Tree-Ring Analysis of Timbers from Waxham Great Barn, Sea Palling, Norfolk

A K Moir

Summary

Dendrochronological analysis was undertaken on eighteen oak timbers from Waxham Great Barn. The barn, 55m (180ft) in length, is the longest historic barn in Norfolk, and doorways excepted, the trusses alternate between queen-strut and hammer beam. Sixteen samples were successfully cross-matched to produce a single site chronology WAXHAMBN of 147 rings, spanning the period AD 1437 - AD 1583. The analysis indicates that construction of Waxham Great Barn occurred shortly after felling in the winter of AD 1583/4.

Keywords

Dendrochronology, Standing Building

Author's Address

Tree-Ring Services, 23 Fairbank Avenue, Orpington, Kent, BR6 8JY. E-mail: akmoir@tree-ring.co.uk

Many CfA reports are interim reports, which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in CfA reports are those of the author and are not necessarily those of English Heritage.

INTRODUCTION

Waxham Great Barn (NGR: TG 4395 2620) is located on the north Norfolk coast, 27.1km (16.8 miles) northeast of Norwich and 2.3km (1.4 miles) southeast of Sea Palling (Fig 1). A grade I listed building, it is thought from stylistic evidence to date from the late sixteenth century, *c* AD 1570. Seven trusses located at the eastern end of the building were blown down in AD 1987 by the October gale. During the repairs that followed it was possible to re-erect the original trusses with only a few lengths of new timber needed. The building is now owned by Norfolk County Council. Tree-ring analysis was commissioned by Peter Marshall, English Heritage assistant Scientific Dating Co-ordinator, with the aim of obtaining a precise date of construction for the barn, to help inform future management, and presentation to the public. The following history and description are summarised from Heywood and Ayton (1994).

Figure 1: Area location map

History

Waxham Great Barn is just one major element of the important Elizabethan manor of Waxham (Fig 2). The earliest mention of the Woodhouse family of Waxham is in AD 1504, and it was probably in the time of Sir Thomas Woodhouse, who died in AD 1571, and his brother William, who succeeded him, that the barn and hall were built. Sir Thomas Woodhouse was the High Sheriff in AD 1553, and his brother William was knighted for gallantry in AD 1544. Both Sir William and his son Sir Henry were Vice Admirals of the Fleet.

During the AD 1580s the threat of the Spanish Armada caused the creation of coastal defences. Sir Henry Woodhouse played a role as captian of footmen responsible for the defence of Great Yarmouth during certain specified weeks in the summer months (Cozens-Hardy 1938). A map made to accompany the defence arrangements in AD

1588, now held at Hatfield House, draws the hall as a fortified manor house, clearly representing a coastal stronghold.

Figure 2: Site map of the Manor of Waxham (from Heywood and Ayton, 1994)

Description of Waxham Great Barn

The barn is 55m (180ft) long and the longest barn in the county. The barn is constructed of carefully coursed flint with brick and limestone dressing. All the limestone is re-used, having been taken from three local priories bought by the Woodhouses after the Dissolution of the Monasteries in the AD 1530's. The diagonal buttresses at the corners of the building were literally dismantled, transported by boat, and re-erected as they were. The gable-ends and the side of the barn facing the hall are decorated with a diamond pattern of brick (Fig 3).

The interior of the barn is dominated by the massive roof structure consisting of 20 principal trusses (Fig 4). Except at the doorways, the trusses alternate between queen-strut and hammer beam. Both hammer beams and tiebeams have arched braces dropping to the wall posts, which are mostly missing or replacements (Fig 5). Queen struts rise to the principle rafters and support three tiers of butt purlins. Each truss is clearly and consecutively numbered with carpenters' marks. There are curved windbraces below the top tier of purlins. The collars are carried on arch braces. Presumably at a later date, the interior has been partitioned at truss T15 by a brick wall up to tiebeam level.

Figure 3: Waxham Great Barn, west aspect (Andy Moir 2003)

Figure 4: Roof trusses, looking west (Andy Moir 2003)

METHODOLOGY

The general methodology employed by Tree-Ring Services are those described in English Heritage guidelines (English Heritage 1998). Details of the precise methods employed for the analysis of this building are described below. Tree-ring analysis and graphics are achieved via a dendrochronological programme suite developed by Ian Tyers of Sheffield University (Tyers 1999a). Location maps are produced via *Auto Street Navigator,* software produced by ISYS Systems Ltd which uses Ordnance Survey digital map data © Crown Copyright 1999-2000.

