Centre for Archaeology Report 19/2005

Tree-Ring Analysis of Timbers from the High Roofs of the Cathedral of the Holy and Undivided Trinity, Ely, Cambridgeshire

A J Arnold, R E Howard and Dr C D Litton

© English Heritage 2005
ISSN 1473-9224

Tree-Ring Analysis of Timbers from the High Roofs of the Cathedral of the Holy and Undivided Trinity, Ely, Cambridgeshire

A J Arnold, R E Howard and Dr C D Litton

Summary

Of 252 samples from various high roofs of Ely Cathedral considered in this programme, 153 were selected for analysis, this producing 16 site chronologies. Of these chronologies, nine, comprising 108 samples, could be dated, with two further samples being dated individually. Seven chronologies, comprising 21 samples, did not date. There remain 22 individual samples ungrouped and undated.

The earliest material, felled in the mid-eleventh century, is found in the west tower turrets. Slightly later timbers, felled in the early-twelfth century, are found in the nave roof. Both probably represent reused Romanesque material.

Although two timbers of the nave roof were felled in AD 1223/24, the majority here was probably felled between AD 1290 and AD 1310. An individual nave timber has an estimated felling date in the range AD 1343-58. The latest nave material dates to the mid- to late-eighteenth century.

The Lady Chapel has material with an estimated felling AD 1297 to AD 1332, and 1318-53. A further timber has an estimated felling date in the range AD 1341-71, others being felled in AD 1726.

The south transept roof contains material estimated to have been felled c AD 1425/26.

Keywords

Dendrochronology
Standing Building

Author's address

Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD.
Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when asailable.

Frontispiece: The Nave at Ely Cathedral. (© Crown copyright. NMR. AA98/00006)

Introduction

The site of Ely Cathedral (TL 541 803; Fig 1) has been a place of worship since at least AD 673, when Etheldreda, daughter of the king of East Anglia, founded a nunnery there. The site was sacked by the Danes in the AD 870s, but it was rebuilt, and by the tenth century had become a monastery of the Benedictine order. Nothing now, however, survives of the Anglo-Saxon church, which was entirely demolished when construction of the present building was commenced under the direction of Abbot Simeon in AD 1083. This work was largely complete by AD 1109 and Ely was elevated to the status of a cathedral as part of the Norman reforms of the English Church.

The cathedral was originally built with a central nave with aisles, crossed by the main north and south transepts which was topped by a low tower with a spire. At the west end of the cathedral was a further, smaller transept (with St. Catherine's Chapel), topped by a central tower between them. The west end of this original nave was terminated by a fine Romanesque facade to which was added the two-storey Galilee Porch, a later alteration in the Gothic style completed in AD 1215. The earliest surviving parts of the present cathedral, the north and south transepts, the south door and the nave, date from this time.

Slightly later in the thirteenth century, under Bishop Hugh Northwold, the short Romanesque asped choir of three bays to the east of the crossing was extended eastwards with a new six-bay addition. In addition work was undertaken to reconstruct the central tower at the west end. It is believed on documentary sources that the work on this retro-choir, or presbytery with its shrine of Saint Etheldreda, was complete by AD 1252.

In AD 1322 the central square Norman tower collapsed, destroying part of the choir and possibly part of the nave too. It was Alan of Walsingham who undertook repair of the damage taking the opportunity to widen the crossing, demolishing the first three western bays of the nave in the process, and topping the whole with the impressive octagonal lantern for which Ely Cathedral is famous. The fall of the tower and construction of the octagon interrupted work on the Lady Chapel, which had begun in AD 1321, and it was not completed until AD 1349.

At some time in the fifteenth century, the exact date is not recorded, an earthquake caused the collapse of the north-west transept. This was never rebuilt. However, further construction work was undertaken later with the Bishops' Chapels being completed in AD 1486 and AD 1530. The last great rebuilding and extension of the cathedral came during the early-sixteenth century, when two fine chantry chapels were built between the south transept and the Presbytery.

At the Dissolution of the Monasteries, the surrounding medieval buildings were either demolished or put to other uses and those that still survive are now used for many different purposes. The importance of the cathedral itself remained as the seat of the Bishop for a large portion of East Anglia. The painted decoration and carved statues all suffered under the fury of the iconoclasts of Henry VIII's time, but here and there faint traces remain.
In the mid-eighteenth century, the medieval rood screen was removed, thus providing
an open view which combines superbly with the spaciousness of the octagonal crossing (Frontispiece). The ceiling of the nave was boarded over and painted during the Victorian period and is a fine example of its time. A simple present-day plan of the cathedral is shown in Figure 2.

Sampling - AD 1987-90 and AD 1997-2002

Initially this programme of tree-ring dating considered an overall total of 252 samples from the various high roofs of the cathedral. Each sample has been given the code ELY-C (for Ely Cathedral) and is listed in Table 1. A large number of these samples, ELY-C01-167, were obtained during short periods of repair and restoration to small sections of the roofs between about AD 1987 and AD 1990.

These earlier samples, those obtained AD 1987-90, were generally taken as slices from rotted or decayed sections of timber. These decayed sections were often being removed to allow new pieces to be spliced in to the larger sound sections of timber remaining in situ. Samples were also obtained as slices from what appeared to be riven boards or planks set across rafters, or placed from collar to collar of the frames. In addition a few samples were obtained as graticule readings from some of the furniture, choir stalls, and backboards for example, on an occasional basis.

Because of the nature of the AD 1987-90 repair programme the early samples were generally obtained in a random, ad hoc, fashion determined more by the progress of this renovation work, rather than by a dedicated programme of dendrochronological research with the sampling of specific areas. Although the original location of all these sample timbers was recorded at the time, it was seen that many slices had fewer than 54 rings, less than the minimum for satisfactory tree-ring analysis, and such timbers were discarded. In some cases the sections of timber obtained were too decayed to be useable and these were discarded too. This is denoted by the term 'nk' (not kept) in Table 1. These samples thus do not form part of the present analysis. Furthermore, due to limited funding at that time, only a small number of the suitable samples that were initially obtained, those from about 40 timbers, were analysed as part of the earlier tree-ring dating programme.

It was only from the roof of the south transept, when scaffolding was in place in $A D$ 1992, that satisfactory core samples, ELY-C168-176 and ELY-C185, could be obtained from suitable timbers with sufficient numbers of rings, and sapwood, or at least the heartwood/sapwood boundary. Additional core samples, ELY-C177-183 were obtained from timbers of the Lady Chapel roof, as part of a programme of research, when the lead covering was repaired in AD 1993.

Between AD 1993 and AD 2002 intermittent sampling has also been undertaken from some of the buildings of the cathedral complex, ie The Bishop's Palace. A much larger sampling programme from other buildings, such as the Cannonry, the Black Hostelry, and funded by English Heritage, has been undertaken since AD 2001. This is the subject of a separate report (Arnold et al 2004). The samples from these buildings have also been given the code ELY-C, and have been numbered consecutively from that last sample obtained from the cathedral.

A further small batch of samples, ELY-C305-313, was then obtained from the stair treads of the west tower turrets and analysed as part of a programme of research in AD 1994. One sample, ELY-C24, was obtained as a graticule reading from a choir stall backboard, one of the few pieces of cathedral furniture of fixings to be examined. These proved to be the last samples from the cathedral itself until the present programme of analysis began. Thus, given that samples have also come from other parts of the cathedral complex at different times, the samples from the cathedral roofs listed in Table 1 do not always run in consecutive order.

Sampling AD 2003

In AD 2003 English Heritage proposed a new programme of tree-ring analysis of timbers from the cathedral. As part of this new work it was decided that not only should a selection of the best samples obtained between AD 1987 and AD 1993, but never measured, now be analysed, but that further coring also be undertaken.

However, rather than dilute the number of samples taken by extending coring to wider ranging and additional areas within the cathedral, it was proposed that more intensive coring be undertaken only on those areas that had previously been sampled. It was hoped that this method of further intensive coring in specific areas would increase the number of samples cross-matching, and that the new samples would include more with complete sapwood. It was hoped that this approach would thus not only increase the number of timbers dated, but also increase the precision of the results obtained. It was believed that the dating of a larger amount of material more precisely might demonstrate possible phases of felling and potential stages of construction within the roofs.

With this sampling proposal in mind, therefore, some 56 further samples were obtained from the nave roofs. These new samples were designated ELY-C501-56. These newly obtained samples were to be analysed in conjunction with all those previously taken from the cathedral in earlier programmes of analysis.

Other areas, which had been sampled in the past, were also assessed in the hope of obtaining further samples, and samples with complete, or at least simply more sapwood. Such areas, the west tower / belfry for example, however, were found either to be lacking suitable accessible timbers, or had timbers that were now hidden by replacement lead work, as in the Lady Chapel roof for example. Additional samples could not be obtained from such areas.

Thus, taking both the previously obtained material (analysed and not), and the newly obtained cores, an overall total of 252 samples from the various high cathedral roofs were initially considered as part of this new programme of tree-ring dating. Of this initial overall total, 99 had to be rejected. Most of these rejects had too few rings for satisfactory analysis, though some were not analysed because, although they had sufficient rings, they may not have had sapwood or the heartwood/sapwood boundary. This programme of research therefore considers the data from 153 measured samples.

This sampling information given above is summarised overpage:

\quad Sample area	Number of samples obtained / analysed	Sample numbers
Nave roof	$226 / 132$	ELY-C01-167 ELY-C302-304
Lady Chapel roof		ELY-C501-556
South transept roof	$10 / 9$	ELY-C168-178
West tower turrets	$7 / 7$	ELY-C185
		$9 / 5$

Views of the nave roof are shown in Figures $3 a-c$. A view of the Lady Chapel roof is shown in Figure 4, with a drawing of a truss in this roof being given in Figure 5, and a plan in Figure 6.

The positions of the timbers cored were recorded at the time of sampling on drawings made by Elaine Guilding and Robert Howard at the time of the AD 1987-90 survey. These are reproduced here as Figures 31a to 33q. It should be pointed out that not all the timbers in the roof are illustrated in these drawings so that in some cases the position of some individual timbers is not shown. Details of the samples are given in Table 1. In this report the frames, bays, and individual timbers etc, have been numbered from east to west or from north to south as appropriate.

Further areas of possible sampling.

Given that in this new programme of work additional samples were to be obtained only from those areas which had been sampled before, a number of important areas of the high roofs would remain un-sampled. Such areas would include the Octagon lantern, and the Choir / east end. Other areas, although having benefited from some very small-scale sampling are poorly represented. However, although such areas were not sampled as part of this programme, they were to be assessed as to their suitability for dendrochronological dating as part of any possible future programme of tree-ring analysis.

Presbytery / choir / east end
From documentary sources, the Presbytery is believed to belong to Bishop Hugh Northwold's ambitious mid-thirteenth century expansion plans, when, to the original three Romanesque bays east of the crossing, a further six bays were added. Part of this roof was probably damaged by the fall of the central Romanesque tower in $A D$ 1322, and parts may have been altered by the construction of the Octagon thereafter. This part of the cathedral roof has not been sampled before. Unfortunately it appears to have been replaced yet again and is now largely modern, ie, eighteenth-century. It does however contain a number of timbers re-used as purlins, raking shores, and struts. A modest amount of sampling from these timbers, and any other later oak material would certainly be worthwhile. Not only might this prove the date of the original construction but, knowing from documentary evidence the sources of the modern timber, it might also provide a reference chronology from a known location. A view of this roof is given in Figure 7.

The Octagon

The famous Octagon at Ely Cathedral has not been sampled either. This is in part because the date of its construction, c AD 1330, is well known from the documentary sources. The source of some of the timber is also known, documentary material indicating this as being Chicksands in Bedfordshire.

The Galilee Porch roof

Much of this roof, which has also not been sampled, has been replaced with relatively modern, probably eighteenth-century timbers, but this is not certain. It may be earlier, but it could also be later. It does however retain a small number of reused timbers which might be from the original early-twelfth century roof. With further tree-ring sampling it might be possible to more reliably demonstrate the stages of felling represented in this roof.

The west tower

Although this has been sampled before little satisfactory dating has resulted. It may, therefore, be worth obtaining additional samples. The great difficulty with this roof is one of access. Many of the oak timbers are at a great height and impossible to reach safely without a scaffolding tower, a boarded platform, and safety harness. Given the problems of access into the tower, it would be very difficult to get this equipment in to place.

If at any time in the future work is done in any of these roofs, if the lead covering and roof boards are ever removed for example, and a safety platform is put in place, sampling of the timbers in all these areas should be most strongly considered.

Analysis

Each sample to be analysed was prepared by sanding and polishing, and the growthring widths of all 153 were measured; the data of these measurements are given at the end of the report. The data of all these samples were compared with each other by the Litton/Zainodin grouping procedure (see appendix).

At a minimum t-value of 4.5 two larger groups, and 14 smaller groups of crossmatching samples could be formed. The largest of these groups contains a total of 43 samples, cross-matching with each other at relative positions as shown in the bar diagram, Figure 8. All 43 samples were combined at their indicated relative off-set positions to form site chronology ELYCSQ01, with a combined overall length of 300 rings. Site chronology ELYCSQ01 was compared with a large number of reference chronologies for oak indicating a series of satisfactory t-value cross-matches when the date of its first ring is AD 1029 and the date of its last ring is AD 1328. Evidence for this dating is given in the t-values of Table 2.

The next major group comprises a total of 33 samples, cross-matching with each other at relative positions as shown in the bar diagram, Figure 9. These 33 samples
were combined at their indicated relative off-set positions to form site chronology ELYCSQ02, with a combined overall length of 135 rings. Site chronology ELYCSQ02 was also compared to a large number of reference chronologies for oak indicating a series of satisfactory t-value cross-matches when the date of its first ring is AD 1206 and the date of its last ring is AD 1340. Evidence for this dating is given in the t values of Table 3.

The next three groups comprise 7,9 , and 6 samples, cross-matching at relative positions as shown in the bar diagrams Figures 10, 11, and 12, with combined overall lengths of 112, 200, and 203, rings respectively. These respective groups were combined to make site chronologies ELYCSQ03, ELYCSQ04, and ELYCSQ05, which were then dated as spanning the years AD 1315 - AD 1426, AD 891 - AD 1090, and AD 1592 - AD 1794, respectively. Evidence for the dating of these three site chronologies is given in Tables 4-6.

A further 11 smaller groups, consisting of between two and five samples each, could also be formed, the relative positions of the cross-matching samples in all these groups being shown in the bar diagrams Figures 13-23. Only four of these site chronologies could be dated, three of them matching particularly well with European reference chronologies, specifically those from the Baltic regions. Evidence for the dating of this material is given in Tables 7-10.

Each site chronology was compared against all the others, and against the remaining single ungrouped samples. There was, however, no further satisfactory crossmatching. In some cases an attempt was made to date the samples of the smaller site chronologies, ie ELYCSQ08 and ELYCSQ11, by taking sub-groups of samples from them and comparing these with the reference chronologies. There was, however, no further satisfactory cross-matching.

Finally, each of the 24 remaining ungrouped single samples was then compared individually with a full range of reference chronologies, including those from the Baltic regions. This indicated satisfactory dating for two further samples, ELY-C53 and ELYC159, both from the nave roof. ELY-C53 has 133 rings dated as spanning AD 1002 AD 1134, while ELY-C159 has 156 rings dated as spanning AD 1133 - AD 1288. Evidence for this dating is given in the t-values of Tables 11 and 12.

Thus, of the 252 samples initially considered, 99 were rejected as unsuitable, and 153 were measured. Of these, 108 samples can be formed in to one of nine dated site chronologies, with two further samples being dated individually. A further 21 samples can be formed in to one of seven undated site chronologies. A total of 131 samples can thus be dated or grouped. Twenty-two samples remain ungrouped and undated.

These analytical results are summarized overpage.

Site chronology or sample	Number of samples	Number of rings	Date span (where dated)
ELYCSQ01 (see Fig 8)	43	300	AD 1029-1328
ELYCSQ02 (see Fig 9)	33	135	AD 1206-1340
ELYCSQ03 (see Fig 10)	7	112	AD 1315-1426
ELYCSQ04 (see Fig 11)	9	200	AD 891-1090
ELYCSQ05 (see Fig 12)	6	203	AD 1592-1794
ELYCSQ06 (see Fig 13)	3	181	AD 1109-1289
ELYCSQ07 (see Fig 14)	2	207	AD 1097-1303
ELYCSQ08 (see Fig 15)	5	161	Undated
ELYCSQ09 (see Fig 16)	3	177	Undated
ELYCSQ10 (see Fig 17)	2	161	AD 1019-1179
ELYCSQ11 (see Fig 18)	4	154	Undated
ELYCSQ12 (see Fig 19)	2	153	Undated
ELYCSQ13 (see Fig 20)	2	150	Undated
ELYCSQ14 (see Fig 21)	3	122	Undated
ELYCSQ15 (see Fig 22)	2	93	Undated
ELYCSQ16 (see Fig 23)	3	96	AD 933-1028
ELY-C53	1	133	AD 1002-1134
ELY-C159	1	156	AD 1133-1288

Interpretation

The nave roof (site chronologies ELYCSQ01, SQ02, SQ04, SQ05, SQ06, and SQ07)
A number of dated samples from the nave roof retain complete sapwood. This means that they retain the last sapwood ring that the tree produced before it was felled, and the date of this last ring is the date at which the timber represented was cut. Other samples retain the heartwood/sapwood boundary which, while not providing a precise felling date, does allow for the reliable estimation of a likely felling date range. Unsurprisingly, given the number of samples analysed and the range of places from
which samples have been taken, there appears to be a spread of felling dates for timber used in the nave roof.

The earliest material from the nave roof detected in this programme of analysis appears to be represented by the nine samples of site chronology ELYCSQ04. The majority of these samples do not retain the heartwood/sapwood boundary and it is thus not possible to determine a reliable felling date range for the timbers represented. The samples do, however, all cross-match together with high t-values, suggesting that they are from a similar source, and all the samples have very early last measured ring dates. These range from AD 982 on sample ELY-C533 to AD 1066 on sample ELY-C109.

Only one sample, ELY-C133, in site chronology ELYCSQ04, retains the heartwood/sapwood boundary, this being dated to AD 1090. Using a 95% confidence limit of 15 to 40 sapwood rings on mature oaks from this part of England would give the timber represented by this sample an estimated felling date in the range AD 1105 to AD 1130. Given that the sampled timbers do show evidence for reuse, by way of redundant mortices and peg holes, it is likely that all these timbers are indeed early timbers that have been reclaimed and reused.

It would appear, however, that the majority of timbers from the nave roof, almost all those represented in site chronologies ELYCSQ01 and ELYCSQ02, have felling dates clustering in a relatively short time period. This appears to range from the latethirteenth century to the early-fourteenth century.

The latest certain felling date for any of these timbers is that represented by sample ELY-C33, in site chronology ELYCSQ02. This sample retains complete sapwood with a last measured ring date of AD 1304. Other samples in this chronology which retain complete sapwood have very similar dates; AD 1303 for samples ELY-C65 and C77, AD 1302 for samples ELY-C34, C51, and C91, AD 1301 for sample ELY-C108 and AD 1299 for sample ELY-C552.

Other samples in site chronology ELYCSQ02 are from timbers which may possibly have been felled a few years earlier than this. The earliest heartwood/sapwood boundary of any sample in site chronology ELYCSQ02 is found at relative position 62, AD 1267, on sample ELY-C551, with the next earliest being at relative position 68, AD 1273, on sample ELY-C528. However, it is certainly not impossible for these timbers to have been felled in the early-fourteenth century as well.

It is also possible that some timbers were felled a few years later than the bulk of those represented by site chronology ELYCSQ02. The latest heartwood/sapwood boundary is found at relative position 87, AD 1292, on sample ELY-C543. Were this timber to have been felled in, say, AD 1304 too, it would have had only 12 sapwood rings. Such a low number is below the usual 95% confidence limit of 15 sapwood rings. However, given the number of samples obtained it is not unexpected to find a small number of samples with less than this minimum.

The relative position of the heartwood/sapwood boundaries on the majority of other dated samples in site chronology ELYCSQ02 are generally very similar, ranging by only 14 years from relative position 71, AD 1276, on samples ELY-C522 and C523, to
relative position 85, AD 1290, on sample ELY-C36. Such a spread, while not necessarily representative of timbers with an identical felling date, is certainly indicative of a narrow range of felling dates, such as that indicated by those samples in site chronology ELYCSQ02 with complete sapwood.

Unlike a number of samples in site chronology ELYCSQ02, only one of those from the nave roof in site chronology ELYCSQ01, sample ELY-C524, retains complete sapwood. This sample has a last, complete sapwood, ring date of AD 1223, this being the felling date of the timber represented. Most of the other samples retain only the heartwood/sapwood boundary and it is thus not possible to determine with complete certainty the exact felling date of any of those timbers represented, though it is possible to estimate a likely felling date range.

