 Sheets with sections at 1:10
368 A4 Plan sheets at 1:20
1 Site location plan
1 Trench location plan (Autocad)
1 Composite plan showing all features on Autocad
4 Phase plans (Autocad)
1 Computerised Harris Matrix, checked and annotated.
1 A1 Permatrace sheet with annotated group matrix
2 Photographic record sheets
$320 \mathrm{~B} \& \mathrm{~W}$ and transparency images
17 Photographic contact cards
1 Archaeological assessment report
5.1.1 The site records have been completed and checked. A plan of the areas of archaeological investigation has been completed and put onto Autocad. The contexts were indexed, classified and statigraphic matrix compiled for the site. All contexts, samples, plans and sections have been comipled into a computerised database.
5.1.2 The group sequences were interpreted and dated.
5.2 Contents of the Finds Archive.

34 Accessioned finds
10 Boxes of pottery
36.87 kg of building material

34 Accession cards
Summary of the finds assessment.
All the pottery was dated at the start of the assessment.

5.2.1 Flints.

Flint fragments were recovered from ditch fills and the post-Roman alluvium. No further work is required except for archiving.

5.2.2 Late Iron Age/Early Roman Pottery.

The whole pottery vessel recovered from the Iron Age ditch, context 114, is possibly 400-0 BC. Most sherds recovered from the site are extremely abraded making identification difficult. Research into pre-Roman/early Roman pottery is a matter of

[^2]urgency. The early material from MAK94 should be incuded in any such project. The material from context 1.65 seems to be the most promising in this respect, being one of the largest and possibly one of the earliest groups.

Post-medieval pottery.
No work was considered necessary on the post-medieval pottery.

5.2.3 Accessioned Finds.

There were 34 accessioned finds.

bone:	1
ceramic:	5
copper alloy:	1
flint:	16
glass:	7
iron:	2
lead:	1
stone:	1

Four ceramic loom weights are of late Iron Age/early Roman date. Seven glass vessel fragments date from the first or, at the latest, early second century. Three fragments of coloured glass, notably the brown flagon, may date from the middle of the first century.
Although small, the assemblage is of some significance, providing evidence of early Roman activity in the area. The presence of the loom weights and the Roman glass should be considered in any further work.

5.2.4 Ceramic Building Material.

All the ceramic building material has been assessed.
The Romano-British building material.
The majority of Roman ceramic material present is brick. In addition there were two fragments of roofing tile. Daub comprises just over 46 percent of the total of building material recovered. Much of it is small, rounded and highly abraded. A few larger fragments which could be part of mudbricks were from contexts 303 and 126.

5.3 Summary of the Environmental Assessment.

5.3.1 Environmental Soil Samples.

Seventy three test flotation samples were selected from the 129 samples. Assessment of the flots showed poor preservation and low frequency of plant remains with mainly charred cereal grains and occasional weed seeds. In the light of our limited knowledge of late Iron Age/ early Romano-British arable agriculture in this part of the country i.e. from the West London Gravel sites (e.g., Wall Garden Farm, Sipson) and those in North-West London (e.g., Long Lane, Ickenham), the material from MAK94 may add to this database and provide a basis for comparison with urban sites in the City.

5.3.2. Animal Bone.

Only very small fragments of animal bone were present at MAK94. None was recovered for further research.
5.4 Summary of Documentary Research.

Of the available documentary records of the local area there were not any which were considered relevant to this assessment.

6. Potential of the Data.

6.1 The Original Research Aims.

1. Can the redevelopment site expand the current knowledge about the nature and scale of prehistoric occupation in the Kensington area in the Neolithic period, and the Bronze and pre-Roman Iron Age?

The linear ditches and other late Iron Age features identified at St Mary Abbots Hospital site are very significant additions to the prehistory of Kensington. Their presence suggests the area was occupied at the end of this period. The finds associated with these features would suggest that there was a small settlement possibly to the west of the ditches.
2. Can the redevelopment site expand our knowledge of the nature and scale of the occupation in the Kensington area in the Roman period with particular regard to the evidence for villas and cemeteries?

Features identified as possible beamslots, post holes and gulleys may provide evidence for a timber framed building of the early Roman period. There is no evidence for the building being a villa, but it may suggest that it is possibly a farmstead. There was no evidence for Roman burials or of a cemetary.
3. Is there any evidence of a Middle Saxon settlement on a different aspect to that later occupied by the village of Kensington at the time of the Domesday book?

The redevelopment site revealed no evidence for any Saxon settlement.

6.2 The Significance of the Data.

6.2.1 Data of Local Importance.

The prehistoric and Romano-British occupation in Kensington must be considered as data of local importance as this is the first time that such occupation has been identified in the area. The relationship of the site to the Roman city of London as to its role possibly as an agricultural centre is a research objective. The St Mary Abbots Hospital site indicates a degree of continuity between the late Iron Age and the Roman period. The fact that there was no evidence of activity on this site after the Roman periods suggests that it was open land until the building of the workhouse in 1848.
6.2.2 Data of Regional Importance.

The site is comparable to other sites in the hinterland surrounding Roman London such as the West London Gravel sites (e.g., Wall Garden Farm, Sipson and Holloway Lane, Harmondsworth) and the Long Lane, Ickenham site in West London, in that there is a continuity between the late Iron Age and Early Roman period. It is also comparable in that the pattern of expansion in the first and second centuries is followed by an apparent stagnation in the latter part of the Roman period.

6.3 Conclusions.

6.3.1 The Potential for Further Assessment.

All finds material has been assessed. Further assessment of environmental soil and monolith samples is required.
6.3.2 The Potential for Further Analysis.

The potential for further analysis on all topics is discussed under the individual headings (8.1.1-8.1.5). For a consideration of how this fits with the updated research design see section 7.2.

6.3.3 Data Without Potential for Further Analysis.

Aspects of the data not worth further study are considered below.

6.3.4 Potential for Publication.

It is proposed that the site should be analysed and published in TransLAMAS ${ }^{5}$.

[^3]
PART 2 - THE UP-DATED PROJECT DESIGN.

7. Revised Research Aims.

7.1 The Original Research Aims.

Each of the original research aims are listed and discussed under section 6.1 'The Potential for Further Analysis'.

1. Can the redevelopment site expand the current level of knowledge about the nature and scale of prehistoric occupation in the Kensington area, in particular in the Neolithic period, and the Bronze and pre-Roman Age?
2. Can the redevelopment site expand the current knowledge about the nature and scale of the occupation of the Kensington area in the Roman period with particular regard to villas and cemeteries?
7.2 Further Research Aims.

T. What is the relationship between the site and the Roman city of London?
3. How does the site compare with other Romano-British farmsteads in the London area?
4. Can the site expand the current knowledge about the continuity between the late Iron Age and early Roman period?
5. What is the relationship between the Romano-British activity an the St Mary Abotts Hospital site and the Romano-British activity at Noting Hill and the Roman roads in the Kensington area?
6. How does the site relate to the medieval village of Kensington?

8. Proposed Methodology.

8.1 Methodology for Original Research Aims.
8.1.1 Analysis of Site Records.

Research Aims 7.1 and 7.2.
Tasks 1-11.
Further work will consist of integrating data from the dating material, ceramics, small finds and CBM into the group summaries.

8.1.2 Late Iron Age/Early Roman Pottery.
 Research Aims 7.1 and 7.2.

Task 2.
The potential for further study is limited due to the small size of the assemblage. It is recommended that the material from MAK94 should be included in any future project producing a systematic analysis of fabrics and forms of this early period on a Londonwide basis. However, the importance of MAK94 as the first evidence of Roman occupation in the Kensington area means that the pottery should be looked at in itsown right.

8.1.3 Accessioned Finds.

Research Aims 7.1 and 7.2.
Task 3.
Further work is recommended on the loom weights and the Roman glass. They should also be included in any future work on early Roman assemblages.

8.1.4 Roman Building Material.

Research Aims 7.1 and 7.2.
Analysis has been completed of the building material.
8.1.5 Soil Samples.

Research Aims 7.1 and 7.2.
Task 5.
Further work proposed on the soil samples is to scan, recover and identify plant remains from 25 assessed flots; process more soil from the productive samples (contexts 41, 44, 63, 90, 121, 165).

8.1.6. Monolith Samples.

Research Aims 7.1 and 7.2.
Task 6.
The monolith samples will be assessed and analysed.

9. Preliminary Publication Synopsis.

Introduction:
The aim of the Excavations at St Mary Abbots Hospital publication is to report on the results of the excavations carried out in 1994 which have produced the first real evidence for late Iron Age and early Roman occupation in Kensington.
9.1 The Proposed Publication Outlet.

It is proposed to publish the results of the excavation in TransLAMAS.
9.2 Summary of Topics for Publication.

The publication will discuss the results of excavation under the following topics:
Introduction,
Late Iron Age activity,
Early Roman Activity, Comparison with other rural early Romano-British sites.
9.3 Text and Specialist Report Integration.

It is anticipated that the publication will integrate the reports from specialists within the text.
10. Resource Requirements.

10.1 Excavations at St Mary Abotts Hospital, Kensington.

All estimates include writing a publication report, illustrated (to publication standard) where required.
10.1.1 Analysis of Site Material.

Task 1. Flints
Task 2. Late Iron Age/early Roman pottery
Task 3. Accessioned finds (A. Wardle)
Task 4. Ceramic building material (I. Betts)
Task 5. Soil samples (J. Georgi)
Task 6. Monolith samples (J. Sidell)
10.1.2. Analysis of Site Records.

Task 7. Revising group summaries (L. Howe)
Task 8. Selecting key images and annotating contact cards (L. Howe)
Task 9. Photo production of contact cards
Task 10. Academic research (L. Howe)
Task 11. Group/phase 1:100s (L. Howe)
10.1.3. Publication Estimates.

Task 12. Writing of Text (L. Howe)
Task 13. Compiling Bibliography (L. Howe)
15 days
Drafting of Publication Graphics
Task 14. Site location (1)
Task 15. Group/phase plans (4)
Task 16. Production of finds drawings
Production of Publication Photographs
Task 17. Finds
0.5 day

Task 18. Project meetings
Task 19. Editing of text
Task 20. Revision of edited text (L. Howe)

```
0
3 days
    1 day
    0
    6 days
0.5 day
```

 5 days
 0.5 day
0.25 day 3 days 2 days

At this stage the cost/time requirements of graphics and photographic work are estimated. It is recommended that these costs are reconsidered towards the end of the analysis stage.
10.1.4. Project management of analysis and publication work.

Task 21. (G. Potter)
3 days
Total 53.75 days

Appendices

1. List of Contexts and Group/Sub-Groups.
2. Group/Sub-Groups.
3. Index2.
4. Flint.
5. Pottery Assessment.
6. Accessioned Finds Assessment.
7. Building Material Assessment.
8. Environmental Assessment.
9. SMR form.
page i
page vi
page xlii
page 1
page li
page lxxvi
page lxxix
page lxxxiii
page lxxxvi

Appendix 1.
MAK 94 Contexts with Provisional Groups/Sub-groups

Context	Group / Sub-group49		9.08
		50	3.03
$+$	12.01	51	3.03
1	11.03	52	9.09
2	11.03	53	9.09
3	11.04	54	4.13
4	11.04	55	4.13
5	11.05	56	3.03
6	0.04	57	2.23
7	0.03	58	2.23
8	0.03	59	3.07
9	11.05	60	3.07
10	11.05	61	2.19
11	0.03	62	2.19
12	0.02	63	3.03
13	0.01	64	3.03
14	11.06	65	3.03
1.5	11.06	66	2.11
16	11.05	67	2.11
17	0.04	68	1.02
18	11.05	69	3.15
19	10.01	70	3.15
20	4.09	71	1.02
21	4.09	72	9.01
22	4.07	73	3.03.
23	4.07	74	3.03
24	4.08	75	1.02
25	4.08	76	2.20
26	4.06	77	2.20
27	4.06	78	9.01
28	11.05	79	3.06
29	9.05	80	3.06
30	9.059	81	3.03
31	4.05	82	9.16
32	4.05	83	9.16
33	3.03	84	2.24
34	3.03	85	2.24
35	2.31	86	9.11
36	2.31	87	9.11
37	12.01	88	3.17
38	12.01	89	3.17
39	12.01	90	3.03
40	3.03	91	2.09
41	3.03	92	9.07
42	9.06	93	9.07
43	9.06	94	2.04
44	4.12	95	2.04
45	4.12	96	2.09
46	9.06	97	3.03
47	3.03	98	1.06
48	9.08	99	1.06

100	9.12	156	1.04
101	9.03	157	1.11
102	9.03	158	1.11
103	3.03	159	2.08
104	1.02	160	2.08
105	1.01	161	9.15
106	1.01	162	9.15
107	3.03	163	1. 02
108	9.13	164	1.02
109	9.13	165	1.02
110	9.14	166	1.02
111	9.14	167	1.02
112	2.04	168	4.03
113	0.04	169	4.03
114	1.02	170	6.04
115	1.02	171	5.06
116	1.02	172	5.06
117	1.02	173	5.02
118	1.02	174	3.04
119	2.09	175	3.04
120	2.09	176	9.16
121	2.09	177	9.16
122	2.09	178	9.17
123	4.04	179	9.17
124	4.04	180	9.18
125	3.03	181	9.18
126	1.03	182	3.14
127	5.02	183	3.14
128	2.04	184	9.19
129	2.04	185	9.19
130	2.04	186	9.20
131	2.04	187	9.20
132	2.04	188	3.13
133	1.03	189	3.13
134	1.12	190	9.21
135	1.12	191	9.21
136	2.34	192	9.22
137	2.34	193	9.22
138	1.02	194	2.12
139	1.02	195	2.12
140	1.02	196	9.02
141	2.32	197	9.02
142	2.32	198	2.33
143	4.11	199	2.33
144	4.11	200	9.23
145	1.02	201	9.23
146	2.01	202	9.24
147	2.01	203	9.24
148	6.04	204	9.25
149	2.25	205	9.25
150	2.25	206	9.26
151	2.17	- 207	9.26
152	2.17	208	9.27
153	2.26	209	9.27
154	2.26	210	5.04
155	1.04	211	5.04