Sampling and preparation

During the assessment stage timbers containing more than 50 rings were actively sought for sampling, this being the minimum number generally considered necessary for analysis (English Heritage 1998). Timbers were sampled using purpose-made 12mm and 15mm diameter corers attached to an electric drill. Sampling was located as discreetly as possible in what appeared to be original timbers and in the most suitable direction to maximise the numbers of rings for subsequent analysis. The smaller 12mm corer was used preferentially to keep the core extraction holes as unobtrusive as possible. The larger 15mm corer was used when either core or sapwood recovery was found to be, or indicated might be, problematic. Extracted core samples were immediately taped and glued onto wooden laths on site and then labelled and left to dry ready for subsequent analysis. Tree-ring sequences were revealed through sanding with progressively finer grits to a 400 abrasive grit finish to produce a clean cross-sectional surface suitable for measuring.

Measuring and cross-matching

Samples with 40-50 rings may be dated in some circumstances, therefore if sequences of this length are recovered, they are measured and considered for matching. Tree-ring sequences are measured under a x20 stereo microscope to an accuracy of 0.01 mm using a microcomputer based travelling stage. Samples are measured twice and the two sets of measurements, eg, WBSP03a and WBSP03b cross-matched and plotted visually to facilitate visual comparison as a means of identifying measuring errors. Where sequences match satisfactorily they are averaged and the resulting sequence used in subsequent analysis, eg, WBSP03.

Cross-correlation algorithms are then employed to search for the positions where treering sequences correlate and therefore possibly match. All statistical correlations are reported as *t*-values derived from the original CROS73 algorithm (Baillie and Pilcher 1973). Those *t*-values in excess of 3.5 are taken to be significant and indicative of acceptable matching positions (Baillie 1982). However, due to the risk of high *t*-values being produced by chance, all indicated correlations are further checked to ensure that corroborative results are obtained at the same relative position against a range of other tree-ring sequences. Visual comparisons of sequences are also employed to support or reject possible cross-matches.

Tree-ring analysis is also used to investigate the likelihood of same-tree groups between samples based on a combination of high levels of matching and similar longer-term growth patterns or anatomical anomalies. Timbers derived from the same parent tree are generally expected to have *t*-values over 10, although lower *t*-values do not exclude the possibility that timbers are from a single tree, as it is the range of information that provides the link. Tree-ring sequences producing *t*-values of 9 or above are examined for same-tree relationships, and where other evidence does not dispute this, the sequences are averaged to produce a single tree-ring sequence to avoid bias in the final site mean.

Chronology building and cross-dating

The process of cross-matching compares all tree-ring sequences from a single building or phase against one another, and those found to cross-match satisfactorily together are combined to create an average sequence. This site mean(s) and remaining unmatched ring sequences are tested against each other and a range of established reference sequences (reference chronologies); *t*-values over 3.5, replicated against a wide range of sequences at the same position with satisfactory visual matching are similarly used to establish cross-matches with reference chronologies.

Felling dates and sapwood estimates

Where bark survives intact on a sample the exact date of felling of the tree used may be determined. Based on the completeness of the final ring it is sometimes possible to distinguish between spring, summer or winter fellings, corresponding to approximately March to May, June to September and October to February respectively. Where timbers were felled in either spring or summer the final ring is incomplete and therefore not measured, so allowance has to be made for the discrepancy between the end of the measured sequence and the actual year of felling. It is not always possible to distinguish between an incomplete ring and a complete narrow ring and therefore the season may be indistinct. In cases where it is either thought probable that bark edge was present, or recorded that bark edge was present, but a few of the delicate outer rings become damaged or lost, a circa (*c*) date is applied. In case such as these, the felling dates are probably accurate to within a few years. Where bark is present within a group of timbers and other evidence does not dispute the date, it is assumed that all the trees within the group were felled in the same year.

Where bark is missing from oak samples, as long as either sapwood or the heartwood/sapwood boundary has been identified, an estimated felling date range can be calculated using the maximum and minimum number of sapwood rings that were likely to have been present. This report applies a minimum of 9 and maximum of 41 annual rings sapwood estimate (Miles 1997). Felling date ranges are calculated by adding the sapwood estimate of minimum and maximum missing rings to the date of the heartwood/sapwood boundary, though this may be refined by the presence of surviving sapwood where appropriate. In the absence of any sapwood, the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *felled after* date. This represents the date after which the timber is likely to have been felled, although the actual date of felling could be much later depending on the number of heartwood rings that have been removed.

Date of construction

Green or freshly felled wood is far easier to work, and it is standard practice to assume that (until relatively recently) timbers were felled as required and used green (Rackham 1990; Miles 1997). Nevertheless, some caution must be used in interpreting precise felling dates in isolation, as dendrochronological analysis provides dates for when trees were felled but not necessarily when their timbers were used. Many instances have been noted where timbers used in the same structural phase have been felled one, or two or more years apart. The use of wind-fallen, leftovers or re-used timbers can also give rise to discrepancies between precise felling dates and the period of construction. Wherever possible, a group of precise felling dates should be used as a more reliable indication of a period of construction.