The bar diagram of site chronology ELYCSQ01, Figure 8, shows that the heartwood/sapwood boundary on the bulk of samples moves gradually forward in time, from relative position 227, AD 1255, on sample ELY-C503, to relative position 264, AD 1292, on sample ELY-C537, a spread of 37 years. Again, the dates of the heartwood/sapwood boundaries indicate felling dates ranges in the late-thirteenth to early-fourteenth centuries. Using a 95% confidence limit of 15 to 40 sapwood rings on mature oaks from this part of England would give the two timbers represented by sample ELY-C503 and C537 estimated felling date ranges of AD 1270 to AD 1295, and AD 1307 to AD 1332, respectively. The estimated felling date ranges for the other samples with only the heartwood/sapwood boundaries lie between these two extremes.

Indeed, in looking at the bar diagram for site chronology ELYCSQ01 in Figure 8, it is just possible that groups of samples may represent stages of felling. One might consider samples ELY-C01, C04, C14, C501, C503, and C504 as representing one phase of felling, with samples ELY-C05, C45, C54, C58, C502, C516, and C554, representing another phase of felling perhaps some ten to 15 years later. A subsequent phase of felling, perhaps some ten years after this, might be seen in a larger series of samples whose heartwood/sapwood boundary varies from relative position 250, AD 1278, to relative position 255 , $A D 1283$. The dates of the heartwood/sapwood boundaries are again indicative of timbers being felled between the late-thirteenth and the early-fourteenth centuries. There is no indication, however, of a date-trend paralleling the probable direction of construction, from east to west. Rather, we find timber with a mixture of felling dates at each end of the nave roof, and indeed in the middle of the roof as well.

Sample ELY-C149 in site chronology ELYCSQ01, certainly represents a timber felled later. This sample has a last measured ring date of AD 1328, this also being the heartwood/sapwood boundary date. Using a 95% confidence limit of 15 to 40 sapwood rings on mature oaks from this part of England would give the timber represented by this sample an estimated felling date range of AD 1343-68. The sample may represent a reclaimed timber from elsewhere in the cathedral that has been spliced in to the scissor brace that has been sampled.

Site chronology ELYCSQ05 (bar diagram Fig 12) contains six dated samples, four of which, ELY-C104, C110, C151, and C153, are also from the nave roof. Two of the samples, ELY-C104 and C110, retain complete sapwood, with last measured ring
dates of AD 1794 and AD 1791, respectively. These are thus the felling dates of the timbers represented. It is possible that the timber represented by sample ELY-C153, which has eight sapwood rings and a last measured ring date of AD 1783 was felled at about this time also.

The timber represented by sample ELY-C151 is likely to have been felled earlier. This sample has 15 sapwood rings, which is not complete, with a last measured ring date of AD 1750. It is likely that the timber was felled sometime between AD 1751 and $A D$ 1775.

Three further samples from the nave roof, ELY-C157, C160 and C162, are to be seen in dated site chronology ELYCSQ06. It can be seen from Table 6 that this site chronology cross-matches best with a series of reference chronologies from the Baltic region, suggesting that these samples are from that area. The average last heartwood ring date on these three samples is AD 1283. Using a sapwood estimate of 9 to 35 rings would give the timbers represented, riven boards covering common rafters, an estimated felling date in the range AD 1292 to AD 1318.

Site chronology ELYCSQ07 contains one sample, ELY-C161 from a timber of the nave roof which is of probable Baltic origin, as again shown by its cross-matching with a series of reference chronologies from that area. Sample ELY-C161, in site chronology ELYCSQ07, has a heartwood/sapwood boundary date of AD 1189. Using a sapwood estimate of 9 to 35 rings would give the timber represented, another riven board covering common rafters, an estimated felling date in the range AD 1204-24. The second sample in chronology ELYCSQ07, ELY-C24, is from a choir backboard. This sample has a last measured heartwood ring date of AD 1303, but does not have the heartwood/sapwood boundary. It is thus not possible to estimate its felling date except to say that it is unlikely to be before AD 1312, based on a minimum of nine sapwood rings.

Two samples from the nave roof have been individually dated. ELY-C53 has a last measured ring date of AD 1134 but does not have the heartwood/sapwood boundary and it is thus not possible to reliably estimate its likely felling date range. It is, however, unlikely to have been felled before AD 1149, based on a minimum number of 15 sapwood rings.

Sample ELY-C159 has a last measured, heartwood/sapwood boundary, date of AD 1288. This timber, a riven board, is probably of Baltic origin. It is estimated that this timber has a felling date in the range AD 1297 to AD 1328, this figure based on a sapwood estimate of 9-35 sapwood rings for this region.

A number of other samples from the nave roofs are to be found in the remaining undated site chronologies. These are on occasion, however, to be found mixed with samples from other parts of the cathedral, as in site chronologies ELYCSQ08, or ELYCSQ09.

South transept roof. (bar diagram Fig 10, ELYCSQ03)
Two of the seven dated samples, ELY-C178 and C181, from the south transept roof
in site chronology ELYCSQ03, retain complete sapwood, with last measured ring dates, and thus felling dates, of AD 1425 and AD 1426, respectively. The relative positions of the heartwood/sapwood boundaries on the other dated samples in this site chronology ELYCSQ03 are consistent with a group of timbers having a generally similar felling date.

Lady Chapel roof (ELYCSQ01, SQ02 and SQ05, bar diagram Fig 8, Fig 9, and Fig 12)

Five of the ten samples from the Lady Chapel roof, ELY-C168, C169, C171, C173, and C175, have been dated as part of three different site chronologies. The earliest material from the roof detected in this analysis appears to be represented by samples ELY-C168 and C175, which have heartwood/sapwood boundary dates of AD 1303 and AD 1282 respectively. Using the usual allowance of $15-40$ sapwood rings for these samples would give the respective timbers represented estimated felling dates in the range AD 1318 to AD 1343, and AD 1297 to AD 1322. It is possible that both timbers were felled at the same time between AD 1318 and AD 1322, where the felling date ranges of each sample overlaps.

A further sample from the Lady Chapel, ELY-C171, in site chronology ELYCSQ02, has 19 sapwood rings, with a last measured ring date of AD 1340. Using the same sapwood estimate as above, 15-40 rings, and allowing for the last measured ring date, would give the timber represented by this sample an estimated felling date in the range $A D 1341$ to $A D$ 1361. It is again possible that this timber was felled at the same, or at least a similar time, to those others from the Lady Chapel discussed above.

Two timbers from the Lady Chapel that were certainly felled later are represented by samples ELY-C169 and C173, both in site chronology ELYCSQ05. These two samples both have complete sapwood, and the same last measured ring date of $A D$ 1736. This is thus the felling date for both timbers.

West tower turrets (ELYCSQ10, SQ16, bar diagram Fig17 and Fig 23)

Site chronologies ELYCSQ10 and ELYCSQ16 comprise samples from timbers in the west tower turrets, four stair beams, ELY-C309, C310, C312, and C313, and a small board, ELY-C26. Two of the samples, ELY-C310 and C313, have an average last heartwood ring date of AD 1028. This gives the timbers represented an estimated felling date in the range AD 1043-68. This figure is based on a sapwood range of 15 to 40 rings. Two other timbers, represented by samples ELY-C26 and C312, are probably of Baltic origin, with one certainly, and possibly both, having a felling date of AD 1179.

An attempt to summarise these interpretations, and indicate the felling date, or the estimated felling date range of samples, or groups of samples within the roofs, is given overpage.

Sampling area	Sample numbers	Felling date or felling date range
West tower turrets	$\begin{gathered} \text { C309/310, C313 } \\ \text { C26, C312 } \end{gathered}$	$\begin{gathered} \text { AD } 1043-68 \\ \text { AD } 1179 \end{gathered}$
Nave	$\begin{gathered} \text { C03, C47, C88, C109, C133, } \\ \text { C135, C303, C304, C533 } \end{gathered}$	AD 1105-30
Nave	C524, C525	Probably both samples AD 1223
Nave	C161	AD 1298 - AD 1324
Nave	C01, C04/5, C14, C16, C324, C36-8, C40, C42, C45, C49, C51/2, C54, C58, C65, C71, C74, C81, C87/8, C91-94, C96, C102, 104/5, C108, C110/11, C118, C140, C50107, C509-14, C516/7, C52225, C528, C530-32, C537/8, C540-43, C548/9, C551-56	c AD 1290-AD 1310
Nave	C157, C160, C162	AD 1292 - AD 1318.
Nave	C159	AD 1297-AD 1323
Nave	C149	AD 1343-68
Nave	$\begin{gathered} \text { C151 } \\ \text { C110, C104 } \\ \text { C153 } \end{gathered}$	AD 1751-75 AD 1791, AD 1794 AD 1790 - AD 1815
Lady Chapel roof	$\begin{gathered} \text { C175 } \\ \text { C168 } \\ \text { C171 } \\ \text { C169, C173 } \end{gathered}$	$\begin{gathered} A D 1288-A D 1313 \\ A D 1318-43 \\ A D 1341-61 \\ A D 1736 \end{gathered}$
South transept roof	C177-183	AD 1425, AD 1426
Nave	C53	Not before AD 1149

A bar diagram showing the relative positions of the dated site chronologies and the two samples dated individually is given in the bar diagram, Figure 24.

Conclusion

Analysis by tree-ring dating has produced 16 site chronologies, ELYCSQ01-16. These comprise 108 samples in nine dated site chronologies, with two further samples being dated individually. Seven site chronologies, comprising 21 samples, are undated. There are a further 22 samples that are both ungrouped and undated.

This analysis has provided felling dates, or estimated felling date ranges, for timbers from a number of different locations in the high roofs. As suspected on carpentry and structural ground, tree-ring analysis has shown that these timbers have a wide spread of felling dates, showing the reuse of Romanesque material, early-fourteenth century material, fifteenth-century material, and eighteenth-century repairs.

The earliest material detected in this programme of analysis appears to be that represented by three samples, ELY-C309, C310 and C313, from the turrets of the west tower, with an estimated felling date in the mid- to later-eleventh century, between AD 1043 - 68 . It is possible that these timbers were original to the Romanesque cathedral, which was commenced under Abbot Simeon, and believed to be complete by AD 1109, and that they have been reused in their present location. The west tower turrets contain another early timber, represented by sample ELYC312. This has a last complete sapwood ring date, and thus a felling date of AD 1179.

It is possible that the next latest felling is represented by a group of nine samples from the nave roof, in site chronology ELYCSQ04 (bar diagram Fig 11). It is possible to determine a felling date range for only one of the timbers represented, this being between AD 1105 and AD 1130. Given the degree of cross-matching between the samples, however, it is likely that they represent a near single phase of felling in the early-twelfth century. If this is correct the timbers possibly represent further material from the original Romanesque cathedral, reused in the construction of the later roof.

The next latest material is also found in the nave roof and is represented by samples ELY-C524 and C525 in site chronology ELYCSQ01 (bar diagram Fig 8). Both have almost identical heartwood/sapwood boundaries, suggesting very similar felling dates, with sample ELY-C524 having a complete sapwood ring date, and thus a felling date, of AD 1223. It is possible that these timbers represent material felled for work on the Presbytery, or choir, which was commenced under Bishop Hugh Northwold at about this time and continued into the AD 1250s.

There then follows the felling of the majority of timbers, mainly from the nave roof, as represented by most of those samples in site chronologies ELYCSQ01 and ELYCSQ02 (bar diagram Figs 8 and 9). The felling of these timbers takes place in a fairly narrow time span between about AD 1290 and AD 1310.

Three further samples from the nave roof, represented by ELY-C157, C160 and C162 in site chronology ELYCSQ06 (bar diagram Fig 13), are probably felled at about the same time as the majority of timbers discussed immediately above, and may be
representative of the same phase of work. These timbers, riven boards across the rafter frames have an estimated felling date in the range AD 1292 to AD 1318. It is probable that the timber used for these boards originates in the Baltic region of Europe.
While there is documentary evidence for the mid-thirteenth century work of Bishop Northwold on the Presbytery and west tower, it would appear there is no direct historical context or previous documentary record for this late-thirteenth or earlyfourteenth century work to the nave roof. It is possible that work on the nave was simply a project to replace the old Romanesque nave roof with the more up to date form used in the Presbytery.

An individual sample from the nave roof, ELY-C149, represents an outlier from the many body of felled timber. It is estimated that the timber has a felling date in the range AD 1343 to AD 1358.

The latest material from the nave roof is represented by samples ELY-C104, C110, C151, and C153. The timber represented by sample ELY-C151 has an estimated felling date in the range AD 1751 to AD 1785. Samples, ELY-C110 and C104 represent timbers felled in AD 1791 and AD 1794, respectively. It is likely that the timber represented by sample ELY-C153 was felled at about this time too. The felling of these timbers presumably relates to late-eighteenth century repairs as well.

Elsewhere in the cathedral, the earliest material from the Lady Chapel roof detected in this programme is represented by samples ELY-C168 and C175, which have estimated felling dates in the range AD 1318 to $A D$ 1353, and $A D 1297$ to $A D 1332$. It is possible that both timbers were felled at the same time between AD 1318 and AD 1332, where the felling date ranges of each sample overlap. A further timber from the Lady Chapel, represented by ELY-C171, has an estimated felling date in the range AD 1341-71. It is again possible that this timber was felled at the same or similar time. It is probable that the felling of these timbers is directly related to the construction of the Lady Chapel in the early- to mid-fourteenth century.

Two other timbers from the Lady Chapel, represented by samples ELY-C169 and C173, both with complete sapwood, were felled in AD 1726. These probably represent eighteenth-century repair work.

From the south transept roof come a group of seven dated samples, two of which, ELY-C178 and C181, have complete sapwood. These two samples indicate felling dates of AD 1425 and AD 1426, respectively for the timbers represented. The relative positions of the heartwood/sapwood boundaries on the other dated samples in this site chronology, ELYCSQ03, are consistent with a group of timbers having a very similar, if not identical, felling date. It is possible that these represent repairs or complete renewal of the south transept roof after the undated collapse in this part of the cathedral following an earthquake.

These conclusions may be sumarised as overpage.

Sampling area	Felling date or estimated felling date range	Historical context
West tower turrets	AD 1043-68	Original Romanesque work
Nave roof	AD 1105-30	Original Romanesque work
Nave roof	AD 1223	Material destined for midthirteenth century Presbytery?
Nave roof	c AD 1290 - AD 1310	Replacement of original Romanesque roof
Nave roof	AD 1343-58	Repair timber
Nave roof	$\begin{gathered} \text { AD 1751-85 } \\ \text { AD 1791, AD } 1794 \end{gathered}$	Late-eighteenth century repairs
Lady Chapel roof	Early- to mid-fourteenth century	Original early- to mid-fourteenth century building
	AD 1726, AD 1726	Late-eighteenth century repairs
South transept roof	AD 1425 / AD 1426	Repairs after undated fifteenth century collapse

Two major site chronologies, consisting of 43 and 33 samples respectively have been formed. Although these site chronologies overlap in time, AD 1029 - AD 1328, and AD 1206 - AD 1340, they do not cross-match with each other. This would suggest that the respective timbers of each site chronology come from different localities, some distance apart. From documentary evidence the source of some timber felled in the mid-thirteenth century, and supposedly destined for the west tower and probably the Presbytery also, is known. Two sources are known to be near Alconbury in Huntingdonshire, and Kingswood in Essex. It is possible that some of the latethirteenth and early-fourteenth century timber used in the nave is from the same sources. Judging by the other different groups of samples created, it is possible that other sources of timber are also used.

Certainly one other source that is identified seems to be indicated by the cross-
matching is the Baltic. It is again possible that some of the undated material, both undated site chronologies and single sample are from different sources in Europe.
Thus, using this tree-ring analysis it may be possible to further refine the dates obtained if they can be linked with documentary information for repair or modification. This may aid in the identification of the source roof, or roofs, of the reused material. The documentary sources may also provide information about the woodland sources of this timber.

Of the 22 ungrouped and undated samples almost half have less than 60 rings which, whilst sufficient for satisfactory for analysis, is relatively low. The longest ungrouped and undated sample, ELY-C11, has 123 rings. Some of these longer samples do show some slight distortion, perhaps due to stressed growing conditions, and this might account for them not dating. Many of the other such samples show no problems.

It is possible that the lack of dating for some samples is due to their being of a date and or from an area for which there are no relevant reference chronologies available. Further sampling from Ely Cathedral might help date some of these samples. Given the nature of the material used in the roof and the extent of reused old timbers it is also possible that some of the undated samples represent singletons of diverse date. Such timbers are often difficult to date, particularly when they have lower numbers of growth-rings.

An assessment of fixtures and fittings

Whilst the new programme of tree-ring analysis of the high roofs was in progress the opportunity was taken to examine items within the cathedral under the general heading 'fixtures and fittings', a term that is taken to cover three categories: furniture, panels, and doors, although there are some other timber items. Overall there is nothing that appears at first inspection to be particularly ancient or unusual. There are, however, two interesting features that might repay some dendrochronological investigation, if only to verify their dates with greater certainty, and possibly determine the provenance of the wood used. These are the misericords in the choir, and a muniments chest, currently placed in the south transept.

Misericords and other seats of the choir Figs 25 and 26

The misericords are placed on both sides of the choir in three tiers, or ranks, of seats, with only the rear rank to each side being classic examples. These are of the typical tilting type seat with a slightly dished shelf upon which to rest when stood up. Some of these are believed to be of thirteenth century date, others are believed to be fourteenth century (Fearn, 1997). The undersides of the tilting pieces are decorated with carved figures, leafs, scrolls, and other motifs. It is believed that a study of these has been made, but whether published, or indeed even how available this study is, is not certain.

The misericords, and indeed the stalls in which they are housed, that is the sides and backs of the seats, and the divisions between each seat, all appear to have good ring
counts. They are not exceptionally tight, as might be expected of Baltic timber, but have sufficient rings and should provide good samples. This might suggest they are made from English oak, but again this is unknown.
Sampling could probably be undertaken by taking the seats off their hinges, preparing an edge, and reading in situ with a graticule. It would also be possible to photograph a prepared edge. Similar methods have been successfully applied to misericords in the past, such as those at Southwell Minster in Nottinghamshire, with satisfactory result being obtained. This might be a little more difficult at Ely, however, because of the unusual hinge type. Because small wooded plugs cover the screws, it is difficult to see how the hinges attached to the seat. This is an area that the Clerk of Works may be able to help with. An alternate, and possibly additional, source of samples might be other parts of the stalls. The divisions between them could be cored, with a microborer, near the floor in which case it would not be possible to see the core sites afterwards.

The forward ranks of seating here appear quite different and are probably much more recent. They might be eighteenth century, but it is more likely that they are of nineteenth-century date. It would again probably be possible to get samples by graticule reading. If they are relatively late, it might also be possible to find out from documentary sources where the timber used came from.

The misericords and other seats at Ely Cathedral contain large quantities of oak paneling with posts, rails, and carved decorative pieces. Some portions of it, base or cross rails for example, could be cored and might provide worthwhile samples. Most of the other pieces, however, could not be cored because they are too thin, and edges could only be read with a graticule if the entire structure were taken apart. None of this paneling looks earlier than the nineteenth century, but this would certainly be worth checking if, and when, any work on them is ever undertaken.

Muniments chest, Fig 27

There is also the muniments chest, or 'strong box', currently held in the south transept of the cathedral. This chest is about 2.5 metres long, by about 1 metre wide, and about 0.70 metres deep. It is made up of a number of boards held together by extensive, and impressive, ironwork. It is known as the 'Reformation Chest', because of some believed connection to its possible date, though no authority is certain of its provenance. It appears as if there has been quite a certain amount of patching and splicing in of pieces to it, and many of the timbers have different grain patterns to each other. The lid, and parts of the front in particular, appear to be slightly wide ringed. The side or end pieces on the other hand do appear to have very narrow rings; it is possible that these pieces are of Baltic origin. At the time of assessment the back of the chest was difficult to see, this being against the wall.

Most of the ends of the boards of the muniments chest are covered by metal straps, or are hidden in joints. Fortunately the end, or side, pieces have good areas of exposed rings. These could be prepared fairly easily and read with a graticule. However a potential problem with these pieces is that the exposed edges might not prepare very well and it would be difficult to get a clean, readable surface.

Apart from these larger items there are a number of other candidates for possible tree-ring dating, though possibly no less interesting. There are, for example, a small number of kneelers in the cathedral, possibly eight in total. It is probably unlikely that any of these is any earlier than the nineteenth century, though it is possible that they might be of eighteenth-century date, though again, there is no authoritative view on these items. The majority of these kneelers are oak where the shelf portions of them (where prayer books would be rested) do have exposed ends with quite good ring counts. It would be very easy to take readings of these.

Benches, pews, and other items

There are also a few benches, pews, stands, and small tables or desks that show some areas of end-grain. Each item usually presents only one available edge for sampling, and from the standpoint of tree-ring dating, they generally tend to have low, though probably sufficient, numbers of rings for analysis. Most items show quite clean end-grain surfaces and would need little preparation. These could be quite easily read with a graticule. Most of these items again appear to be nineteenth century, but once again this is not certain.