212	5.05	268	2.09
213	5.05	269	2.09
214	4.01	270	2.09
215	4.01	271	3.18
216	2.18	272	3.18
217	2.18	273	4.10
218	9.28	274	4.10
219	9.28	275	2.21
220	2.03	276	2.21
221	2.03	277	3.19
222	4.03	278	3.19
223	9.04	279	3.16
224	9.04	280	4.11
225	9.29	281	4.11
226	9.29	282	2.28
227	3.05	283	2.28
228	3.05-	284	2.04
229	2.27	285	2.04
230	2.27	286	2.22
231	9.52	287	2.22
232	9.52	288	2.10
233	3.20	289	2.10
234	3.20	290	4.04
235	2.16	291	4.04
236	2.16	292	3.11
237	2.28	293	3.11
238	2.28	294	3.16
239	2.02	295	9.36
240	2.02	296	9.36
241	3.12	297	3.16
242	3.12	298	5.01
243	3.12	299	3.10
244	9.04	300	3.10
245	9.04	301	3.01
246	9.30	302	3.01
247	9.30	303	2.10
248	9.31	304	11.01
249	9.31	305	11.01
250	9.32	306	9.37
251	9.32	307	9.37
252	11.02	308	9.38
253	11.02	309	9.38
254	9.33	310	1.13
255	9.33	311	1.13
256	9.34	312	2.10
257	9.34	313	2.10
258	1.07	314	9.39
259	1.07	315	9.39
260	6.01	316	1.05
261	6.01	317	1.05
262	5.01	318	7.08
236	6.01	319	7.08
264	6.01	320	1.14
265	9.35	321	1.14
266	9.35	322	9.40
267	2.09	323	9.40

324	9.41	380	2.14
325	9.41	381	2.14
326	9.42	382	2.06
327	9.42	383	2.06
328	6.01	384	3.09
329	6.01	385	3.09
330	6.01	386	0.01
331	5.01	387	1.09
332	5.01	388	1.10
333	9.43	389	8.01
334	9.43	390	7.01
335	3.02	391	5.02
336	3.02	392	5.02
337	3.02	393	7.07
338	6.01	394	7.07
339	6.01	395	8.01
340	6.01	396	5.03
341	5.01	397	5.03
342	5.01	398	5.03
343	1.08	399	8.01
344	1.08	400	5.03
345	9.44	401	6.02
346	9.44	402	5.02
347	2.29	403	5.02
348	2.29	404	5.02
349	9.45	405	2.13
350	9.45	406	4.02
351	2.30	407	8.02
352	2.30	408	8.02
353	9.46	409	7.03
354	9.46	410	7.03
355	4.04	411	9.48
356	4.04	412	9.48
357	2.07	413	5.02
358	2.07	414	3.04
359	3.16	415	3.04
360	3.16	416	5.02
361	3.16	417	2.05
362	2.10	418	2.05
363	9.47	419	3.04
364	9.47	420	3.04
365	3.08	421	2.13
366	3.08	422	9.49
367	2.10	423	9.49
368	2.10	424	8.03
369	5.07	425	8.03
370	5.07	426	5.03
371	1.10	427	8.04
372	1.09	428	8.04
373	2.06	429	7.04
374	2.15	430	7.04
375	4.01	431	7.05
376	4.01	432	7.05
377	4.01	433	9.50
378	3.01	434	9.50
379	3.01	435	9.51

436	9.51
437	7.06
438	7.06
439	7.02
440	7.02
441	6.03

Appendix 2.
Provisional groups/sub-groups
0.01: Natural gravel

0.02 : Silt/Clay Alluvium Layer

0.03: Natural Channel

0.04: Silt/Alluvium Layer (Natural)

1.02: Ditch

1.03: Ditch

0-70

1.04: Posthole?

spot date 0-70
1.05: Posthole?
1.06: Posthole?

1.07: Posthole?

1.08: Posthole?

1.09: Pit

spot date 0-100
spot date 0-100

2.07: Linear Cut

2.08: Pit

2.09: Linear Cuts - possible beam slots

spot date 40-400
2.11: Stakehole?

2.12:Linear Cut

spot date 70-100

2.13:Natural Channel?

2.14: Pit?

2.15: Pit Fill?

spot date 50-100
2.16: Linear cut

spot date 40-400
2.17: Linear Cut


```
2.18: Posthole?
```



```
2.19: Linear Cut
```



```
2.20: Pit?
```



```
77
\(--\mid---\)
2.21: Posthole?
```



```
2.22: Posthole?
```



```
2.23: Posthole?
10.01
-- |---
```


spot date $50-160$
spot date 70-160
spot date 50-100
spot date 50-160
spot date 50-100
spot date 50-160
2.29: Posthole?

2.30: Pit?

2.31: Pit

2.32: Posthole?

2.33: Posthole?

2.34: Posthole?
$--\left.\right|_{10.01} ^{136}$
spot date 50-160
spot date 70-160
spot date 50-160
spot date 50~400
spot date $0-400$
spot date $0-400$

3.10: Posthole?

3.11: Posthole?

spot date 50-160
spot date $100-160$

3.13: Stakehole?


```
3.14: Stakehole?
    M-| lo.01
3.15: Pit?
-- |--- 
    69 spot date 70-160
    70
    -- -----
    2.19
3.16: Posthole?
\[
\begin{gathered}
10.01 \\
--\left\lvert\, \begin{array}{c}
1-- \\
279=359 \\
294=360 \\
297=361
\end{array}\right. \\
--\mid---- \\
2.10
\end{gathered}
\]
3.17: Posthole?
```



```
3.18: Posthole?
```



```
3.19: Posthole?
10.01
```


spot date 50-160
3.20: Posthole?

spot date 50-400
3.05: Posthole?

spot date $50-160$
4.01: Linear Cut

4.02: Alluvial layer

spot date 70-120
4.03: Ditch
$\left.\left.\right|^{5.02} \cdot\right|^{5.05}$

spot date 0-70
4.04: Ditch

4.05: Posthole?

spot date 120-250
4.06: Posthole?

spot date uncertain?
4.07: Posthole?

22
23

4.08: Posthole?

$--1-\cdots$
4.09: Posthole?

4.10: Linear Cut
10.01

273
$\left.\right|_{274}$
$--\mid--$
3.10
4.11: Pit

4.12: Posthole?

spot date 60-160
4.13: Posthole?


```
213
\(-\mid---\)
4.03
```

5.06: Posthole?

spot date 0-100
5.07: Posthole?

spot date 40-100
6.01: Ditch

6.02: Sandy Silt Alluvium Layer

spot date 70-120
$---\mid--\cdots$
5.02
6.03: Layer

6.04: Ditch

spot date 40-100
7.01: Sandy/Gravelly Silt Alluvium Layer

spot date 70-160
7.02: Posthole?

spot date 70-160
7.03: Posthole?

7.04: Posthole?

7.05: Posthole?
$\left.\left.\right|^{8.039}\right|^{8.04}$

7.06: Posthole?

spot date 60-120
7.07: Ditch

spot date 70-400
7.08: Posthole?

$-\underset{318}{10.01}$| 1 |
:---

319
--|----
8.01: Silty Clay Alluvium Layer

8.02: Posthole?
$-\underset{407}{10.01}$
1


```
-- |----
```

9.04: Ditch

spot date $120-400$
9.05: Pit?

29
spot date 250-400
9.06: Pit

spot date $120-160$
9.07: Pit?

9.08: Posthole?

9.09: Posthole?

spot date 40-400
9.10: Posthole?

9.11: Posthole?

9.12: Layer

$$
\begin{gathered}
10.01 \\
---- \\
-\mid-\cdots \\
0.04
\end{gathered}
$$

9.13: Posthole?

9.14: Posthole?
$--\left\lvert\, \begin{gathered}10.01 \\ 110\end{gathered}\right.$
9.15: Posthole?

9.16: stakehole?

9.17: Posthole?

9.18: Stakehole?

9.19: Stakehole?

$$
\begin{aligned}
& \text { 9.20: Stakehole? } \\
& \text { 9.21: Stakehole? } \\
& \text { 9.22: Stakehole? } \\
& 10.01 \\
& 192 \\
& 193 \\
& \text {--|---- } \\
& \text { 9.23: Posthole? } \\
& \text { 9.24: Posthole? }
\end{aligned}
$$

9.25: Posthole?
10.01
$--\mid-\infty$
9.26: Posthole?
10.01

206
\mid
$--\mid----1$
0.04
9.27: Posthole?

9.28: Posthole?

9.29: Posthole?

$$
\begin{gathered}
\begin{array}{c}
10.01 \\
---- \\
225
\end{array} \\
226 \\
--\mid-\cdots-- \\
0.04
\end{gathered}
$$

9.30: Posthole?

9.31: Posthole?

9.32: Posthole?

9.33: Posthole?

9.34: Posthole?

9.35: Posthole?

9.36: Posthole?
$-\underset{295}{-\mid--01} \begin{aligned} & 10.01 \\ & 295\end{aligned}$
|

$$
\begin{gathered}
9.37: \text { Posthole? } \\
10.01 \\
--\mid=- \\
306 \\
--\mid-\infty \\
0.04
\end{gathered}
$$

9.38: Posthole?

308
$\left.\right|_{309}$
$--\mid-\cdots-1$
9.39: Posthole?

9.40: Posthole?

9.41: Posthole?

9.42: Posthole?

9.43: Posthole?

333

334

9.44: Posthole?

10.01

345
346
--|----
9.45: Posthole?

$$
\begin{gathered}
-\left.\right|_{30.01} ^{10--} \\
\mid 349 \\
350 \\
--\mid---- \\
0.04
\end{gathered}
$$

9.46: Posthole?

$$
\begin{gathered}
10.01 \\
--\left\lvert\, \begin{array}{l}
10.0 \\
353
\end{array}\right. \\
354 \\
--\mid-\cdots-\cdots \\
0.04
\end{gathered}
$$

9.47: Posthole?
$--\underset{363}{10.01}$
9.48: Posthole?

9.49: Posthole?

10.01
1---
422
423
0.04

9.50: Posthole?

9.51: Posthole?

435
1
$-\underset{0.04}{436}$
9.52: Posthole?

$$
-\frac{10.01}{10--} \quad \text { spot date } 120-400
$$

10.01 Post Roman alluvium/colluvium layer

11.01: Linear Cut (post-mediaeval)

11.02: Ditch

$$
\begin{gathered}
12.01 \\
--\left\lvert\, \begin{array}{c}
1252 \\
253
\end{array}\right. \\
--\mid---
\end{gathered}
$$

11.03: Linear Cut (Trench 7)

11.04: Linear Cut (Trench 7)

11.05: Post-mediaeval Alluvium/colluvium/garden soil

11.06: Linear cut (Trench 3)

12.01: 19th-20th Century Overburden

1

Appendix 3.
(context, type, plan number, section number, photgraphic number, sample number)

```
1,FILL,-,-,-,-
2,CUT,2,-,-,-
3,FILL,-,-,-,-
4,CUT,4,-,-,-
5,DEPO,-,1,-,-
6,DEPO,--5,-,-
7,DEPO,-,5,-,-
8,FILL,8,5,-,-
9,DEPO,-,3,-,-
10,DEPO,-,4,-,-
11,CUT,11,5,-,-
12,DEPO,-,5,-,-
13,DEPO,-,5,-,-
14,FILL,3A,-,-,-
15,CUT,15,-,-,-
16,DEPO,-,2,-,-
17,DEPO,4A,-,-,-
18,DEPO,-,6,-,-
19,DEPO,19,-,-,-
20,FILL,-,-,-,
21,CUT,21,-,-,-
22,FILL,-,-,-
23,CUT,23,-,-,-
24,FILL,-,-,-,-
25,CUT,25,-,-,-
26,FILL,-,-,-,-
27,CUT,27,-,-,-
28,DEPO,-,7,-,-
29,FILL,29,-,-,4,-
30,CUT,30,-,215/94/5,-
31,FILL,31,-,-,65,-
32,CUT,32,11,215/94/5,-
33,FILL,33,-,-,-
34,CUT,-,-,-,-
35,FILL,-,-,-,-
36,CUT,36,-,-,-
37,DEPO,-,6,-,-
38,DEPO,-,6,-,-
39,DEPO,-,6,-,-
40,FILL,40,10,-,1'68,-
41,FILL,41,10,-,5,-
42,FILL,42,-,-,-
43,CUT,43,-,-,-
44,FILL,44,-,-,3,-
45,CUT,45,-,-,-
46,FILL,-,-,-,-
47,FILL,47,8'9,-,-
48,FILL,48,-,-,2,-
49,CUT,49,-,-,-
50,FILL,50,-,-,-
51,FILL,51,8'9,-,6,-
52,FILL,-,-,-,-
```

53,CUT,53,-,-,-
54,FILL,-,-,-,-
55,CUT,55,-,-,--
56,DEPO,56,11,-,-
57,FILL,-,-,-, $7,-$
58,CUT,58,-,-,--
59,FILL,-,-,-,8,--
60,CUT,60,-,-,-
61,FILL,-,-,-,9,-
62,CUT,62,-,-,--
63,FILL,63,10,-,10,-
64,FILL,64,10,-,14,-
65,FILL,65,11,-,12,-
66,FILL,-,-,-,-
67,CUT,67,-,-,-
68,FILL,68,8'9,-,-
69,FILL,-,-,-,11,--
70,CUT,70,-,-,-
71,FILL,71,8'9,-,21,-
72,FILL,-,-,-,13,-
73,CUT,73,10,239/94/1'227/94/14'32'267/94/7'10,-
74,CUT,74,10,239/94/1'227/94/14'32'267/94/7'10,-
75,FILL,75,10,-,-
76,FILL,-,-,-,17,-
77,CUT,77,-,-,-
78,CUT,78,-,-,-
79,FILL,-,-,-,18,-
80,CUT, 80,-,239/94/2/3,-
81,FILL,81,11,-,20,-
82,FILL,-,-,-,15,-
83,CUT,83,-,-,-
84,FILL,-,-,-,16,-
85,CUT,85,-,-,-
86,FILL,-,-,-,19,-
87,CUT,87,-,-,-
88,FILL,-,-,-,--
89,CUT, 89,-,239/94/2/3,-
90,FILL,90,11,-,25,-
91,FILL,91,11,-,24,--
92,FILL, 93,-,-,22,-
93,CUT,93,-,-,--
94,FILL,-,-,-,23,-
95,CUT,95,-,-,--
96,CUT,96,-,239/94/2/3,-
97,FILL,97,11,-,30,-
98,FILL,99,-,-,26,-
99,CUT,99,-,-,--
100,DEPO,100,-,-,-
101,FILL,102,-,-,,27,-
102,CUT,102,-,-,--
103,CUT,103, $8^{\prime} 9,227 / 94 / 20^{\prime} 23$,-
104,CUT,104,8'9,227/94/20'23,-
105,FILL,-,8,-,-
106,CUT,106,8,227/94/20,-
107,CUT,107,11,227/94/26'29'35'267/94/1,-
108,FILL,-,-,-,29,--

```
109,CUT,109,-,-,-
110,FILL,-,-,-,28,-
111,CUT,111,-,-,-
112,FILL,112,-,-,35,-
113,DEPO,-,-,-,-
114,FILL,114,10,-,-
115,FILL,115,10,-,39,-
116,FILL,116,10,-,40,-
117,FILL,117,10,-,41,-
118,CUT,118,10,239/94/1'227/94/17'32,-
119,FILL,-,-,-,32,-
120,CUT,120,-,239/94/2/3,-
121,FILL,-,-,-,33,-
122,CUT,122,-,239/94/2/3,-
123,FILL,124,-,-,31,-
124,CUT,124,-,239/94/3/4'258/94/2,-
125,FILL, 125,11,-,34,-
126,FILL,-,13,-,38,-
127,FILL,173,-,-,47,-
128,FILL,-,-,-,36,-
129,FILL,-,-,-,37,-
130,CUT,130,-,239/94/2/3,-
131,CUT,131,-,239/94/2/3,-
132,CUT,132,-,227/94/35'267/94/1,-
133,FILL,-,13,-,44,-
134,FILL,-,-,-,42,-
135,CUT,135,-,239/94/2/3,-
136,FILL,-,-,-,-
137,CUT,137,-,-,-
138,FILL,138,11,-,43,-
139,FILL,139,11,-,54,-
140,CUT,140,13,267/94/7'10,-
141,CUT,141,-,-,-
142,FILL,-,-,-,45,-
143,FILL,143,-,-,46,-
144,CUT,144,-,-,-
145,CUT,145,11,227/94/35'267/94/1,-
146,FILL,-,11,-,48,-
147,CUT,147,11,227/94/35'267/94/1,-
148,FILL,170,-,-,49,-
149,CUT,149,-,-,-
150,FILL,-,-,-,-
151,FILL,-,-,-,50,-
152,CUT,152,-,-,-
153,FILL,-,-,-,-
154,CUT,154,-,-,-
155,CUT,149,-,-,-
156,FILL,-,-,-,53,-
157,FILL,-,-,-51,-
158,CUT,158,-,-,-
159,FILL,-,-,-,52,-
160,CUT,160,-,-,-
161,CUT,149,-,-,-
162,FILL,-,-,-,
163,FILL,75,12,-,70,-
164,FILL,-,12,-,55,-
```