RESULTS

Assessement

Waxham Great Barn was visited on the 8th November AD 2002 and prior to sampling, a brief dendrochronological assessment was undertaken in the company of Stephen Heywood (Norfolk County Council) and Cathy Groves (EH/Sheffield University Dendrochronology Laboratory). The timbers were assessed for their potential use in dendrochronological study. Oak timbers with more than 50 rings, traces of sapwood, and accessibility were the main considerations. Due to the extreme height of the roof (the collars being at some 9m above ground) a hydraulic cradle, commonly termed a "cherry picker", was required to give access to the timbers. The problems associated with the moving of the cherry picker resulted in the initial assessment being mostly undertaken from ground level and a necessary reduction of the areas closely examined.

Bark was identified on many timbers. Tree-rings were observable in section at the ends of the hammer beams, which indicated these oak timbers as suitable for analysis. The principal rafters and other roof timbers examined were fast grown, and it was immediately apparent they probably had insufficient number of tree-rings for analysis. In view of the associated problems of access, these timbers were considered less suitable for sampling. With the exception of a conifer tiebeam in truss 13, all the timbers appeared to be oak. The tiebeams in Trusses T6, T8, and T13 (the last of which appeared to be a re-used ship's mast), were highlighted as replacements (Heywood pers comm) and so were excluded from the brief. Replacement timbers, presumably from repairs following the AD 1987 damage, were more common at the eastern end of the barn, an example being the braces in trusses T3 and T4. Most of the posts supporting the hammer beams were missing or replaced. After some discussion on hammer beam construction, it was agreed to sample one truss with a view to establishing whether or not there was a same tree relationship between the opposing hammer beams.

Though the roof structure is thought to be of one phase, due to the barn's extreme length prudent procedure required sampling along its entire length to identify any possible variation in the felling dates of timbers. However, the timbers at the eastern end of the barn appeared to be more affected by damp, and this appeared to be confirmed by greater difficulties in core recovery. The wall plates were also inaccessible for coring, except at the south side of bay 3, but this timber was obviously rotten and so was not sampled. Storage of reclaimed stone in the barn meant that bays 1 to 3 were inaccessible to the cherry picker and could only be sampled up to tiebeam level by ladder.

Sampling and Dating

Trusses were numbered one to twenty from east to west in accordance with the carpenters' marks previously noted by Heywood and Ayton (1994). Samples, prefixed by WBSP, were taken from 18 timbers on the 8th and 9th November. Details of the samples are provided in Table 1. The locations of the samples are shown in Figures 6 and 7.

Figure 6: Sketch plan of Waxham Great Barn, showing the truss numbering scheme followed in this report and the approximate location of cores WBSP01 to WBSP18. (Adapted from Heywood)

Note: Not to scale.

Figure 7: Section of trusses T7 and T10 at Waxham Great Barn, showing the multiple cores sampled from these trusses (adapted from Heywood).

Table 1: Summary of dendrochronological analysis

Timber and position	Timber Conversion	Timber dimensions (mm)	Rings	Pith	Sen- sitivity	Average Growth (mm/year)	Sapwood	Additional Sapwood	Sequence Date Range	Felling Dates
Middle purlin [north] - Bay 17	C2	? x ?	71	G	0.28	1.84	HS	+10mm	AD1501-AD1571	AD1580-1612
Hammer beam [south end] - Truss 16	A2	335 x 255	141	G	0.15	1.73	21	+Bw	AD1443-AD1583	AD1583/4 winter
Tiebeam [south end] - Truss 17	A2	320 x 280	48	G	0.27	1.88	HS		AD1513-AD1560	AD1569-1601
Hammer beam [south] - Truss 14	A2	325 x 210	81	G	0.20	2.57	14		AD1494-AD1574	AD1574-1601
Middle purlin [south] - Bay 14	C2	110 x 140	37	F			HS			
Collar - Truss 14	C2	160 x 140	65	G	0.25	1.69	17	+Bw	AD1519-AD1583	AD1583/4 winter
Tiebeam [north end] - Truss 11	C2	330 x 240	115	G	0.17	1.40	27	+5mm#	AD1465-AD1579	AD1583/4 winter
Hammer beam [north] - Truss 7	B2	325 x 240	120	V	0.20	1.59	28	+Bw	AD1464-AD1583	AD1583/4 winter
Principle rafter [north] - Truss 7	C2	210 x 200	49	V	0.24	4.67	HS	+1	AD1521-AD1569	AD1578-1610
Brace [north] - Truss 7	B2	225 x 75	117	G	0.19	0.94	14		AD1457-AD1573	AD1573-1600
Hammer beam [south] - Truss 7	A2	340 x 245	80	F	0.20	1.90	22	+Bw	AD1504-AD1583	AD1583/4 winter
Tiebeam [north end] - Truss 10	C2	320 x 245	147	G	0.20	1.61	32	+Bw	AD1437-AD1583	AD1583/4 winter
Principle rafter [north] - Truss 10	C2	220 x 240	139	G	0.27	1.52	12	+2 to B?	AD1442-AD1580	c AD1582
Post [north] - Truss 10	C2	115 x 190	142	V	0.18	1.40	23	+Bw	AD1442-AD1583	AD1583/4 winter
Post [north] - Truss 5	C2	120 x 175	72 (+21)	F	0.21	1.59		+15	AD1450-AD1521	After AD1557ф
Hammer beam [north] - Truss 2	B2	330 x 230	88	G	0.20	1.19	5	+12mm	AD1477-AD1564	AD1568-1600
Hammer beam [south] - Truss 9	B2	360 x 245	64	V	0.20	3.33	2	+8	AD1503-AD1566	AD1574-1605
Tiebeam [south end] - Truss 4	A2	350 x 245	6							