Graticule readings could also be made quite easily from a very modern looking set of oak benches, steps, and stands currently placed at the crossing. These must have been obtained in the last 10 years or so, and the source of the timber might be known. This source could be English, but it would not be surprising if was foreign. Several very clean edges are available with little preparation being required, with the ring counts certainly looking suitable.

Paneling

Another, rather more remote, possibility for tree-ring analysis is the paneling within the cathedral. This is naturally to be found in great quantities not only in the choir above the misericord stalls, but also in several chapels at Ely. On the whole this again all appears to be of either eighteenth or nineteenth-century date. Apart from a few decorative mouldings there is nothing that looks particularly ancient. Unfortunately, this paneling could not be cored because of its thinness, and it would probably be impossible to get a graticule reading without taking sections of it apart. There might be some elements of various sections that could be core sampled, some posts or rails for example, but they might produce short cores and have too few rings.

Doors

The final items assessed are the doors; there are naturally quite a number of these. All of them appear to be made of rather clean, squarely cut, and well-planed planks, suggesting that they may be of relatively late date. None of the doors appeared stylistically to be of exceptional antiquity. Judging by the grain, the door planks do have quite good ring counts, and they would probably produce suitable tree-ring samples. The problem with these is again that of sampling. A couple of the doors,
particularly the large west door in the Galilee Porch, are in theory thick enough to be cored with a micro-borer. The problem would be in reaching the outer planks through the surrounding architrave, and in coring the inner planks. The planks are all set so closely together that it would be almost impossible to find an edge from which to start drilling. It is unlikely that a graticule reader could be used either, firstly because this would require taking this huge door off its hinges, and secondly there is an architrave strip hiding the bottom and top edges of the door planks.

All the other doors have similar problems. The 'Prior's Door' off the south nave aisle, for example, is again made up of a series of close-set, clean-planned planks that look relatively late. They too appear to have good ring counts. However, it would again be very difficult to core them, and probably impossible to read rings with a graticule because of architrave strips at top and bottom.

Lintels

In connection with the doors it was noted that one or two of them had wooden lintels. The door to the south-west tower stair, the one which leads to the Glass Museum, has what appear to be five, probably reused, timbers in it. These timbers appear to have sufficient rings for satisfactory analysis and consideration might be given to sampling these as well.

Passageway roof

Other wooden objects seen include the new oak beamed roof between the choir aisle and the Lady Chapel. The source of the timber is probably well documented, as of course is its date, the roof being 'unveiled' in AD 2000. Depending on where the wood has come from it might provide some useful modern reference material. This roof could be cored quite easily in the same way as any other.

Shuttering boards, Fig 28

The ceilings vaults of the passageways leading up through the south-west tower have the remains, here and there, of shuttering boards. These are small strips of wood, 3 4 cms wide by about $8-10 \mathrm{cms}$ long, by perhaps 1 cm thick. They are set into the mortar of the vault. Such pieces are seen elsewhere, Lincoln Cathedral for example, but have not been sampled. Usually, and this is the case at Ely Cathedral, they are too small, with low ring counts, or too fragile, to produce useable samples. About six such pieces were seen at Ely Cathedral.

Wall beams, Fig 29

Another area of possible sampling is a series of long oak timbers set horizontally within the walls of the south-west tower, roughly just below bell-chamber level. It is difficult to understand what these timbers do (though them may be some sort of bracing), or how they were put in place. This is in large measure because only parts
of each timber are visible. In some cases timbers cross in front of window openings, and pass through voids cut in the walls. The timbers are fixed at their ends by being tennoned into short cross pieces, which are themselves set in to small voids in the walls of the tower. The tennon of the long pieces pass right through the mortices of the end cross pieces, the tennon being held by a wedge or small chock. The majority of these timbers would probably provide satisfactory tree-ring samples.

Window and door frame

Within the cathedral there is on display an oak window-frame. This is believed to have come from Prior Crauden's Study in the Prior's House, one of the precinct buildings. The frame consists of two upright posts and a lintel, with various carved pieces as decoration. The grain on the uprights suggests quite good ring counts, and it would be easy to core these. The lintel on the other hand looks like it is derived from fast-grown timber and thus likely to have a low number of rings. The decorative pieces could not be cored and could not be read with a graticule unless the frame is partially dismantled. On the basis of stylistic evidence it is believed that this piece dates from c AD 1325.

Also on display is an oak door-frame consisting of two uprights and a lintel, Fig 30. The uprights again look as if they would provide suitable samples for tree-ring analysis, and could be sampled by coring. The lintel appears to have very wide rings and this timber would probably not be worth sampling. No indication of the possible date of this door is given.

Recommendations

If consideration is given to the possibility of sampling any of these items it is recommended that some order or priority might be suggested. This order is based on a combination of factors such as the likely age and interest in the item, the likelihood of obtaining a reliable date, and the difficulty of, or disruption caused by, sampling.

Priority should perhaps be given to the misericords, with sampling to include not only the seats themselves, but also the stalls that house them. Both elements ought to produce useable samples, it is likely that they are the same date, but it is possible that the timber could be from different sources. Analysis will hopefully establish the date of these items more reliably.

Secondly, consideration should be given to sampling the muniments chest. This ought to provide up to six samples with little detrimental impact on the piece. The date of this object appears to be unclear. It is possible that the sampled elements of the chest are of Baltic, or at least European, origin.

Thirdly it is suggested that the sampling of the kneelers set at various points round the cathedral be considered. The dates of items of this nature seem to be at best rather indeterminate, often thought of as being eighteenth or nineteenth century, though usually completely unknown. It is possible that many such items from many other sites are simply discarded as being of no interest. Analysis of some of these
items might establish a more accurate date for this type furniture in general. These would be easy to sample, by reading with a graticule, and would cause little disruption.

Finally, it is suggested that the horizontal beams of the south-west tower might be sampled. It is known that the cathedral suffered earthquake damage in the past and these may have been inserted as a result to 'clamp' and strengthen the stonework.

If further sampling were considered the modern oak stands and steps at the crossing might be the next best candidates, followed by the door and window frames on display. It is not certain where these items have come from, and they would provide only 2 - 3 samples each.

The sampling of the doors is not recommended unless they are thought to be particularly old, or their dates are in dispute. They would in any case be difficult to sample. Nor is the sampling any paneling recommended. It would be pleasing to establish dates for various pieces, but unless they are taken apart it would be difficult to obtain readings. This applies to many of the smaller items of furniture too, assuming of course that they were of interest. The shuttering boards in the ceilings are probably original, but are unlikely to provide satisfactory samples and the sampling of these is not recommend.

In conclusion it is possible to state that the sampling and analysis of additional material from Ely Cathedral, both from the roof and from the fixtures and fittings could have significant benefits. Not only would it help inform the future management of the site but it would provide data on the historic context of the building too. The overall dates, and the possible phases and sequential development of several areas of roofing which are unknown or uncertain at the moment might be more reliably determined. The extent of reuse of earlier material, or the insertion of later repair and alteration material, is also unclear, and this too might be established.

The dating and phasing of several elements of the furniture, fixtures, and fittings is likewise uncertain. There is little scientific evidence for the dating of this class of item, some of them potentially important pieces. It is possible that smaller items, kneelers and pews for example, which are sometimes considered less important, may not receive the conservation and management that they deserve.

The sampling and analysis of these additional roofs, and some elements of furniture and fittings, might go some way to resolving these potential problems.

Bibliography

Alcock, N W, Warwick University, Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Miles D, 1989 - Leverhulme Cruck Project Results: 1988, List 31 no 8, Vernacular Architect, 20, 43-5

Alcock, N W, Warwick University, Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Miles D, 1991 unpubl, unpubl computer file COSBSQ02, Main Street, Cosby, Leics

Arnold, A J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 2004 A Dendrochronological Study of the Monastic Buildings of Ely, Centre for Archaeol Rep, 74/2004

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-EOI, Queens Univ, Belfast

Bridge, M, 1988 The Dendrochronological Dating of Buildings in Southern England, Medieval Archaeol, 32, 166-74

Eckstein, D, 1989, unpubl A master tree-ring chronology for Gdansk, Poland, unpubl computer file GDANSK, Ordinariat für Holzbiologie, Univ Hamburg

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1989 List 29 no 6a - Nottingham University Tree-ring Dating Laboratory Results: general list, Vernacular Architect, 20, 39-43

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 33 no 12a/b - Nottingham University Tree-ring Dating Laboratory Results: general list, Vernacular Architect, 21, 37-40

Fearn, K, 1997 Medieval and later woodwork from the choir in Ely Cathedral, J of the British Archaeol Assoc, CL, 59-75

Fletcher, J, 1977 Tree-ring Chronologies for the 6th to 16 th centuries for oaks of southern and eastern England, J Archaeol Sci, 4, 334-52

Fletcher, J, 1978 unpubl computer file FLE-4M2
Fletcher, J, and Morgan, R, 1981 The dating of doors in the Zouch Chapel, York Minster, Yorks Archaeol Journal, 53, 45-9

Groves, C, Hillam, J, and Pelling-Fulford, F, 1997 Dendrochronology, in Excavations on Reading Waterfront sites 1979-1988 (eds J W Hawkes and P J Fasham), Wessex Archaeol Rep, 5, 64-70

Hillam, J, 1992 Tree-ring analysis of oak timbers in Aspects of Saxo-Norman London III. The Bridgehead and Billingsgate to 1200. (eds K Steedman, T Dyson, and J Schofield) LOMAS special paper 14, 143-73
Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1988 List 27 no 4 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 19, 46-7

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 unpubl site chronology for Hadleigh, Suffolk, unpubl computer file HADLSQ01, Nottingham Univ Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1991 unpubl site chronology from a decorated chest, Ewerby, Nottinghamshire, Nottinghamshire Heritage, 2, 22-3

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 nos 1, 19a/b - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1993a List 48 no 8 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 24, 40-2

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1993b unpubl site chronology for Quenby Hall, Leicestershire, unpubl computer file QNBYHSQ01, Nottingham Univ Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 no 10 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 27, 78-81

Howard, R E, Laxton, R R, and Litton, C D, 1997a Tree-ring analysis of timbers from Westwick Cottage, Westwick Row, Leverstock Green, Hemel Hempstead, Hertfordshire, Anc Mon Lab Rep, 77/97

Howard, R E, Laxton, R R, and Litton, C D, 1997b Tree-ring analysis of timbers from Ware Priory, High Street, Ware, Hertfordshire, Anc Mon Lab Rep, 84/97

Howard, R E, Laxton, R R, and Litton, C D, 1998 Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, $30 / 98$

Howard, R E, Laxton, R R, and Litton, C D, 2000a Tree-ring analysis of timbers from the Presbytery roof, Abbey Church of St Alban's, St Albans, Hertfordshire, Anc Mon Lab Rep, 28/2000

Howard, R E, Laxton, R R, and Litton, C D, 2000b Tree-ring analysis of timbers from Stoneleigh Abbey, Stoneleigh, Warwickshire, Anc Mon Lab Rep, 80/2000

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and

Archaeol Studies, Monograph Series, III
Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for oak, 1158-1540, Medieval Archaeol, 33, 90-8

Nayling, N, 1999 Tree-ring analysis of timbers from Ely Forehill, Ely, Cambridgeshire, Anc Mon Lab Rep, 48/1999

Tyers, I, 1997a Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

Tyers, I, 1997b Updated dendrochronology archive for MoLAS project 53a Medieval London Bridge, ARCUS Rep 257

Tyers, I, 1999 Tree-ring analysis of oak timbers from Peterborough Cathedral, Peterborough, Cambridgeshire; structural timbers from the nave roof and north-west portico, Anc Mon Lab Rep, 9/1999

Tyers, I, and Boswijk, G, 1997 Dendrochronological spot dates for 30 timbers from Bull Wharf (BUF90 and UPT90), City of London and Belvedere Road (BVD97), Waterloo, ARCUS Rep 335

Tyers, I, and Groves C, 1999 unpubl England London, unpubl computer file LON1175, Sheffield Univ

Tyers, I, and Hibbard, H, 1993 Dendrochronology, wood identification, and wattle analysis for the Fleet Valley developers report, MoLAS Dendrochronology Rep, DEN03.93

Table 1: Details of samples from the high roofs of Ely Cathedral

Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
ELY-C01	North lower rafter, frame 7	101	h / s	AD 1156	AD 1256	AD 1256
ELY-C02	North rafter, frame 4	nm	---	------	------	------
ELY-C03	North upper rafter, frame 15	100	no h/s	AD 966	------	AD 1065
ELY-C04	South rafter, frame 14	230	h / s	AD 1029	AD 1258	AD 1258
ELY-C05	South rafter, frame 5	82	h / s	AD 1190	AD 1271	AD 1271
ELY-C06	South rafter, frame 4	nm	---	-------	------	-------
ELY-C07	South rafter, frame 6	98	no h/s	------	------	-----
ELY-C08	North rafter, frame 5	nm	---	-------	------	------
ELY-C09	South ashlar, frame 18	nm	---	------	-------	------
ELY-C10	North rafter, frame 6	nm	---	-------	------	-------
ELY-C11	South sole piece, frame 3	123	23C	-------	------	-------
ELY-C12	North sole piece, frame 6	82	2	\cdots	------	------
ELY-C13	North sole piece, frame 11	81	h/s	---	------	-
ELY-C14	North sole piece, frame 13	133	h / s	AD 1124	AD 1256	AD 1256
ELY-C15	South ashlar, frame 20	nm	---	---	-----	--
ELY-C16	South ashlar, frame 28	70	14	AD 1220	AD 1275	AD 1289
ELY-C17	North rafter, frame 28	nm	---	------	------	------
ELY-C18	South rafter, frame 31	nm	---	------	------	------
ELY-C19	North sole piece, frame 30	nm	---	------	-----	------
ELY-C20	South sole piece, frame 31	nm	---	------	------	------
ELY-C21	North rafter, frame 34	nm	---	\cdots	------	-

Table 1: continued

Sample number

ELY-C22
ELY-C23
ELY-C24
ELY-C25
ELY-C26
ELY-C27

Sample location
Nave roof
Block, frame 18-19, south side 13
North sole piece, frame 18
Choir stall back-board
North sole piece, frame 37
Small board, west tower turret
North lower rafter, frame 31
North rafter, frame 18
North scissor brace, frame 18
North scissor brace, frame 19
Lower collar, frame 15
South scissor brace, frame 28
Lower collar, frame 28
Lower collar, frame 30
South scissor brace, frame 30
Upper collar, frame 30
Upper collar, frame 34
South scissor brace, frame 34
Upper collar frame 34
Lower collar, frame 34
North rafter, frame 35
North sole piece, frame 35
nm
Total rings
*Sapwood rings

no h/s	------
no h/s	AD 1097
h/s	AD 1088
---	------
---	------
---	------
---	------
---	------
8	AD 1220
22 C	AD 1222
23 C	AD 1220
---	--
2	AD 1209
29 C	AD 1223
4	AD 1207
---	-----
2	AD 1222

Last heartwood
ring date
Last measured ring date

ELY-C29
ELY-C30
ELY-C31
ELY-C32
ELY-C33
ELY-C34
ELY-C35
ELY-C36
ELY-C37
ELY-C38
ELY-C39
ELY-C40
ELY-C41
ELY-C42

Table 1: continued

	Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	ELY-C43	South rafter, frame 36	nm	---	------	-------	-------
	ELY-C44	South sole piece, frame 36	74	h/s	-------		
	ELY-C45	South sole piece, frame 37	83	8	AD 1191	AD 1265	AD 1273
	ELY-C46	North sole piece, frame 37	nm	---		------	------
	ELY-C47	Support, frame 37	98	no h/s	AD 904	------	AD 1001
	ELY-C48	South rafter, frame 37	nm	---	---	------	------
	ELY-C49	North sole piece, frame 38	65	h/s	AD 1217	AD 1281	AD 1281
N	ELY-C50	South sole piece, frame 39	105	21 C	-----	------	------
	ELY-C51	South ashlar, frame 39	68	16C	AD 1235	AD 1286	AD 1302
	ELY-C52	South rafter, frame 39	85	h/s	AD 1201	AD 1285	AD 1285
	ELY-C53	North sole piece, frame 39	133	no h/s	AD 1002	--	AD 1134
	ELY-C54	North rafter, frame 39	78	h / s	AD 1196	AD 1273	AD 1273
	ELY-C55	North sole piece, frame 40	66	h / s	------	-------	- ----
	ELY-C56	South sole piece, frame 40	nk	---	-------	------	------
	ELY-C57	South ashlar, frame 40	nk	---	--------	-------	------
	ELY-C58	North rafter, frame 40	82	h/s	AD 1194	AD 1275	AD 1275
	ELY-C59	North scissor brace, frame 40	nk	---	-------	------	-------
	ELY-C60	South scissor brace, frame 40	nk	---	------	-------	-----
	ELY-C61	North sole piece, frame 40	nk	---	------	-------	------
	ELY-C62	North rafter, frame 41	nk	---	------	------	-----
	ELY-C63	North sole piece, frame 41	nk	---	-----	------	------

Table 1: continued

Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
ELY-C64	North rafter, frame 42	nk	---			
ELY-C65	North ashlar piece, frame 43	81	15C	AD 1223	AD 1288	AD 1303
ELY-C66	North rafter plate, frame 42	nk	---	------	-------	------
ELY-C67	North sole piece, frame 43	67	h/s	------	------	------
ELY-C68	North sole piece, frame 44	nk	---	------	-------	------
ELY-C69	North plank frame 45-50	nm	---	------	------	\cdots
ELY-C70	Plank, location uncertain	55	9	------	------	
ELY-C71	South rafter, frame 41	87	h/s	AD 1203	AD 1289	AD 1289
ELY-C72	South sole piece, frame 41	153	h/s	------	------	-------
ELY-C73	South rafter, frame 42	nk	---		------	
ELY-C74	North scissor brace, frame 42	70	5	AD 1219	AD 1283	AD 1288
ELY-C75	South sole piece, frame 43	nk	---	------	-------	------
ELY-C76	South rafter, frame 44	nk	--	------	------	-------
ELY-C77	South sole piece, frame 45	nk	---	------	------	------
ELY-C78	South sole piece, frame 46	nk	---	------	\cdots	-------
ELY-C79	North sole piece, frame 46	nk	--	------	-----	------
ELY-C80	North scissor brace, frame 47	69	2	------	------	-----
ELY-C81	North sole piece, frame 47	62	h/s	AD 1217	AD 1278	AD 1278
ELY-C82	South rafter, frame 47	nm	--	------	-----	------
ELY-C83	Lower collar, frame 50	nm	---	------	------	---
ELY-C84	North sole piece, frame 52	76	23	-------	------	-----

Table 1: continued

	Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	ELY-C85	North aisle rafter	63	8	------	------	------
	ELY-C86	North sole piece, frame 45	nm	---		-------	
	ELY-C87	South rafter, frame 51	95	h / s	AD 1195	AD 1289	AD 1289
	ELY-C88	North lower rafter, frame 52	126	no h/s	AD 908	----	AD 1033
	ELY-C89	South scissor brace, frame 53	nm	---	-------	------	-------
	ELY-C90	North scissor brace, frame 53	nm	---	-------	-------	
ヘ	ELY-C91	North rafter, frame 53	89	21C	AD 1214	AD 1281	AD 1302
	ELY-C92	South rafter, frame 53	68	h/s	AD 1218	AD 1285	AD 1285
	ELY-C93	North rafter, frame 54	80	h/s	AD 1204	AD 1283	AD 1283
	ELY-C94	North rafter, frame 55	84	2	AD 1202	AD 1283	AD 1285
	ELY-C95	North sole piece, frame 56	85	no h/s		------	------
	ELY-C96	North rafter, frame 56	62	no h/s	AD 1208	------	AD 1269
	ELY-C97	Lower collar, frame 56	nm	---	-------	\cdots	------
	ELY-C98	South rafter, frame 57	nm	---	-------	------	-------
	ELY-C99	North sole piece, frame 57	nm	---	-----	------	-----
	ELY-C100	North sole piece, frame 58	nm	---	------	------	------
	ELY-C101	North rafter, frame 58	nm	---	-----	------	
	ELY-C102	South rafter, frame 58	75	h/s	AD 1205	AD 1279	AD 1279
	ELY-C103	South rafter, frame 58	nm	-	------	-----	------
	ELY-C104	South firring piece 59	105	22C	AD 1690	AD 1772	AD 1794
	ELY-C105	South rafter, frame 59	86	2	AD 1200	AD 1283	AD 1285

Table 1: continued

Sample location
Nave roof

ELY-C106 ELY-C108 ELY-C109
ELY-C110
ELY-C111
ELY-C112
Sample
number

ELY-C113
ELY-C114
ELY-C115
ELY-C116
ELY-C117
ELY-C118
ELY-C119
ELY-C120
ELY-C121
ELY-C122
ELY-C123
ELY-C124
ELY-C125
ELY-C126