165,FILL,-, 12,--,56,-
166,FILL,-,12,-,--
167,FILL,167,12,267/94/4'10,-
168,FILL,-,-,-,57,-
169,CUT,169,-,-,-
170,CUT,170,-,-,-
171,FILL,1010,-,-,60,-
172,CUT,172,-,-,--
173,CUT,173,-,-,--
174,FILL,-,-,-,58,-
175, CUT,175,-,-,--
176,FILL,1010,-,-,-
177,CUT,177,-,-,-
178,FILL,1010,-,-,-
179,CUT,179,-,-,-
180,FILL,1010,-,-,-
181,CUT,181,-,-,--
182,FILL,1010,-,-,-
183,CUT,183,-,-,--
184,FILL,1010,-,-,-
185,CUT,185,-,-,--
186,FILL,1010,-,-,-
187,CUT,187,-,-,--
188,FILL,1010,-,-,-
189,CUT,189,-,-,--
190,FILL,1010,-,-,-
191,CUT,191,-,-,--
192,FILL,1010,-,-,--
193,CUT,193,-,-,--
194,FILL,1010,-,-,-
195,CUT,195,-,-,--
196,FILL,1010,-,-,-
197,CUT,197,-,-,--
198,CUT,198,-,-,--
199,FILL,-,-,-,59,-
200,CUT,200,-,-,--
201,FILL,-,-,-,-
202,CUT,202,-,-,--
203,FILL,-,-,-,-
204,FILL,1010,-,-,--
205,CUT,205,-,-
206,FILL,1010,-,-,-
207,CUT,207,-,-,-
208,FILL,1010,-,-,-
209,CUT,209,-,-,--
210,CUT,210,-,-,--
211,FILL,1010,-,-,61,-
212,FILL,-,-,-,62,-
213,CUT,213,-,-,--
214,FILL,1010,-,-,71,-
215,CUT,215,-,-,-
216,FILL,1010,-,-,63,-
217,CUT,217,-,-,--
218,FILL,1010,-,-,-
219,CUT,219,-,-,-
220,FILL,1010,--,-,-

```
221,CUT,221,-,-,-
222,FILL,222,-,-,-
223,FILL,1010,-,-,-
224,CUT,224,-,-,-
225,FILL,-,--,--
226,CUT,226,-,-,-
227,FILL,1010,-,-,66,-
228,CUT,228,-,-,-
229,FILL,-,-,-,-
230,CUT,230,-,-,-
231,FILL,-,-,-,-
232,CUT,232,-,-,-
233,FILL,-,-,-,64,-
234,CUT,234,-,-,-
235,FILL,236,-,-,-
236,CUT,236,-,-,-
237,FILL,1010,-,-,-
238,CUT,238,-,-,-
239,FILL,240,-,-,67'110,-
240,CUT,240,-,-,-
241,FILL,-,-,-,-
242,CUT,242,-,-,-
243,FILL,-,-,-,69,-
244,FILL,-,-,-,-
245,CUT,245,-,-,-
246,FILL,-,-,-,74,-
247,CUT,247,-,-,-
248,FILL,-,-,-,73,-
249,CUT,249,-,-,-
250,FILL,-,-,-,76,-
251,CUT,251,-,-,-
252,FILL,252,-,-,-
253,CUT,253,-,-,-
254,FILL,-,-,-,75,-
255,CUT,255,-,-,-
256,FILL,-,-,-,77,-
257,CUT,257,-,-,-
258,FILL,-,-,-78,-
259,CUT,259,-,-,-
260,FILL,-,14,-,-
261,FILL,-,14,-,72'83,-
262,FILL,-,14,-,-
263,FILL,-,14,-,86,-
264,CUT,264,14,258/94/3'267/94/16,-
265,FILL,-,--,79,-
266,CUT,266,-,-,-
267,FILL,-,-,=,-
268,CUT,268,-,-,-
269,FILL,-,-,-,-
270,CUT,270,-,-,-
271,FILL,-,-,-,80,-
272,CUT,272,-,-,-
273,FILL,-,-,-,
274,CUT,274,-,-,-
275,FILL,-,-,-,81,-
276,CUT,276,-,-,-
```

```
277,FILL,-,-,-,84,-
278,CUT,278,-,-,-
279,FILL,-,-,-,82,-
280,FILL,-,-,-,-
281,CUT,281,-,-,-
282,FILL,-,-,-,-
283,CUT,283,-,-,-
284,FILL,-,-,-,85,-
285,CUT,285,-,-,-
286,FILL,-,-,-,87,-
287,CUT,287,-,-,-
288,FILL,-,-,-,88,-
289,CUT,289,-,-,-
290,FILL,-,--,89,-
291,CUT,356,-,-,-
292,FILL,-,-,-,90,-
293,CUT,293,-,-,-
294,FILL,294,-,-,91,-
295,FILL,-,-,-,92,-
296,CUT,296,-,-,-
297,CUT,297,-,-,-
298,CUT,298,14,258/94/3'267/94/16,-
299,FILL,-,-,-,93,-
300,CUT,300,-,-,-
301,FILL,-,-,-,94,-
302,CUT,302,-,-,-
303,FILL,303,-,-,95,-
304,FILL,305,-,-,-
305,CUT,305,-,-,-
306,FILL,-,-,-,-
307,CUT,307,-,-,-
308,FILL,-,-,-,96,-
309,CUT,309,-,-,-
310,FILL,-,-,-,97,-
311,CUT,311,-,-,-
312,FILL,-,-,-98,-
313,CUT,313,-,-,-
314,FILL,-,-,-,99,-
315,CUT,315,-,-,-
316,FILL,-,-,-,100,-
317,CUT,317,-,-,-
318,FILL,-,-,,101,-
319,CUT,319,-,-,-
320,FILL,-,-,-,102,-
321,CUT,321,-,-,-
322,FILL,-,-,-,105,-
323,CUT,323,-,-,-
324,FILL,-,-,-,103,-
325,CUT,325,-,-,-
326,FILL,-,-,-,104,-
327,CUT,327,-,-,-
328,FILL,-,15,-,-
329,FILL,-,15,-,-
330,CUT,330,15,267/94/16,-
331,FILL,-,15,-,-
332,CUT,332,15,267/94/16,-
```

```
333,FILL,-,-,-,106,-
334,CUT,334,-,-,-
335,FILL,-,-,-,-
336,FILL,-,-,-,107,-
337,CUT,337,-,-,-
338,FILL,-,16,-,-
339,FILL,-,16,-,-
340,CUT,340,16,267/94/16,-
341,FILL,-,16,-,-
342,CUT,342,16,267/94/16,-
343,FILL,-,-,-,-
344,CUT,344,-,-,-
345,FILL,-,-,-,-
346,CUT,346,-,-,-
347,FILL,-,-,-,-
348,CUT,348,-,-,-
349,FILL,-,-,-,-
350,CUT,350,-,-,-
351,FILL,-,-,-,-
352,CUT,352,-,-,-
353,FILL,-,-,-,108,-
354,CUT,354,-,-,-
355,FILL,-,-,-,-
356,CUT,356,-,-,-
357,FILL,358,-,-,109,-
358,CUT,358,-,-,-
359,FILL,-,-,-,112,-
360,FILL,-,-,-,113,-
361,CUT,361,-,-,-
362,FILL,362,-,-,111,-
363,FILL,-,-,-,114,-
364,CUT,364,-,-,-
365,FILL,-,-,-,115,-
366,CUT,366,-,-,-
367,FILL,367,-,-,116,-
368,CUT,368,-,-,-
369,FILL,-,-,-,117,-
370,CUT,370,-,-,-
371,FILL,371,-,-,-
372,FILL,372,-,-,-
373,FILL,373,-,-,-
374,FILL,374,-,-,-
375,FILL,-,-,-,-
376,FILL,-,-,-,-
377,CUT,377,-,-,-
378,FILL,-,-,-,-
379,CUT,379,-,-,-
380,FILL,381,-,-,-
381,CUT,381,-,-,-
382,CUT,382,-,-,-
383,FILL,-,-,-,-
384,FILL,-,-,-,-
385,CUT,385,-,-,-
386,DEPO,-,-,-,-
387,CUT,387,-,267/94/19,-
388,CUT,388,-,267/94/19,-
```

xlviii

389,DEPO,389,-,-,-
390,DEPO,-,18,-,-
391,FILL,-,18,-,125,-
392,CUT,392,18,-,-
393,FILL,-,-,-,118,-
394,CUT, 394,-,-,--
395,FILL, 395,17,-,119,-
396,FILL,-,17,-,120,-
397,FILL,-,17,-,121,-
398,CUT,395,17,-,-
399,DEPO,395,-,-,-
400,FILL,395,-,-,-
401,DEPO,-,18,-,-
402,FILL,-,18,-,126,-
403,FILL,404,-,-,122,-
404,CUT,404,-,-,--
405,FILL,-,-,-,--
406,DEPO,406,-,-,-
407,FILL,-,--,-,123,-
408,CUT,408,-,-,--
409,FILL,-,-,-, 124,-
410,CUT,410,-,-,--
411,FILL,-,-,-,127,-
412,CUT,412,-,-,-•
413,CUT,413,-,-,-
414,CUT,414,-,-,--
415,FILL,-,-,-,--
416,CUT,416,-,-,--
417,FILL,-,-,-,--
418,FILL,418,-,-,-
419,FILL,420,-,-,128,-
420,CUT,420,-,-,--
421,CUT,421,-,-,--
422,FILL,-,-,-,130,-
423,CUT,423,-,-,-
424,FILL,-,-,-,129,-
425,CUT,425,-,-,--
426,FILL,-,-,-,--
427,FILL,-,-,--,-
428,CUT,428;-,-,-
429,FILL,-,-,-,-
430,CUT,430,-,-,--
431,FILL,-,-,-,--
432,CUT,432,-,-,-
433,FILL,---,-,-131,-
434,CUT,434,-,-,-
435,FILL,-,-,-,,-
436,CUT,436,-,-,-
437,FILL,-,-,-,--
438,CUT,438,-,-,-
439,FILL,-,-,-,--
440,CUT,440,-,-,--
441,DEPO,441,-,-,-

Appendix 4

Flint Report: St Mary Abbots Hospital, Kensington. (MAK94)
35 pieces of flint were recovered, of which all but three are humanly modified. In addition there are two fragments of quartzite (from context 19), one of which has been burnt.

Context Number	Flakes/Blades/ frags frags		Cores	tabletWsteretouch				
18	1	-		-	-	-	-	1
19	11	3		? 2	1	2	-	19
31	1	-		-	-	-	-	1
123	-	-		-	-	2	-	2
239	1	-		-	-	1	-	1
244	-	-		-	-	1	-	1
252	-	-		-	-	-	1	1
310	-	-		-	-	-	1	1
357	-	1		-	-	-	-	1
359	1	-		-	-	-	-	1
370	1	-		-	-	-	-	1
372	-	-		-	-	1	-	1

Without exception, the flint material utilised comprises river gravel cobbles. The number of pieces retaining surface cortex suggests that the latter were of small size. Colour varies from light orange to an attractive dark umber. The condition of the collection is sharp and unrolled; one piece has been burnt.

Discussion

There are no diagnostic artefact types within the collection, but the number of squat flakes with wide striking platforms, pronounced bulbs of percussion and terminal hinge fractures is indicative of an ill-controlled knapping technique. This in turn suggests a late prehistoric date, although the nature of the raw material may have played a part too. The odd blade (eg that from context 357) also hints at the presence of Mesolithic/early Neolithic activity in the vicinity.

ASSESSMENT OF THE POTTERY FROM ST MARY ABBOTS KENSINGTON (MAK94)

Jo Groves 1/11/94

1 SUMMARY

The pottery from the site forms a small assemblage (10 boxes) most of which is Roman or Iron Age/early Roman; a few sherds are post-Roman. Most sherds are extremely abraded making identification difficult. The severity of the abrasion is such that almost invariably the slip on the samian has not survived. In several instances very worn sherds of a vessel are found together in single contexts indicating that the abrasion is the result of adverse soil conditions rather than the processes of redeposition and residuality.

The pottery was spot-dated and quantified concurrently. All the data is recorded on spot-dating sheets and computerized via the spot-date input file (mak94.spot.dat) and then upgraded to a quantification file by using Paradox. The quantification file (mak94.db) will conform with other quantification files once Oracle is introduced. Tables derived from quantification are in the appendix to this report.

The assemblage, with few exceptions, is composed of small groups (often just a few sherds). The only large group ($100+$ sherds) is from context [19] and is of mixed date, cAD 120-160 but with a predominance of 1st century material. Generally a high proportion of the pottery is Iron Age/early Roman although much of it is residual in later contexts. A very small quantity of late Roman material is present. Many sherds have been recorded under the broad categories of GROG, SAND and COAR. This lack of precision is largely due to the gap in knowledge in relation to very early fabrics and any subtleties of form, although the poor quality of the sherds is also a contributory factor. All this, together with the small size of the context assemblages has only permitted allocation of broad dates.

It is not possible to source the early coarsewares at present but it is unlikely that such material would have been transported any great distance. Jars are the main form which is to be expected of a predominately early assemblage; bowls are not common until after AD 60. Finewares constitute a very small part of the assemblage, Samian being the most common and constituting 6% EVES of the total. There are no other imported finewares and Romano-British finewares amount to less than 1% EVES. Amphorae are present but again in very small quantities (1% by weight, no EVES). The readings for finewares and amphorae are much lower than those from City sites. Such low readings, however, may not necessarily be an indication of low status or lack of but rather a consequence of the early (?pre Roman) bias of the assemblage. There is a lack of comparable data although pottery from PRK90 in Southwark appears to be of similar date but this requires investigation.