KEY:

*: 15mm cores

Timber Conversion: A2 = box-heart / trimmed, B2 = halved / trimmed, C2 = quartered / trimmed.

Timber Dimensions: Generally taken at core sample location and therefore not necessarily the maximum dimension.

Pith: V = very near, F = Fairly near, G = Not near.

Rings: (+21) = 21 rings of unmeasured heartwood. Note the sapwood is additional to this number of unmeasured rings.

Sapwood: HS = heartwood/sapwood boundary, + = number of sapwood rings not measured in the sequence,

B? = bark probably present, +Bw = bark present, # = but also see wbsp12, ϕ = additional rings detached so only possible to provide a felled after date.

In six instances the cores obtained had complete sapwood. Cores WBSP01 and WBSP07 lost about 10mm and 5mm sapwood respectively during coring. Core sample WBSP16 from the hammer beam in truss T2 lost 12mm of its sapwood during recovery. Core WBSP15 from a post in truss T5 broke in half during coring and it was unknown if rings were lost at the break. The second half of this core contained only 32 measurable rings plus 4 unmeasurable. The core WBSP18 from the tiebeam in truss T4 was abandoned after all sapwood was lost, and the core broke into fragments after only a 30mm length had been recovered. Both the north and south hammer beams from T7 were sampled in order to examine the possible same tree relationship of the hammer beams in this truss.

All samples from the barn were confirmed during preparation to be oak (*Quercus* spp.). Samples WBSP05 and WBSP18 contained insufficient number of rings and were rejected. Of the original eighteen core samples taken (Appendix 1), sixteen samples contained sufficient rings to be considered for further dendrochronological analysis. All these sequences were successfully cross-matched statistically (Table 2).

File-	wbsp														
names	02	03	04	06	07	08	09	10	11	12	13	14	15	16	17
wbsp01	3.86	-	-	-	-	4.91	3.61	3.90	3.92	-	-	-	-	-	-
wbsp02		4.15	3.87	3.70	-	-	-	3.64	3.82	-	4.39	4.69	-	5.61	3.52
wbsp03			-	-	-	-	-	-	-	-	-	3.63	١	4.74	4.17
wbsp04				-	-	4.55	-	5.44	-	-	-	4.51	3.98	-	-
wbsp06					4.40	4.37	7.81	5.34	4.94	6.32	4.33	5.62	١	3.73	5.84
wbsp07						4.26	4.86	3.94	-	9.44	4.25	5.35	4.10	4.57	4.96
wbsp08							3.86	4.97	6.02	4.28	-	6.51	4.00	5.33	-
wbsp09								4.79	3.64	5.84	5.36	5.83	١	4.03	6.45
wbsp10									-	-	3.84	5.57	3.87	4.49	-
wbsp11										4.19	4.76	-	-	5.50	I
wbsp12											5.52	4.65	3.71	3.54	4.49
wbsp13												3.88	-	3.94	4.73
wbsp14													6.84	6.38	5.10
wbsp15														5.02	-
wbsp16															-

Table 2: Cross-matching between series from Waxham Barn

The two sequences WBSP07 and WBSP12 displayed a high *t*-value of 9.44. The sequences share very similar short and longer term growth patterns except for one 20-year period which appears from core WBSP12 to be explained by a small growth disturbance, possibly a knot (Fig 8). It was concluded that both timbers probably derived from the same parent tree. Sequences WBSP07 and WBSP12 were therefore averaged to produce a single tree-ring sequence called WBSP07&12 for inclusion in the final site mean sequence to avoid bias.

Figure 8: Ring width plots of same tree sequences

The fifteen sequences representing 16 timbers which cross-matched were combined to form a 147-year site mean chronology called WAXHAMBN. This site mean sequence was found to cross-match with a wide range of reference chronologies with the first ring of the sequence at AD 1437 and the final ring at AD 1583 (Table 3).