Sample location Nave roof Total rings	
South sole piece, frame 59	91
North rafter, frame 60	nm
South sole piece, frame 61	86
North rafter, frame 62	156
Plank to south aisle frame 62	102
North sole plate, frame 62	113
South sole piece, frame 62	nm
North rafter, frame 63	nm
North rafter, frame 64	nm
South ashlar, frame 64	165
North rafter, frame 64	nm
North rafter, frame 65	nm
North rafter, frame 65	77
South scissor brace, frame 62	nm
South rafter, frame 63	nm
South scissor brace, frame 63	63
South sole piece, frame 65	nm
Lower collar, frame 65	nm
South scissor brace, frame 65	nm
South rafter, frame 65	nm
South sole piece, frame 66	nm

$\begin{array}{cccc}\text { *Sapwood } & \begin{array}{c}\text { First measured } \\ \text { rings }\end{array} & \begin{array}{c}\text { Last heartwood } \\ \text { ring date }\end{array} & \text { ring date }\end{array} \quad$ ring date

no h/s	----	-----	------
---	------	------	-
17C	AD 1216	AD 1284	AD 1301
no h/s	AD 911	------	AD 1066
15C	AD 1690	AD 1776	AD 1791
h / s	AD 1166	AD 1278	AD 1278
---	------	------	------
---	--	------	---
--	----	------	----
h/s	-----	------	----
---	------	-----	------
--	-------	------	-----
h/s	AD 1204	AD 1280	AD 1280
--	-------	------	------
nors	------	---	---------
----	-----	------	--------
---	------	------	------
---	-----	------	------
--	---	--	------

Table 1: continued
Sample
number

ELY-C127
ELY-C128 ELY-C129 ELY-C130
ELY-C131 ELY-C132 ELY-C133

Sample location
Nave roof
South sole piece, frame 57
North sole piece, frame 67
North scissor brace, frame 67
South sole piece, frame 68
Upper collar, frame 68
North sole piece, frame 68
North rafter, frame 68
North scissor brace, frame 69
North sole piece, frame 69
Board support north, frame 69
North scissor brace, frame 71
South sole piece, frame 71
South scissor brace, frame 71
North sole plate, frame 72
South scissor brace, frame 72
North sole piece, frame 74
Strut to north rafter, frame 74
South scissor brace, frame 75
North scissor brace, frame 75
North sole piece, frame 76
North rafter, frame 76

Total rings
*Sapwood
rings

nm	---	-----
nm	---	------
61	11	------
nm	---	------
nm	---	------
nm	---	
185	h/s	AD 906
nm	---	-------
116	no h/s	AD 89
nm	--	----
nm	---	-----
nm	---	------
nm	---	-----
81	h / s	AD 120
nm	---	-----
83	no h/s	-----
nm	---	------

Table 1: continued

	Sample number
	ELY-C148
	ELY-C149
	ELY-C150
	ELY-C151
	ELY-C152
	ELY-C153
	ELY-C154
W	ELY-C155
	ELY-C156
	ELY-C157
	ELY-C158
	ELY-C159
	ELY-C160
	ELY-C161
	ELY-C162
	ELY-C163
	ELY-C164
	ELY-C165
	ELY-C166
	ELY-C167

Sample location
Nave roof
ELY-C148 ELY-C151 ELY-C152 ELY-C153 ELY-C154 ELY-C156 ELY-C157 ELY-C159 ELY-C160 ELY-C161 ELY-C162 ELY-C163 ELY-C164 ELY-C166 ELY-C167

Total rings

$\begin{array}{cccc}\text { *Sapwood } & \begin{array}{c}\text { First measured } \\ \text { rings }\end{array} & \begin{array}{c}\text { Last heartwood } \\ \text { ring date }\end{array} & \begin{array}{c}\text { Last measured }\end{array} \\ \text { ring date }\end{array}$

Table 1: continued
Sample
number

ELY-C168
ELY-C169
ELY-C170
ELY-C171
ELY-C172
ELY-C173
ELY-C174
ELY-C175
ELY-C176
ELY-C185

ELY-C177
ELY-C178
ELY-C179
ELY-C180
ELY-C181
ELY-C182
ELY-C183

\quad| Sample location |
| :--- |
| \quad Lady Chapel roof |
| North wall plate at west end |
| Tiebeam at west end |
| Upper wall plate, north side |
| Lower wall plate north side |
| Lower collar truss 1 |
| Ridge, truss $1-3$ |
| Lower wall plate, south side |
| Upper wall plate, south side |
| Parapet tie, south side |
| Upper purlin east side bay 3 |

Total
rings
*Sapwood

rings \quad\begin{tabular}{c}
First measured

ring date

Last heartwood

ring date

Last measured

ring date
\end{tabular}

South transept roof
East rafter 1, bay 5

West rafter 2 , bay 4
West rafter 3 , bay 5
99
West rafter 1 , bay 5
61
East rafter 2, bay 5
East rafter 4, bay 5
112
East principal brace truss 5

h/s	AD 1338
33C	AD 1327
h / s	AD 1341
h/s	AD 1338
18C	AD 1315
h/s	AD 1334
no h/s	AD 1317

AD 1404
AD 1404
AD 1392
AD 1425
AD 1401
AD 1401
AD 1406
AD 1406
AD 1408
AD 1426
AD 1409
AD 1409
AD 1388

Table 1: continued

Sample number	Sample location
ELY-C302	North lower rafter, frame 76
ELY-C303	North upper rafter, frame 52
ELY-C304	South lower rafter, frame 15

West tower turrets

ELY-C305	North east turret, stair beam 103
ELY-C306	North west turret, stair beam 107
ELY-C307	North west turret, stair beam 110
ELY-C308	North west turret, stair beam 109
ELY-C309	North west turret, stair beam 108
ELY-C310	North east turret, stair beam 91
ELY-C311	South east turret, stair beam 95
ELY-C312	North west turret, stair beam 56
ELY-C313	North east turret, stair beam 78

*Sapwood

rings \begin{tabular}{cccc}
First measured

ring date

\quad

Last heartwood

ring date

\quad

Last measured

ring date
\end{tabular}

nm	---		----	----	----
nm	---		---	-	---
nm					
nm					
nm	---			------	----
64	no h/s	AD	933	------	AD 996
72	h / s	AD	957	AD 1028	AD 1028
96	no h/s		----	-----	------
161	29 C	AD	1019	AD 1150	AD 1179
92	h / s	AD	936	AD 1027	AD 1027

Table 1: continued

Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
ELY-C501	North upper rafter, frame 7	80	h/s	AD 1182	AD 1261	AD 1261
ELY-C502	South rafter, frame 7	72	h / s	AD 1196	AD 1267	AD 1267
ELY-C503	South rafter, frame 9	95	h / s	AD 1161	AD 1255	AD 1255
ELY-C504	North rafter, frame 14	211	h/s	AD 1046	AD 1256	AD 1256
ELY-C505	North rafter, frame 16	70	2	AD 1212	AD 1279	AD 1281
ELY-C506	South rafter, frame 16	79	h/s	AD 1202	AD 1280	AD 1280
ELY-C507	North rafter, frame 29	54	h / s	AD 1228	AD 1281	AD 1281
ELY-C508	Upper collar, frame 29	78	h / s	------	----	------
ELY-C509	North rafter, frame 30	64	h/s	AD 1217	AD 1280	AD 1280
ELY-C510	North rafter, frame 31	68	h / s	AD 1211	AD 1278	AD 1278
ELY-C511	South rafter, frame 31	54	h/s	AD 1231	AD 1284	AD 1284
ELY-C512	Upper collar, frame 31	54	6	AD 1239	AD 1286	AD 1292
ELY-C513	Upper collar, frame 33	58	6	AD 1229	AD 1280	AD 1286
ELY-C514	South rafter, frame 33	65	h / s	AD 1223	AD 1287	AD 1287
ELY-C515	Upper collar, frame 36	58	1	-----	------	------
ELY-C516	Upper collar, frame 64	95	h/s	AD 1179	AD 1273	AD 1273
ELY-C517	Upper collar, frame 66	89	13	AD 1208	AD 1283	AD 1296
ELY-C518	North rafter, frame 67	54	h / s	-------	-------	------
ELY-C519	Upper collar, frame 67	54	h/s	------	------	------
ELY-C520	South rafter, frame 67	56	h/s	------	-------	------
ELY-C521	South rafter, frame 68	54	h/s	-----	------	-----

Table 1: continued

Table 1: continued

	Sample number	Sample location Nave roof	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	ELY-C543	Lower collar, frame 29	63	h / s	AD 1230	AD 1292	AD 1292
	ELY-C544	Lower collar, frame 31	54	11	------	-------	------
	ELY-C545	North rafter, frame 32	54	h / s	\cdots	-----	------
	ELY-C546	Upper collar, frame 32	nm	---	-------	------	-------
	ELY-C547	North rafter, frame 33	nm	---			
	ELY-C548	North rafter, frame 34	61	h/s	AD 1222	AD 1282	AD 1282
	ELY-C549	North rafter, frame 35	56	h/s	AD 1230	AD 1285	AD 1285
$\underset{\sim}{\sim}$	ELY-C550	South rafter, frame 35	54	h / s	------	------	------
	ELY-C551	Upper collar, frame 35	70	19	AD 1217	AD 1267	AD 1286
	ELY-C552	Lower collar, frame 37	83	16	AD 1217	AD 1283	AD 1299
	ELY-C553	South rafter, frame 38	65	h / s	AD 1219	AD 1283	AD 1283
	ELY-C554	North rafter, frame 38	60	h / s	AD 1215	AD 1274	AD 1274
	ELY-C555	Upper collar, frame 42	58	no h/s	AD 1217	--	AD 1274
	ELY-C556	Upper collar, frame 43	60	no h / s	AD 1170	------	AD 1229

* $h / s=$ the heartwood/sapwood boundary is the last ring on the sample $C=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber
$\mathrm{nm}=$ sample not measured
$\mathrm{nk}=$ sample not kept due to having less than 50 rings

Table 2: Results of the cross-matching of site chronology ELYCSQ01 and relevant reference chronologies when first ring date is AD 1029 and last ring date is AD 1328
\quad Reference chronology
Chichester Cathedral, West Sussex
St Albans Cathedral, Herts
England London
Reading Waterfront, Berks
Butter Market, Thame, Oxon
Southern England
East Midlands
Chicksands Priory, Beds
Span of chronology t-value

AD 1173-1295	10.3	(Howard et al 1992)
AD 1060-1262	9.3	(Howard et al 2000a)
AD 413-1728	8.7	(Tyers and Groves 1999 unpubl)
AD 1160-1407	8.0	(Groves et al 1997)
$A D 1161-1289$	7.9	(Howard et al 1993a)
AD 1083-1981	7.6	(Bridge 1988)
AD $882-1981$	7.1	(Laxton and Litton 1988)
AD 1200-1541	7.0	(Howard et al 1998)

Table 3: Results of the cross-matching of site chronology ELYCSQ02 and relevant reference chronologies when first ring date is AD 1206 and last ring date is AD 1340
\quad Reference chronology
Reading Waterfront, Berks
Southern England
East Midlands
Kent-88
England London
Donnington-le-Heath Manor, Leics
Cross Keys Inn, Leicester
England

Span of chronology t-value

AD $1160-1407$	6.4	(Groves et al 1997)
AD 1083-1981	5.8	(Bridge 1988)
AD	$882-1981$	5.5

Table 4: Results of the cross-matching of site chronology ELYCSQ03 and relevant reference chronologies when first ring date is AD 1315 and last ring date is AD 1426

Reference chronology	Span of chronology	t-value	
Ware Priory, Ware, Herts	AD 1223-1416	8.7	(Howard et al 1997b)
England London	AD 413-1728	7.1	(Tyers and Groves 1999 unpubl)
19, Henley Street Alcester, Warwicks	$A D 1322-1393$	6.4	(Alcock et al 1989)
Southern England	AD 1083-1981	6.4	(Bridge 1988)
East Midlands	AD 882-1981	6.1	(Laxton and Litton 1988)
Chicksands Priory, Beds	AD 1200-1541	6.1	(Howard et al 1998)
Sinai Park, Staffs	AD 1227-1750	5.7	(Tyers 1997a)
Reading Waterfront, Berks	AD 1160-1407	5.7	(Groves et al 1997)

Table 5: Results of the cross-matching of site chronology ELYCSQ04 and relevant reference chronologies when first ring date is AD 891 and last ring date is AD 1090

Reference chronology	Span of chronology	t-value	
London Fennings Wharf	AD $802-1354$	10.9	(Tyers 1997b)
England London	AD $413-1728$	10.5	(Tyers and Groves 1999 unpubl)
London Fleet Valley	AD $745-1226$	9.6	(Tyers and Hibbard 1993)
London Billingsgate	AD $611-1243$	9.5	(Hillam 1992)
London Bull Wharf	AD $620-1181$	8.0	(Tyers and Boswijk1997)
Westwick Cottage, Hemel Hempstead, Herts	AD $940-1179$	6.6	(Howard et al 1997a)
Hansacre Hall, Staffs	AD $965-1279$	5.3	(Esling et al 1990)

Table 6: Results of the cross-matching of site chronology ELYCSQ05 and relevant reference chronologies when first ring date is AD 1592 and last ring date is AD 1794

Reference chronology	Span of chronology	t-value	
Old Barn, Stratford upon Avon, Warwicks	AD 1591-1735	9.8	(Howard et al 1996)
East Midlands	AD $882-1981$	9.7	(Laxton and Litton 1988)
Main Street, Cosby, Leics	AD 1642-1734	9.5	(Alcock et al 1991 unpubl)
Quenby Hall, Leics	AD 1575-1724	9.2	(Howard et al 1993b)
Chicksands Priory, Beds	AD 1670-1814	8.4	(Howard et al 1998)
Stoneleigh Abbey, Stoneleigh, Warwicks	AD $1646-1813$	8.2	(Howard et al 2000b)
Burleigh House, Burleigh, Cambs	AD $1686-1809$	7.2	(Howard et al 1992)
England	AD $401-1981$	5.6	(Baillie and Pilcher 1982 unpubl)

Table 7: Results of the cross-matching of site chronology ELYCSQ06 and relevant reference chronologies when first ring date is AD 1109 and last ring date is AD 1289

Reference chronology Span of chronology t-value

| GDANSK | AD $996-1985$ | 5.1 | (Eckstein 1989 unpubl) |
| :--- | :--- | :--- | :--- | :--- |
| FLE-4M2 | AD $1131-1350$ | 4.6 | (Fletcher 1978 unpubl) |
| YOR-Z01M | AD 1113-1381 | 4.5 | (Fletcher and Morgan 1981) |
| BALTIC | AD 1156-1697 | 4.3 | (Tyers and Groves pers comm) |
| REF-7 | AD $993-1267$ | 4.1 | (Fletcher 1977) |

Table 8: Results of the cross-matching of site chronology ELYCSQ07 and relevant reference chronologies when first ring date is AD 1097 and last ring date is AD 1303

Reference chronology	Span of chronology	t-value	
GDANSK	AD $996-1985$	8.1	(Eckstein 1989 unpubl)
FLE-4M2	AD 1131-1350	7.5	(Fletcher 1978)
BALTIC	AD 1156-1697	6.3	(Tyers and Groves pers comm)
Ewerby, Notts	AD 1174-1314	6.2	(Howard et al 1991)
Hadleigh, Suffolk	AD 1157-1431	4.7	(Howard et al 1990 unpubl)

Table 9: Results of the cross-matching of site chronology ELYCSQ10 and relevant reference chronologies when first ring date is AD 1019 and last ring date is AD 1179

Reference chronology	Span of chronology	t-value	
Angle Choir, Lincoln Cathedral	AD $912-1248$	8.1	(Laxton and Litton 1988)
Peterborough Cathedral, Cambs	AD $887-1225$	8.0	(Tyers 1999)
St Hugh's Choir, Lincoln Cathedral	AD $882-1191$	7.8	(Laxton and Litton 1988)
East Midlands	AD $882-1981$	7.5	(Laxton and Litton 1988)
ENYO67	AD $440-1823$	6.7	(Tyers and Groves pers com)
Forehill, Ely, Cambs	AD $963-1128$	6.7	(Nayling 1999)
Enmw89	AD $860-1790$	5.4	(Tyers and Groves pers com)
England	AD $401-1981$	5.0	(Baillie and Pilcher 1982 unpubl)

Table 10: Results of the cross-matching of site chronology ELYCSQ16 and relevant reference chronologies when first ring date is AD 933 and last ring date is AD 1028

| Reference chronology | Span of chronology | t-value | |
| :--- | :---: | :---: | :--- | :--- |
| | | | |
| East Midlands | AD 882-1981 | 8.3 | (Laxton and Litton 1988) |
| St Hugh's Choir, Lincoln Cathedral | AD 882-1191 | 7.6 | (Laxton and Litton 1988) |
| London Fleet Valley | AD $745-1226$ | 6.4 | (Tyers and Hibbard 1993) |
| Angle Choir, Lincoln Cathedral | AD $912-1248$ | 5.8 | (Laxton and Litton 1988) |
| England London | AD $413-1728$ | 5.3 | (Tyers and Groves 1999 unpubl) |
| London Fennings Wharf | AD $802-1354$ | 5.1 | (Tyers 1997b) |
| London Bull Wharf | AD $620-1181$ | 5.0 | (Tyers and Boswijk1997) |

Table 11: Results of the cross-matching of sample ELY-C53 and relevant reference chronologies
when first ring date is AD 1002 and last ring date is AD 1134

| Reference chronology | Span of chronology | t-value | |
| :--- | :---: | :---: | :---: | :--- |
| St Hugh's Choir. Lincoln Cathedral | AD $882-1191$ | 7.1 | (Laxton and Litton 1988) |
| ENYO67 | AD $440-1823$ | 7.0 | (Tyers and Groves pers com) |
| East Midlands | AD $882-1981$ | 6.4 | (Laxton and Litton 1988) |
| Peterborough Cathedral, Cambs | AD $887-1225$ | 5.9 | (Tyers 1999) |
| Angle Choir, Lincoln Cathedral | AD $912-1248$ | 5.7 | (Laxton and Litton 1988) |
| ENNW0245 | AD $892-1618$ | 5.7 | (Tyers and Groves pers com) |
| Forehill, Ely, Cambs | AD $963-1128$ | 4.8 | (Nayling 1999) |

Table 12: Results of the cross-matching of sample ELY-C159 and relevant reference chronologies when first ring date is AD 1133 and last ring date is AD 1288

Reference chronology Span of chronology t-value

GDANSK	AD $996-1985$	7.1	(Eckstein 1989 unpubl)
Hadleigh, Suffolk	AD 1157-1431	5.3	(Howard et a/ 1990 unpubl)
FLE-4M2	AD 1131-1350	5.2	(Fletcher 1978)
BALTIC	AD 1156-1697	4.7	(Tyers and Groves pers comm)
Ewerby, Notts	AD 1174-1314	4.1	(Howard et al 1991)

Figure 1: Map to show general location of Ely Cathedral

Figure 2: General plan of Ely Cathedral.