The later material is composed of wares typical of London sites, e.g. Verulamium Region White ware (VRW), Alice Holt/Surrey (AHSU), Highgate 'C' Sand-tempered ware (HWC) and Early Roman Micaceous Sandy ware (ERMS).

2 ASSESSMENT OF POTENTIAL

2.1 Key group

Research into pre-Roman/early Roman pottery is a matter of urgency. The early material from MAK94 should be included in any such project. The material from context [165] seems to be the most promising in this respect being one of the largest and possibly one of the earliest groups. The material is in relatively good condition and includes three vessels which have a reasonably high proportion surviving. It is of interest that early shelly wares are apparently absent from the site, which contrasts with material of similar date from other sites (eg PRK90). Research may indicate whether this is explained by chronological or local differences. Another possible explanation could be leaching of shell from sherds because of the erosive nature of the soil.

2.2 Dating the site

The small size of the assemblages and the lack of horizontal stratigraphy limits any attempts to provide close dating. Closer dating may be possible in cases where contexts are conflated into stratigraphical groups.

3 RECOMMENDATIONS FOR INCLUSION IN FURTHER WORK

3.1 Study of pre-Roman/early Roman pottery

In order to bring knowledge of pre-Roman/early Roman pottery to a comparable level with later Roman phases it is necessary to undertake a systematic analysis of fabrics and forms of this early period on a London-wide basis. Such a project should include the early MAK 94 material and would benefit from close co-operation between Iron-age and Roman pottery specialists.

The work would entail subdivision and where possible sourcing of the fabrics which are currently grouped into general categories such as SAND and GROG. Examples of each fabric should be incorporated into the MOLAS fabric collection and where appropriate thin-sections taken. Examples of each form and its variants should be selected for illustration and added to the Corpus of forms. Although the MAK94 spotdating/quantification records note which vessels are suitable for illustration it would be premature at this stage to proceed with them until the MAK94 vessels have been considered along with other early material since more suitable examples may be found.

Once an adequate fabric and form series has been established quantification of selected groups should be undertaken in order to compare assemblages and provide a basis for more precise dating. Unfortunately there is insufficient pottery from MAK94 for it to be included in this stage of work since the material which is probably the earliest (context 165) consists of less than one EVE. In order for quantification to be worthwhile and statistically viable substantially larger groups are required.

3.2 Provision of group dates

Time required: less than $1 / 4$ day.

Spot dates of pottery from MAK94
$112, \mathrm{RPOT}, \mathrm{S}, \mathrm{ABR}, 0,100, \mathrm{COAR}$, $114, \mathrm{RPOT}, \mathrm{S}, \mathrm{ABR}, 0,70, \mathrm{COAR}$, 114,RPOT,S,ABR, $0,70, \mathrm{COAR}, \mathrm{IIA}$ 114,RPOT,S, ABR,0,70,GROG, $115, \mathrm{RPOT}, \mathrm{S}, \mathrm{VABR}, 0,70, \mathrm{COAR}$, 115,RPOT,S,VABR,0,70,GROG,IIIA/BARREL BEAKER CMB 116,RPOT,S,ABR, $0,100, \mathrm{COAR}, \mathrm{IIA}$ 123,RPOT,S,ABR; HEAN, 120,160,BB2,II AL 123,RPOT,S,ABR; HEAN,120,160,BB2,IIF 123,RPOT,S,ABR; HEAN,120,160,COAR,II? 123,RPOT,S,ABR; HंEAN, 120,160,GROG, 123,RPOT,S,ABR; HEAN, 120,160 ,GROG, IIA 123,RPOT,S,ABR; HEAN,120,160,HWC,III? BDD 123,RPOT,S,ABR; HEAN, 120,160,HWC,III/NJ 123,RPOT,S,ABR; HEAN,120,160,OXID, 123,RPOT,S,ABR; HEAN, 120,160,SAND, 123,RPOT,S,ABR; HEAN, 120,160, VRW, 123,RPOT,S, ABR; HEAN, 120,160, VRW,? IVA BURNT 123,RPOT,S,ABR; HEAN,120,160,VRW,MORT BEF 125,RPOT,S, 0,70, GROG, 125,RPOT,S,,0,70,GROG,IIA 125,RPOT,S, 0,70,GROG,IIA HOLE PIERCED IN SIDE; *DRAW 126,RPOT,S,ABR,0,70,COAR, 126,RPOT,S,ABR,0,70,GROG, 127,RPOT,S,ABR,70,160,COAR, 127,RPOT,S,ABR,70,160,GROG, 127,RPOT,S,ABR,70,160,HWC, 127,RPOT,S,ABR,70,160,HWC,IVF? 127,RPOT,S,ABR,70,160,OXID, 136, RPOT,S,ABR; BURNT, 0,400, SAND, 138,RPOT,S,ABR; ?PREP,0,100,COAR, 142,RPOT,S,ABR,50,400,OXID, 142,RPOT,S,ABR,50,400,SAND, 142,RPOT,S,ABR,50,400,SAND,II 142,RPOT,S,ABR,50,400,SAND,NCD 142,RPOT,S,ABR,50,400,SAND,NJ 143,RPOT,S,ABR; SOME ?PREP,50,400,COAR, 143,RPOT,S,ABR; SOME ?PREP,50,400,SAND, 146,RPOT,S,ABR,50,400,COAR, 146,RPOT,S,ABR,50,400,SAND, 148,RPOT,S,ABR,50,100,GROG, 148,RPOT,S,ABR,50,100,OXID, 148,RPOT,S,ABR,50,100,SAM,LG 148,RPOT,S,ABR,50,100,VRW, 150,RPOT,S,1STC,50,100,GROG,WHEELMADE 153,RPOT,S,ABR,50,160,SAND, 153,RPOT,S,ABR,50,160,VRW, 156, RPOT, $\mathrm{S}, \mathrm{ABR}, 0,70, \mathrm{COAR}$, 156,RPOT,S,ABR,0,70,GROG, 157,RPOT,S,ABR, 0,100 ,SAND, 163,RPOT,S,ABR,0,70,COAR, 163,RPOT,S,ABR,0,70,GROG, 163 ,RPOT,S,ABR,0,70,GROG,II 164,RPOT,S,,0,70,COAR,IIA SOOTED

164,RPOT,S,,0,70,GROG, 164,RPOT,S,,0,70,GROG,IIIA/BARREL CMB
165,RPOT,M,GOOD EARLY GROUP,0,70,COAR,IIA *DRAW
165,RPOT,M,GOOD EARLY GROUP, 0,70, COAR,SJ
165,RPOT,M,GOOD EARLY GROUP,0,70,GROG,IIIA/BARREL CMB
165,RPOT,M,GOOD EARLY GROUP,0,70,GROG,NJ PROF? *DRAW
165,RPOT,M,GOOD EARLY GROUP,0,70,GROG,/COAR
168,RPOT,S,ABR,0,70,COAR/GROG,
171,RPOT,S,,0,100,GROG,
174,RPOT,S,ABR; HAAN, 120,200,COAR,
174,RPOT,S,ABR; HAAN, 120,200,GROG,
174,RPOT,S,ABR; HAAN, 120,200,SAM,LZ DR33 PROF SMA
174,RPOT,S,ABR; HAAN, 120,200,VRW, 18,RPOT,S,RESIDUAL,350,400,AHSU,? II ABR
18,RPOT,S,RESIDUAL, 350,400,AHSU,? NJ ABR BURNT
18,RPOT,S,RESIDUAL, 350,400,HWC,ABR
18,RPOT,S,RESIDUAL, 350,400,PORD,
18,RPOT,S,RESIDUAL,350,400,SAM,LZ V VABR
18,RPOT,S,RESIDUAL,350,400,SAM,LZ VABR
18,RPOT,S,RESIDUAL, 350,400, VRW,
18,RPOT,S,RESIDUAL, 350,400,VRW,MORT HOF ABR
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,AHSU,IVK
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC
POT,120,160,AHSU,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, AHSU,/AHFA
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,AMPH,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,COAR,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,COAR,IIA ?COAR AHSU
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, COAR/GROG,TOO ABR FOR ID
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,DR20,E
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TÖ V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,DR20,E?/COAR
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,ERSB?,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,FMIC,III
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,GROG;II
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,GROG,IIA
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,GROG,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,GROG,SJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,HWC,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,HWC,IIF

19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,HWC,IVF
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,HWC,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160,HWC,NJ/IImF
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160,HWC, +/AHFA IIF
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,OXID,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,OXID,I?
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,OXID,IVJ3
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,OXID,LID
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,OXID,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160,OXID,SOME MAY BE REDU BURNT
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,PE47,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,RWS,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAM,
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAM,DR27
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAM,IV? DEC
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAM,V/IV
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,II
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,II?
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALE SHS; LOT IF 1STC POT,120,160,SAND,IIA
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,IIC
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,II/III
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,IV
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,IV?
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,IVA/F
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,IVF
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, SAND,MAY INCLUDE ERSB ETC...
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,SAND,NJ
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, SAND,TOO ABR FOR ID

19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, SAND,/OXID IV?
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,I
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,IB
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,IC
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,II
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,IVA
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,MORT
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120, 160,VRW,MORT HOF
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,NJ
19,RPOT,L, VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT,120,160,VRW,NJ GROOVED LIP: THERE ?ANTO
19,RPOT,L,VDIFFICULT TO ID/DATE DUE TO V V ABR; MOSTLY SMALL SHS; LOT IF 1STC POT, 120,160, VRW,NJ? BURNT RIM
194,RPOT,S,ABR,70,160,HWC,
194,RPOT,S, ABR,70,160,VRW,
199,RPOT,S,ABR; ?PREP, 0,400,GROG,
199,RPOT,S,ABR; ?PREP,0,400,SAND,?
211,RPOT,S,VABR,70,160,HWC,
212,RPOT,S,ABR,50,160,AHSU,II HEAVY CONCRETION WEIGHT DISTORTED
212,RPOT,S,ABR,50,160,COAR,II HEAVY CONCRETION WEIGHT DISTORTED
212,RPOT,S,ABR,50,160,GROG,
212,RPOT,S,ABR, 50,160, OXID,
212,RPOT,S,ABR,50,160,VRW,HEAVY CONCRETION WEIGHT DISTORTED
214,RPOT,S,,70,160,GROG,ABR
214,RPOT,S,,70,160,HiWC,ABR
214,RPOT,S,,70,160,NKSH,
214,RPOT,S,,70,160,VRW,IVA BURNT RIM
223,RPOT,S,HAAN, 120,200,COAR,
223,RPOT,S,HAAN, 120,200,GROG,
223,RPOT,S,HAAN, 120,200,HWC,
223,RPOT,S,HAAN,120,200,SAM,LZ DR18/31
227,RPOT,S,MOSTLY ABR,50,160,AHSU,?
227,RPOT,S,MOSTLY ABR,50,160,GROG,
227,RPOT,S,MOSTLY ABR,50,160,SAND,BURNT
227,RPOT,S,MOSTLY ABR,50,160,SAND,IVK? FINE CF HWC
227,RPOT,S,MOSTLY ABR,50,160,SAND,/OXID
227,RPOT,S,MOSTLY ABR,50,160,VRW,SOME BURNT
229,RPOT,S,ABR; 50-100 IF ERMS,50,400,SAND,/OXID ?ERMS
231,RPOT,S,VABR, 120, 400,BB1,
233,RPOT,S,ABR,50,400,AHSU,/AHFA
235,RPOT,S,ABR; INC PREP,40,400,COAR,PREP
235,RPOT,S,ABR; INC PREP,40,400,SAND,BURNT
237,RPOT,S,VABR,70,160,HWC,IVF
239,RPOT,S,ABR,50,160,AHSU,
241,RPOT,S,ABR; DIFFICULT TO ID, 100,160,GROG,AL

241,RPOT,S,ABR; DIFFICULT TO ID,100,160,GROG,/COAR 241,RPOT,S,ABR; DIFFICULT TO ID,100,160,HWC, 241,RPOT,S,ABR; DIFFICULT TO ID,100,160,HWC,IIIF POST-FLAV? 241,RPOT,S,ABR; DIFFICULT TO ID,100,160, HWWC, +? AL? 241,RPOT,S,ABR; DIFFICULT TO ID,100,160,OXID,IV FLANGED BURNT
241,RPOT,S,ABR; DIFFICULT TO ID,100,160,OXID,/SAND IVA
241,RPOT,S,ABR; DIFFICULT TO ID,100,160,OXID,/SAND NJ BURNT
241,RPOT,S,ABR; DIFFICULT TO ID,100,160,SAND,
241,RPOT,S,ABR; DIFFICULT TO ID,100,160,VCWS,
244,RPOT,S,ABR,120,400,BB1,IV
244,RPOT,S,ABR, 120,400,GROG,
244,RPOT,S,ABR,120,400,HWC,
258,RPOT;S,,0,100,GROG,
26,RPOT,S,VBURNT; UNCERTAIN PERIOD; ?PREP,0,0,COAR,
260,RPOT,S,ABR; HAAN, 120,200,HWC,
260,RPOT,S,ABR; HAAN, 120,200,HWC,?
260,RPOT,S,ABR; HAAN,120,200,HWC,LID
260,RPOT,S,ABR; HAAN,120,200,SAM,LZ
261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,AHFA,?
261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA,120,400,AHSU,II
261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA,120,400,BB2,IIF
261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,GROG,
261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,GROG,II 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,HWC, 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA,120,400,HWC,NJ 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,OXID, 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA,120,400,TNIM,V GROG; BASE ONLY 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,VRW, 261,RPOT,S,MOSTLY ABR; POST-250 IF AHFA, 120,400,VRW,IB7-9
262,RPOT,S,ABR,50,100,GROG, 262,RPOT,S,ABR,50,100,GROG,II 262,RPOT,S,ABR,50,100,NKSH,LEACHED
262,RPOT,S,ABR,50,100,SAND,
263,RPOT,S,,70,160,AHSU,II
263,RPOT,S,,70,160,HWC,
263,RPOT,S,,70,160,VRW,
277,RPOT,S,ABR,50,160,AHSU,NJ
277,RPOT,S,ABR,50,160,GROG,BURNT
277,RPOT,S,ABR,50,160,SAM,LG DR27
279,RPOT,S,ABR,50,160,GROG,/COAR
279,RPOT,S,ABR,50,160,VRW,IC
279,RPOT,S,ABR,50,160,VRW,/VRG BURNT
282,RPOT,S,ABR,50,160,VRW, 29,RPOT,S, ABR, 250,400 ,AHSU, 29,RPOT,S,ABR,250,400,BBS,ERJ VBURNT ABR 29,RPOT,S,ABR,250,400,BB2,IVH 29,RPOT,S,ABR,250,400,HWC, 29,RPOT,S,ABR,250,400,PORD, 29,RPOT,S,ABR, 250,400,SAND, 290,RPOT,S, ABR, 40,400, COAR, 292,RPOT,S,ABR,50,160,AHSU,II 301,RPOT,S,ABR, 100,160,DR20,E 301,RPOT,S,ABR,100,160,GROG, 301,RPOT,S,ABR, 100,160,HWC, 301,RPOT,S,ABR, 100,160,HWC,? 301,RPOT,S,ABR, 100, 160,VRW,

