Tree-Ring Analysis of Timbers from Dacre Hall, Lanercost Priory, Brampton, Near Carlisle, Cumbria

A J Arnold, R E Howard and Dr C D Litton

© English Heritage 2004
ISSN 1473-9224

The Centre for Archaeology Report Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back cover for details).

Tree-Ring Analysis of Timbers from Dacre Hall, Lanercost Priory, Brampton, Near Carlisle, Cumbria

A J Arnold, R E Howard and Dr C D Litton

Summary

A total of 56 samples was obtained from five different areas of Dacre Hall. The analysis of 52 of these produced five site chronologies. The first, LCPASQ01, comprises 29 samples of combined length 155 rings. This site chronology is dated as spanning AD 1350 to AD 1504. The second site chronology LCPASQ02, comprises six samples of combined length 280 rings, these spanning AD 977 to AD 1256. Three other site chronologies comprising a total of seven further samples cannot be dated.

Interpretation of the sapwood on the dated samples suggests that a number of timbers, possibly originally felled in the thirteenth century, have been reused in the roof.

Some principal roof timbers, particularly at the northern end, were felled in AD 1465. Other timbers of the hall roof, particularly those of the southern trusses have an estimated felling date in the range AD 1502 to AD 1527.

Many of the timbers of the first floor frame appear to have been felled c AD 1507. It is possible that this work, and that to the southern trusses occurred at the same time.

No timber from the immediate post-Dissolution period has been found.

Keywords

Dendrochronology
Standing Buildings

[^0]
Introduction

What is now Dacre Hall is all that remains substantially above ground of the late twelfth-century cloistral buildings of the Augustinian Priory at Lanercost, Cumbria (NY 556 637; Figs 1 and 2). The Priory was originally founded in AD 1166, at the behest of, and with a generous endowment from, Robert de Vaux. Building work began almost immediately, with the church and a large compliment of other priory buildings being largely complete by AD 1220. A plan of the site is given in Figure 3. It is believed that Lanercost was settled by Cannons from the Priory of Pentney in Norfolk, and became one of 165 other Augustinian sites in England, other nearby communities being established at Carlisle and Hexham.

However, given its position in the disputed Border country with Scotland, life at Lanercost, with its various religious, political, and military visitations, was not as tranquil as might be expected of a monastic establishment. In AD 1280 King Edward I and Queen Eleanor visited Lanercost on their way to Newcastle. In AD 1296 the Scots overran the region and Lanercost, along with Hexham, sustained some damage to its cloisters. Further harm was sustained in AD 1297 during a raid by William Wallace. Edward I visited once more in AD 1300, and again, for a longer period due to illness, in AD 1306-7. Lanercost was ransacked and desecrated for the last time in AD 1346, by raiders led by King David of Scotland.

At the Dissolution in AD 1536 the Priory buildings were possessed for the Crown and subsequently sold to Sir Thomas Dacre. It is not known exactly when the sale took place but Sir Thomas is known to have taken up residence in AD 1559, having, it is believed, made substantial alterations, particularly to the west range of the cloisters. It is from his family that the Hall takes its present name. These alterations to the west range may have included the removal of the stone vaulted first floor and its replacement in timber, and the division of the north-most bay of the Hall from the southern six bays with a solid stone wall.

Other elements of the site were allowed to fall into gradual decay, with stone and timber being removed, it is believed, to construct other nearby buildings. The site remained with the Dacre family until the early eighteenth century, during which time, on the basis of documentary and structural evidence, it is believed that many other smaller modifications were undertaken. These works may have included the blocking of doors and windows. With the demise of the Lanercost Dacres the priory site eventually passed to the Crown, again, being subsequently bought by the Earl of Carlisle in AD 1869. The property came in to the hands of the Department of the Environment during the twentieth century.

Thus, apart from the still-standing Dacre Hall itself, the site in general now consists of a most impressive parish church, and the stone foundations and semi-subterranean stone remains of the former priory buildings. There is no timber to be seen in any of these features. The upper floor of Dacre Hall, apart from the north-most bay, which is known as the Scriptorium and which belongs with the church, is managed by the Dacre Hall committee, and is used for meetings, talks, and a wide variety of other public functions. It is thus with Dacre Hall, the western range of the former cloisters, that this programme of analysis is concerned.

Hall roof

The date of the present hall roof is unknown, but it is unlikely to be the first one, the probable line of the original being shown by a more steeply pitched scar above the present covering on the southern side of the church. It is possible that the present roof is a pre-Dissolution one, but it is believed that it may belong to the mid-sixteenth century works undertaken by Sir Thomas. It is also considered possible that the roof might be a seventeenth century replacement.

As currently built the roof, including the roof above the scriptorium, consists of eight king post trusses forming seven bays. The trusses have diagonal struts from tiebeams to principal rafters and carry double purlins, which in turn carry smaller common rafters. There are slightly curved braces from the king posts to the ridge beam. An illustration of a typical truss is given in Figure 4.

Apart from one instance, a diagonal strut in truss 4, there is little obvious indication, by way of redundant mortices, tennons, or peg holes, that the main beams of the principal trusses are of other than a single phase of felling. There is, however, a noticeable difference in the grain and pattern of some of the timbers, with some of the tiebeams, for example, appearing to be made from fast grown timber. Also the main timbers of truss 8, the south-most truss, appear to be slightly larger and more squarely cut than those of any other truss. The braces to the ridge here are also of a slightly different size to those seen on the other trusses.

The mixed nature of the timber is perhaps most clearly seen in the purlins. Although individual lengths again showed no obvious signs of reuse, no more than three or four of them appeared to be the same shape, or size, or to be from the same type of timber and have a similar grain patina. They appear to be quite different from the timbers of the trusses and give the impression of representing material of potentially different phases of felling or from different sources.

There are, furthermore, clearly reused timbers amongst the common rafters. In particular a considerable number of individuals show one, and sometimes two empty lap-mortices or joint beds, many of these being notched-lap type joints.

Related to this roof, but possibly of a different date, and possibly belonging to the original roof of the hall, is a wall plate. This is found on the east wall, between trusses 1 and 2, at the far north end of the hall, in the Scriptorium.

The first-floor frame

The frame of the first floor is made up of seven large east-west bridging beams, which carry close-set joists in half-trenched mortices. The large bridging beams have mortices on one of their side faces and shallow groove-mortices in the other to allow boards to be inserted into them to form a wooden ceiling. The date of this floor is unknown. It is believed to be possibly original, but may also represent a pre- or postDissolution alteration. As in the roof of the Hall, the timber comprising the common joists of the floor shows some variety in its shape, size and patina, though the timbers here do not appear to be as varied as those in the roof. It is thus possible that timbers
of different felling dates are used here also.

Other timbers

Within the Hall are some isolated single timbers or other small structures. One of these is represented by the lintel of a blocked window on the ground floor. The timber is buried deep in the stone work, and is again believed to possibly date from the original structure.

On the first floor, at the far south end is a group of three timbers, with two upright posts from floor to ceiling, connected by a single cross-beam. This is shown in Figure 5. The date of this structure is unknown, as is its function. Local tradition has it that this is the remains of a feeding stall, though, being at first floor, this is perhaps unlikely.

Sampling

Sampling and analysis by tree-ring dating were commissioned by English Heritage, this being requested to help refine the dating of Dacre Hall in the post-Dissolution period. The dendrochronological brief covered five different areas of the hall representing, it is believed, possibly three different main phases of construction, plus reused material of varied and indeterminate date.

The primary area of sampling lay in the roof timbers of the hall, with the second area of sampling being from the main east-west bridging beams and the common joists of the first-floor frame. It was believed that these two together represented one main phase of construction. Samples were initially to be obtained from only the main timbers of the principal trusses but given the apparent variety of timbers seen here, the number of samples was increased and sampling was extended to include reused material.

The third area of sampling was that of a single wall plate on the east side at the far north end of the Hall, above the Scriptorium, this timber possibly representing another phase of felling.

A fourth area of sampling in this upper floor area of the hall was a group of two upright timbers and a single cross-timber, known as the "stall" at the far southern end of the Hall. The fifth and final area of sampling comprised a single lintel of a blocked window on the ground floor. The dates of both these features were unknown, but it was believed that they may represent a third phase of felling.

Sampling was restricted to a set number of cores from these areas and their constituent timbers by nature of the site being a scheduled ancient monument for which consent to sample had to be obtained. Thus from within these five areas 56 different timbers were sampled by coring, this being the maximum number allowed. Each sample was given the code LCP-A (for Lanercost Priory, site "A"), and numbered 01-56.

A total of 29 samples, LCP-A01-A15, and A44-A56) was obtained from the main elements of the principal trusses. One sample, LCP-A16, was taken from the east wall plate at the far north end. A further eight samples, LCP-A31 - A38 were obtained from the common rafters, most of them, but not all, showing clear evidence of reuse.