Figure 3a: View of the nave roof looking west to east at walk-way level. (© Crown copyright. NMR. BB87/7303)

Figure 3b: Photograph of the south side of the nave roof at wall plate level taken during repairs. (© Crown copyright. NMR. BB87/7319)

Figure 3c: Photograph of the nave roof showing the crossing of the scissor braces just above the level of the ceiling. (© Crown copyright. NMR. BB87/7325)

Figure 4: Photograph of the Lady Chapel roof showing the modern softwood trusses. (© Crown copyright. NMR. BB88/5843)

Figure 5: Drawing of a typical truss in the Lady Chapel roof (after Elaine Guilding)

$$
10 \text { 5 } 4
$$

50 feet

Figure 6: Plan of the Lady Chapel roof showing approximate location of sampled timbers (after Purcell, Miller, Tritton, and Partners)

Figure 7: Photograph of the Presbytery Roof. (© Crown copyright. NMR. BB98/17656)

Figure 8: Bar diagram of the samples in site chronology ELYCSQO1 in last measured ring position

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$C=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 9: Bar diagram of the samples in site chronology ELYCSQO2 in last measured ring position

[^0]Figure 10: Bar diagram of the samples in site chronology ELYCSQ03

Figure 11: Bar diagram of the samples in site chronology ELYCSQ04

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Figure 12: Bar diagram of the samples in site chronology ELYCSQ05

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 13: Bar diagram of the samples in site chronology ELYCSQ06

\% Figure 14: Bar diagram of the samples in site chronology ELYCSQ07

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Figure 15: Bar diagram of the samples in site chronology ELYCSQ08

Figure 16: Bar diagram of the samples in site chronology ELYCSQ09

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 17: Bar diagram of the samples in site chronology ELYCSQ10

Figure 18: Bar diagram of the samples in site chronology ELYCSQ11

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 19: Bar diagram of the samples in site chronology ELYCSQ12

Offset					C174			Total rings	Relative heartwood/sapwood boundary position
96							h / s	54	150
$00 \triangle$ C72							h / s	153	153
L	1	1	1	1	1	1	1		
00	20	40	60	80	100	120	140	years	lative

Figure 20: Bar diagram of the samples in site chronology ELYCSQ13

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 21: Bar diagram of the samples in site chronology ELYCSQ14

Off-
set

36

Figure 22: Bar diagram of the samples in site chronology ELYCSQ15

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Figure 23: Bar diagram of the samples in site chronology ELYCSQ16
Off-
set
white bars $=$ heartwood rings, shaded area $=$ sapwood rings
i $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

Figure 24: Bar diagram to show relative position of the nine dated site chronologies, and the two individually dated samples

Figure 25: A view of the choir stalls. (© Crown copyright. NMR. BB94/2760)

Figure 26: Photograph of a typical misercord. (© Crown copyright. NMR. AA66/860)

Figure 27: The muniments chest (photo Dr Peter Marshall)

Figure 28: Photograph showing the remains of two shuttering boards (photo Dr Peter Marshall)

Figure 29: Photograph of the horizontal beams in the south-west tower (photo Dr Peter Marshall)

Figure 30: Door frame (photo Dr Peter Marshall)

Figure 31a: Nave roof, frame 2 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31b: Nave roof, frame 3 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31c: Nave roof, frame 4 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31d: Nave roof, frame 5 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31e: Nave roof, frame 6 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31f: Nave roof, frame 7 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 31g: Nave roof, frame 9 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 31 h : Nave roof, frame 11 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 31i: Nave roof, frame 13 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31j: Nave roof, frame 14 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 31 k : Nave roof, frame 15 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31: Nave roof, frame 16 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31m: Nave roof, frame 17 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31 n : Nave roof, frame 18 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 310: Nave roof, frame 19 showing sampled timbers
(after Elaine Guilding) (viewed from the west looking east)

Figure $\mathbf{3 1}$ p: Nave roof, frame $\mathbf{2 0}$ showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31q: Nave roof, frame 22 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31r: Nave roof, frame 23 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 31s: Nave roof, frame 24 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31t: Nave roof, frame 28 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31u: Nave roof, frame 29 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31 v : Nave roof, frame 30 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31w: Nave roof, frame 31 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31x: Nave roof, frame 32 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31y: Nave roof, frame 33 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 31z: Nave roof, frame 34 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 32a: Nave roof, frame 35 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32b: Nave roof, frame $\mathbf{3 6}$ showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32c: Nave roof, frame 37 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32d: Nave roof, frame 38 showing sampled timbers (after Elaine Guilding)

Figure 32e: Nave roof, frame 39 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 32f: Nave roof, frame 40 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32g: Nave roof, frame 41 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 32h: Nave roof, frame 42 showing sampled timbers (after Elaine Guilding)

Figure 32i: Nave roof, frame 43 showing sampled timbers (after Elaine Guilding)

Figure 32j: Nave roof, frame 44 showing sampled timbers (after Elaine Guilding)

Figure 32k: Nave roof, frame 45 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

107

Figure 321: Nave roof, frame 46 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 32m: Nave roof, frame 47showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure $\mathbf{3 2 n}$: Nave roof, frame $\mathbf{5 0}$ showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 320: Nave roof, frame 51 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32p: Nave roof, frame 52 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 32q: Nave roof, frame 53 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 32r: Nave roof, frame 54 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32s: Nave roof, frame 55 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32t: Nave roof, frame 56 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 32u: Nave roof, frame 57 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 32v: Nave roof, frame 58 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 32w: Nave roof, frame 59 showing sampled timbers (after Elaine Guilding)

Figure 32x: Nave roof, frame 60 showing sampled timbers (after Elaine Guilding)

Figure 32y: Nave roof, frame 61 showing sampled timbers (after Elaine Guilding)

Figure 32z: Nave roof, frame 62 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 33a: Nave roof, frame 63 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33b: Nave roof, frame 64 showing sampled timbers
(after Elaine Guilding)

Figure 33c: Nave roof, frame 65 showing sampled timbers (after Elaine Guilding)

Figure 33d: Nave roof, frame 66 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33e: Nave roof, frame 67 showing sampled timbers (after Elaine Guilding)

Figure 33f: Nave roof, frame 68 showing sampled timbers (after Elaine Guilding)

Figure 33g: Nave roof, frame 69 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33h: Nave roof, frame 71 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 33i: Nave roof, frame 72 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Figure 33j: Nave roof, frame 73 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33k: Nave roof, frame 74 showing sampled timbers (after Elaine Guilding)

Figure 331: Nave roof, frame 75 showing sampled timbers
(after Elaine Guilding) (viewed from the west looking east)

Figure 33m: Nave roof, frame 76 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33 n : Nave roof, frame 77 showing sampled timbers (after Elaine Guilding)

Figure 330: Nave roof, frame 78 showing sampled timbers (after Elaine Guilding)
(viewed from the west looking east)

Figure 33p: Nave roof, frame 79 showing sampled timbers (after Elaine Guilding) (viewed from the west looking east)

Figure 33q: Nave roof, frame 80 showing sampled timbers
(after Elaine Guilding)
(viewed from the west looking east)

Data of measured samples - measurements in 0.01 mm units

ELY-C01A 10
85115129185161177121114967064571276492124193131144134 13074239207176130162200118671241457417020214492127141108 1521051251068812813515411687956277889682688488108 8468113101841007211485931035773105747273455234 44738291128118100106106176148178169137198191169122151280 213
ELY-COIB 101
14967105171155169127122986668551316690128181139137133 13484234215185138170203108671271467517920414289123135112 17011913010591132127155124938067988992806310194111 83721051018696821098787114568299807069524644 4079818613811683119102185178188180132186176169114161262 210

ELY-C03A 97

246228247227147121119190186195217204161173225174189177165287 183168169182203382283220173221251186188211234221166145132213 371326196125150118145134901018080110125115141159154179159 2251521911602062392071561381741973682871311801671636974174 12212410274741281311121101351207911411513313198 ELY-C03B 98
194178129135119224201206189232171206255143192229191297213168
199179227211220217196189133158202223195195224221186182273210
2381751801421561241261436888122144164168190201207174215195
226155241283367294268273175263200130217175175828090114145
117106111171194259297437389229364293283257221199157278 ELY-C04A 230
268186871251351691331071541101011461491691516483114116122 156113133165118121121103104100889794829768114158122154 861097598107837477998579129102135115839710512488 1347011312511712210310111310211310211160665456616792 1129979648178776884707076681091279068716570 4080797062655970537072798171714949625462 6845514247374151484947545042502838264232 2945223844443136293837373232383341464238 3452493548404150354337344229545545493549 4649413851464040363946383836384142524845 6441424029363332354144394738474558497444 66524944454671646067
ELY-CO4B230
274186961181471621381151421121121371541721587992113125135 16712414216811712211711010696869681839874111161123157 8310781891028081749482791217913412680879911470 13869113130125113102971151001048210751635760666193 103957670797774689081637471991129171627376 5171807256656066516280738668724555635360 5852444149444939505046455047563729243440 2832283837433933323540313637383144434035 3751383346434548344036334936495144444043 4355374449354936333348354133465041464446 6650354333343524304044493447484359596742 64574943514773595549

ELY-C05A 82
21922427034219015131320519322023321227629713612710960160178
137122851287010992771341381069978103127151173233164310
14614776693761581791251302001081501739713616013812894
12710991879812511710167921901852018392133175165165121
169162
ELY-C05B 82
22223325434524617830820922822822223226930716615813455172195 1491601121419311111089150147100939498131180187239181322 159156967744656317014514019699146229122171164145134105 13310890919812512612470992091961979883131200176177137 177156
ELY-C07A98
416288394360286325246210240211234159178194210185137140163202 164207176206154213211193162148209183230213210196180193155132
1048611115715915114210312312283111113122106113135143144111 1391041111061191291011021099493102102829010110498105100 82866288103100931141001058314613114713910686121 ELY-C07B 98
401328402382309373223215221235225145166176205172138143172180 167203167196140226202177165166210185218219207203165197151124 10080115151165144158101111117971089613797109132144146108 13710511411010212195105959296105988392951098711469 79756484113106891061041108014812815412893125126

ELY-C11A 123

220110130180155100160175150125115140130809090140185140210
140145150115120100100185280250210290215185240210260170180180
240250160230310180220125150130120115759517016011090120180
1801701201201001102001201459585957570807060807075
100807090909011012015011590807590908085808580
120150135165130110150120100100125150150110901201151107585 808070
ELY-C11B 120
130140130170100160185170110110125120809085145190150200145 145140120125100100185280225205290215190240215255155160170220 255170220315180220130150130125120808017016510090105170195 180145130100130200115130957510095951009070808585130 75808080859512015010590858095856590957580130 1551301701251101501159095130140140105958510510011012050 ELY-C12A 82
317356173891096285295253330255209230213158181163145154182 205169169161176206217152203132167147192229229162129905754 525492120991821741548410113121325015610090119128111198 164153116506371126120113132748160618990109193115142 135110
ELY-C12B 78
1465032385119520617910911018711713919011692101124133185 22530722626829317920416331037243341728224729916689686860 11012912921922014277153197273278170147109122168187271214154 1447511210019122017913311011189825610911316413479

ELY-C13A 81

$\begin{array}{llllllllllllllllllllll}117 & 236 & 226 & 242 & 78 & 54 & 113 & 169 & 222 & 175 & 185 & 149 & 48 & 43 & 117 & 181 & 291 & 374 & 373 & 343\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllll}126 & 119 & 19 & 140 & 260 & 209 & 229 & 215 & 140 & 137 & 133 & 136 & 140 & 154 & 83 & 115 & 104 & 100 & 123 & 180\end{array}$ $\begin{array}{llllllllllllllllllllllll}163 & 266 & 437 & 312 & 256 & 285 & 236 & 231 & 217 & 134 & 199 & 174 & 112 & 165 & 178 & 197 & 156 & 128 & 153 & 137\end{array}$ 200
ELY-C013B 72
$20622416966 \quad 69138189266346458473353195240226297362307280276$
$\begin{array}{lllllllllllllllllllllllllll}222 & 153 & 209 & 258 & 186 & 171 & 216 & 237 & 153 & 213 & 221 & 110 & 99 & 188 & 134 & 264 & 186 & 258 & 166 & 149\end{array}$

ELY-C14A 133
$\begin{array}{llllllllllllllllllll}105 & 157 & 125 & 140 & 105 & 138 & 137 & 113 & 126 & 90 & 118 & 99 & 104 & 66 & 108 & 92 & 188 & 184 & 192 & 186\end{array}$

$\begin{array}{llllllllllllllllllllllllll}95 & 113 & 131 & 77 & 154 & 159 & 108 & 143 & 142 & 151 & 139 & 84 & 97 & 72 & 121 & 107 & 142 & 96 & 96 & 129\end{array}$
$\begin{array}{llllllllllllllllll}61 & 52 & 76 & 106 & 59 & 78 & 160 & 142 & 119 & 166 & 109 & 105 & 115 & 77 & 91 & 74 & 66 & 88 \\ 89 & 101\end{array}$
$\begin{array}{llllllllllllllllllll}63 & 63 & 72 & 61 & 78 & 86 & 80 & 59 & 48 & 56 & 71 & 53 & 46 & 29 & 47 & 89 & 33 & 39 & 44 & 78\end{array}$
$\begin{array}{llllllllllllllllll}49 & 43 & 48 & 60 & 49 & 85 & 56 & 47 & 45 & 33 & 28 & 27 & 45 & 40 & 43 & 63 & 45 & 59 \\ 68 & 74\end{array}$
$\begin{array}{lllllllllllll}75 & 65 & 71 & 41 & 37 & 55 & 59 & 54 & 33 & 38 & 48 & 48 & 45\end{array}$
ELY-C14B 115
$\begin{array}{lllllllllllll}75 & 65 & 71 & 41 & 37 & 55 & 59 & 54 & 33 & 38 & 48 & 48 & 45\end{array}$

$\begin{array}{llllllllllllllllllllllllll}75 & 103 & 59 & 153 & 127 & 151 & 117 & 107 & 131 & 72 & 47 & 83 & 91 & 51 & 83 & 149 & 138 & 127 & 168 & 113\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}109 & 116 & 86 & 100 & 79 & 60 & 77 & 96 & 92 & 52 & 58 & 77 & 55 & 66 & 83 & 64 & 57 & 53 & 53 & 56\end{array}$
$\begin{array}{llllllllllllllllll}48 & 42 & 39 & 41 & 82 & 43 & 38 & 47 & 63 & 50 & 43 & 56 & 52 & 46 & 87 & 59 & 56 & 48 \\ 34 & 25\end{array}$
$\begin{array}{lllllllllllllll}39 & 32 & 32 & 46 & 56 & 42 & 45 & 59 & 57 & 65 & 67 & 65 & 39 & 40 & 48\end{array}$
ELY-C16A 67
101318264394493437326206165192124321235344281258278299164267
2392872713402712923252942406056124702841413101279916280147
16616224111610067921612501251401221391559198137184170116
13513181671018894
ELY-C16B 66
388256218139112149101265210292267239233339141225166182130194
17417620815384174205252145132191103961217696159126195130
13985821211409999727274747388152139121881488892
1311217490106134
ELY-C22A 136
$294327268316337222197216209140 \quad 95199218157215241299262231275$
$\begin{array}{llllllllllllllllllllllllll}264 & 275 & 150 & 152 & 203 & 246 & 179 & 129 & 168 & 207 & 253 & 212 & 198 & 135 & 135 & 197 & 320 & 176 & 141 & 130\end{array}$

$\begin{array}{lllllllllllllllllllllllll}157 & 146 & 130 & 95 & 77 & 118 & 107 & 109 & 146 & 108 & 160 & 140 & 123 & 87 & 137 & 98 & 121 & 87 & 67 & 57\end{array}$
$\begin{array}{llllllllllllllllllllll}94 & 106 & 97 & 112 & 117 & 127 & 127 & 99 & 79 & 110 & 84 & 96 & 128 & 114 & 134 & 101 & 75 & 128 & 129 & 115\end{array}$

ELY-C22B 131
$\begin{array}{lllllllllllllllllllll}211 & 252 & 189 & 262 & 284 & 275 & 231 & 219 & 170 & 127 & 77 & 166 & 224 & 169 & 190 & 226 & 258 & 224 & 210 & 245\end{array}$

$\begin{array}{lllllllllllllllllll}162 & 121 & 155 & 90 & 75 & 106 & 91 & 125 & 127 & 94 & 182 & 135 & 110 & 72 & 95 & 96 & 104 & 86 & 74\end{array}$
$\begin{array}{llllllllllllllllll}90 & 89 & 110 & 101 & 100 & 126 & 126 & 116 & 95 & 129 & 95 & 109 & 127 & 120 & 138 & 105 & 83 & 118\end{array} 117127$
$\begin{array}{lllllllllllllllllllllll}96 & 108 & 146 & 141 & 141 & 109 & 116 & 89 & 104 & 89 & 93 & 106 & 62 & 92 & 104 & 151 & 125 & 83 & 117 & 89\end{array}$
$\begin{array}{lllllllllllllllllll}92 & 93 & 129 & 112 & 112 & 121 & 127 & 141 & 174 & 177 & 150\end{array}$

ELY-C24A 207

$\begin{array}{lllllllllllllllllllllll}190 & 150 & 170 & 180 & 90 & 120 & 140 & 100 & 150 & 110 & 150 & 110 & 70 & 115 & 90 & 100 & 130 & 130 & 160 & 190\end{array}$ $\begin{array}{lllllllllllllllll}80 & 140 & 110 & 95 & 115 & 160 & 160 & 110 & 160 & 130 & 135 & 155 & 90 & 70 & 50 & 70 & 100 \\ 120 & 95 & 115\end{array}$ $\begin{array}{lllllllllllllllllllll}85 & 85 & 105 & 100 & 150 & 115 & 95 & 150 & 95 & 95 & 110 & 120 & 145 & 140 & 100 & 90 & 135 & 130 & 210 & 110\end{array}$ $\begin{array}{llllllllllllllllll}155 & 210 & 200 & 275 & 140 & 140 & 160 & 200 & 145 & 85 & 70 & 130 & 70 & 80 & 100 & 125 & 135 & 170 \\ 80 & 80\end{array}$ $\begin{array}{llllllllllllllllll}110 & 100 & 100 & 95 & 130 & 80 & 140 & 110 & 95 & 120 & 105 & 115 & 80 & 130 & 125 & 70 & 80 & 105 \\ 150 & 155\end{array}$ $\begin{array}{lllllllllllllllll}140 & 155 & 185 & 165 & 195 & 140 & 120 & 130 & 115 & 90 & 85 & 80 & 85 & 100 & 95 & 90 & 85\end{array} 110 \begin{array}{ll}95 & 85\end{array}$ $\begin{array}{llllllllllllllll}80 & 70 & 130 & 90 & 50 & 45 & 40 & 40 & 45 & 50 & 55 & 60 & 90 & 95 & 80 & 70 \\ 50 & 100 & 85 & 85\end{array}$

 $\begin{array}{lllllllllllllllll}55 & 50 & 60 & 70 & 75 & 60 & 80 & 80 & 95 & 120 & 80 & 70 & 70 & 65 & 80 & 50 & 60 \\ 80 & 80 & 100\end{array}$ 1009085100115135185

ELY-C24B 207

$\begin{array}{llllllllllllllll}80 & 160 & 110 & 100 & 100 & 170 & 160 & 145 & 155 & 120 & 135 & 155 & 100 & 80 & 60 & 70 \\ 95 & 115 & 95 & 115\end{array}$
90110801051451201001509512511012015013010590130130215110
$\begin{array}{llllllllllllllll}150 & 210 & 215 & 270 & 135 & 140 & 150 & 205 & 140 & 85 & 70 & 125 & 75 & 80 & 85 & 130 \\ 145 & 165 & 75 & 80\end{array}$
$\begin{array}{llllllllllllllllll}115 & 95 & 100 & 90 & 130 & 80 & 140 & 110 & 90 & 120 & 100 & 115 & 80 & 130 & 120 & 80 & 85 & 105 \\ 150 & 145\end{array}$
$\begin{array}{lllllllllllllllll}140 & 160 & 195 & 160 & 195 & 135 & 125 & 130 & 100 & 85 & 80 & 70 & 80 & 95 & 100 & 95 & 80 \\ 120 & 80 & 105\end{array}$
$\begin{array}{llllllllllllllll}85 & 70 & 135 & 90 & 45 & 60 & 55 & 35 & 70 & 60 & 55 & 60 & 95 & 85 & 75 & 65 \\ 60 & 105 & 80 & 75\end{array}$
$\begin{array}{llllllllllllllll}105 & 65 & 65 & 50 & 55 & 50 & 50 & 55 & 55 & 55 & 65 & 65 & 70 & 75 & 55 & 65 \\ 75 & 55 & 100 & 115\end{array}$

$\begin{array}{lllllllllllllllll}50 & 45 & 55 & 75 & 65 & 70 & 70 & 80 & 95 & 110 & 70 & 75 & 70 & 70 & 65 & 55 & 70\end{array} 7065100$
85909095120130185
ELY-C26A 63
106169122886770721401231121271357676768410112911093
13011510482107117126132126118128911091151171251381367384
62667467867265795670758392108968514012712098
87117140
ELY-C26B 63
1011411077059626312496116131109927158899813311997
1131038785101107110118124115127781111151021321381306554
$\begin{array}{llllllllllllllllllllll}65 & 50 & 80 & 67 & 84 & 59 & 75 & 84 & 59 & 54 & 79 & 69 & 98 & 99 & 78 & 128 & 124 & 109 & 93 & 94\end{array}$
99118138
ELY-C32A67
28627522526322620221520616113589816473686155444373
599676125101971149736467712492185247341262204122177
25124334920813311177155165220165145148165107130104141112153
169165153157164262212
ELY-C32B67
25128023327820720422419916213877816973686056553272 659583111911051299540447712693187245332266198127176 2492433432151361186615317719316214614816595131116137124138 174164162145163274194
ELY-C33A 83
791591728718519118818816013916817815819818919596100153126 102172145253175173722322262131241251391649110471122120156
176138907794110120111854975536710062738910580140
102829778741051611761471461351329579957779194183154
137211116
ELY-C33B 70
1251572081632449010015217413413812421121413487278136187137
11817815593123641131631561811231075264119152162685681
565883731128787899386111101727973144198170211125
117851061461161411361838473