301,RPOT,S,ABR,100,160,VRW,IIG
301,RPOT,S,ABR,100,160,VRW,IVA BURNT
303,RPOT,S,,0,400,GROG,SJ
31,RPOT,S,VABR; ID DIFFICULT, 120,250,AHSU,?
31,RPOT,S,VABR; ID DIFFICULT,120,250,AHSU,II
31,RPOT,S,VABR; ID DIFFICULT,120,250,AHSU,IIC
31,RPOT,S, VABR; ID DIFFICULT, 120,250,AHSU,NJ
31,RPOT,S,VABR; ID DIFFICULT, $120,250, \mathrm{BBS}$, IVH FAIRLY FINE BUT NOT TYPICAL BB2F
31,RPOT,S,VABR; ID DIFFICULT,120,250,COAR,
31,RPOT,S,VABR; ID DIFFICULT,120,250,GROG,
31,RPOT,S,VABR; ID DIFFICULT,120,250,HWC,
31,RPOT,S,VABR; ID DIIFFICULT,120,250,SAND,
31,RPOT,S, VABR; ID DIFFICULT, 120,250 ,SAND,IVF
31,RPOT,S,VABR; ID DIFFICULT,120,250,VRW,ABR SOME BURNT
312,RPOT,S,ABR; DATE=?60-120?,60,120,ERSB?,
316,RPOT,S,PREP,0,50,COAR,PREP
328, RPOT,S,ABR, 70,160, GROG,
328,RPOT,S,ABR,70,160,HWC,
328,RPOT,S,ABR,70,160,SAND,?LID
328,RPOT,S,ABR,70,160,VRW,
328,RPOT,S,ABR,70,160,VRW,IJ
329,RPOT,S,ABR; FLTR,70,120,AHSU,
329,RPOT,S,ABR; FLTR, 70,120 ,AHSU,NJ
329,RPOT,S,ABR; FLTR,70,120,ERSA/B,IIA
329, RPOT,S,ABR; FLTR, 70,120 ,GROG,
329,RPOT,S,ABR; FLTR,70,120,HWC,
329,RPOT,S,ABR; FLTR,70,120,SAND,II
329,RPOT,S,ABR; FLTR,70,120,SAND,II BUD
329,RPOT,S,ABR; FLTR,70,120,SAND,/OXID
329,RPOT,S,ABR; FLTR,70,120,VRW,SOME BURNT
331,RPOT,S,VABR,70,160,GROG,
331,RPOT,S,VABR,70,160,HWC,
331,RPOT,S,VABR,70,160,SAM,LG DR18 PROF SMA
335,RPOT,S,ABR; LNEF,60,80,AHSU̇,
335,RPOT,S,ABR; LNEF,60,80,ERSB,II
335,RPOT,S,ABR; LNEF,60,80,FMIC,
335; RPOT,S,ABR; LNEF,60,80,GROG,
335,RPOT,S,ABR; LNEF,60,80,GROG,IIA
335,RPOT,S,ABR; LNEF,60,80,GROG,SJ NCD
335,RPOT,S,ABR; LNEF,60,80,OXID,IIIA ROD FINE WITH ?GROG/IRON SHL=336
335,RPOT,S,ABR; LNEF, 60,80, SAND,
335,RPOT,S,ABR; LNEF,60,80,SAND,/OXID
335,RPOT,S,ABR; LNEF,60,80,VRW,
335,RPOT,S,ABR; LNEF,60,80,VRW,IB
335,RPOT,S,ABR; LNEF,60,80,VRW,IB2 WEIGHT DISTORTED PLUGGED WITH MUD
336,RPOT,S,ABR,60,100,AHSU,IIA
336,RPOT,S,ABR, 60,100, AHSU,IID? TOO ABR FOR CERT ID
336,RPOT,S,ABR,60,100,AHSU,SOME BURNT
336,RPOT,S,ABR,60,100,DR20,E
336,RPOT,S,ABR,60,100,GROG,
336,RPOT,S,ABR, 60,100 ,OXID,IIIA ROD SHL $=335$
336,RPOT,S,ABR,60,100,SAM,LG DR27
336,RPOT,S, ABR, 60,100, SAND,
336,RPOT,S,ABR,60,100,VRW,
338,RPOT,S, + 339; FAIRLY ABR,60,100,AHSU,
338,RPOT,S, + 339; FAIRLY ABR,60,100,AHSU,IVK

338,RPOT,S, + 339; FAIRLY ABR,60,100,ERMS?,IIB?
338, RPOT,S, +339 ; FAIRLY ABR, 60,100 ,ERSB,II 338,RPOT,S, + 339; FAIRLY ABR, 60,100 ,GROG, 338,RPOT,S, + 339; FAIRLY ABR,60,100,HWC,? 338,RPOT,S, + 339; FAIRLY ABR,60,100,NFSE?, 338,RPOT,S, + 339; FAIRLY ABR,60,100,SAND,III? ?FMIC 338, RPOT,S, +339 ; FAIRLY ABR, 60,100 ,VRW, 338,RPOT,S, + 339; FAIRLY ABR,60,100,VRW,I 338,RPOT,S, + 339; FAIRLY ABR,60,100,VRW,IB2 338,RPOT,S, + 339; FAIRLY ABR,60,100,VRW,IJ? BASES BURNT 341,RPOT,S,ABR; FLTR,70,120,AHSU,II 341,RPOT,S,ABR; FLTR,70,120,AHSU,IIA 341,RPOT,S,ABR; FLTR,70,120,AHSU;IIC
341,RPOT,S,ABR; FLTR,70,120,AHSU,NJ 341,RPOT,S,ABR; FLTR,70,120,ERMS?, 341,RPOT,S,ABR; FLTR,70,120,ERSB?,NJ ?HWC 341,RPOT,S,ABR; FLTR,70,120,ERSB,NJ SOOTED 341,RPOT,S,ABR; FLTR,70,120,FMIC, 341,RPOT,S,ABR; FLTR,70, 120,GROG, 341,RPOT,S,ABR; FLTR,70,120,HWC, 341,RPOT,S,ABR; FLTR,70,120,HWC,IIE? BUD 341,RPOT,S,ABR; FLTR,70,120,HWC,/ERSB II 341,RPOT,S,ABR; FLTR,70,120,SAM,LG 341,RPOT,S,ABR; FLTR,70,120,SAM,LG DR30 341,RPOT,S,ABR; FLTR,70,120,VRW, 341,RPOT,S,ABR; FLTR,70,120,VRW,I 343,RPOT,S,ABR,0,100,COAR, 347,RPOT,S,ABR,50,160,AHSU, 35,RPOT,S,ABR; PPOT,50,160,AHSU,II 351,RPOT,S,ABR,70,160,HWC, 359,RPOT,S,,70,160,HWC,III BDD 359,RPOT,S,,70,160,SAND,NJ
359,RPOT,S,,70,160,VRW,ABR
362,RPOT,S,,70,160,GROG, 362,RPOT,S,,70,160,HWC,? II 362,RPOT,S, ,70,160,SAND, 362,RPOT,S,,70,160,VRW, 367,RPOT,S,ABR,0,100,GROG, 369,RPOT,S,ABR,40,100,DR20,E 369,RPOT,S,ABR,40,100,GROG, 371,RPOT,S,ABR, $0,100, \mathrm{COAR}$, 371,RPOT,S,ABR,0,100,COAR,IIA 371,RPOT,S,ABR,0,100,GROG, 372,RPOT,S,ABR,0,100,COAR, 372,RPOT,S,ABR,0,100,GROG, 373,RPOT,S,ABR,70,160,COAR, 373,RPOT,S,ABR,70,160,HWC,
373,RPOT,S,ABR,70,160,SAND, 374,RPOT,S,ABR; 1STC,50,100,FMIC,IV/V?
374,RPOT,S,ABR; 1STC,50,100,GROG, 375,RPOT,S,ABR,50,160,COAR, 375,RPOT,S,ABR,50,160,OXID,? 375,RPOT,S,ABR,50,160,OXID,II ?RHINELAND 375,RPOT,S,ABR,50,160,SAND,IV 375,RPOT,S,ABR,50,160,VRW, 375,RPOT,S,ABR,50,160,VRW,I

376,RPOT,S, ,70, 160,HWC,AL 390,RPOT,S,ABR,70,160,COAR, 390,RPOT,S,ABR,70,160,ERSB?, 390,RPOT,S,ABR,70,160,HWC, 390,RPOT,S,ABR,70,160,HWC,NJ 390,RPOT,S,ABR,70,160,OXID, 390,RPOT,S,ABR,70,160,PE47, 390,RPOT,S,ABR,70,160,RWS, 390,RPOT,S,ABR,70,160,SAM,LG 390,RPOT,S,ABR,70,160,SAND, 390,RPOT,S,ABR,70,160,SAND,II 390,RPOT,S,ABR,70,160,SAND,IIE BUD 390,RPOT,S,ABR,70,160,SAND,IIF? 390,RPOT,S,ABR,70,160,VCWS,? 390,RPOT,S,ABR,70,160,VRG, 390,RPOT,S,ABR,70,160,VRW, 391,RPOT,S,MOSTLY ABR,70,160,AHSU, 391,RPOT,S,MOSTLY ABR,70,160,COAR/GROG, 391,RPOT,S,MOSTLY ABR,70,160,HWC, 391,RPOT,S,MOSTLY ABR,70,160,OXID, 391,RPOT,S,MOSTLY ABR,70,160,RWS, 391,RPOT,S,MOSTLY ABR,70,160,SAND, 391,RPOT,S,MOSTLY ABR,70,160,VRW,BURNT 391,RPOT,S,MOSTLY ABR,70,160,VRW,I 391,RPOT,S,MOSTLY ABR,70,160,VRW,II BURNT RIM 391,RPOT,S,MOSTLY ABR,70,160,VRW,MORT 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400, \mathrm{COAR} / \mathrm{GROG}$, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400$,ERSB, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC=180-400,180,400,HWC, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC=180-400,180,400,HWC,II 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400, \mathrm{HWC}, \mathrm{IIIF}$ 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400, \mathrm{NVCC}, \mathrm{III}$ FRESH 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400,0 X I D$, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400, S A M, L G$? 393,RPOT,S,ABR; 70-160 EXCEPT NVCC=180-400,180,400,SAM,LG DR18 393,RPOT,S,ABR; 70-160 EXCEPT NVCC = 180-400,180,400,SAM,LG? DR18? 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400$,SAND, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400, \mathrm{VRW}$, 393,RPOT,S,ABR; 70-160 EXCEPT NVCC $=180-400,180,400$, VRW,? 393,RPOT,S,ABR; 70-160 EXCEPT NVCC=180-400,180,400,VRW,I 393,RPOT,S,ABR; 70-160 EXCEPT NVCC = 180-400,180,400,VRW,MORT 395,RPOT,S,ABR,70,160,COAR, 395,RPOT,S,ABR, 70,160,ERSB, 395,RPOT,S,ABR,70,160,HWC, 395,RPOT,S,ABR,70,160,OXID, 395,RPOT,S,ABR,70,160,RWS, 395,RPOT,S,ABR,70,160,SAM,LG 395,RPOT,S,ABR,70,160,VRW, 396,RPOT,S,ABR,40,100,COAR, 396,RPOT,S,ABR,40,100,COAR,II 396,RPOT,S,ABR,40,100,COAR/GROG, 396,RPOT,S,ABR,40,100,SAM,LG DR18 396,RPOT,S,ABR,40,100,SAND,/OXID 396,RPOT,S,ABR,40,100,SAND,/OXID NJ 399, RPOT,S, ,40,400,COAR,

40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, AHSU,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200 , AHSU,IIA
40,RPOT,S,VABR; DIFFICLUT TO İ; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN,120,200,COAR,IIA ?PREP
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, COAR/SAND/GROG,II BODY SHS OF ABOVE
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY ISTC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200 ,GROG,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN,120,200,GROG,IIA
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,GROG,IIA ?PREP
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY ISTC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, $120,200, \mathrm{HWC}$,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY ISTC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,HWC,NJ
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY ISTC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, OXID,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,OXID,NJ
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,RWS,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE ILA'S MAY BE PREP; HAAN, $120,200, S A M, L G V$
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, $120,200, S A N D$,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S
MAY BE PREP; HAAN, 120,200,SAND,II
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, SAND,IIA ?PREP
40,RPOT,Ṡ,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, $120,200, S A N D, I V A$
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY ISTC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200 ,SAND,IX STRAINER
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200 ,SAND,/OXID IIA BUṘNT
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,TNIM,VA SOOTED
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,VRW,
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200,VRW,II
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, VRW,IVA
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S MAY BE PREP; HAAN, 120,200, VRW,MORT
40,RPOT,S,VABR; DIFFICLUT TO ID; MOSTLY 1STC OR EARLIER; SOME HANDMADE IIA'S
MAY BE PREP; HAAN, 120,200, VRW,MORT HOF STAMP <*>
400,RPOT,S,ABR; HEAN, 120,160,AHSU,?
400,RPOT,S,ABR; HEAN,120,160,GROG,
400,RPOT,S,ABR; HEAN, 120,160,HWC,
400,RPOT,S,ABR; HEAN, 120,160,RWS,
400,RPOT,S,ABR; HEAN, 120,160,SAM,LG
400,RPOT,S,ABR; HEAN, 120,160,SAM,LG DR18