A total of 15 samples, LCP-A17-26 and A39-43, was obtained from the beams of the first-floor framing, with five samples coming from the main beams and 10 from the common joists. Three samples, LCP-A27 - A29, were taken from the "stall" structure, with the final sample, LCP-A30, being taken from the lintel of the blocked window on the ground floor.

Where possible the positions of the cores obtained were recorded at the time of sampling on drawings made by Peter Ryder and provided by English Heritage, these being reproduced here as Figures $6-8$. Details of the samples are given in Table 1 and can be used in conjunction with the drawing to locate timbers sampled. In this report the bays and the roof and floor-frame timbers are numbered and described on a north to south, or east to west basis, as appropriate.

The Laboratory would like to take this opportunity to thank Mr and Mrs Robinson, key holders for Dacre Hall, who were most helpful in gaining access to the site and who were most interested in the project. We would also like to thank the Reverend Cannon Christopher Morris for his enthusiasm and help during sampling. We would also like to thank Peter Ryder for his knowledgeable expertise on site, for providing drawings and for his help with the introduction and description given above.

Analysis

Each of the 56 samples obtained was prepared by sanding and polishing. It was seen at this point that four samples, LCP-A27, A28, and A29, all from the "stall" structure, and LCP-A31 from a roof timber, had too few rings, that is less than 54, for satisfactory analysis, and these were rejected. The annual growth-ring widths of the remaining 52 samples were measured, the data of these being given at the end of the report.

These data were then compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum t-value of 4.5 five site chronologies could be formed. The first site chronology, LCPASQ01, consists of 29 samples and has a combined overall length of 155 rings. The relative positions of the cross-matching samples are shown in the bar diagram, Figure 9.

Site chronology LCPASQ01 was compared with an extensive range of reference chronologies indicating a satisfactory cross-match with a number of these when the date of its first ring is AD 1350, and the date of its last ring is AD 1504. Evidence for the dating of this site chronology is given in the t-values of Table 2.

The second site chronology, LCPASQ02, consists of six samples and has a combined overall length of 280 rings. The relative positions of the cross-matching samples in this site chronology are shown in the bar diagram, Figure 10. Site chronology LCPASQ02
was also compared with an extensive range of reference chronologies indicating a satisfactory cross-match when the date of its first ring is AD 977, and the date of its last ring is AD 1256. Evidence for the dating of this site chronology is given in the t values of Table 3.

The third site chronology, LCPASQ03, consists of three samples and has a combined overall length of 68 rings. The relative positions of the cross-matching samples in this site chronology are shown in the bar diagram, Figure 11. Site chronology LCPASQ03 was compared with an extensive range of reference chronologies, but there was no satisfactory cross-matching at any position, and these samples must remain undated.

The fourth site chronology, LCPASQ04, consists of two samples which also have a combined overall length of 68 rings. The relative positions of the two cross-matching samples are shown in the bar diagram, Figure 12. Site chronology LCPASQ04 was compared with an extensive range of reference chronologies, but again there was no satisfactory cross-matching at any position, and these samples are also undated.

The fifth and final site chronology, LCPASQ05, also consists of two samples which have a combined overall length of 126 rings. The relative positions of the two crossmatching samples are shown in the bar diagram, Figure 13. Site chronology LCPASQ05 was compared with an extensive range of reference chronologies, but again there was no satisfactory cross-matching at any position, and these samples are also undated.

In the cases of site chronologies LCPASQ03 - SQ05, those site chronologies with two and three samples, an attempt at dating constituent samples individually was also made. There was no satisfactory cross-matching indicated.

The five site chronologies thus created, LCPASQ01 - ASQ05, were also compared with each other and with the 10 remaining measured but ungrouped samples. There was, however, no further satisfactory cross-matching. Each of the 10 ungrouped samples was then compared individually with an extensive range of reference chronologies. There was, however, no further satisfactory cross-matching.

Interpretation

Analysis by dendrochronology has produced five site chronologies of 29 , six, three, two, and two samples respectively. The earliest material detected in this programme of analysis is found in site chronology LCPASQ02 (Fig 10), represented by samples LCP-A06, A12, A34, A36, A38, and A44, these being from diagonal struts and common rafters, all but two, LCP-A06 and A12, showing clear signs of reuse. This site chronology has a last measured ring date of AD 1256.

Unfortunately, only one sample in this group, LCP-A44, appears to have the heartwood/sapwood boundary and it is thus not possible to say that all the samples represent timbers felled at the same time. However, using a 95% confidence limit of 15 to 40 sapwood rings on mature oaks from this part of England, would give a felling date range of AD 1271 to AD 1296, for the timber represented by sample LCP-A44, and thus indicate a possible felling date range for the other timbers in this group. It is
equally possible, however, that some timbers were felled earlier or indeed later. It is particularly difficult to be more certain given that they represent reused material and are therefore potentially a very mixed collection of timbers.

The next latest material is represented in site chronology, LCPASQ01 (Fig 9), which comprises 29 samples with a combined overall length of 155 rings. These rings are dated as spanning the period AD 1350 to AD 1504. At least two phases of felling are represented by this material. An attempt to illustrate this is given in the bar diagram Figure 14, where the samples are sorted into roof or floor timbers, and in Figure 15 where the samples from the roof are sorted according to truss.

Four samples from trusses 1, 2 and 3, LCP-A51, A52, A53, and A54, retain complete sapwood. This means that they each sample has the last ring produced by the trees they represent before those trees were cut down. In each case the last measured complete sapwood ring date is the same, AD 1465. This is thus the felling date of the timber.

A further sample from truss 3, LCP-A03, also retained complete sapwood. Unfortunately, due to decay, the sapwood rings could not be reliably measured. The number of sapwood rings was, however, estimated at 30-35. Given that the last measured, heartwood ring on sample LCP-A03 is dated to AD 1434, this would again suggest a probable felling date of AD 1465.

The relative positions of the heartwood/sapwood boundaries on a number of other samples from these trusses in site chronology LCPASQ01, and also on a sample from truss 6, LCP-A11, all lie relatively close to each other. Such a relative closeness is consistent with the trees they represent being felled in AD 1465 too. This point is illustrated in Figure 15, where the dated samples from the roof in site chronology LCPASQ01 are shown sorted by truss number.

Figure 15 will also illustrate, however, that other timbers from the hall roof, particularly timbers from trusses 5 and 7, samples LCP-A09, A46, and A50, were certainly felled later. Two of these samples, LCP-A46 and A50, retain some sapwood or the heartwood sapwood boundary, the average last heartwood ring date of these being $A D$ 1481. A further sample, LCP-A09, has last measured heartwood rings which approach the heartwood/sapwood boundary (the last 8-10 rings being unmeasurable due to compaction). Given that this sample's last heartwood ring date is AD 1484, this would give the sample a heartwood/sapwood boundary date of no later than AD 1494. Taken together is estimated that these sample represent trees with an estimated felling date in the range AD 1502 to AD 1527.

The floor beams and joists may have been felled at about this time too. A number of these timbers provided samples that retained complete sapwood but in no instance was it possible to measure all these sapwood rings due to decay. However, it has been possible to estimate the likely number of unmeasured sapwood rings, or estimate the likely number of sapwood rings lost during coring from timbers where the sapwood was complete.

It is estimated, for example, that the floor timber sample with the latest dated sapwood ring, AD 1504 on LCP-A26, has lost only two or three sapwood rings at the most.

Such a loss would give an estimated felling date of AD 1507 at the latest for the timber represented. The estimated loss from, or estimated number of sapwood rings on the other samples with complete sapwood, and the relative positions of the heartwood/sapwood boundaries on the other dated samples, are highly consistent with c AD 1507 being the felling date of these timbers too.

The dated material in site chronologies LCPASQ01 and SQ02 thus represent timbers from only two of the four areas sampled and analysed (those from the "stall structure" having been rejected), the hall roof and the first-floor frame.

The remaining three site chronologies, LCPASQ03 - SQ05, with two or three samples, and having combined sequences of 68 or 126 rings, have not cross-matched with any reference chronologies, and thus none of the material analysed has dated. However, it might be noticed that some of the samples in each site chronology represent particular beam types.

Two of the samples in site chronology LCPASQ03, LCP-A45 and A56 are purlins. Samples LCP-A33 and A37 in site chronology LCPASQ04 are both from common rafters. This might suggest that these timbers were felled for these particular purposes at different times to the other timbers.

Conclusion

Analysis by dendrochronology has produced dates for 35 of the 52 samples analysed. The interpretation of the sapwood on the dated samples indicates that the roof contains timbers with different felling dates, an impression intimated at the time of sampling by differences in their appearance. The earliest material found is that of the reused common rafters, some of which could have been felled in the early thirteenth century. It is believed that the Priory complex was largely complete by AD 1220 and the rafters could represent timber reused from the original Hall roof, or perhaps from one of the other Priory buildings of this date. Other reused timbers, struts from trusses 4 and 6, were perhaps not felled until later in the thirteenth century, and may, in their original locations, represent episodes of repair following periods of destruction, or simply be material reused from other Priory buildings.