ELY-C34A 83
8619698147212166276353409407286188239281278219271299115144 13614313922518322532021489141151258124156200252158215192186 24218720915919117612025424623815412596888692107158150132 1431111158212618212711794196179200161118113118189238214138 12910693
ELY-C34B 80
14385155192166299492558414363262268335298281302365130156152 17317231819321326921870164138240135153222278171229206179237 2021771601911941172182552721931207294899198141140124128 123108751051281169210615114615215814013111117117117516790 ELY-C36A84
2613243502422662132692822582091891239258393032104112113 20692134154193199205170303128107125167177254175188236199128 181192236148223264373242210118163325242302136127655251100 19110911911214463906591189272152153163201310210185127118 209232134111
ELY-C36B84
2643253642492622072832932492161881269040382946133127112 20695131156200200194180299127117119165180250180189227207129 179189239149239258343246205130163333243299143126734950103 16311412811514972906510217827515815016920030520419312996 22522814777
ELY-C37A81
248208681081692262321191078284187220232185241190169189222
273245255274207157151190328203123175199197257134162226184176
182903746758578534757434159701037773736656
4683545247785982886847444973101130126134100109
104
ELY-C37B81
25821768961652282321171117790184224217179228209174192230 261236272284222146141183317215128170201203254130148239182179 169884042828180633357394560761047275756654 50795850467958849175423956719813013912110798 135
ELY-C38A83
241216200314271246298239297291272214282222219165200211230265 219309286143116114201252266192134108184189247238283185212256
1156762196124981181721881311749215515918024115610910390 1541821388383828858737312611916111812815016918513476 845899
ELY-C38B83
236224194311272250299242310296288208284214209173206192232254 215324274134104119180232252209152107175191245239292194205272 1026274181141871281621801421599015615318824814610510182 16116812386968486637175125120157129129144162139147100 727190
ELY-C40A70
20631626719024331660962641921519633922715420323376584955 6812810012313191457210211576465585664046485091 117148128152889010483107123173143107921351141089510284 868410513997117166153145147

ELY-C40B70
19532227818424131066964441321019433625715121826170645455
661427510414278567011210966435689604245455495
116154124150948611387104127162145112891381111051019997
849187124110114132165169164
ELY-CA2A 62
$\begin{array}{llllllllllllllllllllll}125 & 81 & 50 & 67 & 67 & 70 & 184 & 58 & 96 & 89 & 108 & 100 & 133 & 92 & 180 & 33 & 92 & 38 & 64 & 95 & 235\end{array}$
193248271317251209306288353315225277303294148106213360367262
266281282218127165261297269271210196214328182162401395347
405349
ELY-C42B 56
$\begin{array}{lllllllllllllllllllllll}121 & 83 & 52 & 66 & 69 & 71 & 251 & 126 & 152 & 143 & 199 & 188 & 227 & 208 & 316 & 93 & 203 & 137 & 144 & 348\end{array}$

ELY-C44A74
306227195214228275306315291292321322505466327236135276303240
108106217185101123294223205330188808395188179177147322202
174929118019025432419111399861821001108988769175133
160172192128118148149157135159114174260277
ELY-C44B 74
265212188210250257317339279270329327497497328232135289361252
130111244168110164343188191357177978692187181171139334201
1761058217419027130719611310582171108868380819584123
158175196113117149157153138145113168289264
ELY-C45A83
2341311991491542051091281208011899116938585677573109
847491839571671029283898610710010690897613368
8665554141455875861221018788841131021118897133
1091178010412514413712215616178958193108168133158154165
256161202
ELY-C45B83
2581301921591462041081351188111397115111837965738095
907695799278678610585917310111194112967811770
847847374141647277131898310283108961169398128
112111809813412914713014715782827592105165124152150161
250182168

ELY-C47A 98

$\begin{array}{lllllllllllllllll}186 & 164 & 136 & 129 & 69 & 86 & 114 & 201 & 195 & 130 & 91 & 84 & 66 & 78 & 99 & 92 & 78 \\ 75 & 76 & 98\end{array}$
$\begin{array}{llllllllllllllllllll}87 & 64 & 85 & 55 & 101 & 134 & 86 & 91 & 101 & 113 & 108 & 82 & 110 & 97 & 169 & 169 & 150 & 84 & 86 & 81\end{array}$

$\begin{array}{lllllllllllllllll}139 & 113 & 125 & 120 & 86 & 123 & 90 & 94 & 127 & 94 & 95 & 115 & 89 & 104 & 84 & 94 & 89 \\ 84 & 104 & 87\end{array}$
$\begin{array}{llllllllllllllll}119 & 112 & 104 & 98 & 85 & 65 & 78 & 102 & 108 & 122 & 102 & 99 & 88 & 97 & 86 & 109\end{array} 83109$
ELY-C47B 98
$\begin{array}{llllllllllllllllll}180 & 124 & 113 & 122 & 77 & 110 & 129 & 213 & 201 & 116 & 94 & 78 & 72 & 90 & 89 & 91 & 89 & 82\end{array} 78108$
$\begin{array}{lllllllllllllllllllllll}74 & 74 & 83 & 62 & 80 & 145 & 78 & 90 & 108 & 119 & 108 & 77 & 125 & 77 & 155 & 157 & 165 & 78 & 79 & 68\end{array}$

$\begin{array}{lllllllllllllllllll}118 & 124 & 106 & 97 & 99 & 87 & 92 & 120 & 117 & 133 & 106 & 87 & 86 & 92 & 96 & 106 & 99 & 88\end{array}$
ELY-C49A 65
644747163246253346364331230205176238242313298329293270323
235132122125179256384306354337241927299163168228242394329
329229225287312272283201105857612416916119816914796117125
205311245178210

ELY-C49B60

262327328352183153156218201328278281236258258202117127150190
27036627533331123211310897175172214251387271322181199333293
2792781841038381121172134182139123110114112211314264193256
ELY-C50A 102
2301563494183703803493133202982652332002092271000162185349221

12311013614416924518418121319718619915197184143163165219140 $\begin{array}{lllllllllllllllll}162 & 166 & 155 & 177 & 114 & 117 & 91 & 91 & 138 & 117 & 80 & 67 & 73 & 100 & 82 & 83 & 85 \\ 94 & 86 & 85\end{array}$ $\begin{array}{lllllllllllllllll}86 & 77 & 62 & 82 & 70 & 91 & 78 & 74 & 68 & 67 & 59 & 51 & 64 & 55 & 62 & 49 & 52\end{array} 1254358$ 5246
ELY-C50B 101

 $\begin{array}{llllllllllllllll}89 & 98 & 67 & 79 & 99 & 95 & 72 & 66 & 70 & 85 & 86 & 99 & 80 & 112 & 99 & 112\end{array} 109767578$ $\begin{array}{llllllllllllllllll}73 & 85 & 96 & 84 & 86 & 82 & 81 & 65 & 92 & 95 & 92 & 72 & 52 & 58 & 64 & 58 & 64 & 42\end{array} 5561$ 64
ELY-C51A 68
343350251144274239392369436348387442350236378367441341554402 333253322278265440421534364347198129162233242241194202191153 1661881871622152111961531101611321221059814415216114616477 827586761171247670
ELY-C51B 68
366347286151270243390369432345388442364240368377447327565370
369254276309275427421526362331181149166246255242211212186148
1701821801732362222201461111641311321019913417515713815486
797684751221167578
ELY-C52A85
337219327287201328251289237148193178127127127105969491193 273167248278253342254269330199163118150186149123208125154142 166120197148130190224130187209270209252254288232266137105110 13415811310311912281122179254202173221169177153252186203309 261220268265296
ELY-C52B85
2592273232861973172453102511381591541221271261081039095182 274169244282238330255268328196157119154179148121208127158137 16112819914112719422713018320227320526125627423624913096118 14915811410812611988124189255190167216159192126272168212315 255248268249300
ELY-C53A 133

 $\begin{array}{llllllllllllllll}183 & 151 & 217 & 106 & 132 & 182 & 172 & 169 & 203 & 156 & 140 & 94 & 91 & 153 & 98 & 135\end{array} 136 \quad 65 \quad 83107$
 $\begin{array}{lllllllllllllllll}39 & 80 & 49 & 74 & 52 & 46 & 72 & 80 & 80 & 83 & 87 & 78 & 98 & 97 & 82 & 125 & 117\end{array} 91 \begin{array}{llllll}102 & 92\end{array}$ $\begin{array}{lllllllllll}128 & 134 & 102 & 144 & 88 & 93 & 98 & 92 & 121 & 112 & 90 \\ 87 & 88\end{array}$

ELY-C53B 133
8314210911513211713989119119154148120178161216128153183151
$\begin{array}{llllllllllllllllllllllllllll}147 & 154 & 139 & 133 & 138 & 161 & 182 & 220 & 163 & 221 & 177 & 267 & 107 & 139 & 113 & 255 & 184 & 201 & 21 & 166\end{array}$
$\begin{array}{llllllllllllllllllllll}126 & 105 & 139 & 184 & 171 & 183 & 123 & 159 & 135 & 180 & 144 & 94 & 144 & 156 & 167 & 120 & 175 & 146 & 185 & 127\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}180 & 146 & 190 & 84 & 151 & 175 & 154 & 184 & 209 & 161 & 142 & 100 & 117 & 148 & 102 & 131 & 137 & 80 & 131 & 85\end{array}$

$\begin{array}{lllllllllllllllllll}65 & 75 & 59 & 83 & 63 & 51 & 74 & 71 & 92 & 87 & 85 & 80 & 101 & 104 & 101 & 100 & 115 & 100 & 83 \\ 80\end{array}$

ELY-C54A78
171282268273251355229394331353588328326182161181154175179139 175189203200241257118264251194366225196246176113136167147127
1061529610282765479788188136707084109109222238259
265271151711172062319889998859113156134160125127

ELY-C54B78

189268263253260344237390334355599329335180157181151170174145
166199200191235265125261248200355224202257161123123172159112
104136106919070587382859812168759011599227234266
26026914289110207225109901088762102174123163121150
ELY-C55A 66
12416318618613917318519123222919518814816215317412915014490
10711384811671045961688898899497855259635154
71435586122691158564661087910795118108153129185250 138174165221216174

ELY-C55B66

11217118219513517218119522821919019516715315817212615114087
111109901021551086365708899819687895555665258
62564494112631038664719969116101116111131137179244
133173162226216177
ELY-C58A82
175503488605418254479501467515421289312155310177182234226246 264201281244235326310295174279215215289167198270216146160208 132129150298204202201208183220142198252258164220171215195237 258351283255193205197198268181254171186141148180142226163167 206220
ELY-C58B82
181500485601376231440506489527414276297163317192170224246232
263195290256237324306299176270232209289162200269208170148205
122150140297205195194199184205144190252267158233173211174238
259351273256194198232187250191250158179141147189136240144167
203243
ELY-C65A81
138185544452294235686982110161181324846257131154 20220217917916511295181255271495320286163200100134379314271 2201991268610014519119015417716385174141314220146146167116 13340220716912812723735533520011913117925948437719596120159 226
ELY-C65B81
135170524961325535747710011615917532381695497150 1981871911691508892159243232457324294183215111136399275255
2371731279610719316918115417919492189130350223132130130108 12133019118012312431438230321012012416030347336417413896144 222

ELY-C67A66
114228280228307411357447441428304265240292328397371330190104
224249255229301242281269308184223211294159289183182144171108
1652202342871506356474864831271301335346575814533
61616877100117
ELY-C67B66
142115227266225312411361413440443299265247271329393365322191 115213245247228301244272268309194224204282163289196165144186 110165242220291143694149716710914014614952535956152 6655486590114
ELY-C70A 55
$407447327322398291125125179262167231183191 \quad 94161237276337163$ $\begin{array}{lllllllllllllllllllllll}73 & 89 & 164 & 200 & 171 & 217 & 235 & 185 & 236 & 135 & 310 & 456 & 310 & 214 & 237 & 163 & 122 & 212 & 128 & 102\end{array}$

ELY-C70B 55
$\begin{array}{llllllllllllllllllllll}407 & 447 & 327 & 322 & 398 & 291 & 125 & 125 & 261 & 194 & 364 & 305 & 291 & 210 & 184 & 192 & 287 & 316 & 158 & 100\end{array}$ $\begin{array}{lllllllllllllllllllllll}108 & 143 & 232 & 174 & 246 & 260 & 193 & 233 & 90 & 178 & 232 & 215 & 170 & 220 & 135 & 97 & 187 & 100 & 58 & 51\end{array}$

ELY-C71A87

264271151311320416337276247203218201204205155133223176186121
195203166316196186213168166162231214162165304195180155157135
175124160188216116141144158160193255336304317203137208304198
157166165160125155191157229163249204225195363279283337353466
303266229287179186201

ELY-C71B87

253276154323310401318265241202228222213192174136213168171116
209187167277187181217154143159239208160178279190177156160130
182114164182201111103140167165191274338311298216127224289206
158157163149125160182157221167246205257178351291271353324472 294281243288181216162
ELY-C72A 153
$\begin{array}{llllllllllllllllll}185 & 99 & 78 & 88 & 103 & 109 & 117 & 135 & 119 & 85 & 146 & 116 & 98 & 101 & 113 & 91 & 110 & 117\end{array} 132 \quad 63$ $\begin{array}{llllllllllllllllll}78 & 85 & 90 & 99 & 113 & 102 & 87 & 85 & 68 & 69 & 89 & 94 & 101 & 77 & 89 & 76 & 58 & 74 \\ 61 & 104\end{array}$
 $\begin{array}{llllllllllllllllllllll}119 & 122 & 146 & 129 & 121 & 97 & 97 & 97 & 108 & 188 & 176 & 146 & 198 & 127 & 184 & 148 & 125 & 119 & 101 & 126\end{array}$ $\begin{array}{llllllllllllllllllllllll}109 & 99 & 145 & 132 & 166 & 103 & 114 & 110 & 126 & 98 & 160 & 108 & 109 & 93 & 84 & 128 & 101 & 106 & 136 & 150\end{array}$ $\begin{array}{lllllllllllllllllll}144 & 102 & 101 & 121 & 96 & 93 & 118 & 96 & 82 & 109 & 103 & 89 & 92 & 82 & 55 & 79 & 65 & 77 & 91\end{array} 142$

ELY-C72B 148
$\begin{array}{lllllllllllllllllllll}157 & 88 & 144 & 152 & 108 & 188 & 105 & 117 & 135 & 156 & 129 & 157 & 121 & 129 & 60 & 79 & 51 & 73 & 96 & 104\end{array}$ $\begin{array}{lllllllllllllllllll}97 & 88 & 89 & 58 & 87 & 77 & 111 & 90 & 78 & 101 & 88 & 74 & 97 & 93 & 117 & 84 & 138 & 96 & 118 \\ 88\end{array}$
$\begin{array}{llllllllllllllllllll}91 & 75 & 114 & 77 & 94 & 78 & 105 & 100 & 113 & 97 & 97 & 95 & 123 & 102 & 76 & 109 & 66 & 71 & 108 & 87\end{array}$
$\begin{array}{llllllllllllllllllll}73 & 80 & 65 & 84 & 113 & 99 & 87 & 90 & 71 & 79 & 83 & 85 & 79 & 87 & 92 & 101 & 82 & 104 & 168 & 143\end{array}$
$\begin{array}{llllllllllllllllllll}101 & 85 & 104 & 107 & 91 & 92 & 91 & 98 & 80 & 56 & 104 & 101 & 105 & 90 & 80 & 101 & 72 & 69 & 87 & 87\end{array}$
$\begin{array}{lllllllllllllllllllllll}79 & 78 & 88 & 77 & 105 & 75 & 91 & 57 & 90 & 52 & 61 & 68 & 77 & 66 & 101 & 91 & 98 & 129 & 126 & 110\end{array}$

ELY-C74A70
6112914623921027924623515717717612010213017017221515810097
5753524379841181589660541141215995145136997970
55113921388410912710814216066888787787280107115110
53715810710787809780200

ELY-C74B70

8512714724221428924023415818217811910712116817122815210496
5461473982801171688359641161267883156116887964
5410291141741101171111381648181918869769493111115
70606899881097310280212
ELY-C80A69
17818314752372886153144159118130128269299244235471499313 290252202232163245264193133152300246129127201300212323212226 21514322118117513317113517419811896935746118107139166125 55606286968379111147
ELY-C80B69
21217815052323093139142162122126125263319249232412468292
315254193209157229256210129158286236126129193303201324210219
20415722717817313417012817821011480945950119106135147147
545769751058075124151
ELY-C81A 62
17526122625426925924027724223719316122012884101123179174135
244111118140167167178171250233205112141132183132249225281179
18112417223519818817673586763100136123170137129807155 6675
ELY-C81B62
1672582252472752552672662252291941552411288999132177170141 244103109142169165181153252237205116144125182129259220271195 16813715423721118517783605950108135121167136142657356 8893
ELY-C84A 76
$\begin{array}{lllllllllllllllllllll}304 & 350 & 271 & 171 & 252 & 270 & 320 & 306 & 292 & 220 & 276 & 258 & 232 & 124 & 226 & 198 & 213 & 257 & 193 & 226\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}191 & 190 & 97 & 117 & 89 & 80 & 127 & 140 & 137 & 100 & 127 & 101 & 139 & 147 & 182 & 141 & 135 & 154 & 104 & 84\end{array}$
 $\begin{array}{llllllllllllll}118 & 108 & 100 & 70 & 71 & 61 & 54 & 50 & 73 & 68 & 68 & 77 & 51 & 69 \\ 63 & 66\end{array}$

ELY-C84B 76

 $\begin{array}{llllllllllllllllllllll}206 & 195 & 84 & 99 & 99 & 92 & 134 & 157 & 142 & 91 & 119 & 103 & 128 & 164 & 206 & 152 & 159 & 153 & 87 & 112\end{array}$
$\begin{array}{lllllllllllllllllllllll}110 & 80 & 45 & 72 & 70 & 101 & 123 & 140 & 90 & 83 & 136 & 97 & 120 & 107 & 117 & 153 & 122 & 101 & 74 & 104\end{array}$ $\begin{array}{llllllllllllll}122 & 110 & 119 & 58 & 56 & 66 & 54 & 60 & 83 & 49 & 71 & 77 & 44 & 47 \\ 64 & 81\end{array}$ ELY-C85A 63
$\begin{array}{lllllllllllllllllll}197 & 221 & 170 & 20 & 256 & 327 & 271 & 321 & 233 & 249 & 337 & 342 & 383 & 268 & 264 & 302 & 291 & 113 & 173 \\ 152\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}150 & 169 & 299 & 171 & 173 & 183 & 191 & 263 & 255 & 186 & 238 & 369 & 302 & 280 & 264 & 292 & 332 & 234 & 194 & 197\end{array}$
219251429278206312239239249241267205244322303434430422299367
341314357

ELY-C85B 63

$\begin{array}{lllllllllllllllllllll}191 & 198 & 210 & 239 & 259 & 352 & 301 & 343 & 270 & 265 & 342 & 366 & 389 & 271 & 259 & 316 & 316 & 107 & 173 & 179\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}191 & 223 & 30 & 188 & 230 & 209 & 224 & 237 & 239 & 160 & 247 & 342 & 289 & 315 & 295 & 328 & 367 & 206 & 194 & 225\end{array}$ 233237477278222317227229296248280208235276326424413398260334 330302313
ELY-C87A95
15818826826813031338927436420511317112928314781135119149125 135144169138161185200131199165146268226165253198140148210219
176137961311481711881411411081261572299774170169143199252
268242232195167344276316220140242186119234242248287232225182
201146284260437249232289165192248258179196320

ELY-C87B95

17020526427512632738728535520611818611728214595130122148118
136138171137155183202128195173132282215170252203134144216222
1851451001401451841871401291111211602379877159174144202246
276240221197182332285305221139252178131222241248280229250175
209142281258419257221292171194253247179209321
ELY-C88A 116
$\begin{array}{llllllllllllllllllll}94 & 101 & 96 & 175 & 224 & 163 & 181 & 133 & 133 & 97 & 214 & 241 & 161 & 127 & 160 & 202 & 197 & 158 & 170 & 218\end{array}$
$\begin{array}{llllllllllllllllllll}222 & 221 & 101 & 108 & 85 & 91 & 150 & 127 & 203 & 159 & 143 & 122 & 102 & 82 & 53 & 52 & 44 & 84 & 109 & 155\end{array}$
$\begin{array}{llllllllllllllllllll}157 & 101 & 113 & 66 & 71 & 59 & 52 & 52 & 57 & 65 & 77 & 66 & 62 & 85 & 68 & 118 & 117 & 114 & 136 & 163\end{array}$
$\begin{array}{lllllllllllllllllllllllll}137 & 100 & 94 & 78 & 71 & 59 & 62 & 77 & 86 & 116 & 94 & 96 & 103 & 102 & 83 & 91 & 102 & 117 & 116 & 123\end{array}$
$\begin{array}{llllllllllllllllllllllll}138 & 187 & 186 & 183 & 141 & 185 & 121 & 193 & 188 & 225 & 239 & 222 & 212 & 175 & 192 & 251 & 170 & 144 & 136 & 187\end{array}$
$\begin{array}{llllllllllllll}236 & 239 & 186 & 182 & 193 & 167 & 101 & 116 & 78 & 79 & 75 & 87 & 83 & 88 \\ 111 & 119\end{array}$
ELY-C88B 101
$\begin{array}{lllllllllllllllll}174 & 194 & 138 & 261 & 249 & 230 & 237 & 131 & 92 & 64 & 51 & 48 & 84 & 88 & 114 & 134 & 135 \\ 146 & 113 & 84\end{array}$
$\begin{array}{lllllllllllllllllll}75 & 59 & 71 & 47 & 67 & 93 & 77 & 64 & 78 & 46 & 78 & 107 & 93 & 78 & 89 & 81 & 47 & 49 & 36\end{array} 39$
$\begin{array}{lllllllllllllllllll}52 & 36 & 46 & 47 & 62 & 37 & 64 & 47 & 44 & 67 & 50 & 64 & 80 & 70 & 83 & 66 & 112 & 110 & 88 \\ 69\end{array}$