400,RPOT,S,ABR; HEAN,120,160,SAM,LG V
400,RPOT,S,ABR; HEAN, 120,160,SAND,/VRW BURNT
400,RPOT,S,ABR; HEAN, 120, 160, VRW,IB5 VBURNT
401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,AHSU,NJ
401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,COAR,IIA
401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, COAR/GROG, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,DR20,E 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,ERSB?,NJ? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,FINE,NJ 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,GROG,IIA 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,GROG,IV? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, HWC, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120, HWC,IVF 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,HWC,NJ 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,OXID, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,OXID,LID BURNT UNDERSIDE 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, PE47, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, RWS, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,RWS,? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,RWS?,II? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,RWS,I? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,SAM,LG 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, SAND, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,SAND,IVF? 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,SAND,NJ 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,SAND,/OXID 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,VRW, 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, VRW,? BURNT 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID, 70,120, VRW,? I 401,RPOT,M,VABR; FLTR; DIFFICULT TO ID,70,120,VRW,I 402,RPOT,S,ABR; HEAN, 120,160,COAR, 402,RPOT,S,ABR; HEAN, $120,160, \mathrm{HWC}$? 402,RPOT,S,ABR; HEAN, 120,160,OXID, 402,RPOT,S,ABR; HEAN, 120,160, OXID, IB5 CF FINE VRW 402,RPOT,S,ABR; HEAN, 120,160,PE47, 402,RPOT,S,ABR; HEAN,120,160,VCWS, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,AHSU, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,AHSU,NJ 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120, COAR,IIA 403,RPOT,S, ABR; DIFFICULT TO ID; FLTR,70,120,DR20, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,ERSB?,II 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,ERSB?,IIA 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,GROG, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,GROG,IIA 403,RPOT,S,ABR; DIFFICULT 7 TO ID; FLTR, 70,120, HWC, 403,RPOT,S,ABR; DIFFICULT' TO ID; FLTR, 70,120, HWC,IIIF 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,HWC,IIIF/IIF? 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,HWC,IV? 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70, 120,OXID, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,SAND, 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR, 70,120, SAND,NJ 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR, 70,120 ,VRW,MORT 403,RPOT,S,ABR; DIFFICULT TO ID; FLTR,70,120,VRW,SOME BURNT 406,RPOT,S,SOME ABR; FLTR,70,120, AHSU, 406,RPOT,S,SOME ABR; FLTR,70,120,GROG,/COAR : 406,RPOT,S,SOME ABR; FLTR,70,120,HWC,

406,RPOT,S,SOME ABR; FLTR,70,120,SAM,LG
406,RPOT,S,SOME ABR; FLTR,70,120,SAM,LG. V
406,RPOT,S,SOME ABR; FLTR,70,120,VRW,MORT HOF FIRE CRACKED
407,RPOT,S,ABR,50,100,COAR/GROG,
407,RPOT,S,ABR,50,100,GROG,II FINELY RILLED EXT
407,RPOT,S,ABR,50,100,GROG,II/III
407,RPOT,S,ABR,50,100,VRW,
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,AHSU,?
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,AHSU,II
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,AHSU,NJ
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,COAR,IIA 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,COAR/GROG, 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,DR20,E 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,GROG,II 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,GROG,IV 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,GROG,IV NCD RILLED ALSO 41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,HWC,?
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,OXID,FINE
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,SAND,II? SOOTED
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,SAND,ILA
41,RPOT,S,ABR; POSSIBLY 70-100: UNCERTAIN HWC,50,100,VRW,
419,RPOT,S,ABR; FLAV ?LATER,70,100,AHSU,IVK
419,RPOT,S,ABR; FLAV ?LATER,70,100,COAR,IIA
419,RPOT,S,ABR; FLAV ?LATER,70,100,GROG,IIA
419,RPOT,S,ABR; FLAV ?LATER,70,100,GROG,IIIA/BARREL
419,RPOT,S,ABR; FLAV ?LATER,70,100,GROG,/COAR
419,RPOT,S,ABR; FLAV ?LATER,70,100,HWC,
419,RPOT,S,ABR; FLAV ?LATER,70,100,PE47?,
419,RPOT,S,ABR; FLAV ?LATER,70,100,SAND,
419,RPOT,S,ABR; FLAV ?LATER,70,100, VRW,
42,RPOT,S,ABR; HEAN, 120,160,AHSU,II
42,RPOT,S,ABR; HEAN,120,160,GROG,
42,RPOT,S,ABR; HEAN, 120,160,GROG,NJ
42,RPOT,S,ABR; HEAN, 120,160,HWC,III BDD
42,RPOT,S,ABR; HEAN, 120,160,HWC, + IIF
42,RPOT,S,ABR; HEAN, 120,160,OXID,
42,RPOT,S,ABR; HEAN,120,160,SAND,
42,RPOT,S,ABR; HEAN,120,160,VRW,
426,RPOT,S,, $100,160, \mathrm{HWC}$,
426,RPOT,S,,100,160,HWC,IIIF SOOTED MED HIGH NECK
437,RPOT,S, ,60,120,ERSB,NJ?
439,RPOT,S,ABR; SOME SAND = ?BB2,70,160,GROG,/COAR
439,RPOT,S,ABR; SOME SAND = ?BB2,70,160,HWC,
439,RPOT,S,ABR; SOME SAND = ?BB2,70,160,SAND,II
439, RPOT,S,ABR; SOME SAND $=$? $\mathrm{BB} 2,70,160, \mathrm{SAND}$, II BUD
439, RPOT,S,ABR; SOME SAND $=$? BB2,70,160,VRW,
44,RPOT,S,,60,160,ERSB,
44,RPOT,S,,60,160,VRW,
441,RPOT,S,ABR; FLTR,70,120,AHSU,
441,RPOT,S,ABR; FLTR,70,120,AHSU,IV
441,RPOT,S,ABR; FLTR,70,120,AHSU,NJ
441,RPOT,S,ABR; FLTR,70,120,COAR,IIA
441,RPOT,S,ABR; FLTR,70,120,DR20,E
441,RPOT,S,ABR; FLTR,70,120,ERSB,IIA
441,RPOT,S,ABR; FLTR,70,120,GROG,/COAR
441,RPOT,S,ABR; FLTR,70,120,HWC,

441,RPOT,S,ABR; FLTR,70,120,HWC,II
441,RPOT,S,ABR; FLTR,70,120,HWC,NJ
441,RPOT,S,ABR; FLTR,70,120,OXID,/SAND? BURNT
441,RPOT,S,ABR; FLTR,70,120,RWS?,
441,RPOT,S,ABR; FLTR,70,120,SAND,
441,RPOT,S,ABR; FLTR,70,120,SAND,IID NCD CF HWC +
441,RPOT,S,ABR; FLTR,70,120,VRW,
441,RPOT,S,ABR; FLTR,70,120,VRW,?
441,RPOT,S,ABR; FLTR,70,120,VRW,IVA BURNT
47,RPOT,S,VABR,50,100,COAR,
47;RPOT,S,VABR,50,100,COAR,II?
47,RPOT,S,VABR,50,100,GROG,
47,RPOT,S,VABR,50,100,GROG,IVF
47,RPOT,S,VABR,50;100,GROG,SJ
47,RPOT,S,VABR,50,100,HWC,?
47,RPOT,S,VABR,50,100,SAND,
47,RPOT,S,VABR,50,100,SAND,IIA
47,RPOT,S,VABR,50,100,SAND,IVA
47,RPOT,S,VABR,50,100,SAND,NJ
47,RPOT,S,VABR,50,100,VRW,
47,RPOT,S,VABR,50,100,VRW,? VBURNT
47,RPOT,S,VABR,50,100,VRW,MORT HOF BURNT
47,RPOT,S,VABR,50,100,VRW,NJ BURNT RIM
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID,70,160,COAR/GROG,
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID,70,160,ERSA/B,II BURNT
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID, 70,160, HWC,
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID, $70,160, \mathrm{HWC}$,III BDD
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID, 70,160, SAM,LG
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID,70,160,SAND,
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID, 70,160, SAND,NJ
51,RPOT,M,VABR; BURNT; DIFFICULT TO ID,70,160,VRW,MOSTLY BURNT
52,RPOT,S,ABR; BURNT,40,400,SAND,
56,RPOT,S,ABR,70,160,COAR/GROG,
56, RPOT, $\mathrm{S}, \mathrm{ABR}, 70,160, \mathrm{HWC}$,
56,RPOT,S,ABR,70,160,0XID,
56,RPOT,S,ABR,70,160,SAM,LG
56,RPOT,S,ABR,70,160,VRW, 56,RPOT,S,ABR,70,160,VRW,MORT HOF
57,RPOT,S,,50,160,OXID,? ABR
57,RPOT,S, ,50,160,VRW,
59,RPOT,S,ABR,60,120,ERSB,NJ
59,RPOT,S,ABR,60,120,SAM,LG V
63,RPOT,S,ABR,0,100,GROG,
64,RPOT;S,,0,100,COAR,IIA
64,RPOT,S,,0,100,GROG,ABR
65,RPOT,S,ABR; ANTO, 140,200,AHSU, 65,RPOT,S,ABR; ANTO,140,200,AHSU,NJ 65,RPOT,S,ABR; ANTO,140,200,FMIC, 65,RPOT,S,ABR; ANTO,140,200,GROG, 65,RPOT,S, ABR; ANTO,140,200,HWC, 65,RPOT,S,ABR; ANTO,140,200,HWC,LID 65, RPOT,S,ABR; ANTO, 140,200,OXID, 65,RPOT,S,ABR; ANTO,140,200,OXID,IB7-9 65,RPOT,S,ABR; ANTO,140,200,OXID,ROD 65,RPOT,S,ABR; ANTO,140,200,SAM,LG
65,RPOT,S,ABR; ANTO,140,200,SAND,

65,RPOT,S,ABR; ANTO,140,200,VRW, 69,RPOT,S,,70,160,GROG, 69,RPOT,S, 70,160, HWC, 69,RPOT,S,,70,160,VRW, 71,RPOT,S,,0,100,GROG, 75,RPOT,S,VABR,0,100,GROG, 76,RPOT,S,VABR,50,100,SAM,LG VI 79,RPOT,S,ABR,0,100,COAR, 81,RPOT,S,ABR; 1STC,50,100,COAR, 81,RPOT,S,ABR; 1STC,50,100,ERMS, 81,RPOT,S,ABR; 1STC,50,100,GROG, 81,RPOT,S,ABR; 1STC,50,100,GROG,IIA 81,RPOT,S,ABR; 1STC,50,100,GROG,NJ 81,RPOT,S,ABR; 1STC,50,100,VRW,SOOTED 84,RPOT,S,ABR,70,160,GROG, 84,RPOT,S,ABR,70,160,HWC, 84,RPOT,S, ABR, 70,160,HWC,? IV 84,RPOT,S,ABR,70,160,SAND, 84,RPOT,S,ABR,70,160,VRW, 91,RPOT,S,ABR,40,400,SAND, 94,RPOT,S,ABR,0,100,COAR,II 94,RPOT,S,ABR, 0,100, SAND, 97,RPOT,S,SOME ABR; PREF,50,70,GROG, 97,RPOT,S,SOME ABR; PREF,50,70,GROG,IIA 97,RPOT,S,SOME ABR; PREF,50,70,GROG,IIA ONE VESS SMA *DRAW 97,RPOT,S,SOME ABR; PREF,50,70,GROG,IIA PROB BASE/BODY SHS OF ABOVE VESS; POSTFIRING HOLE DRILLED IN BASE 97,RPOT,S,SOME ABR; PREF,50,70,GROG,NJ 97,RPOT,S,SOME ABR; PREF,50,70,SAND,II 97,RPOT,S,SOME ABR; PREF,50,70,VRW,BURNT 98,RPOT,S,ABR,0,100,COAR,II

MAK94: Table of fabrics \& forms, by weight


```
V/IV
VA
VI
Total 
46 250 4 34
                                    0.3% 5.1% 0.0% 0.5% 0.2% 0.1% 8.3%
                                    9.7% 0.3% 0.5% 0.1%
0.2% 1.0% 0.0% 0.1%
Weight AHFA AHSU AMPH BB1 BB2 BBS COAR COAR/GROG DR2O DR2OE ERMS
ERSA/B ERSB FINE FMIC
```

MAK94: Table of fabrics \& forms, by EVEs

EVEs AHFA AHSU AMPH BB1 BB2 BBS COAR COAR/GROG DR20 DR20E ERMS ERSA/B ERSB FINE FMIC

DR18
DR18/31
DR27
DR30
DR33
ERJ 4
I
IB
IB2.
IB5
IB7-9
IC

II	11	28			
IIIII					
IIA	28	168		8	34
IIB			7		

IIB

5
ID 5
IIE
IIF
18
IIG
III 5
III/NJ
IIIA
IIIA/BARREL
IIIF
IIIF/IIF
IJ
IV 4
IV/V 6 .
IVA
IVA/F
IVF
IVH 85
IVJ3
IVK 17
IX
LID
MORT
MORT BEF
MORT HOF
NJ 171
$56 \quad 1$
NJ/IIF
SJ
V
V/IV
VA
VI
$\begin{array}{llllllllll}\text { Total } & 236 & 26 & 9 & 196 & 7 & 8 & 90 & 1 & 11\end{array}$ $0.0 \% ~ 8.5 \% ~ 0.0 \% ~ 0.0 \% ~ 0.9 \% ~ 0.3 \% ~ 7.1 \% ~ 0.0 \% ~ 0.0 \% ~ 0.0 \% ~ 0.3 \% ~ 0.3 \% ~ 3.2 \% ~ 0.0 \% ~ 0.4 \% ~$
EVEs AHFA AHSU AMPH BB1 BB2 BBS COAR COAR/GROG DR20 DR20E ERMS ERSA/B ERSB FINE FMIC

```
Weight GROG HWC HWC+ NFSE NKSH NVCC OXID PE47 PORD RWS SAM SAMLG
SAMLZ SAND TNIM VCWS VRG VRW
            3129 1013 , 4 8 50
6 1944 74 16 2949
DR18
DR18/31
4
DR27 2 2 4
DR30
DR33
52
ERJ
I
232
IB
10
IB2
232
IB5 120
150
IB7-9 10
4
IC
4 0
II
4 0 2
II/III 40
2
IIA 1624
108
IIB
IIC
6
IID
70
IIE 10
24
IIF 12 78
6
IIG
16
III 26
2
III/NJ 16
IIIA 34
IIIA/BARR 18
IIIF 20
IIIF/IIF 12
IJ
260
IV 142 14
32
IV/V
IVA
24
122
```

```
IVA/F
6
IVF 24 82
42
IVH
IVJ3 88
IVK
16
IX
2
LID 30 86
32
MORT
272
MORT BEF
94
MORT HOF
928
NJ 298 106 213
226 78
NJ/IIIF 2
SJ 811
V 112
26 50
V/IV 4
VA
10
VI rrlllllllllllll
88 2944 60 74 16 5419
                    25.2% 5.6% 0.3% 0.0% 0.2% 0.1% 4.8% 0.3% 0.2% 0.5% 0.3%
1.6% 0.4% 11.8% 0.2% 0.3% 0.1% 21.7%
Weight GROG HWC HWC+ NFSE NKSH NVCC OXID PE47 PORD RWS SAM SAMLG
SAMLZ SAND TTNIM VCWS VRG VRW
EVES GROG HWC HWC+ NFSE NKSH NVCC OXID PE47 PORD RWS SAM SAMLG
                    5 15 4
6 3 5 % 53
DR18/31
8
DR27
1 1
DR30
DR33
84
ERJ
I
1 5
IB
18
IB2
6 3
```

```
IB5
100
IB7-9 24
10
IC
5 1
II 25 17 12
28
II/III 19
5
IIA 299
55
IIB
IIC
IID
1 5
IIE
12
IIF 10 24
6
IIG
8
III
III/NJ 16
IIIA
IIIA/BARREL 13
IIIF 28
IIIF/IIF 10
IJ
22
IV 5 17 13
21
IV/V
IVA 9
10 51
IVA/F
5
IVF 9}5
31
IVH
IVJ3 18
IVK
7
IX
LID
2 0
MORT
20
MORT BEF
15
MORT HOF
7 1
NJ 68 116 27
157 66
NJ/IIIF
6 1
SJ
v
```

```
V/IV
                                    5
VA
7
VI
Total 
17.9% 10.8% 0.9% 0.0% 0.0% 0.0% 9.8% 0.0% 0.0% 1.4% 0.2%
2.5% 3.5% 12.8% 0.3% 0.2% 0.0% 18.8%
EVES GROG HWC HWC+ NFSE NKSH NVCC OXID PE47 PORD RWS SAM SAMLG
SAMLZ SAND TNIM VCWS VRG VRW
```