Another group of timbers, particularly those in trusses 1,2 , and 3 , was certainly felled in AD 1465, this probably representing a major and extensive re-roofing of the Hall. Other roof timbers, particularly those used in trusses 5 and 7, were, however, probably not felled until the early part of the sixteenth century. The work on these trusses may be contemporary with work on the first-floor frame, the timbers of which appear to have been felled in c AD 1507. It is perhaps noticeable too that the majority of undated samples are from timbers at this southern end, trusses 5-7, again suggesting the possibility that more extensive alterations have been made at this end, perhaps using timbers with different felling dates.

So, while there appears to be some possible variation in the felling date of the early material which has been reused, there appears to be two phases of felling in the main trusses. One phase dates to AD 1465, and tends to be found in the timbers of the northern trusses, the other dates to the early sixteenth century, and appears to be
confined to the southern most trusses, possibly being connected with the floor timbers felled, it is estimated, c AD 1507. All the dated timber appears to be of pre-Dissolution date, with nothing detected that certainly dates to the time of Sir Thomas Dacre's supposed alterations before his arrival in AD 1559. Perhaps his work was confined more to the partitioning of internal spaces, the blocking of some openings, and the opening of others, particularly for windows.

Of the remaining seventeen samples analysed, seven are combined in one of three undated site chronologies, whilst a further 10 remain ungrouped and undated. It is possible, though it cannot be proven by tree-ring dating, that some of these site chronologies or individual samples, represents timbers of yet other phases of felling. It is noticeable for example, that the timbers represented by site chronology LCPASQ03, LCP-A10, A45, and A56, are all similar in grain and patina to each other, but different to many of the other dated timbers. None of the purlins are dated, and some common rafters are undated. None of these undated timbers show evidence for reuse.

Some of the samples may not represent timbers of the same felling date, samples LCP-A08 and A32 in site chronology LCPASQ05 for example (Fig 13). Sample LCPA08 has a heartwood/sapwood boundary at relative position 108, whilst the last ring on sample LCP-A32, at relative position 126 does not include the heartwood/sapwood boundary.

Some of the ungrouped and undated samples do show some bands of narrow or compressed rings. This may be brought about by stress during growth, muting the climatic input, and thus making the samples difficult to cross-match and date. Other ungrouped and undated samples however, show no such problems. It is again possible that these represent timbers with different felling date and are, in effect singletons, such samples often being more difficult to cross-matching and date.

It is possible that the climatic influence on the growth of the undated timbers used in this roof might have been disrupted by stressful local growing conditions, this being indicated by bands of narrow and slightly distorted growth-rings on some of the samples. A further contributory factor to the difficulty in cross-matching and dating of some samples might be that a number of them, though having at least the minimum of 54 rings necessary for reliable analysis, are close to this limit.

Bibliography

Arnold, A J, Howard, R E, and Litton, C D, forthcoming Tree-ring analysis of timbers from Carlisle Castle, Carlisle, Cumbria, Centre for Archaeol Rep

Baillie, M G L, 1977 An oak chronology for South Central Scotland, Tree-ring Bulletin, 37, 33-44

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-EOI, Queens Univ, Belfast

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1989 List 29 no 2 - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 20, 39 - 41

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 133 no 3 - Nottingham University Tree-Ring Dating Laboratory: general list, Vernacular Architect, 21, 37-40

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Thornes, R and Hook, R, Royal Commission on the Historical Monuments of England, 1992 List 47 nos 4a, 4c - Nottingham University Tree-Ring Dating Laboratory: truncated principal trusses project, Vernacular Architect, 23, 59-61

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 List 59 no 1a, 1b Nottingham University Tree-Ring Dating Laboratory: north list, Vernacular Architect, 25, 43-4

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Roberts, H M, North East Vernacular Architecture Group, 1996 List 67 nos 1, 2 - Nottingham University Tree-Ring Dating Laboratory: buildings of the religious estates in medieval Durham; dendrochronological survey 1994-5, Vernacular Architect, 27, 85-6

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Jennings, N, 1997 List 78 no 2 - Nottingham University Tree-ring Dating Laboratory Results: Dendrochronological survey of clay dabbings of the Solway Plain, Vernacular Architect, 28, 133-4

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Jennings, N, 1998 List 89 no 2 - Nottingham University Tree-ring Dating Laboratory Results: Cumbria mud-walled buildings dendrochronological project, Vernacular Architect, 29, 108 - 10

Howard, R E, Laxton, R R, and Litton, 2002, Tree-ring analysis of timbers from the Rigging Loft and Chapel Undercroft, Trinity House, Broad Chare, Newcastle upon Tyne, Tyne and Wear, Centre for Archaeol Rep, 63/2002

Howard, R E, Laxton, R R, and Litton, 2001, Tree-ring analysis of timbers and decorative pieces from the north aisle of the high roofs, and the ceiling of the chancel,

Carlisle Cathedral, Cumbria - Nottingham University Tree-Ring Dating Laboratory
Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Moorman, J R H, 1884, Lanercost Priory, Pacific Press, Gilsland, Cumbria

Table 1a: Details of samples from Dacre Hall, Lanercost Priory, Brampton, Cumbria

	Sample number	Sample location Roof timbers	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
Ξ	LCP-A01	King post, truss 2	69	5	AD 1374	AD 1437	AD 1442
	LCP-A02	Tiebeam, truss 3	76	2	AD 1376	AD 1449	AD 1451
	LCP-A03	East diagonal strut, truss 3	$73+30 \mathrm{~nm}$	h/s+30nm	AD 1362	AD 1434	AD 1434
	LCP-A04	West diagonal strut, truss 3	67	h / s	AD 1362	AD 1428	AD 1428
	LCP-A05	Tiebeam, truss 4	62	h / s	AD 1389	AD 1450	AD 1450
	LCP-A06	East diagonal strut, truss 4	164	no h/s	AD 1058	------	AD 1221
	LCP-A07	Tiebeam, truss 5	79	h / s	-------	-------	------
	LCP-A08	King post, truss 5	58	17	------	------	-------
	LCP-A09	East diagonal strut, truss 5	75+8-10nm	no h/s	AD 1410	------	AD 1484
	LCP-A10	Tiebeam, truss 6	61	6	---	------	------
	LCP-A11	King post, truss 6	62	h / s	AD 1378	------	AD 1439
	LCP-A12	East diagonal strut, truss 6	145	no h/s	AD 1003	------	AD 1147
	LCP-A13	Tiebeam, truss 7	55	h / s	------	------	------
	LCP-A14	North brace, king post - collar, truss 7	96	h / s	-------	-------	------
	LCP-A15	West diagonal, truss 2	54	h / s	AD 1375	AD 1428	AD 1428
	LCP-A16	East wall plate, truss $\mathrm{a}-\mathrm{b}$	65	h / s	-	AD 128	AD 1
		First-floor frame					
	LCP-A17	Main floor beam number 1	123	7	AD 1369	AD 1484	AD 1491
	LCP-A18	Main floor beam number 2	104	14 c	AD 1386	AD 1475	AD 1489
	LCP-A19	Main floor beam number 3	86	h / s	AD 1394	AD 1479	AD 1479
	LCP-A20	Main floor beam number 4	70	h/s	------	-	-

Table 1a: Continued

$\begin{array}{c}\text { Sample } \\ \text { number }\end{array}$	Sample location	$\begin{array}{c}\text { Total } \\ \text { rings }\end{array}$
	First-floor frame continued	

Other timbers

LCP-A27	North "stall" upright post
LCP-A28	South "stall" upright post

LCP-A28 South "stall" upright post
LCP-A29 Cross-beam
LCP-A30 Blocked ground-floor window lintel

Roof timbers

LCP-A31 East common rafter 9, bay 2
LCP-A32 East common rafter 10, bay 2

nm	no h/s	------	------	------
126	no h/s	------	------	------
66	2	------	------	------
130	no h/s	AD 1059	------	AD 1188
68	no h/s	AD 1350	------	AD 1417
127	no h/s	AD 977	------	AD 1103
67	h / s	------	-----	------
86	no h/s	AD 1120	-----	AD 1205

*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
h/s	AD 1409	AD 1479	AD 1479
19c	AD 1392	AD 1482	AD 1501
17	AD 1443	AD 1479	AD 1496
no h/s	AD 1358	------	AD 1424
h / s	AD 1364	AD 1481	AD 1481
30c	AD 1432	AD 1474	AD 1504

LCP-A33 East common rafter 6, bay 3 2
LCP-A34 East common rafter 7, bay 3
LCP-A35 East common rafter 6, bay 5
LCP-A36 West common rafter 2, bay 6
LCP-A37 East common rafter 8, bay 3
LCP-A38 East common rafter 9 , bay 3