WAXHAMBI	WAXHAMBN dated AD 1437 to AD 1583											
File	Start Date	End Date	<i>t</i> - value	Overlap (yr.)	Reference chronology							
devizesb	AD1447	AD1647	5.58	137	St. Johns Alley, Devizes, Wiltshire (Miles and Haddon-Reece 1990)							
drinkstn	AD1464	AD1586	4.87	120	Post Mill, Drinkstone, Suffolk (Bridge 2001)							
lydd4	AD1359	AD1564	4.81	128	Lydd, Kent (Moir 2001)							
hillhal1	AD1425	AD1564	4.65	128	Hill Hall, Essex (Bridge 1999)							
fenny	AD1468	AD1591	4.62	116	Fenny, Nr. Lathbury, Bucks (Bridge 1993)							
marriots	AD1310	AD1583	4.53	147	Marriot's Warehouse, King's Lynn, Norfolk (Tyers 1999b)							
crowle3	AD1497	AD1589	4.49	87	Crowle Court Barn 3, Worcs (Hillam 1997)							
littley2	AD1347	AD1648	4.47	147	Littley Green, Essex (Moir 2000)							
east_mid	AD882	AD1981	4.16	147	East Midlands (Laxton and Litton 1988)							
hereworc	AD1341	AD1636	3.74	147	Hereford & Worcester (Siebenlist-Kerner 1978)							

Table 3: Examples of cross-dating evidence for site mean chronologyWAXHAMBN

Once the site mean chronology WAXHAMBN was dated, calendar dates were assigned to its component sequences (Table 1). The data for the individual sequences are given in Appendix 1 and the site chronology in Appendix II.

INTERPRETATION AND DISCUSSION

Felling Dates

The felling dates are presented in Figure 9 and Table 1 and are discussed below. The presence of bark provides precise felling dates. Six of the timbers sampled, WBSP02, WBSP06, WBSP08, WPSP11, WBSP12, and WBSP14, were converted from trees felled in the winter of AD 1583/4. Under the microscope the summer cell growth for AD 1583 is evident in all six samples, thus, the trees used were felled late in that year, or in the early part of AD 1584 during winter dormancy.

Group Span of ring sequences WBSP16 AD1568-1600 Truss 02 WBSP15 Truss 05 →after AD1557 AD1573-1600 Truss 07 WBSP10 WBSP09 AD1578-1610 WBSP08 AD1583/4 winter WBSP1² AD1583/4 winter Truss 09 WBSP17 \overline{V} AD1574-1605 c AD1582 WBSP13 Truss 10 WBSP12 AD1583/4 winter WBSP14 Truss 11 WBSP07 AD1583/4 winter WBSP04 AD1574-1601 Truss 14 AD1583/4 winter WBSP06 Truss 16 WBSP02 AD1583/4 winter Truss 17 WBSP03 AD1569-1601 WBSP01 AD1580-1612 Truss 18 Calendar Years AD1500 AD1550 AD1600

Figure 9: Bar diagram showing the date interpretations for components of WAXHAMBN

KEY

One other timber, WBSP13, gives a probable felling date in *c* AD 1582. The sequence was recorded to have lost approximately two final sapwood rings during sampling, but it is quite possible that three rings were lost and therefore this felling date is considered consistent with, rather than detracting from the precise date of felling established. Thirty six additional rings, including fifteen rings of sapwood were recovered in the end section which broke off of core WBSP15. The break

was not clean so it is possible that some rings were lost therefore this additional information is used to calculate a felled after date of AD 1557 for the sequence WBSP15 rather than a felling date range. This felled after date is clearly consistent with the precise date of felling established.

A sufficient range and extent of elements of the original structure have been dated to indicate that such a date should be applicable to the barn as a whole. All of the dated sequences display heartwood/sapwood boundaries in a narrow 18-year range, which suggests that all the timbers were from a single felling in AD 1583/4. The results therefore indicate that construction of Waxham Great Barn was likely to have commenced shortly after felling in winter AD 1583/4.

Timber Analysis

The timbers forming the alternating tiebeam and hammer beam construction of the barn are uniformly sized, although they consist of box heart, half round, and quarter converted timbers. Samples WBSP07 and WBSP12 are identified as probably from the same tree and indicate that quartered sections of a single large tree were converted to make the adjacent tiebeams in trusses T10 and T11, located either side of the central door of the barn.

Two samples, WBSP08 and WBSP11, were taken from the north and south ends respectively of the hammer beam truss T7. These sequences cross-match with a *t*-value of 6.02 which indicates that each hammer beam is likely to be from a separate tree. This supports the conclusion of Heywood and Ayton (1994) made from constructional detail, that the middle of a tiebeam was not cut away to create the hammer beam truss, as has previously been conjectured. A possible example of such modification may be seen at Thorley Hall, Hertfordshire (Arnold *et al* 2001).