90
ELY-C91A 85
49446037638436432328634033329221025927724025716920112894101 15614818515324316727712826822325292739912690191213308156
191132168195274316205125875879138151120202206268171185220
300170153175195178185217248229175223281327309323381236237257
233203185190201
ELY-C91B 89
493477444456377285288275239249268266214215268303271250179221
1278673130133149116176157257134238240237938910811880200
226318136185131179206298380208110664370100141136192184270
203234222342218166205246283261323264307179189253280240231289
225183202196218185165186227
ELY-C92A 68
$\begin{array}{llllllllllllllllllllllllllll}314 & 276 & 333 & 256 & 186 & 208 & 241 & 381 & 448 & 361 & 285 & 328 & 241 & 212 & 141 & 236 & 177 & 124 & 102 & 161\end{array}$
$\begin{array}{llllllllllllllllllllll}137 & 151 & 141 & 204 & 174 & 212 & 90 & 179 & 179 & 191 & 81 & 95 & 89 & 91 & 58 & 155 & 229 & 229 & 195 & 226\end{array}$

$\begin{array}{llllllllll}220 & 143 & 145 & 231 & 142 & 208 & 221 & 199\end{array}$
ELY-C92B 60
$\begin{array}{llllllllllllllllllll}253 & 300 & 361 & 339 & 416 & 376 & 269 & 350 & 279 & 249 & 176 & 224 & 170 & 139 & 133 & 218 & 182 & 224 & 168 & 219\end{array}$
$\begin{array}{llllllllllllllllllllllllll}157 & 213 & 97 & 193 & 226 & 249 & 123 & 93 & 144 & 132 & 98 & 167 & 278 & 272 & 188 & 151 & 153 & 174 & 279 & 268\end{array}$

ELY-C93A 80
38219823115122115911810912814599112203230151168225249144232
178220244205240257156135146177141124115258208190218244193273
162237303344146180212239157254269299267264165174178250270177
200206213156203360245203161238195133129185188202204230202225
ELY-C93B 80
373201224178228156112116131137102116199234149165232249143230
186226238180230267156131143154148120123266202187234241191297
159244290373144176215239153252262320286262168159196260275177 232203205149226344225210162188197142137162171195207222216244

ELY-C94A 84

124210286220334317331316231234155241239204259198163231201217 113252175119277133133246147122143244184150165303140173179180 1211437814213312581131911059164681772021791829793112 1081577894109995010691104122114849968631398711695 11413378127
ELY-C94B 84
122201282200298292383307242230159221223211259186164235218208 102262160136267135135247127116126240185146161309140184173195 109161821311151517112611310080617117919818717511594114 931518892120845611287102123106999662601399311298 11512677108
ELY-C95A 85
334441483354407396252197219181266318313276240141160182200208 216140141232190190156150207184226176229218250236182291284320 245234368376291322443383336306233192269214242242217127136139
 111868485111 ELY-C95B 85
326447484336425374240202227188226315321260248129162191183213 222147135235182201155155186204217172237230236241181289295324 243232368374300315449367337303256200260221241234210128130129 1632041531571541211329278105716990917776100799779 91769382122
ELY-C96A 62
407470509511354420409386393321341247241251190181223292341359
381692421472103102207309229238236271256301149240105139139114
8153571167911214816110523160107156178198184147143125279 360337
ELY-C96B 62
420510489490304422396360385405374268245258190179221277331353 3936944204829411119531722825222826525931015524789147114128 108777381721141511581252115789163226203172165122124290 352323
ELY-C102A 75
$\begin{array}{llllllllllllllllllllll}186 & 303 & 236 & 326 & 267 & 215 & 346 & 229 & 279 & 282 & 239 & 217 & 240 & 255 & 252 & 207 & 216 & 172 & 286 & 188\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}156 & 281 & 153 & 178 & 225 & 138 & 110 & 130 & 131 & 101 & 122 & 155 & 253 & 119 & 159 & 177 & 206 & 157 & 253 & 111\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}153 & 194 & 247 & 109 & 190 & 182 & 165 & 165 & 135 & 265 & 258 & 255 & 267 & 156 & 114 & 113 & 142 & 119 & 112 & 128\end{array}$
$\begin{array}{lllllllllllllll}142 & 144 & 76 & 88 & 142 & 122 & 157 & 117 & 173 & 101 & 81 & 58 & 99 & 106 & 127\end{array}$
ELY-C102B 70
$\begin{array}{lllllllllllllllllllllllllll}182 & 321 & 244 & 379 & 258 & 186 & 344 & 235 & 302 & 277 & 251 & 278 & 287 & 266 & 271 & 256 & 190 & 146 & 250 & 162\end{array}$
$\begin{array}{llllllllllllllllllllllll}142 & 275 & 139 & 177 & 221 & 138 & 114 & 126 & 141 & 105 & 127 & 157 & 264 & 97 & 186 & 194 & 192 & 141 & 264 & 105\end{array}$
$\begin{array}{llllllllllllllllllllllllll}174 & 170 & 215 & 105 & 174 & 184 & 173 & 146 & 104 & 264 & 235 & 201 & 259 & 163 & 133 & 125 & 146 & 134 & 132 & 164\end{array}$

ELY-C104A 95
475449419352342307284245324184241194162270238183181213205139 $\begin{array}{lllllllllllllllllllllll}126 & 108 & 132 & 142 & 122 & 209 & 172 & 193 & 134 & 119 & 193 & 162 & 177 & 115 & 219 & 265 & 192 & 234 & 156 & 151\end{array}$
$\begin{array}{lllllllllllllllllllllllll}231 & 160 & 121 & 121 & 170 & 166 & 149 & 121 & 156 & 170 & 146 & 90 & 104 & 87 & 99 & 131 & 128 & 124 & 100 & 78\end{array}$ $\begin{array}{llllllllllllllllllllll}101 & 106 & 128 & 110 & 153 & 115 & 122 & 76 & 114 & 151 & 133 & 99 & 85 & 111 & 142 & 100 & 78 & 102 & 166 & 133\end{array}$ $\begin{array}{lllllllllllllll}120 & 103 & 74 & 89 & 101 & 131 & 97 & 112 & 143 & 72 & 108 & 94 & 112 & 89 & 84\end{array}$

ELY-C104B 86
$\begin{array}{llllllllllllllllll}137 & 127 & 107 & 134 & 146 & 123 & 207 & 178 & 196 & 134 & 117 & 195 & 163 & 175 & 119 & 215 & 261 & 194\end{array} 235156$
$\begin{array}{llllllllllllllllllll}139 & 192 & 119 & 144 & 95 & 185 & 193 & 139 & 137 & 216 & 216 & 145 & 122 & 74 & 84 & 110 & 183 & 165 & 175 & 159\end{array}$

$\begin{array}{llllll}109 & 103 & 86 & 98 & 78 & 138\end{array}$
ELY-C105A86
187278202333239226296244379203167229217213240195239259224196 156164134286185163350208225270213170147216198209190424208219 22726116325313716523825412520316121417222342744032127917399 1702632571612082581968812420214517611721613010490177128149 14015913113157156
ELY-C105B 86
202280207346239219298247374196167228225222235200240268223198
164168140296179161344209221254224162146216196200187416204232
227250167263132151247264116207155219167226425439317280177109
1602522581642132641909712419513218211422212111093174152159
15115914310379117
ELY-C106A91
28814714390130115140210281222241213252270173211219218278170
260337266168137709513817211310615214515212598146193219173
179155234205217273327315191154192251231251356289293276301174 21924430034246425426119930121716615216014910489116966488 58828882858513472129135134
ELY-C106B 91
275156132100126114140210269214265254272252209214236197292193
277341271131137798313718311810915513114213396141200222166
166160213204205273331309193151189257234257345293284280297178
20624829234647426427119429522617017116814511494132976959
599585861104313180115144139
ELY-C108A86
30640752441935030028534435731944039831828619560108181233315
1211317212918520224538229723133619310366941629917420395 837650851391601331039991801592021227785115706452 1011371431071231148514722011874888712013614016113371137 129861021309895
ELY-C108B 86
3244155034243393442903583443304444023162821987597178236318
12213467120192202242384297235337223877283149101170191109
57685376114149119931047510116219413310481105685576
10015311512210010975168211120100120881161381361561438098
15597136989577
ELY-C109A 156
$\begin{array}{lllllllllllllllllll}166 & 172 & 186 & 104 & 124 & 135 & 137 & 140 & 144 & 120 & 83 & 113 & 102 & 92 & 74 & 73 & 54 & 79 & 166\end{array} 149$ $\begin{array}{llllllllllllllllllllll}120 & 173 & 99 & 101 & 107 & 221 & 161 & 159 & 171 & 200 & 146 & 62 & 59 & 105 & 186 & 203 & 251 & 208 & 177 & 201\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}128 & 120 & 66 & 32 & 43 & 43 & 79 & 119 & 156 & 194 & 162 & 165 & 222 & 187 & 196 & 315 & 280 & 266 & 228 & 162\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllll}168 & 230 & 267 & 205 & 218 & 164 & 235 & 240 & 235 & 226 & 192 & 182 & 148 & 128 & 101 & 118 & 156 & 118 & 131 & 135\end{array}$ $\begin{array}{llllllllllllllllllllllll}107 & 132 & 168 & 104 & 105 & 64 & 101 & 75 & 120 & 119 & 131 & 122 & 138 & 148 & 136 & 146 & 135 & 126 & 165 & 142\end{array}$ $\begin{array}{lllllllllllllllllllllll}187 & 129 & 110 & 135 & 179 & 123 & 134 & 120 & 82 & 118 & 95 & 107 & 78 & 65 & 74 & 100 & 74 & 61 & 70 & 63\end{array}$ $\begin{array}{llllllllllllllllllllll}71 & 90 & 93 & 96 & 116 & 100 & 79 & 116 & 115 & 112 & 86 & 89 & 91 & 91 & 113 & 135\end{array}$

ELY-C109B 116
$\begin{array}{llllllllllllllllllll}141 & 153 & 177 & 176 & 153 & 141 & 81 & 114 & 125 & 175 & 182 & 130 & 135 & 89 & 166 & 102 & 196 & 189 & 218 & 221\end{array}$
$\begin{array}{lllllllllllllllllllllllll}252 & 141 & 55 & 57 & 79 & 141 & 179 & 253 & 229 & 183 & 192 & 110 & 168 & 87 & 64 & 40 & 42 & 70 & 152 & 167\end{array}$

$\begin{array}{lllllllllllllllllllllllll}134 & 146 & 108 & 108 & 117 & 195 & 125 & 80 & 102 & 81 & 115 & 123 & 205 & 210 & 185 & 191 & 117 & 143 & 131 & 191\end{array}$
$\begin{array}{llllllllllllllllllllllllll}190 & 198 & 166 & 134 & 112 & 111 & 157 & 233 & 165 & 151 & 170 & 104 & 153 & 159 & 115 & 113 & 72 & 86 & 86 & 148\end{array}$

ELY-C110A 80
$\begin{array}{llllllllllllllllllll}232 & 250 & 205 & 166 & 218 & 195 & 173 & 118 & 155 & 155 & 173 & 114 & 118 & 121 & 126 & 129 & 138 & 140 & 128 & 172\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}143 & 169 & 168 & 195 & 198 & 219 & 204 & 172 & 127 & 124 & 111 & 150 & 159 & 194 & 257 & 263 & 225 & 233 & 207 & 384\end{array}$
$\begin{array}{lllllllllllllllllllll}364 & 257 & 166 & 171 & 167 & 122 & 99 & 146 & 122 & 168 & 113 & 171 & 180 & 162 & 158 & 176 & 159 & 139 & 125 & 114\end{array}$
$\begin{array}{lllllllllllllllllllllll}118 & 126 & 149 & 135 & 154 & 176 & 172 & 133 & 141 & 137 & 160 & 97 & 140 & 105 & 124 & 126 & 149 & 132 & 135 & 107\end{array}$
ELY-C110B 100
$\begin{array}{lllllllllllllllllllllllllll}294 & 124 & 84 & 74 & 54 & 82 & 118 & 164 & 199 & 172 & 216 & 192 & 200 & 331 & 314 & 236 & 228 & 159 & 216 & 233\end{array}$
$\begin{array}{lllllllllllllllllllllllll}217 & 264 & 260 & 332 & 192 & 199 & 233 & 218 & 150 & 120 & 161 & 194 & 288 & 200 & 222 & 186 & 173 & 134 & 163 & 167\end{array}$

 ELY-C111A113
27716620635440422728249337670247738617630749124932126517896 81194105101226215133252240170326244137911068567113168146 135280267148188108112346270266212196166354434216127170220186 305134208376190195120366212116112351133149143587211463110 122120821271359713614415531211918211111896118228148182109 127139114118641037493911287667129
ELY-C111B 113
27415821436539122827948339169150237117928850022229129321492 9218487120234236131268218164376229155811138167116153145 153283262143197123105403278258197190186347435236112166222195 2981222133761652071203532151091133431331451536979997698 12612790129136102135143160326133180102119102126224165157121 13312713310077998881861196583114 ELY-C115A 165
675878383538387510866683678681017410390146117 151131147132114185140132115867249735496791101268293 60635171876467497296998172921057990818687 86918510067704764876069565979637363756556 5560715846746888478591847641685972837586 6569577775725065587453638268667373786076 5052495058405741536353374163659353423656 7367574944797082768381956460462741386361 5252505374
ELY-C115B 165
2240842229243466967042358166897510492145131
14212315512510719613011511410479597877848611213082101
5652577098586451801171078370971058383788795
77978410370705165887373486185658071716747 50647459558577825195851038054525171849584 8968547971725464577551637677796573885071 5345576052446032536366374456677658493149 7467614343806887837974837460493927467053 5149535755

ELY-C118A77
168236302370380256255314266210227212216221147245134152102193 16317023619419426813514515323423718519328217617315915491110 93134148249128178135113109157190274347282145145140178139104 10584899194121112125148143172144103170135167166 ELY-C118B 77
21720828937438722422634226219021219421021515827413615196202 15116721417419528913415016222822719919426218016616415696114 82134154244106176138108116153199273348285136148130161160111 12382779495116111132138144184122108176127173158 ELY-C121A63
193131222206265237193223232358365330208455446411416336364368
3753593853722272222803723442622962772011226679144144197213
18716499102102916768868271565780767578537843 705459
ELY-C121B63
200132236212271241185216223334375336201418420394402336388387
3693503953612342152673463412513052912061197471148142229231
21017510492109956367799570475889756983556855
605563
ELY-C129A 61
$\begin{array}{llllllllllllllllllllllll}150 & 250 & 335 & 274 & 339 & 381 & 437 & 255 & 252 & 318 & 354 & 268 & 198 & 172 & 157 & 161 & 126 & 173 & 210 & 219\end{array}$
$\begin{array}{lllllllllllllllllllll}225 & 83 & 120 & 140 & 103 & 86 & 125 & 132 & 113 & 126 & 101 & 82 & 103 & 82 & 82 & 76 & 114 & 109 & 88 & 87\end{array}$
 141
ELY-C129B 61
$\begin{array}{llllllllllllllllllllllllllll}161 & 231 & 363 & 295 & 311 & 423 & 454 & 257 & 259 & 309 & 358 & 259 & 191 & 188 & 162 & 144 & 131 & 161 & 234 & 210\end{array}$
$\begin{array}{llllllllllllllllllllll}234 & 98 & 113 & 127 & 92 & 88 & 114 & 140 & 126 & 116 & 116 & 96 & 83 & 97 & 94 & 80 & 122 & 104 & 94 & 74\end{array}$
$\begin{array}{lllllllllllllllllllllllll}132 & 98 & 144 & 178 & 154 & 141 & 105 & 103 & 135 & 145 & 113 & 104 & 171 & 147 & 151 & 169 & 216 & 77 & 91 & 110\end{array}$ 121
ELY-C133A 185
$\begin{array}{llllllllllllllllllll}165 & 160 & 92 & 84 & 104 & 128 & 147 & 153 & 165 & 161 & 152 & 106 & 99 & 100 & 105 & 141 & 279 & 241 & 228 & 185\end{array}$
$\begin{array}{llllllllllllllllllll}110 & 113 & 91 & 160 & 83 & 70 & 131 & 136 & 184 & 158 & 173 & 194 & 154 & 179 & 92 & 54 & 36 & 48 & 67 & 101\end{array}$
$\begin{array}{llllllllllllllllll}123 & 192 & 163 & 114 & 146 & 89 & 94 & 42 & 49 & 50 & 62 & 98 & 145 & 108 & 89 & 102 & 97 & 100\end{array} 101106$
$\begin{array}{lllllllllllllllllllllll}101 & 118 & 136 & 102 & 76 & 80 & 117 & 104 & 95 & 111 & 98 & 130 & 91 & 106 & 129 & 105 & 100 & 122 & 98 & 97\end{array}$
$\begin{array}{lllllllllllllllllllllll}109 & 113 & 121 & 167 & 89 & 94 & 93 & 106 & 109 & 106 & 111 & 94 & 157 & 148 & 116 & 148 & 124 & 124 & 126 & 146\end{array}$
$\begin{array}{llllllllllllllllllllll}92 & 127 & 194 & 134 & 135 & 115 & 114 & 114 & 79 & 105 & 77 & 49 & 54 & 99 & 77 & 93 & 113 & 96 & 125 & 134\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}165 & 114 & 104 & 88 & 89 & 88 & 146 & 123 & 158 & 129 & 167 & 112 & 102 & 79 & 102 & 90 & 60 & 72 & 60 & 79\end{array}$
$\begin{array}{lllllllllllllllllll}95 & 84 & 68 & 62 & 48 & 42 & 56 & 73 & 58 & 80 & 79 & 52 & 69 & 72 & 72 & 61 & 50 & 61 & 74 \\ 57\end{array}$
$\begin{array}{lllllllllllllllllll}65 & 73 & 59 & 72 & 56 & 53 & 46 & 65 & 79 & 59 & 71 & 65 & 56 & 57 & 52 & 52 & 67 & 61 & 56 \\ 78\end{array}$
$\begin{array}{lllll}54 & 49 & 41 & 57 & 56\end{array}$
ELY-C133B 131
$\begin{array}{llllllllllllllllllllll}194 & 184 & 144 & 134 & 129 & 110 & 104 & 79 & 107 & 130 & 150 & 213 & 188 & 191 & 151 & 86 & 109 & 84 & 178 & 94\end{array}$ $\begin{array}{llllllllllllllllllllll}78 & 97 & 108 & 142 & 145 & 138 & 159 & 139 & 149 & 132 & 97 & 65 & 68 & 118 & 144 & 124 & 242 & 205 & 181 & 204\end{array}$ $\begin{array}{llllllllllllllllllllllll}142 & 139 & 77 & 62 & 60 & 61 & 119 & 196 & 121 & 110 & 122 & 130 & 146 & 107 & 109 & 112 & 125 & 133 & 124 & 85\end{array}$ $\begin{array}{lllllllllllllllllllll}100 & 114 & 114 & 101 & 116 & 89 & 149 & 126 & 137 & 152 & 157 & 174 & 182 & 111 & 124 & 105 & 98 & 104 & 192 & 114\end{array}$
 $\begin{array}{llllllllllllllllllll}113 & 108 & 96 & 83 & 80 & 50 & 51 & 54 & 69 & 58 & 76 & 79 & 79 & 80 & 98 & 118 & 104 & 102 & 78 & 78\end{array}$ $\begin{array}{llllllllllllllll}102 & 146 & 136 & 163 & 170 & 143 & 148 & 136 & 118 & 137 & 84\end{array}$