Table 1a: continued

Sample number	Sample location First-floor frame	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
LCP-A39	Joist 3, bay 3	83	h / sc	AD 1399	AD 1481	AD 1481
LCP-A40	Joist 6, bay 1	120	4 c	AD 1365	AD 1480	AD 1484
LCP-A41	Joist 5, bay 3	83	h/s	AD 1395	AD 1477	AD 1477
LCP-A42	Joist 5, bay 5	72	21c	AD 1428	AD 1478	AD 1499
LCP-A43	Joist 8, bay 5	76	no h/s	AD 1396	------	AD 1471

Roof timbers

LCP-A44	West diagonal strut, truss 4	155	h / s	AD 1102	AD 1256	AD 1256
LCP-A45	East upper purlin, truss 4-5	56	7	------		
LCP-A46	East principal rafter, truss 5	114	4	AD 1370	AD 1479	AD 1483
LCP-A47	West principal rafter, truss 6	54	h / s	------	------	------
LCP-A48	West diagonal strut, truss 5	68	h / s	------	------	-------
LCP-A49	East principal rafter, truss 7	57	h/s	------	-------	------
LCP-A50	West principal rafter, truss 7	70	h/s	AD 1414	AD 1483	AD 1483
LCP-A51	West principal rafter, truss 1	69	16 C	AD 1397	AD 1449	AD 1465
LCP-A52	East principal rafter, truss 2	78	18C	AD 1388	AD 1447	AD 1465
LCP-A53	West principal rafter, truss 2	60	16 C	AD 1406	AD 1449	AD 1465
LCP-A54	West principal rafter, truss 3	69	20C	AD 1397	AD 1445	AD 1465
LCP-A55	West upper purlin, truss 3-4	97	8	------	------	-------
LCP-A56	West upper purlin, truss 4-5	62	h / s	------	------	------

* $\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last ring on the sample. $\mathrm{nm}=$ rings not measured
$\mathrm{C}=$ complete sapwood retained on the sample, the last measured ring date is the felling date of the timber
$\mathrm{c}=$ complete sapwood on sample. All or part of sapwood lost from core during sampling

Table 1b: Details of samples from Dacre Hall, Lanercost Priory, Brampton, Cumbria, sorted by sample location

	Sample number	Sample location Roof timbers	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	LCP-A51	West principal rafter, truss 1	69	16C	AD 1397	AD 1449	AD 1465
	LCP-A01	King post, truss 2	69	5	AD 1374	AD 1437	AD 1442
	LCP-A15	West diagonal, truss 2	65	h/s	AD 1364	AD 1428	AD 1428
	LCP-A52	East principal rafter, truss 2	78	18C	AD 1388	AD 1447	AD 1465
	LCP-A53	West principal rafter, truss 2	60	16 C	AD 1406	AD 1449	AD 1465
I	LCP-A02	Tiebeam, truss 3	76	2	AD 1376	AD 1449	AD 1451
	LCP-A03	East diagonal strut, truss 3	$73+30 \mathrm{~nm}$	h/s+30nm	AD 1362	AD 1434	AD 1434
	LCP-A04	West diagonal strut, truss 3	67	h/s	AD 1362	AD 1428	AD 1428
	LCP-A54	West principal rafter, truss 3	69	20 C	AD 1397	AD 1445	AD 1465
	LCP-A55	West upper purlin, truss 3-4	97	8	------	------	------
	LCP-A05	Tiebeam, truss 4	62	h / s	AD 1389	AD 1450	AD 1450
	LCP-A06	East diagonal strut, truss 4	164	no h/s	AD 1058	------	AD 1221
	LCP-A44	West diagonal strut, truss 4	155	h / s	AD 1102	AD 1256	AD 1256
	LCP-A45	East upper purlin, truss 4-5	56	7	------	------	------
	LCP-A56	West upper purlin, truss 4-5	62	h / s	------	------	------
	LCP-A07	Tiebeam, truss 5	79	h / s	------	------	------
	LCP-A08	King post, truss 5	58	17C	-------	------	------
	LCP-A46	East principal rafter, truss 5	113	4	AD 1370	AD 1479	AD 1483

Table 1b: continued

	Sample number	Sample location Roof timbers	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	LCP-A48	West diagonal strut, truss 5	68	h / s		------	
	LCP-A09	East diagonal strut, truss $5 \quad 8-10 \mathrm{~nm}$	75+8-10nm	no h/s	AD 1410	------	AD 1484
	LCP-A10	Tiebeam, truss 6	60	6	-------		
	LCP-A11	King post, truss 6	62	h/s	AD 1378	AD 1439	AD 1439
	LCP-A12	East diagonal strut, truss 6	145	no h/s	AD 1003	------	AD 1147
	LCP-A47	West principal rafter, truss 6	56	h / s	------	------	------
Un	LCP-A13	Tiebeam, truss 7	55	h / s	------	------	------
	LCP-A14	North brace, king post - collar, truss 7	96	h / s	------	------	------
	LCP-A49	East principal rafter, truss 7	57	h / s	------	------	------
	LCP-A50	West principal rafter, truss 7	70	h / s	AD 1414	AD 1483	AD 1483
	LCP-A16	East wall plate, truss a-1	65	h/s	------	------	------
	LCP-A31	East common rafter 9 , bay 2	40	no h/s	------	------	------
	LCP-A32	East common rafter 10, bay 2	126	no h/s	------	------	------
	LCP-A33	East common rafter 6, bay 3	65	2	-------	------	------
	LCP-A34	East common rafter 7 , bay 3	130	no h/s	AD 1059	------	AD 1188
	LCP-A37	East common rafter 8, bay 3	54	h / s	------	------	------
	LCP-A38	East common rafter 9, bay 3	86	no h/s	AD 1120	------	AD 1205
	LCP-A35	East common rafter 6, bay 5	68	no h/s	AD 1350	------	AD 1417
	LCP-A36	West common rafter 2, bay 6	127	no h/s	AD 977	----	AD 1103

Table 1b: continued

	Sample number	Sample location Floor-frame timbers	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	LCP-A17	Main floor beam number 1	123	7	AD 1369	AD 1484	AD 1491
	LCP-A18	Main floor beam number 2	104	14 c	AD 1386	AD 1475	AD 1489
	LCP-A19	Main floor beam number 3	86	h / s	AD 1394	AD 1479	AD 1479
	LCP-A20	Main floor beam number 4	70	h / s	-----	------	------
	LCP-A21	Main floor beam number 5	71	h / s	AD 1409	AD 1479	AD 1479
	LCP-A40	Joist 6, bay 1	120	4 c	AD 1365	AD 1480	AD 1484
	LCP-A22	Joist 7, bay 2	110	19c	AD 1392	AD 1482	AD 1501
\square	LCP-A39	Joist 3, bay 3	83	h / sc	AD 1399	AD 1481	AD 1481
	LCP-A41	Joist 5, bay 3	83	h/s	AD 1395	AD 1477	AD 1477
	LCP-A23	Joist 3, bay 4	54	17	AD 1443	AD 1479	AD 1496
	LCP-A24	Joist 5, bay 4	67	no h/s	AD 1358	------	AD 1424
	LCP-A25	Joist 7, bay 4	118	h/s	AD 1364	AD 1481	AD 1481
	LCP-A26	Joist 2, bay 5	73	30c	AD 1432	AD 1474	AD 1504
	LCP-A42	Joist 5, bay 5	72	21c	AD 1426	AD 1478	AD 1499
	LCP-A43	Joist 8, bay 5	76	no h/s	AD 1396	-----	AD 1471

Other timbers

$\begin{array}{ll}\text { LCP-A27 } & \text { North "stall" upright post } \\ \text { LCP-A28 } & \text { South "stall" upright post }\end{array}$
LCP-A29 Cross-beam
LCP-A30 Blocked ground-floor window lintel

nm

nm
nm
68
*Sapwood rings AD 1369 AD 1386 AD 1409 AD 1365
AD 1392
AD 1395
AD 1443
AD 1358
AD 1432
ho

AD 1396
.