The cross-matching between the sequences is reasonably good (see Table 2) and suggests that the source trees of the timbers sampled came from a relatively discrete area, possibly a small woodland. The site master chronology is well replicated but fails to produce any particularly high *t* values with the network of reference chronologies in the surrounding regions. It is therefore not possible to determine the likely source for these timbers but, assuming the timbers are local, this is probably explained by the lack of coeval reference chronologies in the county.

CONCLUSIONS AND RECOMMENDATIONS

Sixteen of a total eighteen oak timbers sampled form Waxham Great barn were dated dendrochronologicaly to form a 147-year site chronology (WAXHAMBN), spanning AD 1437 to AD 1583. The analysis demonstrates that the primary timbers were probably all felled in the winter of AD 1583/4, and assuming the timbers were used green, which was common practice at the time (Rackham 1990), construction shortly afterwards is implied. The range and extent of the timbers dated, provides good evidence that construction of the barn occurred as a single phase. However, given the barn's extreme length and the lack of samples obtained from the roof east of T9, it would be advisable to take advantage of any future work to the roof and obtain samples, in order to confirm the roof structure is all of one phase.

Analysis on opposing ends of one hammer beam truss indicates the timbers to be from separate trees and thereby helps to confirm the findings of Heywood and Ayton (1994) that the unusual alternate queen-strut and hammer beam arrangement of the trusses are an original feature and were not created at a later date by sawing though the centre section of a tiebeam.

It is likely that the primary phase timbers sampled were local, however without data from other chronologies in the area it is not possible to categorically state that the timbers were locally sourced.

ACKNOWLEDGEMENTS

I would like to thank Stephen Heywood and Cathy Groves for both their professional opinions on site and their valuable help in fathoming the workings of the cherry picker. Stephen Heywood also kindly provided drawings upon which the location of samples could be based and made all the arrangements for access to the site and use of the cherry picker. Capt. Brian Moir's assistance during the second day of sampling was much appreciated. This analysis was commissioned by English Heritage. I am greatful to Alex Bayliss and Peter Marshall for their work in support of this analysis and particularly to Cathy Groves for her invaluable comments on an earlier draft of this report.

REFERENCES

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2001 *Tree-ring analysis of timbers from Thorley Hall, Bishop's Stortford, Hertfordshire*, Centre for Archaeol Rep, **61/2001**

Baillie, M G L, 1982 Tree-Ring Dating and Archaeology, London (Croom-Helm)

Baillie, M G L and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree-ring Bulletin*, **33**, 7-14

Bridge, M C, 1993 List 86 - Tree-ring dates, Vernacular Architect, 24, 91-2

Bridge, M C, 1999 *Tree-ring analysis of timbers from Hill Hall, Theydon Mount, Essex*, Anc Mon Lab Rep, **55/1999**

Bridge, M C, 2001 *Tree-ring analysis of timbers from the Post Mill, Drinkstone, Suffolk*, Centre for Archaeol Rep, **60/2001**

Cozens-Hardy, B, 1938 Norfolk coastal defences in 1588, *Norfolk Archaeology*, **XXVI**, 310-2

English Heritage, 1998 *Dendrochronology: Guidelines on producing and interpreting dendrochronological dates*, London (English Heritage)

Heywood, S, and Ayton, J, 1994 Waxham Great Barn, *The Annual: bulletin of the Norfolk archaeology and historical research group*, **3**, 24-33

Hillam, J, 1997 *Tree-ring analysis of oak timbers from Crowle Court Barn, near Worcester, Worcestershire*, Anc Mon Lab Rep, **96/97**

Laxton, R R and Litton, C D, 1988 *An East Midlands master tree-ring chronology and its use for dating vernacular buildings*, University of Nottingham, Dept of Classical and Archaeol Studies, Publication Monograph Ser, **3**

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40-56

Miles, D H, and Haddon-Reece, D, 1990 Tree-Ring Dates, *Vernacular Architect*, **21**, 47

Moir, A K, 2000 *Dendrochronological analysis of timbers from five buildings in Littley Green, Essex, England*, Tree-Ring Services, Dendro Rep, **LGOO/19/00**

Moir, A K, 2001 *Dendrochronological analysis of timbers from 8 Coronation Square, Lydd, Kent, England*, Tree-Ring Services, Dendro Rep, **LDCS/24/01**

Rackham, O, 1990 *Trees and woodland in the British Landscape*, London (J M Dent & Sons Ltd)

Siebenlist-Kerner, V, 1978 The Chronology, 1341-1636, for certain hillside oaks from Western England and Wales, in *Dendrochronology in Europe* (ed J M Fletcher), Oxford, BAR Int Ser, **51**, 295-301

Tyers, I, 1999a *Dendro for Windows Program Guide 2nd Edition*, ARCUS Rep, **500**