MAK94: Table of forms, totals

	Weight Total		$\begin{aligned} & \text { EVEs } \\ & \text { Total } \end{aligned}$	
	13934	55.7\%	43	1.5\%
DR18	238	1.0\%	53	1.9\%
DR18/31	4	0.0%	8	0.3\%
DR27	6	0.0\%	11	0.4\%
DR30	14	0.1%		0.0\%
DR33	52	0.2\%	84	3.0\%
ERJ	12	0.0\%	4	0.1\%
I	246	1.0\%	25	0.9\%
IB	10	0.0\%	18	0.6\%
IB2	232	0.9\%	63	2.3\%
IB5	270	1.1\%	200	7.2\%
IB7-9	14	0.18	34	1.2\%
IC	40	0.2\%	51	1.8\%
II	1787	7.18	160	5.8\%
II/III	42	0.2\%	24	0.9\%
IIA	2687	10.7\%	592	21.3%
IIB	16	0.17	7	0.3\%
IIC	42	0.2\%		0.0\%
IID	126	0.5\%	20	0.7\%
IIE	34	0.1%	12	0.4\%
IIF	120	0.5\%	58	2.18
IIG	16	0.17	8	0.3\%
III	48	0.2\%	5	0.2\%
III/NJ	16	0.17	16	0.6\%
IIIA	106	0.4\%	54	1.9\%
IIIA/BARREL	- 18	0.1\%	13	0.5\%
IIIF	20	0.1%	28	1.0\%
IIIF/IIF	12	0.0\%	10	0.4%
IJ	260	1.0\%	22	0.8\%
IV	342	1.4\%	60	2.2\%
IV/V	8	0.0\%	6	0.2\%
IVA	176	0.7\%	70	2.5\%
IVA/F	6	0.0\%	5	0.2\%
IVF	148	0.6\%	94	3.4\%
IVH	20	0.1\%	13	0.5\%
IVJ3	88	0.4%	18	0.6\%
IVK	72	0.3\%	24	0.9\%
IX	2	0.0\%		0.0\%
LID	148	0.6\%	20	0.7\%
MORT	272	1.18	20	0.7\%
MORT BEF	94	0.48	15	0.5\%
MORT HOF	928	3.7\%	71	2.6\%
NJ	1229	4.9\%	662	23.8\%
NJ/IIIF	2	0.0\%	6	0.28
SJ	861	3.4\%	61	2.2\%
V	188	0.8%		0.0\%
V/IV	4	0.0\%	5	0.2\%
VA	10	0.0\%	7	finds
0.3\%				
VI	4	0.0\%		0.0\%
Total	25024	100.0\%	2780	100.0\%

MAK94: Table of fabrics, totals (in alphabetical order)

	Weight	EVES
AHFA	0.3%	0.0%
AHSU	5.1%	8.5%
AMPH	0.0%	0.0%
BB1	0.5%	0.0%
BB2	0.2%	0.9%
BBS	0.1%	0.3%
COAR	8.3%	7.1%
COAR/GROG	9.7%	0.0%
DR2O	0.3%	0.0%
DR2OE	0.5%	0.0%
ERMS	0.1%	0.3%
ERSA/B		0.2%
ERSB	1.0%	3.2%
FINE	0.0%	0.0%
FMIC	0.1%	0.4%
GROG	25.2%	17.9%
HWC	5.6%	10.8%
HWC+	0.3%	0.9%
NFSE	0.0%	0.0%
NKSH	0.2%	0.0%
NVCC	0.1%	0.0%
OXID	4.8%	9.8%
PE47	0.3%	0.0%
PORD	0.2%	0.0%
RWS	0.5%	1.4%
SAM	0.3%	0.2%
SAMLG	1.6%	2.5%
SAMLZ	0.4%	3.5%
SAND	11.8%	12.8%
TNIM	0.2%	0.3%
VCWS	0.3%	0.2%
VRG	0.1%	0.0%
VRW	21.7%	18.8%

MAR94: Table of fabrics, totals (in order of most common fabrics)

	Weight	EVEs
VRW	21.7%	18.8%
GROG	25.2%	17.9%
SAND	11.8%	12.8%
HWC	5.6%	10.8%
OXID	4.8%	9.8%
AHSU	5.1%	8.5%
COAR	8.3%	7.1%
SAMLZ	0.4%	3.5%
ERSB	1.0%	3.2%
SAMLG	1.6%	2.5%
RWS	0.5%	1.4%
HWC+	0.3%	0.9%
BB2	0.2%	0.9%
FMIC	0.1%	0.4%
ERSA/B		0.2%
TNIM	0.2%	0.3%
BBS	0.1%	0.3%
ERMS	0.1%	0.3%
SAM	0.3%	0.2%
VCWS	0.3%	0.2%
COAR/GROG	9.7%	0.0%
BB1	0.5%	0.0%
DR2OE	0.5%	0.0%
AHFA	0.3%	0.0%
DR20	0.3%	0.0%
PE47	0.3%	0.0%
NKSH	0.2%	0.0%
PORD	0.2%	0.0%
NVCC	0.1%	0.0%
VRG	0.1%	0.0%
AMPH	0.0%	0.0%
FINE	0.0%	0.0%
NFSE	0.0%	0.0%

Appendix 6

Assessment of the registered finds from MAK94

Site address: St Mary Abbots Hospital, Marloes Road, Kensington, London W8

Recorder: Angela Wardle

Date: 1.6.95

1. Quantity

34 registered finds were recovered, quantified by material as follows:

bone:	1
ceramic:	5
coppper alloy:	1
flint:	16
glass:	7
iron:	2
lead:	1
stone:	1

All items have been accessioned in accordance with the MOLAS system: iron and copper alloy has been x-rayed.

2. Date, Range and Context

Prehistoric. The 16 worked flints and stone tool are assessed elsewhere. Most are residual, found in contexts containing Roman pottery.

Iron Age/Roman. Four ceramic loom weights, are of Late Iron Age/ early Roman date. All came from contexts which contained Roman pottery, but two, [164] and [41], both ditch fills produced pottery of 1st century date or earlier (Groves 1994). Seven glass vessel fragments, which comprise the major part of the Roman group, date from the 1st or at the latest early 2nd century. Three fragments of coloured vessel glass, notably the brown flagon, may date from the middle of the 1st century.
The dated forms were from contexts containing pottery of late 1st/early 2 nd century date. Four fragments come from ditch fills, two from other features and one from the post-Roman alluvium [19], which produced the largest group of finds from the site (8).

Post-Roman. One post-medieval lace bobbin is unstratified and a horseshoe of medieval or post-medieval date came from the post-Roman alluvium [19].

3. Condition of the material

The small quantity of iron and copper alloy is heavily corroded. The ceramic finds are severely abraded. The condition of the glass is variable. A pillar-moulded bowl <23> is very abraded but the other vessel fragments, notably the coloured ones which are of a harder metal, although generally small, are unworn.

4. General characteristics and potential of the finds

4.1 This is a small group and most of the contexts produced only a single find. The identifiable objects are domestic in character. The four weights would have been used on a warp-weighted vertical loom, archaeological evidence for which is limited,
generally to the weights themselves (Wild 1970,61-3). Weights made of fired clay could clearly be used for purposes other than weaving, but the presence of several fragments in a restricted area strengthens their identification as loom-weights, providing evidence of textile production in the area. The degree of abrasion, however, indicates considerable movement in the soil and their exact source is unknown.

The Roman glass includes 1st-century material of good quality, with some fine tablewares rather than utilitarian containers.
There are no key groups.
Although small, the assemblage is of some significance, providing evidence of early Roman activity in an area of London about which little is yet known.
4.2 Dating. The small size of the assemblage and lack of closely-dated finds limits its value in this respect, but the datable glass may help to confirm the ceramic evidence.

5. Recommendations for further work

No further work is recommended at present but the presence of the loom weights and the Roman glass should be considered in any future work on early Roman assemblages.

References:

Groves, J, 1994 Assessment of the pottery from St Mary Abbots Kensington, MOLAS

Wild, J,P, 1970 Textile Manufacture in the Northern Roman Provinces, Cambridge University Press

Appendix: Summary of the finds

ceramic
loomweights
[19] $<3>$ Very abraded, hard red fired clay. This appears to be of the triangular, Iron Age type, rather than pyramidal, provincial Roman form (Wild 1970, 63) but is badly damaged. A circular suspension hole seems to be oddly placed.
[40]<2> Fragment. Red fired clay; possible loomweight but form uncertain.
[212] < $1>$ Dark red fired clay; very abraded; trace of a suspension hole.
[164] < 4> Fragments. Dark red fabric with lighter red exterior.

bone or ivory

$[+]<31>$ Bobbin used for lace-making; pewter inlay. Post-medieval
copper alloy
[393] < 30> Fragment of sheet metal. Form not identifiable.

iron

[19]<32> Horseshoe, fragments of branch, badly corroded. X-ray x4848 Medieval or post-medieval
[393] < 5 > Fragment of strap or bar
glass
[19]<25> Melon bead. Roman 1st/2nd century
[329]<28> Vessel fragment; blue glass. 1st century
[41]<26> Vessel fragment; blue glass. 1st century
(possibly, although not certainly from same vessel as <28>
[403]<27> Vessel fragment, with rib; brown glass. 1st century. ?Ribbed flagon Isings form 52B AD40-70
[69]<23> Pillar moulded bowl; part of one rib, very abraded.
Late 1st/early 2 nd century
[40]<29> Vessel fragment. Natural green blue
[227] < 24> Vessel fragment. Natural green blue

[^4]
Appendix 7

St Mary Abbotts, Kensington (MAK94)
Building Material Report

Ian M. Betts
3rd February 1995

A total of 36.87 kgs of ceramic and stone building material was recovered during excavations at St Mary Abbots, Kensington. Much of the material recovered comprised small, highly abraded fragments. Some can be identified with certainty as ceramic tile, whilst other fragments are almost certainly daub. Regrettably, certain other building material is so small and abraded that it is not possible to say with any certainty whether it is ceramic tile or daub.

ROMAN CERAMIC TILE

The majority of Roman ceramic material present is brick (discussed under the general heading of 'tile'). In addition, there are two fragments of roofing tile, one tegula and one tegula or imbrex, and a solitary piece of box flue-tile. The latter has combed keying, with what may be a four tooth comb, on one side and the remains of a curved, probably round, vent hole in the adjacent plain side.

Roman tile was recovered from a total of 14 groups (groups 1.02, 3.03, 2.02, 5.01, $6.01,4.05,10.01,9.04,11.02,5.02,7.07,8.01,6.02,5.03)$. Most of these Roman tiles are fired to various shades of red, the others being totally grey in colour. All are in fabric types which belong to fabric group 2815. Each of these individual fabrics making up group 2815 are described below. These slight different fabric could be the result of obtaining tiles from different kiln source. Equally, they may reflect the variations in the clay used at a single production site.
i) Fabric 2452

Fine fabric with only a small amount of scattered quartz (up to 0.5 mm). Occasional calcium carbonate and iron oxide (up to 2 mm) often present.
ii) Fabric 2459

Fine, sandy fabric with common very small quartz (mostly up to 0.2 mm). Occasional scatter of calcium carbonate and iron oxide (up to 1 mm).
iii) Fabric 3006

Fairly sandy fabric, with varying amount of quartz (up to 0.7 mm). Occasional calcium carbonate and iron oxide (up to 0.7 mm).

Tiles in fabric group 2815 contain little if any distinctive inclusions, so it is not possible to tie down their origin to any specific kiln site. Many tile kilns producing tiles in fabric group 2815 are located to the north of London, principally close to Watling Street which ran between London and St: Albans. It is also possible that certain tiles may have come from other tile kilns located to the south-east of London (Betts 1987, 28). What does seem fairly certain is that the kilns seem to have supplied tile for the majority of most building work in London, at least during the 1st to mid-2nd centuries, also supplied the tiles found at St Mary Abbots, Kensington.

Dating

In the London area the majority of Roman tiles which belong to fabric group 2815 date from AD 50/60 to around the mid - 2nd century. This ties in closely with the date of the pottery found associated with the tile at MAK94, which is predominantly AD 70160. The only tile which is almost certainly of 2nd century date came from the postRoman alluvium (group 10.01, context 19). This has a fine sandy clay fabric characterised by the use of fine moulding sand attached to the sides (fabric type 2459B). The exact date when such tiles were introduced is still uncertain although there are no examples earlier than c. AD 120-140, the MAK94 example is associated with pottery dated AD 120-160. This tile, which is either a tegula or an imbrex, may have been brought in to repair the roof of an existing late 1st or early 2 nd century building.

LATE MEDIEVAL/POST-MEDIEVAL

1) Peg Tile

Group 11.05 (context 18) produced a small number of peg roofing tiles fragments. These are in a number of different fabric types which are described below. A further small fragment of what is probably peg tile, or perhaps part of a Roman tile, came from post-Roman group 10.01 (context 19).
i) Fabrics 2271 and 2276

Fine fabric with scattered muscovite mica (up to 0.05 mm) in certain tiles with red iron oxide and calcium carbonate (up to 0.5 mm). A small quantity of quartz (up to 0.5 mm) usually present. Fabric 2271.

Tiles made from similar clay, but distinguished by the presence of fine quartz moulding sand on their base and sides (mainly up to 0.2 mm) are classified as fabric 2276.
ii) Fabric 2586

Moderate amounts of quartz (up to 0.5 mm) with a scatter of red and black iron oxide (up to 1 mm).
iii) Fabric 2816

Fairly frequent small quartz grains (up to 0.3 mm) with red iron oxide (up to 2 mm).
Peg tiles in all these fabric types are commonly found on many medieval and later sites in the City of London. There seems little doubt that most, if not all these tiles came from tile kilns situated close to London. Many of these seem to have lain to the east of London, tilemaking is recorded in Stepney from 1366 (McDonnell 1978, 114) and in the later 14th and 15th centuries Woolwich was a principal centre for the manufacture of roof tile supplying both London and Westminster (Cherry 1991, 194).