AD 1475

AD 1479
AD 1480
AD 14
AD 1477
AD 1479
AD 1481
AD 1478
AD 1499
AD 1471

Table 2: Results of the cross-matching of chronology LCPASQ01 and relevant reference chronologies when the date of the first ring is AD 1350 and the last ring date is AD 1504

Reference chronology	Span of chronology	t-value	
Shield Barn, Longburgh, Cumbria	AD 1476-1596	5.5	(Howard et al 1998)
Hitchins Onset, Scaleby, nr Carlisle, Cumbria	AD 1364-1491	7.6	(Howard et al 1997)
Witton Hall Barn, Witton Gilbert, Tyne and Wear	AD 1342-1441	7.1	(Howard et al 1996)
Askerton Castle, Kirkcambeck, Cumbria	AD 1324-1493	7.8	(Esling et al 1990)
North transept, Durham Cathedral	AD 1320-1457	7.1	(Howard et al 1992)
Choir roof, Durham Cathedral	AD 1346-1458	5.3	(Howard et al 1992)
Kepier Hospital, Durham	AD 1304-1522	5.5	(Howard et al 1996)
Scotland	AD 946-1975	5.4	(Baillie 1977)
East Midlands	AD 882-1981	4.5	(Laxton and Litton 1988)
England	AD 401-1981	5.8	(Baillie and Pilcher 1982 unpubl

Table 3: Results of the cross-matching of sample LCP-A12 and relevant reference chronologies
when the date of the first ring is AD 977 and the last ring date is AD 1256

Reference chronology
East range, Carlisle Guildhall, Cumbria
Carlisle Castle, Carlisle, Cumbria
Carlisle Cathedral, Carlisle, Cumbria

Scotland

East Midlands

St Hugh's Choir, Lincoln Cathedral
The Rigging Loft, Newcastle upon Tyne

Span of chronology t-value

AD	$976-1382$	6.2	(Howard et al 1994)
AD	$968-1446$	7.3	(Arnold et al forthcoming)
AD	$961-1374$	8.4	(Howard et al 2001)
AD	$946-1975$	6.2	(Baillie 1977)
AD	$882-1981$	7.2	(Laxton and Litton 1988)
AD	$882-1191$	7.5	(Laxton and Litton 1988)
AD	$950-1183$	4.7	(Howard et al 2002)

Figure 1: Map to show general location of Lanercost Priory

Figure 2: Map to show specific location of Lanercost Priory

Figure 3: Plan to show layout of Lanercost Priory (from the guidebook by John R. H. Moorman)

Figure 4: Illustration of a typical roof truss from Dacre Hall

Figure 5: 'Stall' structure (viewed from the west)

Figure 7: Plan to show location of samples from the roof timbers

Figure 8: Drawing to show location of samples from the 'stall'

\qquad Roof timbers
\square Floor timbers
white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber
$\mathrm{c}=$ complete sapwood on sample, all or part lost during sampling

Figure 10: Bar diagram of the samples in site chronology LCPASQ02

Figure 11: Bar diagram of the samples in site chronology LCPASQ03

white bars = heartwood rinas. shaded area = sapwood rinas
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundarv is last rina on sample

Figure 12: Bar diagram of the samples in site chronology LCPASQ04

Figure 13: Bar diagram of the samples in site chronology LCPASQ05

white bars = heartwood rinas. shaded area = sapwood rinas
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last rina on sample

Figure 14: Bar diagram of the samples in site chronology LCPASQO1 sorted by roof or first-floor timbers

Roof timbers
Floor timbers
white bars = heartwood rings, shaded area = sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber
c = complete sapwood on sample, all or part lost during sampling

Figure 15: Bar diagram of samples from the roof in site chronology LCPASQO1 sorted by truss number

[^1]c = complete sapwood on sample, all or part lost during sampling

Data of measured samples - measurements in 0.01 mm units

[^2]
LCP-A06A 164

608479103929499688110372897761554677576380 71879610090107112109829710310393131888382938682 $\begin{array}{lllllllllllllll}79 & 84 & 71 & 77 & 55 & 79 & 78 & 87 & 75 & 90 & 53 & 85 & 63 & 89 & 48 \\ 79 & 81 & 86 & 88 & 83\end{array}$ 896894668067657559877546568787981111025570 $\begin{array}{lllllllllllllllllllll}79 & 76 & 83 & 104 & 86 & 71 & 80 & 66 & 62 & 83 & 71 & 64 & 66 & 58 & 62 & 69 & 73 & 77 & 67 & 70\end{array}$
 55746674775978948182778196848798116126125113 11792891007977767174789395103879788139124115121 8888126139
LCP-A06B 164
9672869988959369929477778259593955817372
76911018893105110106849310311080143967281998193
7387756168877878847363877474447570888384
8675867084616384618571456586821051051045470
$\begin{array}{lllllllllllllll}71 & 78 & 86 & 93 & 95 & 77 & 74 & 70 & 64 & 80 & 69 & 69 & 66 & 53 & 65 \\ 70 & 72 & 80 & 58 & 71\end{array}$
$\begin{array}{lllllllllllllllllllll}68 & 85 & 82 & 74 & 73 & 66 & 88 & 68 & 61 & 74 & 71 & 51 & 68 & 72 & 70 & 78 & 69 & 46 & 52 & 57\end{array}$
4984586682617593868281728610380110111115116121
1169086967476746774768489102909398139125112108 8592135140
LCP-A07A 79
282250257317222289315275339345331350302291226312331189279239 296208207177196266196225226205176198217203199195169243307280 249200249119220260363271249192157168193140181180213245158160 239129138126195238260132244242147122110169201207194247205
LCP-A07B 79
313256262308222290299299341353322312316288260352373184253218 316215207208194278178227219206187212216203226184167278287250 271207254139201275348264239196151156184176159173228241153169 232127126140206240254142235234175126119149187186194240198 LCP-A08A 58
422289314260379230183234223257308288308206344253171173173175 245254161186200181407287237287265368436335242375242248223144 264194224260146156161181132121141141165169149171195229
LCP-A08B 58
417286320305385225180238232263305283318213333260171174166182 254236164177205190385301265301294336414310237387257253220156 264206228229174134148168107141147145165163148166205210
LCP-A09A 75
339277298251183213159186206109227211268260240170126140225233
19220925715312813615618413414114217810711813713881112123112
63991031071181111121158481107828867695182598699
$\begin{array}{lllllllllllll}73 & 68 & 64 & 92 & 84 & 97 & 97 & 92 & 84 & 67 & 87 & 73 & 47 \\ 67 & 93\end{array}$
LCP-A09B 75
304269277264177207156195188145220212269266231177122140236233 19220625615513713414417515013013018510611414512482115120114 8010710110512110710711378961008587756159676882106
8362697989951129183598077465877
LCP-A10A 61
379388410271212250212241407364481446457188236203384261195167 122121168212254261316288263244203245338269305276309324197120 178144158140186207229166132127186123133118107188193178166160 166

LCP-A10B 61
432390421257223240210242388376497452454193209224369250189185
131126152206260272304294256227209265346258310268296299213137
161143167130185204228148140119173135143108108178184202163157 170
LCP-A11A 62
210244242219183171263298319281274315203108180247299265316259
288286272178147217230236278210179219177177154200158159116131 11810915215017417919517112814013216117617119214814314199111 116143
LCP-A11B 62
175273218211192158287314292287305288154123172260291280312237 279285279177133224233264249240176225156166185194161151100114 11795131156176167209203135123140155186152185141152141109108 121143
LCP-A12A 145
1014131939169103358316179387149807262568970 100615765791021181351281168743503610673648154108 424932333556921038151423326224153448975105 7786609092816611376912650127129122106133160128198 1871191641481361167553632736376543345064434044 42595551548691718241545671100949884675887
 698889124110
LCP-A12B 145
1093037101768484448316677516753936581509172
11165547785111881381371011043461411147352805599
47402729496082966670322422305053339867103
5911758108101857513166852758117137113119122164127187
1961161661571311108351583228345836434164373943
497156485588887891405073701069411683666882
91747680636472257210475115838973567573115101
808397114118
LCP-A13A 55
288322306277305247261241188241204179132178215183180166216297 247249261227237180187198299235213176193165215246208190190183 171169173207171160105140166170143154159183167
LCP-A13B 55
261344264229325239239223185232207188131162217214185185200291 258232238233264178190224288231216185196171202259195203182190 172164165195169158102137172172148154155192185

LCP-A14A 96

15521123120516713917214515815914218515817516210110398155102
981121207494639510810260100997862517564788977