Tyers, I, 1999b *Tree-ring analysis of the Marriot's Warehouse, Kings Lynn, Norfolk*, Anc Mon Lab Rep, **11/99**

Appendix I: Raw ring-width data

Units of Measurement 100 = 1mm Earliest ring listed first

wbspC)1.d								
77 35 121 285 159 320 209 233	80 48 169 163 182 371 365	48 41 125 166 185 368 226	40 40 224 223 152 314 158	39 80 107 192 229 481 151	26 132 197 136 195 303 163	29 102 164 197 173 188 200	30 154 124 167 231 184 265	56 123 217 207 451 226 299	39 101 245 387 315 349 308
wbsp0 282 291 215 313 163 153 235 134 105 117 98 125 94 158 126	02.d 247 270 218 219 183 259 246 186 162 134 109 123 90 135	229 268 162 219 188 217 163 205 107 139 117 141 100 134	307 247 182 200 192 289 165 260 79 140 124 164 116 135	427 224 189 183 162 175 130 198 73 182 112 110 104 125	343 235 165 181 96 130 127 210 72 129 132 112 122 140	352 199 220 185 139 180 205 184 83 184 144 151 159 159	339 194 179 191 172 225 161 174 76 141 127 159 199 158	261 224 178 172 134 211 158 178 90 101 119 158 171 123	256 255 229 133 141 193 156 163 98 100 113 136 152 118
wbsp0 326 143 188 131 75	03.d 240 307 190 193 104	244 215 265 255 89	292 169 214 184 89	216 109 178 139 84	151 263 163 174 84	289 225 253 172 125	154 272 207 126 186	259 252 152 137	226 268 174 89
wbsp0 319 406 317 215 261 421 112 141 155	04.d 364 278 343 149 332 323 157 149	486 342 281 180 302 270 189 182	195 253 349 217 256 188 131 139	213 294 388 272 244 256 173 141	251 450 335 217 212 276 186 195	391 309 192 239 238 254 110 168	373 322 275 315 286 218 122 162	504 337 367 292 324 238 129 121	378 287 197 260 425 189 134 152
wbsp0 206 66 186 190 178 203 165	06.d 140 70 197 142 229 205 259	235 109 126 148 179 186 117	316 108 235 276 182 185 137	199 95 200 221 205 161 151	228 100 141 180 126 233	152 116 210 257 133 166	69 117 167 160 188 206	53 170 146 106 173 173	51 216 214 108 188 219

wbsp()7.d								
154 127 134 127 144 185 160 199 173 120 67 95	255 126 135 144 159 192 154 179 125 81 80 94	158 115 163 95 233 178 197 171 139 56 75 74	154 149 134 82 146 218 196 186 190 80 86 84	176 155 107 92 161 170 153 189 121 110 96 92	154 194 124 163 163 118 160 155 119 122 82	221 186 171 146 161 182 166 130 115 80 80	154 153 143 142 135 157 140 160 138 98 74	157 132 152 137 176 173 142 126 142 105 85	181 134 165 142 166 153 175 145 105 71 73
wbsp(08.d								
486 218 241 166 229 149 148 98 127 126 113 105	372 279 242 188 190 133 106 119 136 170 104 87	418 133 237 259 132 138 132 125 125 125 112 115 87	248 209 256 147 150 155 93 143 99 114 98 50	157 273 204 111 117 134 83 119 122 99 96 83	146 242 228 145 177 108 96 155 141 134 124 93	284 209 182 188 153 76 90 122 105 187 103 99	406 281 236 177 148 93 123 85 132 164 103 55	328 178 226 256 122 126 112 84 140 185 95 58	287 215 181 233 121 123 105 124 166 175 115 54
wbsp()9.d								
642 561 386 234 438	546 528 535 393 470	557 396 458 317 494	765 578 424 359 337	393 798 751 463 269	283 596 572 349 382	403 642 379 232 356	445 684 502 223 482	449 733 478 324 463	492 494 281 559
wbsp ²	10.d								
100 73 55 111 55 45 134 101 103 72 79 96	80 110 72 83 51 77 129 77 94 85 78 106	67 121 104 49 60 96 100 93 100 86 84 111	89 122 50 89 96 77 82 87 70 97 128	106 110 155 86 95 92 118 117 66 72 104 127	118 86 92 71 111 82 131 124 89 78 109 99	106 79 74 66 106 96 102 104 110 95 119 129	126 76 110 65 88 81 118 95 92 85 70	82 47 148 93 86 81 86 101 98 106 83	103 59 141 113 73 126 82 101 107 87 99