The peg tiles from MAK94 are all of fairly uniform thickness with no glaze which suggests either a late medieval, or more likely, post-medieval date. This dating is more certain for the tiles with fine moulding sand attached (fabric 2276) as such roofing tiles did not appear until the late 15 th century. Peg tiles continued to be used. for roofing in
the London area throughout the 16 th and 17 th centuries. They only gradually fell out of use, along with pantile (see discussed below), with the introduction of cheaper Welsh roofing slate in the later 18th century (Cruickshank and Wyld 1975, 176).
2) Pantile

A single fragment of pantile was recovered from the same context as peg tiles discussed above (group 11.05, context 18). This is the same fabric (type 2275) as many pantiles found in the city of London.
i) Fabric 2275

The fabric is mainly characterised by fairly frequent, mostly rounded, black and occasionally red iron oxide (up to 2.5 mm). Moderate quantities of small quartz and calcium carbonate (up to 3 mm).

Pantiles first came into the London area from Holland around the mid 17th century, but only be came common after the Great Fire of 1666 . The first English pantiles seem to have been produced by a company at Tilbury from 1701 (Betts 1992, 16).
Such tiles continued to be used in London until they gradually fell out of fashion in the later 18th century. Where the pantile found at MAK94 came from is not entirely certain, although recent work has shown that tiles in fabric type 2275 are more likely to be of Dutch origin (Betts 1995).

3) Floor Tile

The only other ceramic tile in post-Roman group 11.05 (context 18) is a fragment of floor tile. It is not certain if this was glazed as the top surface has broken off.

The tile had a thickness greater than 33 mm , which by comparison with floor tiles from sites in the City of London would suggest either the late medieval or, more likely, a post-medieval date. Such tiles were normally plain glaze, or by the mid-17th century unglazed, and of Flemish origin. The tile from MAK94 is not in a distinctive fabric (type 1813) so there is no indication whether it is of Flemish or English manufacture.
i) Fabric 1813:

Sandy fabric with frequent quartz (up to 0.5 mm).

STONE

From post-Roman group 10.01 (context 19) came a single battered fragment of Reigate Stone, quarried from the Reigate and Merstham area of Surrey.. It is partly blackened which suggests it could have been in contact with heat.

The stone may have originally have been part of a moulding. Reigate was used extensively for decorative mouldings in medieval building in London. The MAK94 fragment is almost certainly of medieval or early post-medieval in date.

DAUB

Even excluding fragments which could be fired ceramic tile, daub comprises just over 46 percent of building material recovered from MAK94. Much of this is small,
rounded and highly abraded. None shows any kind of impressions, such as wattle marks, so it is not clear as to its original purpose, although presumably it originally formed part of some sort of clay and timber structure. Another possibility is that they are the remains of clay hearths, a small proportion of fragments are partly burnt, but none show any evidence of being subject to intense heat.

A few larger fragments could be part of mudbricks. One example (group 2.10, context 303) has a breadth of 123 mm with a thickness of 90 mm , whilst another has a small thickness of 79 mm (group 3.03, context 126). The former is not too dissimilar in size to a complete example from Fenchurch Street, London (Museum of London site code: FSE76) which measures $201 \times 125 \times 83 \mathrm{~mm}$ (Betts forthcoming).

Discussion

An interesting feature of the building material from St Mary Abbots is the difference in the distribution of the two main types present. Fragments of daub were found in both the ditches and what are believed to be pits and post holes whilst almost all the fired ceramic tile came from ditch fills. This wound suggest that either the fill of the ditches and pits/post-holes are of different date, or that the ditch infill material came from a different source.

The daub and what may be mudbrick presumably came from the demolition, or rebuilding, of clay and timber buildings located somewhere in the vicinity. The presence of Roman ceramic roofing tile suggests that some of these buildings may have had tiles roofs. Roman brick could have been used in these buildings as hearths or as areas of flooring. Alternatively, they may have been used in a more substantial stone built structure. The occurrence of box flue-tile would imply the presence of a stone building with hypocaust heating.

References

I.M. Betts (1987) `Ceramic Building Material: Recent Work in London' Archaeology Today, 8, No. 9, 26-28. I.M. Betts (1992) 'Early Pantiles from London' Medieval Ceramics 16, 76. I.M. Betts (1995) 'Platform Wharf, Rotherhithe: Building Material' unpublished archive report, Museum of London. I.M. Betts (forthcoming) 'The Building Material' in T. Williams (ed.) The Development of Roman London east of the Walbrook, CBA Research Report. J. Cherry (1991) 'Pottery and Tile' in English Medieval Industries. Craftsmen, Techniques, Products (ed.) J. Blair and N. Ramsay, Hambledon, London. D. Cruickshank and P. Wyld (1975) 'London: The Art of Georgian Building', Architectural Press, London. K. McDonnell (1978) `Medieval Lonḍon Suburbs', Phillimore, London.

Appendix 8

MAK94 Environmental Assessment Results

Seventy three test flotation samples of 10 litres from well stratified and uncontaminated contexts were selected from the 129 samples and processed on a Siraf flotation tank. These were from fills from the range of ditch, post-hole, pit and possible structural slots, and based on spatial distribution with a fill sample derived from each 5 m grid square where post holes occurred.

An assessment of the flots generally showed poor preservation and low frequency of plant remains with mainly charred cereal grains and occasional weed seeds. The fragmentation will probably allow few grains to be reduced to species level. Charcoal flecks and small fragments together with rootlets were present in many samples. The results are summarised below.

Context/sample no. Frequency Diversity Comments

40	1	10/30	1	1	grain,charcoal
48	2	10/10	1	1	grain (1)
44	3	10/30	2	1	grain, weeds, char
29	4	10/10	1	1	breadwheat, weeds barley, charcoal
41	5	10/30	2	1	breadwheat, >ch
57	7	10/30	1	1	charcoal
59	8	10/30			NR
61	9	10/30	1	1	
63	10	10/30	$1 / 2$	1	grain, weeds
69	11	10/20	2	1	charcoal
72	13	10/30	1	1	
84	16	10/10	1	1	occ.grain, charc.
76	17	10/30	1	1	charcoal
92	22	10/10	1	1	grain (2)
91	24	10/10	1	1	charcoal
90	25.	10/30	1	1	grain, weeds, char
101	27	10/10	1	1	charcoal
123	31	10/30	1	1	charcoal
119	32	10/20	1	1	weeds
121	33	10/18	1	1	grain, weeds
125	34	10/30			NR
112	35	10/27			NR
134	42	10/25	1	1	charcoal
138	43	10/30			NR
142	45	10/10	3	2	2 rich cereal
					assemblage
					barley/wheat
					BUT preser. NOT
					v.good, charcoal
143	46	10/30	1		grain,weeds
127	47	10/30	1	1	charcoal
148	49	10/30			NR
151	50	10/20	1	1	NR
159	52	10/30			NR
156	53	10/20	1	1	glume base
139	54	10/30			NR
164	55	10/30	1	1	grain,weeds,ch

$\left.\begin{array}{llllll}165 & 56 & 10 / 30 & 2 & & 2 \\ & & & & \begin{array}{c}\text { 10-20grains } \\ \text { emmer/spelt, } \\ \text { indet, charcoal }\end{array} \\ 168 & 57 & 10 / 30 & & & \text { NR }\end{array}\right)$

Comments and Recommendations

The results from the assessment were disapointing in both terms of frequency, diversity and the level of preservation of the carbonised plant remains. However, these must be viewed in the light of our limited knowledge of late Iron Age/ early Romano-British arable agriculture in this part of the country i.e. occasional finds from sites on the West London gravels (eg Wall Garden Farm, Sipson) and in North-West London (eg Long Lane, Ickenham). Thus, the material from MAK94 may add to this database and provide a basis for comparison with urban sites in the City.

The assessed samples (productive and non productive) and unprocessed samples were plotted in their groups on the provisional matrix. The assessed samples were collected on a spatial basis and few further samples need to be processed to adequately cover the
whole area of the site. Temporal sequences were also well covered. Thus, depending upon the available resources, it is suggested that the following steps are taken for the potential recovery of material in the post-excavation stage:
i) Scan, recover and identify plant remains from 25 of the assessed flots.
ii) Process more soil from the most productive samples 41(5),44(3),63(10),90(25),121(33) and 165 (56) - 201 each
iii) To complete individual temporal sequences process:
a) samples from groups 3.06 (79/18); 1.11 (157/51); $2.04129 / 37$ or 2.04 (128/36)
b) samples from $5.06(171 / 60)$ and $3.08(365 / 115)$

Requirements

Processing of 11 samples
Residue sort 1 day

Scanning and identifying plant remay
Analysis and Report Ping plantiomains 2 days
Analysis and Report Preperation 2 days
Assessment of Monolith tins 0.5 "
Total
6.5 DAYS

[^5]
Appendix 9

GLSMR/RCHME NMR ARCHAEOLOGICAL REPORT FORM

1) TYPE OF RECORDING (Y/N)
Evaluation Y Excavation Y Watching brief NOther (please specify)
2) LOCATION
Borough: Royal Borough of Kensington and Chelsea
Site address: St Mary Abbots Hospital, Marloes Road, W8
Site name: St Mary Abbots HospitalNat. Grid Refs:centre of site: 2568,7920
limits of site:
a)c)
b)
d)

3) ORGANISATION

Name of archaeological unit/company/society: MoLAS
Address: No London Wall, London EC2Y 5EA

Site director/supervisor: Robin Nielsen/Liz Howe
Project Manager: Robin Densem/Geoff Potter
Funded by: Taylor Woodrow Company Ltd

4) DURATION

Date fieldwork started: 6.7.94
Date finished: 16.9.94
Fieldwork previously notified? NO

Fieldwork will continue?
YES/(NO)/KNOWN

5) PERIODS REPRESENTED (Y/N)

Palaeolithic	N	Roman Y
Mesolithic N	Saxon (pre-AD 1066) N	
Neolithic N		Medieval (AD 1066-1485) N
Bronze Age N	Post-Medieval Y	
Iron Age Y	Unknown	

Page 2 of 3
6) Period Summaries Use headings for each period (ROMAN; MEDIEVAL; etc.), and additional sheets if necessary.

IRON AGE; Two linear ditches were excavated, aligned north-south. Other Iron Age features included postholes and small pits. All features lay to the west of the ditches. The pottery was dated to $0-50 \mathrm{AD}$, although there was one complete redeposited pot which may be as early as $400-0 \mathrm{BC}$. Loomweights were also recovered but not from any of the Iron Age contexts.

Roman; In the west of the site a possible building was excavated, represented by a collection of postholes and possible beamslots. To the east of this was a series of intercutting ditches, mainly aligned north-south but one appears to have been curvilinear. To the south of the possible building was another curviliner ditch. A large number of postholes were excavated across the western half of the site. The features were dated 1st/2nd Centuries. The pottery was very abraded and there was little environmental evidence recovered.

Post-medieval; One linear ditch, north-south, was excavated in the main area, other linear features were recorded in other Trial Trenches. These represented field sytems.

NATURAL (state if not observed; please DO NOT LEAVE BLANK)

Type: alluvium, gravel
Height above Ordnance Datum: 6.58 m (north), 6.52 m (south).

8) LOCATION OF ARCHIVES

a) Please indicate those categories still in your possession: (Y/N)

NOtes (Y)
PLans (Y)
PHotos (Y)
NGatives (Y)
SLides (transparencies Y)
COrrespondence (Y)
MScripts (unpub reports, etc) (Y)
b) All/some records have been/will be deposited in the following museum, record office, etc: Museum of London
c) Approximate year of transfer: 1996
d) Location of any copies:
e) Has a security copy of the archive been made?

YES/NO (NO)
If not, do you wish RCHME to consider microfilming?: YES/NO (N)

9) LOCATION OF FINDS

a) In your possession (delete as appropriate)

ALL/SOME/NONE (ALL)
b) All/some finds have been/will be deposited with the following museum/other body: Museum of London
c) Approximate year of transfer: 1996
10) BIBLIOGRAPHY

MoLAS, St Mary Abbots Hospital, An Archaeological Assessment, 1994.
MoLAS, St Mary Abbots Hospital, Post-Excavation Assessment and Up-dated Project Design, 1995.

SIGNED:
DATE:
NAME (Block capitals): Liz Howe

Please return the completed form to The Greater London Sites and Monuments Record, English Heritage London Region, 23 Savile Row, London W1X 1AB. Tel 071-9733731/3779 (direct dial).

Bibliography

Cotton, J., Mills, J., Clegg, G., Archaeology in West Middlesex, 1986.
English Heritage, Management of Archaeological Projectsㄴ, 1991.
Gibbard, Philip L., The Pleistocene History of the Middle Thames Valley, CUP, 1985.
Miles, David (Ed), The Romano-British Countryside. Studies in Rural Settlement and Economy, BAR, 1992.

MoLAS, Long Lane Playing Fields, Ickenham, A Post-Excavation Assessment, 1995.
MoLAS, St Mary Abbots Hospital, Kensington, An Archaeological Assessment, 1994.
MoLAS, Specification for Assment Reports and Up-dated Project Design, P. Hinton, 1993.

MoLAS, The Developing Landscape of West London, Post Excavation Report and Updated Project Desigǹ (Unpublished), 1993.

Museum of London, Finds Procedure Manual, 1987.
Museum of London, Archaeological Site Manual, 1990.
Royal Borough of Kensington and Chelsea, Unitary Development Plan, (March 1992 deposit)

Whipp, D., The Archaeology of Kensington and Chelsea

Acknowledgements

The author would like to thank Taylor Woodrow Property Company Limited for their generous funding of this project and Peter Chapman for his assistance; Lesley Jones of the Royal Borough of Kensington and Chelsea and Sue Cole of English Heritage for their assistance during the course of the project; and MoLAS colleagues who made a contribution to this project, especially Robin Nielsen who supervised the excavation, Jackie Bates, John Minkin, Sarah Jones, Ryszard Bartkowiak, Sue Hurman, Alison Steele, Stuart Gibson, Tony Mackinder, David Bowsher, James Drummond-Murray, Richard Hewitt and Pete Durnford.

Thanks also go to MoLAS colleagues who helped in the preparation of this report; John Giorgi (Environmental); Jo Groves, Robin Symonds and Angela Wardle (Finds); Ian Betts (Building Material); Helen Jones and Josephine Brown (Graphics); and to Robin Densem and Geoff Potter(Project Managers).

[^0]: 1 MolAs, Specification for Assessment Reports and Up-dated Project Design, P Hinton, Nov. 1993.

[^1]: 2 Philip L. Gibbard: The Pleistocene History of the Middle Thames Valley, CUP 1985, p131.

 3 Molas, St Mary Abbots Hospital - An Archaeological Assessment, 1994.

[^2]: 4 For the purpose of this listing the site archive is considered to be derived from both evaluation and excavation phases.

[^3]: 5 Transactions of the London and Middlesex Archaeological Society.

[^4]: lead
 [40]<33> Waste; molten. Undatable

[^5]: John Giorgi 3.7.95