7770735880698064677275787983107108
LCP-A14B 96
1352252262151791351751401601451231701541771821009495146105 10010410781986989104957287868661387755699381
6959927064514660737286708276617655737675
8063708144825655508059645372677777615271
$\begin{array}{lllllllllll}65 & 79 & 62 & 63 & 84 & 63 & 77 & 66 & 73 & 75 & 61 \\ 90 & 73 & 87 & 99 & 103\end{array}$

```
LCP-A15A 65
    155125331329187237196138191272331258249117159228351278286231
    354279330435283 309176120159313317323 337261288288304273183185
    168172187194175 179200182143191183118 99 98 121 86 112115124134
    1421249275109
LCP-A15B }6
    137143 333 328187266237149209269324271209137138216362281295226
    362288350523285308183121174299309319350247296290313264166213
    151176197188180180182194154179166130108104106 85 108 126107138
    145133 93 77 112
LCP-A16A 65
    155125331329187237196138191272331258249117159228351278286231
    354279330435283 309176120159313 317 323 337261288288304273183185
    168172187194175179200 182143191 183118 99 98 121 86 112 115 124134
    1421249275109
LCP-A16B }6
    137143 333 328187266237149209269324271209137138216362281295226
    362288 350523285308183121174299309319350247296290313264166213
    151176197188180180182194154179166130108104106 85 108 126107138
    145133 93 77 112
LCP-A17A 123
    196144200225290 199232232173146144164172195189173133178147182
    143174104111134123153154201167173207208190232230173237259242
    197250190 182 198115130102132160145 225177 131231 190 110 82 83 111
    133 90 147 129 112 112 97 67 78 70 48 49 52 50 50 69 63 65 69 66
    90 54 91 137 114 135 85 93 56 40 63 56 80 97 83 94 69 82 103 53
    75 82 73 62 68 118 102 117 113 69 36 34 32 39 30 51 71 58 87 78
    4170118
LCP-A17B 123
    180133197246284191238234179132148166176187187171 151169151176
    143181102116135108145165193177176208232188236222166 264 265 244
    221257195167207112130118135159184216168139250178128 53 89 114
    128 99 145 130 106 99 86 75 66 81 42 40 49 56 48 66 81 69 66 63
    92}655105156103173 88 87 67 47 44 66 82 85 86 95 80 69 107 46
    74 84 78 64 67 114108 105 121 59 50 28 37 27 31 52 76 71 92 68
    5464 115
LCP-A18A 104
    376215237199188163171224213251307195225247443323283410388285
    344359302345303214224251180208166206175 143 330187226255 216 131
    74 93168276241308280195144169176222208147169169147126156172
    97162171 148145135119121 130 76 103 100 93 86 99 162 148 95 117 136
    16118413913013213288 96 114138 92 72 53 65 68 77 54 60 89 135
    80129 96 124
LCP-A18B }10
362192215189164174100247200263283194250245420334300406392283
310362303350311216221254187202182214178146318206217258217132
77 88169275239304 302189145169173193224154161169143123159180
93164166149137125133118118 83105113 82 87 96 161 132 93 124117
164198 139 135 132 122 81 108 95 152 101 69 58 67 70 60 44 54 82 97
9314275125
```

LCP-A19A 86
241267330390310335340342302345368280340294274374291222260243 18019215817718317222514015316318411777119133198175182159165 109169155166171172164214192223167218190232242226164209247237 209203133848399162180143166177117167158188155143168131126 188183188133153174
LCP-A19B 86
252265326377319310355334310350369292329296301339301228244254 18320815518320018620514115217916111183131136202177173159158 117161164152173176178217184200197219187242238220146204243224 210203126718594182163158150205132157168177149147167157134 175175187149136176
LCP-A20A 70
421296390380444439484584599569644461376307423412523521591668 539569617580582707660573441528596427501503444535494393366406 421366266311296296354405262285205337278216229133158152249206
7058444590127134196165126
LCP-A20B 70
416287409371436470465569596589643477380310419467527514580652 564557620540622666707563460514581447506491449551472427352395 413348277311288294384372255281225323280213254164141159238181 $\begin{array}{lllllll}77 & 54 & 39 & 52 & 85 & 135140179167135\end{array}$
LCP-A21A 71
469485384407403347415387443415272557478407337358358238235252 349321323463389312191242233274194178215161169257222172185178 1481441692312021721611671591331231861822342029371725766 64777674100124144144918496
LCP-A21B 71
453489420382364331448387435404300563471411326369360224251241 369305323464456329185254248267205156231156163243212156186188 1591421742392201581521641501431201881892162007482675669 $\begin{array}{lllllll}67 & 73 & 73 & 93 & 91 & 118 & 148 \\ 138 & 82 & 96 & 98\end{array}$
LCP-A22A 110
$\begin{array}{lllllllllllllll}152 & 174 & 187 & 173 & 150 & 138 & 85 & 64 & 114 & 67 & 56 & 56 & 71 & 76 & 63 \\ 56 & 55 & 79 & 54 & 39\end{array}$
$\begin{array}{lllllllllllllllllll}83 & 77 & 55 & 46 & 50 & 57 & 49 & 48 & 43 & 60 & 52 & 64 & 70 & 46 & 28 & 33 & 47 & 69 & 50 \\ 50\end{array}$
$\begin{array}{llllllllllllllllll}58 & 62 & 61 & 82 & 57 & 58 & 64 & 47 & 48 & 58 & 43 & 55 & 52 & 50 & 32 & 49 & 44 & 61 \\ 52 & 46\end{array}$

 136125147175188160154158170137
LCP-A22B 110
1561781851661511449862997849586484605756845340
 $\begin{array}{lllllllllllllllllll}55 & 60 & 62 & 91 & 51 & 60 & 68 & 34 & 54 & 59 & 44 & 45 & 56 & 55 & 36 & 47 & 49 & 59 & 44\end{array} 49$
$\begin{array}{lllllllllllllllllllllllll}63 & 61 & 58 & 57 & 52 & 45 & 44 & 42 & 47 & 52 & 65 & 59 & 85 & 67 & 86 & 87 & 88 & 99 & 119 & 90\end{array}$
774836264036404050705083103140153158136155176180
130124144169205154153157162130
LCP-A23A 54
370432312207285338325218210384319241227324256208187219192257 265300220485241707498639710412812312911813012215480 74106126114116671139111610263569783
LCP-A23B 54
352437319205281326332217224376337236223326241220198209201247 2733102284259377166946310310112611713412611912914875 9196122114106801131061119572458377

LCP-A24A 67

348343298230179169171142139114131167143159216204199234213150 147147177159203187261174189185147163162147149197216196194213 199157174212137169154163153205270286302260228209175164139175 168134201152227194226
LCP-A24B 67
379331287289165178163137134140167162161151198221192208214159 138158172184207224245163178193164179168159135207207197211194 196159191191145178149159136214238311306242211213154163148159 145140184186187204213
LCP-A25A 118
394372353375281303252349389430386264209123156135158155161183 348212239251187328257199164169225233211210182192300372257258 188175156193158170176178193251183192131192172108171163147164 $\begin{array}{lllllllllllllllll}163 & 92 & 79 & 93 & 77 & 53 & 45 & 52 & 49 & 40 & 42 & 56 & 51 & 59 & 62 & 53 & 62 \\ 66 & 44 & 72\end{array}$
 919510610190767673110109106120149106929491109
LCP-A25B 118
369286431268274292299347406381387262197130156133153142166177 347216230241199279240206167184225223230199196189269384251289 182193151186167168182182187218178204132192156109184148156167 $14610968997351494157404145 \quad 5560546161575965$ $\begin{array}{llllllllllllllllll}88 & 74 & 63 & 91 & 89 & 65 & 72 & 81 & 79 & 105 & 78 & 83 & 94 & 101 & 89 & 90 & 86 & 80 \\ 95 & 94\end{array}$ 841158810386797377103104113104135119948688109 LCP-A26A 73
412383401256374465323271237411259296310208171232278281239264 401332215223301241238206241227254225283283190145106124155145 $1161441641501241006790736960352436343841 \quad 514668$
$\begin{array}{llllllllll}53 & 69 & 80 & 145 & 78 & 90 & 82106 & 89 & 104 & 90 \\ 158 & 128\end{array}$
LCP-A26B 73
347403373284371457324262242406276297270241170230281277239264 400345221212298236237208247238262232281267188148109108150150
 $\begin{array}{llllllllllllllllll}70 & 65 & 84 & 141 & 77 & 95 & 80 & 112 & 85 & 105 & 82 & 146 & 126\end{array}$
LCP-A30A 68
247265146167721461241341991681381111166132416111080148 12214011979479117949442727654863654558104216222
18680721038077110145185232176210301329543528374380389354 286413453602563356517672
LCP-A30B 68
$262243137161921421291361681671231201075533426398 \quad 88153$ $117137141576197161594331 \quad 37546062605260102219227$
1848073108777897150173235193215314320478454435419371334 312433447655556343502597
LCP-A32A 126
11012710913010711411380958787132120999610010490104159 958798115140124137125102117132136143156123119110104107120 116119122108100898194127122120126105106105117102138106122 11010711913313411410812813611698111112941079382768076 $\begin{array}{llllllllllllllllllllllllllll}68 & 80 & 83 & 78 & 69 & 64 & 73 & 100 & 100 & 56 & 79 & 71 & 68 & 89 & 64 & 77 & 73 & 89 & 74 & 75\end{array}$ $\begin{array}{llllllllllllllllll}45 & 75 & 103 & 73 & 70 & 84 & 70 & 89 & 56 & 66 & 73 & 76 & 63 & 55 & 53 & 59 & 52 & 58 \\ 58 & 61\end{array}$ $\begin{array}{llllll}51 & 54 & 58 & 55 & 56 & 48\end{array}$

LCP-A32B 126

97117114143100109114879283951361181071039510691101168 8799951161461201471241191221191451421579210812095118124 1151241241119490809112812612711587112113113103135117117 1091121101271361191161291331111061101011061048488758376