wbsp1	1.d								
279 279 330 206 181	232 253 224 207 199	207 305 233 197 158	239 241 144 214 157	240 210 169 125 163	326 155 156 212 145	205 105 170 258 104	197 186 212 238 126	201 229 260 287 169	146 273 214 246 171
170 108 234	177 112 169	145 128 149	106 143 143	132 196 209	174 176 194	244 205 168	198 138 109	185 148 120	182 164 107
wbsp1	2.d	222	222	201	220	272	157	104	102
206 256 147 136 72 117 265 198 207	179 339 148 127 81 96 195 217 176	186 289 272 146 71 96 204 181 221	199 192 287 147 103 160 173 141 216	184 344 369 135 135 248 189 257 245	209 205 251 127 107 163 145 266 181	198 243 195 112 99 213 247 204 173	285 259 150 73 111 198 219 215 171	261 144 143 57 141 176 323 161 180	100 290 163 132 62 183 177 249 168 152
146 147	183 169	171 114	142 108	130 103	140 116	112 81	146 83	182 97	138 69
46 73 73	62 80 88	75 81 79	120 103 107	82 65 49	107 62 76	104 69 62	66 91	62 83	76 74
wbsp1 411 92 92 48 38 84 140 127 128 301 100 105 525 205 wbsp1	3.d 367 62 110 41 46 91 127 102 93 266 153 129 396 244 4.d	278 130 118 50 126 122 91 113 181 244 133 159 238 313	253 194 57 50 88 95 47 146 69 368 183 156 200 274	286 234 59 45 128 98 85 209 101 193 122 112 276 205	247 213 79 60 115 71 115 182 73 175 84 60 210 299	158 206 66 94 98 62 105 205 110 191 96 98 236 229	220 125 112 126 107 85 117 76 112 167 98 253 349 223	106 90 67 68 78 109 119 60 123 107 92 417 286 195	102 123 68 72 64 199 117 122 171 122 85 420 206
422 187 151 140 97 93 110 109 126 101 155 129 159 126 66	4.0 519 201 120 152 110 93 117 108 112 94 111 135 179 166 61	448 213 104 109 82 127 104 106 120 100 110 139 107 128	456 201 107 113 130 119 102 97 75 127 172 232 153 101	368 238 100 88 132 152 100 127 66 139 166 150 176 100	327 213 85 96 125 85 90 101 56 145 130 119 136 87	289 162 72 106 91 90 74 121 79 185 147 138 123 73	364 121 76 120 81 102 121 124 63 192 194 190 185 96	250 93 121 124 74 115 92 105 69 133 153 153 157 122	196 137 157 164 99 115 123 127 108 123 143 143 131 71

wbsp ²	15.d								
340	417	229	286	300	297	329	344	208	233
194	175	160	194	190	168	199	120	106	138
177	192	147	152	110	168	160	163	154	180
146	207	102	158	128	213	231	224	141	130
140	211	120	122	114	123	148	80	64	64
113	111	107	105	101	/5	118	101	/4	141
106	130	96	114	94	104	110	92	104	122
113	124								
wbsp	16.d								
195	177	221	151	180	88	97	108	165	138
132	100	101	116	105	91	75	110	109	113
75	62	70	86	101	86	108	90	95	82
87	87	109	82	116	88	95	113	97	120
109	97	114	84	131	108	95	134	103	112
77	125	100	113	151	124	104	120	105	128
120	101	160	146	130	113	96	127	166	152
124	163	138	88	101	149	165	136	169	122
107	118	165	184	147	192	149	107		
wbsp	17.d								
376	261	251	276	303	227	317	293	263	263
364	317	273	255	306	328	412	316	447	366
251	393	317	192	263	381	432	525	490	516
518	456	605	405	340	431	508	350	362	498
458	475	405	309	273	362	382	280	206	257
264	263	350	262	145	163	242	282	257	303
326	209	206	186						

Appendix II: Mean ring-width data

WAXHAM BARN - SEA PALLING - NORFOLK [WAXHAMBN] Timber mean with signatures Ring-width QUSP data of 147 years length Dated AD1437 to AD1583 Units of Measurement 100 = 1mm 15 timbers raw data mean Average ring width 180.92 Sensitivity 0.15

AD1437							257	209	223	233
	281	357	360	282	283	288	301	242	280	246
AD1451	232 184 201 173	194 163 167 108	207 164 172 123	239 214 135 135	244 156 144 158	267 181 116 162	225 135 135 155	205 118 149 115	172 157 166 115	142 171 147 115
	136	118	113	157	160	202	109	96	116	164
AD1501	165 156 218 227 176	173 147 229 225 216	182 165 183 198 208	175 171 250 212 202	143 177 161 261 244	147 198 146 211 198	149 182 144 215 158	135 188 174 216 201	191 180 178 246 215	151 130 196 215 160
AD1551	153 201 152 87	188 234 133 95	180 214 151 93	168 144 173	218 143 145	165 174 138	116 157 135	127 185 148	180 213 145	235 185 158