 566455465859
LCP-A33A 66
13413829024810213012313380121177156100667382959711589
1106259396691124187272266246241261240240282240315223115 348389254303192169252171134133171296217215229197210145159172
159172177120160240
LCP-A33B 66
14613029824788131133130921241701481026569811009212086
1096054515791129190268275236252272232242273240312221139
344409272313186172225152124155163301222221229193211148148176
176161126151250215
LCP-A34A 130
1141321331331141099112712610010710576986710612410392122 1161291131091161121148811792119751148495111102785378
$\begin{array}{lllllllllllllllllllllllllllll}98 & 64 & 57 & 84 & 93 & 92 & 89 & 95 & 70 & 98 & 69 & 91 & 91 & 56 & 70 & 92 & 100 & 85 & 92 & 96\end{array}$
$\begin{array}{llllllllllllllllll}86 & 91 & 76 & 80 & 88 & 65 & 82 & 68 & 63 & 48 & 46 & 44 & 61 & 74 & 77 & 89 & 86 & 59 \\ 61 & 59\end{array}$
$\begin{array}{lllllllllllllllllll}80 & 89 & 92 & 73 & 55 & 69 & 71 & 71 & 74 & 69 & 64 & 77 & 88 & 59 & 87 & 69 & 70 & 75 & 71 \\ 83\end{array}$

$\begin{array}{llllllllll}95 & 62 & 99 & 76 & 107 & 87 & 71 & 84 & 92 & 106\end{array}$
LCP-A34B 130

10413497115113117108921208811967118929611683816689
$\begin{array}{llllllllllllllllll}90 & 70 & 86 & 72 & 100 & 99 & 80 & 86 & 76 & 89 & 85 & 82 & 108 & 75 & 80 & 83 & 91 & 90 \\ 85 & 88\end{array}$
$\begin{array}{llllllllllllllllll}81 & 86 & 61 & 84 & 93 & 61 & 75 & 78 & 63 & 42 & 43 & 48 & 62 & 74 & 76 & 90 & 74 & 53 \\ 74 & 49\end{array}$
$\begin{array}{lllllllllllllllll}73 & 72 & 97 & 81 & 60 & 83 & 69 & 72 & 75 & 90 & 81 & 72 & 71 & 66 & 82 & 71 & 71 \\ 82 & 66 & 100\end{array}$

LCP-A35A 68
123227170259205255302169278239274373213216327193233199115147
6979859496827684989493130131170147126169152133159
12910710313214913613514110210510912112212798871098985102
1121151171128885107121
LCP-A35B 68
133235173251223259282215279244287361215248309221240194115146
818888113917772868999100121135173152132167127134168
1301141031271481311341371289213110912211711110111210574104
121110148102979594155
LCP-A36A 127
1058089128119108151941481011008886102123126118137148166 134117131113131124105608892101102867993147148129135117 12511713412910812113410292134125107120120125116124608690 1421051171171069065104791119198114145110119104667883 89113871091241037383719411080119104858766649782
 1009889785792113

LCP-A36B 127

5085901381131071321081441161131018996125113131129170153 1291351281191311289059968384911008383147148116147114 11311914311911112313710385132110106117127131116117528894 1321151121201018668998711191100107146114114102737383 $\begin{array}{lllllllllllllllllllllllllllll}89 & 105 & 96 & 110 & 125 & 104 & 65 & 88 & 74 & 96 & 106 & 81 & 109 & 109 & 83 & 84 & 58 & 68 & 99 & 73\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}86 & 91 & 85 & 93 & 94 & 87 & 97 & 72 & 75 & 71 & 67 & 70 & 82 & 93 & 112 & 104 & 77 & 102 & 119 & 110\end{array}$ 938996776495111
LCP-A37A 67
2081781411282882418512213112989121167146182103148153132149
1681711981228678124173243260290288252284270240318322295362
323173329407307324229242258190168173168306246255253194233143
172177206206221253226
LCP-A37B 67
20918813113928624410012113313087122166145187104135168139143
17416219712010060124179238269306292264287261244309329294360
327166334404317329221239262189176178176314241280254189240139
161174212201227244232
LCP-A38A 86
11291881481471531241671786456120160145156127110115132144 127207162141149124135137125138107149137185171141159157173134
18714412111812014812511713918114015418617191567273104207
13510212313612411514616613514815811110911617417213912395124 9716213995102107
LCP-A38B 86
11485941481441571331331696449106176150153123116119120155
127201169150163104137145130128114148140174174144166145186140
1851401311171241431161281291741351551741909762678399201
15399119137125119138168133166161111105118171165160115105119
10215914489102104
LCP-A39A 83
424473392555472459495560440423482496433399442378351299285281 209341241281274293233113173248318282264284161160183183190220
163150166133219221172153196200148123127193186155163178149145
118119133158137928677767682858797909812113611466
537345
LCP-A39B 83
396433440517587404472484447438459491403432459360337284272256
253340247290292304193172140281298295259268174160188188195237
144152172142217212183144199192147135124186185149145176161145
1101151411701418490737080669188958710411413511171
596456
LCP-A40A 120
184191216175236134147165210154208153134213259344277271333292 23325825731230225223813617322797109112178138189280211198230 102172181213196172158155133115576999131123148151106175185 987310010812315512622819912613912317418311091110105136185 152107155180158138192220268229273205164171111168175213171159 $1211191049266555952728010411086688478 \quad 668586121$

LCP-A40B 120
187185212173230128165175199154204164140200251341283283326287 211250266317307258240139178221105106107174137191280208198213 1251661942131921721581521291166263107129120157136116173192 95729710812415112923719411614413216418611184111114134182 150106157180148138181204262210264203169161129165174209176159

LCP-A41A 83
166150139192288358426492425491364387329344505371326268254190 2572432593052054273052453252631629172110179277241270230326 11912114012210497154167149187128111100136164115129166147144 1039283789993105139106144111140125100124130175139157168 180145203
LCP-A41B 83
156162128195277373421486453412355394325352511358327256248241 2592452693002104553202672882601478286111179269242279226327 120124149138102117137159155196143111100145153121127169148130 111968279891001101401161409914613294128128173126158165 197163165
LCP-A42A 72
540625608701614558573484661737703529401454372397360361222273 347282226230353298242286379262217200199187220217248259151129 1061661161819216916923620722418117321319489117128130150147
6368491031058185126124148157198
LCP-A42B 72
584641589657687527565471617713701536391454376384369367219271
368291237239364314243289357291221194201189218215265248153138
921611201739316319026222621218816820319187107124136167126
$\begin{array}{lllllllllllllll}55 & 65 & 80 & 85 & 84 & 92 & 79 & 133 & 133 & 143 & 180 & 159\end{array}$
LCP-A43A 76
197173229165206190260254256152258309185266232222210162164137
13211915313626119122521630891941011292232942123151765048
831111161259410310510897666986778772118128103107151
1241668977786198667370756447464053
LCP-A43B 76
197165232161201185253253232149248292201232208207218172146136
10711917116825916220219929112864931202192902102891494858
8310410312410293981138557858185848011313095114151
1431698868837377816462916756424753
LCP-A44A 155
$\begin{array}{lllllllllllllllllllllllll}80 & 82 & 89 & 86 & 88 & 91 & 83 & 111 & 96 & 119 & 67 & 98 & 92 & 106 & 99 & 98 & 91 & 92 & 108 & 72\end{array}$

$\begin{array}{llllllllllllllllll}77 & 89 & 72 & 73 & 59 & 70 & 75 & 65 & 77 & 69 & 58 & 88 & 56 & 35 & 50 & 48 & 50 & 55 \\ 54 & 69\end{array}$

94639780736994117978110210513813815010598112137145
1361261671591491311541561558289116152126107114113119110107
114144122140841071001048782819190103131
LCP-A44B 155

$\begin{array}{llllllllllllllllll}82 & 86 & 74 & 66 & 67 & 69 & 77 & 56 & 74 & 67 & 64 & 93 & 38 & 42 & 58 & 44 & 54 & 57 \\ 50 & 70\end{array}$

1026191857077881231118998100137141125112105117126141

156119171164139134168141138939911614312411112211412010098 10216412611311010610480111987984108101131
LCP-A45A 56
242222226358317391400401171222194261249164133140122128206246 22022120722829217019023718220019820919215698138101121125147 189223166155106119111124114120136165178197151178
LCP-A45B 56
213231242371339363382378172208191267251162134138134118208238 21921621322628417719823317121819821418116398132103121115147 179222169151119117109126107117124186164127163181

LCP-A46A 114

175110215210276234127159190216239214199179354384595449400430 396235279461376329318293220237245229178225199266222210158161 1931801321341181147710510811810914010510612611089664553 $\begin{array}{llllllllllllllllll}74 & 74 & 71 & 78 & 72 & 75 & 74 & 62 & 90 & 61 & 65 & 71 & 84 & 66 & 91 & 94 & 63 & 61 \\ 51 & 55\end{array}$
 $\begin{array}{llllllllllll}75 & 92 & 91 & 71 & 82 & 90 & 96 & 75 & 74 & 72 & 62 & 101\end{array} 8052$
LCP-A46B 113
169108213220286205148152178212245217189180337372590422416413 345207242425348351333321226230245235157228177249196195162172 17517613213211812582991141051221371099912410177596149 $\begin{array}{llllllllllllllllll}62 & 70 & 67 & 77 & 76 & 70 & 81 & 71 & 81 & 63 & 65 & 72 & 88 & 70 & 86 & 98 & 58 & 51 \\ 56 & 50\end{array}$ $\begin{array}{llllllllllllllllllll}51 & 52 & 55 & 71 & 86 & 67 & 80 & 62 & 56 & 76 & 74 & 54 & 79 & 70 & 80 & 77 & 70 & 75 & 58 & 77\end{array}$ $\begin{array}{llllllllllll}64 & 96 & 79 & 76 & 81 & 89 & 94 & 84 & 73 & 62 & 69 & 85\end{array} 96$
LCP-A47A 54
23623012220317910712013091147164184201203206214198247251172
228171216187331324418388229345337260312252359279323346352319
160157137120916862596588116102134130
LCP-A47B 54
22122013619417410812413897140172170210218198225192245268167
220184195192350331400388222349324268297269321291313340365319
161147139121856368645886111111130128
LCP-A48A 68
316243165124127167174199227256190212240266184222266228253173 22523218222123022622418217518020016811211911610476546783 $\begin{array}{llllllllllllllllll}98 & 81 & 91 & 82 & 77 & 96 & 63 & 55 & 71 & 95 & 66 & 81 & 76 & 79 & 83 & 82 & 79 & 100 \\ 88 & 121\end{array}$ $\begin{array}{llllllll}83 & 68 & 72 & 91 & 54 & 55 & 72 & 61\end{array}$
LCP-A48B 68
323225159123139170185207234247181214232279169232259229267186 21523618420523122721618516619419916111111411311283506780 $\begin{array}{lllllllllllllllllllllllllllll}86 & 86 & 80 & 86 & 76 & 99 & 57 & 61 & 79 & 85 & 74 & 82 & 77 & 78 & 85 & 76 & 88 & 95 & 91 & 124\end{array}$ $\begin{array}{llllllll}74 & 75 & 74 & 87 & 58 & 47 & 65 & 76\end{array}$
LCP-A49A 57
16114615229834928024235028322427836941128924719125619313688 105150203234257180171235194161112137211214194328461364234241
368446369418315288309413269347278202245239243246270
LCP-A49B 57
22714716428833427223033230425226635642529523920327618214775
107148194243269182162226212160101153207237209309478370228244
353444369413324269282406272345303191253260227227274
LCP-A50A 70
210267146166154115236172273228170148160136164170192208214166

$\begin{array}{llllllll}63 & 85 & 77 & 90 & 74 & 61 & 80 & 85 \\ 80 & 83\end{array}$

LCP-A50B 70
239280157189145112241183279243157136160152158179177208215161

$\begin{array}{llllllllllllllllll}77 & 72 & 91 & 69 & 70 & 68 & 79 & 89 & 86 & 84 & 81 & 96 & 80 & 87 & 80 & 104 & 70 & 64 \\ 70 & 77\end{array}$
$\begin{array}{llllllllll}88 & 83 & 73 & 78 & 69 & 73 & 77 & 83 & 81 & 84\end{array}$
LCP-A51A 69
287369318530386425428400285383403282342265199185179134101119
116130129229101136158173603786951309210416075667966

$\begin{array}{lllllllll}50 & 49 & 61 & 61 & 71 & 88 & 79 & 80 & 64\end{array}$
LCP-A51B 69
350376296533384421443377290375372337323221177161173126133105
113137125234105129149177554679981358711215879647973

$\begin{array}{lllllllll}75 & 66 & 52 & 79 & 76 & 87 & 76 & 79 & 65\end{array}$
LCP-A52A 78
225247295268225337393404336325318280319330200262245207223210 245263255226243263196156103157177138221250166223224165123130 191201159172214199192170134187198148145157145173150146113145 56106141116187187238228189167146120124142124163143140
LCP-A52B 78
231302265289228317395392337325328272321337182274242216219211 23327324723224426220814997162185129240266145233210172116132 173201162170211198194147164185191143150158164153168133113156 65112119137167202229226175208142133127122143139145131 LCP-A53A 60
295281272292364248273343312231167193241230288296239299339280 181195226226223202264257265258221276249197198227217212208167 130172182161149211222274292222196210164128137148147201180164 LCP-A53B 60
274263273287328252270347305250148213228179312283238300338279 192169238254209189275251292232227275242206191236213210208174 123159185170134216227273283222214207159125137136161182160145 LCP-A54A 69
318451350352224252434413447424370388315266190259308340227159 167191150269242200255318261169154176231297260290227212213211 2122111211161511591751582101281139381476977132150147188 173175178617371767165
LCP-A54B 69
310469354343229248439414465431361391326300216261310329230143 166178168268238201260307266184145174244302255291238198221209 2192141281031481741651561881271188783506874121160142191 175181186726985798064
LCP-A55A 97
249406447410385340265313282300273365292267218199187195177141 142137133140142268165184139170169139134150151136137135104127 1111141301611851801408284130176175126147193256193248233244 22016616327317516817415519715916212391116149140146131122164 138176181143198154169137128135131142120173114137183 LCP-A55B 97
247367399409401330262301279306266365289276222187200187170148 132137138149146263156199143164171150131147170172113115121125 1001121401481761871508499109171175133149187275198235205272 24016818224418216816616318716316213285120143141151122119163 150176175154190169167141138128127130131152151133154

LCP-A56A 62
409502347511400281230200221350237173228231290319314354403371 143181203285232209188201188189222317227247268282413263242264 239344330316306216133189119145137181219238185157148184132140 119152
LCP-A56B 62
406490342559345318263222216339257162233212285326326339419336 151181198285242206193213187173235309227237264257397262243284 226353304339310232131189130145135184219227186152150184128135 125163

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building' (Laxton and Litton 1988) and, Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$. Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig. 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measure twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of 6 ($=15$ 9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

Bar Diagram

0	1	1	1	1	1	1	1	1	1	1	1

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages 34-5 where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: Author's address
 Nottingham Tree-Ring Dating Laboratory, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD

 Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

[^1]: white bars $=$ heartwood rings, shaded area $=$ sapwood rings h/s = heartwood/sapwood boundary is last ring on sample
 $\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

[^2]: LCP-A01A 69
 361280280171167159221186281340395278362276242188208191206196 197183199203186159171194188236176178201203150164177141115154

 12210296137136118137113137
 LCP-A01B 69
 353297276166164176215177301351363353418298243224207187194207
 201189186212194160182179183239178168211199158161161138135176
 1501128096107951051119812714691675878869088135123
 1079997114135152123119136
 LCP-A02A 76
 245192263273292344246217230176342309299248235184200245248242
 352220291250335332320287300245217329328289401325243280226332
 22428728226337718419921127712387107165270312367344346291237
 20321730113713412598105197135101105119201166171
 LCP-A02B 76
 249191275264306354255233228174351333276261229185188278252215
 364213307235336336308301281234218326368301425324232298209293
 24627629825245217621320726513681138146274300368343337306229
 2132202941331311438710519412797108133226179151
 LCP-A03A 73
 476356408346282333281328195212331313329406364292291329359257
 263274310224239211192174160144153179159170217212177176244220
 $1991971661049714977584961514038512940625871 \quad 67$
 $\begin{array}{lllllllllllll}52 & 70 & 103 & 65 & 46 & 48 & 49 & 52 & 57 & 60 & 95 & 77 & 91\end{array}$
 LCP-A03B 73
 398378370340332312276331193223295345343412365270299311364251
 292229338203237210190182155160146164193156201216172170241234
 199198166989816091554453514313381846 $\begin{array}{llllllllllll}59 & 61 & 103 & 63 & 58 & 43 & 41 & 53 & 53 & 67 & 88 & 76 \\ 70\end{array}$
 LCP-A04A 67
 316425337327318286204383233191290220274247181179217211220219 245209228156172152207189149146121126158146173130124161176159 1241821378211312494116126108101131869686739580109100 1251221351057598123
 LCP-A04B 67
 256407379343254265210335225168295228274239179171204210205238 232215229160171163196201145143131118164146165143139136179173
 11717514577108116891201291031111211069471997473105103
 1261351151327396127
 LCP-A05A 62
 423362454283437373372396400348327321427322375376322298354295
 255308274236269191302182177179165261246208227204186152180216
 272204185237204301196159184284195160148122174257175147195160 202208
 LCP-A05B 62
 403369448319409373373396367367342319439314378395304324325317
 242330264262272197293169186186148291233198245210188143167234
 273202177231202269202202185286190160159128179232192139193152 213209