ELY-C135A116

95222195169135161212186199173177151198160145126160148168144 14711110011210211711115614716915217711510612917812010012475 9376104136128130941019269701021351371151131191019792 746875119104103891041191191177492108122110746487103 771029113299105941021149710611097858411791105154121 991059811711514911011412113911611410292140157
ELY-Cl35B 116
134212195167137158212189193175175150194158146129164143164145 1511101041101011211021571521661571671239913517512410511982 897998144127126901049172671061361441141181181029394 78636911611495901091201141187391113124102806285103 811039112610010398951169910411491898511493109142121 112988812210816010812011614410511511986132158
ELY-C140A81
272271152179195288300382231334368354293332446408394401627567 496491389521370276220172165352140212199166232260334176138138 1421035857909097141203180998874100143154154163158139 10513114111581113125171116103118134107115128127149130100132 133
ELY-C140B 81
255265156171204286219351234350371358292334436432426392639581 520397341457349289218184161345139214190180238258319164134124 1441084862878997137201177117907198138156160166155126 1131331311208810813416711310111513711411712813414413099129 130
ELY-C142A83
8045302826198134162643720213624481521261918
292628303839233010116558327074667181217191155
12924521523023420215912618717211112971145122288234280226270
156160108153217266299227214180252148167146164193110136118142 123219184
ELY-C142B83
6449292831190134159683421283128461728192120
292729373342173010316764407579787376227198159
13727021023824219716914618616310112158127120244230273231279
153155117152198277274221201177228148175137162189122135114130
127215224
ELY-C149A 100
$\begin{array}{llllllllllllllllllll}248 & 188 & 188 & 136 & 162 & 230 & 134 & 184 & 286 & 191 & 238 & 187 & 180 & 132 & 272 & 114 & 260 & 248 & 251 & 106\end{array}$ $\begin{array}{lllllllllllllllllllll}176 & 138 & 184 & 167 & 234 & 162 & 212 & 149 & 179 & 124 & 163 & 173 & 185 & 170 & 132 & 122 & 138 & 112 & 84 & 114\end{array}$ $\begin{array}{llllllllllllllllllll}155 & 170 & 184 & 125 & 121 & 142 & 156 & 114 & 194 & 147 & 147 & 164 & 172 & 181 & 135 & 165 & 130 & 125 & 108 & 127\end{array}$ $\begin{array}{llllllllllllllllllllllll}142 & 165 & 136 & 213 & 189 & 164 & 102 & 116 & 93 & 108 & 116 & 146 & 156 & 179 & 130 & 133 & 90 & 180 & 165 & 118\end{array}$ $\begin{array}{lllllllllllllllllllll}171 & 163 & 98 & 114 & 99 & 119 & 149 & 87 & 108 & 104 & 115 & 99 & 114 & 134 & 120 & 87 & 73 & 50 & 41 & 58\end{array}$
ELY-C149B 100
$\begin{array}{llllllllllllllllllllllll}247 & 182 & 190 & 122 & 164 & 217 & 132 & 179 & 298 & 187 & 260 & 176 & 181 & 141 & 267 & 119 & 267 & 244 & 230 & 127\end{array}$ $\begin{array}{llllllllllllllllllllll}179 & 147 & 146 & 180 & 276 & 149 & 240 & 191 & 193 & 125 & 150 & 178 & 167 & 178 & 127 & 114 & 129 & 102 & 91 & 95\end{array}$
 $\begin{array}{llllllllllllllllllllll}199 & 193 & 125 & 196 & 178 & 174 & 104 & 77 & 114 & 83 & 134 & 136 & 155 & 162 & 124 & 108 & 90 & 184 & 178 & 130\end{array}$
 ELY-C151A 73
$\begin{array}{lllllllllllllllllll}203 & 141 & 156 & 115 & 153 & 222 & 161 & 93 & 119 & 101 & 165 & 237 & 234 & 233 & 179 & 215 & 100 & 110 & 97 \\ 116\end{array}$
$\begin{array}{lllllllllllllllllllllll}172 & 134 & 215 & 264 & 197 & 250 & 166 & 133 & 148 & 132 & 199 & 178 & 134 & 182 & 161 & 191 & 164 & 206 & 174 & 211\end{array}$
$\begin{array}{llllllllllllllllllllllllll}151 & 103 & 133 & 164 & 175 & 99 & 115 & 124 & 138 & 138 & 141 & 138 & 129 & 178 & 247 & 205 & 212 & 194 & 165 & 171\end{array}$
$\begin{array}{llllllllllll}233 & 193 & 89 & 93 & 82 & 79 & 69 & 96 & 125 & 129 & 111 & 60\end{array} \quad 63$

ELY-C151B 55

$\begin{array}{lllllllllllllllll}71 & 113 & 84 & 151 & 167 & 200 & 221 & 196 & 195 & 76 & 72 & 86 & 86 & 114 & 88 & 113 & 204\end{array} 1431506152$
$\begin{array}{llllllllllllllllllllllllll}99 & 141 & 112 & 159 & 142 & 93 & 153 & 121 & 132 & 109 & 122 & 114 & 154 & 151 & 121 & 141 & 198 & 169 & 93 & 108\end{array}$
$\begin{array}{llllllllllllllllllll}114 & 142 & 126 & 138 & 130 & 96 & 137 & 172 & 170 & 121 & 151 & 97 & 115 & 164 & 172\end{array}$
ELY-C153A 80

$\begin{array}{lllllllllllllllllllllllllllll}204 & 87 & 121 & 97 & 156 & 125 & 75 & 85 & 94 & 114 & 188 & 120 & 113 & 147 & 175 & 62 & 89 & 55 & 65 & 73\end{array}$
ELY-C153B 80
26012614198116274314264291391212256276260321236656562455283

$\begin{array}{lllllllllllllllllllllll}154 & 202 & 383 & 190 & 171 & 110 & 153 & 260 & 238 & 147 & 128 & 265 & 262 & 180 & 59 & 140 & 90 & 156 & 93 & 149\end{array}$

ELY-Cl54A 54
234216122100204235120206140158169187174157183106152157117168
15618015120312811414517913313516115111116817724013119810085
110148224180134136117139183103157118163142
ELY-C154B54
241214123102204240119215143174166192168181150102149168122169
14617415518812212415215914014116614211617218721914118410591
12016220517612514511214118295140125162167
ELY-C155A 58
$\begin{array}{lllllllllllllllllllll}196 & 237 & 273 & 267 & 235 & 268 & 173 & 160 & 127 & 150 & 59 & 83 & 160 & 147 & 129 & 217 & 236 & 195 & 151 & 218\end{array}$

$\begin{array}{llllllllllllllllllllll}133 & 189 & 119 & 137 & 84 & 162 & 166 & 265 & 194 & 164 & 249 & 178 & 193 & 178 & 245 & 260 & 301 & 154\end{array}$
ELY-Cl55B 56
$\begin{array}{llllllllllllllllll}240 & 173 & 189 & 199 & 229 & 258 & 225 & 225 & 144 & 122 & 98 & 161 & 71 & 78 & 171 & 159 & 131 & 233 \\ 205 & 154\end{array}$
$\begin{array}{lllllllllllllllllllllll}111 & 157 & 190 & 273 & 280 & 195 & 114 & 121 & 204 & 201 & 135 & 221 & 175 & 188 & 174 & 147 & 232 & 269 & 279 & 202\end{array}$
$\begin{array}{llllllllllllllllll}170 & 162 & 140 & 182 & 110 & 119 & 82 & 175 & 156 & 243 & 169 & 155 & 245 & 179 & 189 & 179\end{array}$
ELY-C156A 100
$\begin{array}{llllllllllllllllll}142 & 165 & 170 & 173 & 202 & 165 & 168 & 122 & 119 & 149 & 130 & 80 & 62 & 72 & 78 & 149 & 180 & 163\end{array} 80 \quad 65$ $\begin{array}{llllllllllllllllllllll}94 & 155 & 171 & 136 & 124 & 122 & 90 & 66 & 69 & 92 & 107 & 159 & 125 & 123 & 132 & 113 & 117 & 100 & 154 & 233\end{array}$ $\begin{array}{lllllllllllllllllllllll}193 & 170 & 119 & 105 & 201 & 134 & 129 & 108 & 154 & 158 & 182 & 164 & 97 & 145 & 174 & 165 & 131 & 116 & 145 & 205\end{array}$ $\begin{array}{llllllllllllllllllllll}166 & 119 & 135 & 148 & 150 & 132 & 105 & 71 & 131 & 75 & 79 & 83 & 112 & 103 & 135 & 163 & 163 & 182 & 113 & 117\end{array}$

ELY-C156B 102
$\begin{array}{lllllllllllllllllllll}132 & 112 & 172 & 165 & 147 & 173 & 166 & 178 & 215 & 168 & 171 & 138 & 108 & 152 & 138 & 80 & 64 & 67 & 90 & 142\end{array}$
$\begin{array}{llllllllllllllllllllllll}163 & 156 & 82 & 67 & 102 & 145 & 164 & 133 & 129 & 103 & 87 & 64 & 62 & 100 & 114 & 150 & 133 & 115 & 138 & 113\end{array}$

$\begin{array}{llllllllllllllllllll}142 & 121 & 165 & 191 & 161 & 112 & 133 & 145 & 152 & 143 & 127 & 76 & 128 & 88 & 82 & 83 & 110 & 96 & 130 & 163\end{array}$
$\begin{array}{lllllllllllllllllllllllll}158 & 173 & 107 & 119 & 132 & 145 & 147 & 195 & 180 & 138 & 100 & 92 & 138 & 142 & 180 & 148 & 160 & 143 & 141 & 162\end{array}$ 12997
ELY-C157A 181
$\begin{array}{lllllllllllllllllll}135 & 97 & 103 & 183 & 157 & 126 & 196 & 275 & 196 & 211 & 150 & 180 & 73 & 155 & 114 & 161 & 134 & 142 & 146\end{array} 170$ $\begin{array}{llllllllllllllllllllllllll}108 & 85 & 99 & 145 & 103 & 103 & 122 & 184 & 159 & 192 & 123 & 147 & 207 & 114 & 142 & 142 & 142 & 93 & 118 & 69\end{array}$
 $\begin{array}{llllllllllllllllll}89 & 106 & 69 & 89 & 78 & 94 & 80 & 86 & 65 & 105 & 60 & 62 & 65 & 79 & 116 & 108 & 76 & 113 \\ 95 & 74\end{array}$ $\begin{array}{llllllllllllllllllll}70 & 84 & 101 & 87 & 80 & 76 & 104 & 97 & 110 & 95 & 128 & 126 & 108 & 68 & 80 & 73 & 68 & 84 & 68 & 94\end{array}$ $\begin{array}{llllllllllllllllll}73 & 68 & 64 & 58 & 62 & 78 & 71 & 86 & 62 & 73 & 75 & 84 & 81 & 86 & 68 & 40 & 77 & 77 \\ 59 & 67\end{array}$ $\begin{array}{llllllllllllllllllll}65 & 55 & 55 & 65 & 53 & 75 & 70 & 52 & 71 & 78 & 77 & 77 & 73 & 68 & 71 & 71 & 89 & 63 & 84 & 68\end{array}$
$\begin{array}{lllllllllllllllllll}80 & 92 & 102 & 94 & 95 & 97 & 125 & 105 & 107 & 75 & 91 & 97 & 84 & 79 & 85 & 118 & 99 & 120 & 112\end{array} 70$
 96

ELY-C157B 176

$\begin{array}{llllllllllllllll}114 & 82 & 75 & 69 & 98 & 86 & 87 & 101 & 134 & 112 & 118 & 72 & 83 & 79 & 66 & 74 \\ 64 & 87 & 68 & 65\end{array}$
$\begin{array}{lllllllllllllllll}65 & 65 & 56 & 77 & 84 & 96 & 67 & 93 & 90 & 70 & 91 & 99 & 61 & 46 & 70 & 73 & 63 \\ 58 & 67 & 58\end{array}$
$\begin{array}{llllllllllllllll}48 & 66 & 42 & 69 & 65 & 50 & 63 & 64 & 80 & 71 & 75 & 63 & 76 & 63 & 85 & 67 \\ 85 & 78 & 71 & 101\end{array}$
$\begin{array}{llllllllllllllll}99 & 88 & 102 & 99 & 116 & 105 & 98 & 85 & 89 & 98 & 104 & 84 & 90 & 120 & 98 & 146\end{array} 1127818484$

ELY-C158A 119
$\begin{array}{llllllllllllllll}288 & 194 & 137 & 207 & 199 & 210 & 223 & 177 & 193 & 120 & 101 & 63 & 99 & 176 & 134 & 151\end{array} 14193197177$

 ELY-C158B 114
$\begin{array}{llllllllllllllll}170 & 170 & 191 & 125 & 104 & 80 & 104 & 193 & 143 & 154 & 148 & 88 & 103 & 202 & 139 & 104\end{array} 156188211201$

$\begin{array}{lllllllllllllllllll}115 & 94 & 106 & 90 & 83 & 161 & 97 & 82 & 76 & 107 & 102 & 131 & 134 & 251 & 221 & 181 & 151 & 90 & 95\end{array} 144$

ELY-C159A 146
$\begin{array}{llllllllllllllllllllllll}144 & 183 & 165 & 186 & 155 & 211 & 139 & 237 & 190 & 183 & 140 & 97 & 162 & 139 & 176 & 135 & 107 & 93 & 129 & 144\end{array}$

$\begin{array}{llllllllllllllllllll}187 & 112 & 134 & 153 & 103 & 97 & 171 & 96 & 79 & 100 & 123 & 201 & 92 & 159 & 170 & 144 & 120 & 192 & 146 & 156\end{array}$

$\begin{array}{llllllllllllllll}173 & 132 & 148 & 108 & 96 & 98 & 96 & 80 & 66 & 100 & 80 & 90 & 92 & 104 & 84 & 81 \\ 68 & 65 & 71 & 81\end{array}$
$\begin{array}{llll}79 & 74 & 95 & 88 \\ 88 & 98\end{array}$
ELY-C159B 150
$\begin{array}{lllllllllllllllllll}136 & 248 & 183 & 185 & 139 & 89 & 151 & 139 & 162 & 127 & 107 & 107 & 118 & 153 & 172 & 125 & 126 & 136 & 143\end{array} 161$
$\begin{array}{lllllllllllllllllll}152 & 187 & 150 & 155 & 138 & 125 & 97 & 118 & 109 & 131 & 81 & 93 & 148 & 143 & 155 & 107 & 123 & 135 & 99 \\ 109\end{array}$
$\begin{array}{llllllllllllllllll}156 & 108 & 99 & 107 & 143 & 204 & 109 & 157 & 152 & 155 & 129 & 208 & 154 & 147 & 91 & 96 & 119 & 138 \\ 129 & 138\end{array}$
$\begin{array}{lllllllllllllllllllllll}153 & 155 & 118 & 123 & 128 & 127 & 98 & 83 & 85 & 86 & 87 & 116 & 120 & 115 & 117 & 145 & 121 & 156 & 109 & 143\end{array}$
$\begin{array}{lllllllllllllllllll}235 & 159 & 149 & 173 & 140 & 147 & 146 & 141 & 143 & 212 & 140 & 194 & 197 & 158 & 130 & 159 & 129 & 143 & 190\end{array} 159$

$\begin{array}{llllllllllllllllll}95 & 98 & 84 & 98 & 96 & 86 & 88 & 112 & 87 & 89 & 67 & 72 & 82 & 65 & 92 & 85 & 100 & 93 \\ 83 & 74\end{array}$
$\begin{array}{llllllll}75 & 100 & 115 & 134 & 99 & 86 & 93 & 96 \\ 71 & 101\end{array}$
ELY-C160A 136
$\begin{array}{llllllllllllllllll}154 & 151 & 129 & 153 & 148 & 171 & 178 & 167 & 158 & 178 & 194 & 172 & 124 & 183 & 168 & 177 & 165 & 173\end{array} 150182$

$\begin{array}{llllllllllllllll}114 & 137 & 79 & 106 & 102 & 72 & 78 & 66 & 90 & 96 & 91 & 58 & 75 & 57 & 83 & 72 \\ 72 & 73 & 75 & 88\end{array}$
$\begin{array}{llllllllllllllll}72 & 111 & 117 & 80 & 82 & 125 & 139 & 102 & 92 & 92 & 94 & 60 & 96 & 61 & 95 & 67 \\ 65 & 82 & 71 & 91\end{array}$
$\begin{array}{lllllllllllllllll}114 & 84 & 75 & 89 & 84 & 115 & 86 & 85 & 65 & 73 & 108 & 93 & 97 & 120 & 96 & 93 & 99 \\ 85 & 91 & 74\end{array}$

ELY-C160B 146

$\begin{array}{lllllllllllllll}92 & 104 & 106 & 67 & 49 & 76 & 111 & 84 & 105 & 132 & 129 & 85 & 94 & 108 & 107 \\ 87 & 86 & 59 & 105 & 91\end{array}$
$\begin{array}{lllllllllllllll}128 & 120 & 127 & 111 & 141 & 84 & 115 & 101 & 69 & 72 & 59 & 83 & 86 & 71 & 77 \\ 80 & 64 & 79 & 78 & 74\end{array}$
$\begin{array}{llllllllllllllll}68 & 89 & 80 & 95 & 110 & 128 & 90 & 88 & 109 & 122 & 97 & 84 & 85 & 96 & 75 & 94\end{array} 6488 \quad 7266$
$\begin{array}{llllllllllllllllll}77 & 74 & 86 & 101 & 88 & 69 & 88 & 68 & 119 & 75 & 76 & 58 & 72 & 109 & 97 & 97 & 113 & 93 \\ 94 & 77\end{array}$

$63 \quad 5064749299$
ELY-C161A 136

 $\begin{array}{lllllllllllllllll}116 & 129 & 147 & 125 & 97 & 90 & 153 & 133 & 156 & 133 & 179 & 121 & 116 & 107 & 83 & 102 & 140 \\ 109 & 88 & 89\end{array}$ $\begin{array}{lllllllllllllllllll}60 & 96 & 112 & 135 & 106 & 148 & 104 & 109 & 117 & 102 & 107 & 96 & 107 & 52 & 51 & 53\end{array}$
ELY-C161B 132
$\begin{array}{lllllllllllllllll}280 & 274 & 259 & 289 & 197 & 266 & 130 & 143 & 159 & 217 & 169 & 166 & 160 & 199 & 166 & 142 & 81 \\ 99 & 101 & 116\end{array}$

$\begin{array}{llllllllllllllllll}131 & 142 & 124 & 113 & 90 & 143 & 132 & 149 & 119 & 165 & 109 & 88 & 103 & 92 & 94 & 113 & 106 & 89 \\ 84 & 72\end{array}$
$\begin{array}{llllllllllll}86 & 104 & 122 & 89 & 132 & 97 & 107 & 121 & 99 & 100 & 83 & 47\end{array}$
ELY-C162A 134

$\begin{array}{lllllllllllllllll}147 & 111 & 133 & 116 & 86 & 69 & 97 & 144 & 115 & 119 & 134 & 121 & 98 & 96 & 112 & 128 & 97 \\ 113 & 104 & 126\end{array}$
$\begin{array}{lllllllllllllll}108 & 114 & 122 & 143 & 122 & 166 & 111 & 119 & 127 & 98 & 106 & 80 & 120 & 91 & 117\end{array} 13911287 l 389$
$\begin{array}{llllllllllllllll}106 & 107 & 91 & 96 & 76 & 96 & 111 & 103 & 124 & 65 & 120 & 100 & 110 & 115 & 102 & 96\end{array} 1128110699$

$\begin{array}{lllllllllllllllllllll}98 & 83 & 77 & 78 & 100 & 118 & 86 & 96 & 118 & 90 & 118 & 103 & 109 & 104 & 99 & 122 & 85 & 87 & 101 & 106\end{array}$
$\begin{array}{llllllllllll}110 & 105 & 107 & 74 & 83 & 89 & 103 & 97 & 101 & 95 & 84 & 88 \\ 98 & 100\end{array}$
ELY-C162B 134

$\begin{array}{lllllllllllllllllllll}86 & 100 & 85 & 112 & 116 & 100 & 106 & 120 & 82 & 119 & 103 & 83 & 77 & 84 & 118 & 109 & 97 & 143 & 109 & 98\end{array}$
$\begin{array}{llllllllllllllll}93 & 85 & 82 & 94 & 99 & 103 & 86 & 107 & 103 & 94 & 107 & 97 & 118 & 112 & 94 & 117\end{array} 919388105$
$\begin{array}{lllllllllll}110 & 97 & 76 & 77 & 104 & 87 & 128 & 78 & 107 & 81 & 86\end{array} 9210586$
ELY-C168A 106
346338533572519455415427530456601459684556371515540624604499
309481555598337427478515639515494541494310296441347376260375
259298242204173266224296286374212299274279276468314267278262
173220266375427230213229215177197191141236187258209148138189

127135192122125143
ELY-C168B 106
334344521572513460458469507440597448665588384510534608588489
328472561601326430505531611502516545485315289432340366242371
270284247201184255220298303360212295267294269469323268284234
170212280354415265190230230155183204149226196258212163143181
$\begin{array}{llllllllllllllllllllll}173 & 147 & 184 & 185 & 228 & 148 & 165 & 187 & 155 & 136 & 165 & 224 & 212 & 196 & 261 & 263 & 220 & 201 & 161 & 165\end{array}$
125129176140111165

ELY-C169A 145

2262192821702221771178490125116861318119312714086120113
8011523025323820424213293157213213171155159144170154133135

$\begin{array}{lllllllllllllllll}81 & 63 & 48 & 127 & 97 & 90 & 118 & 73 & 84 & 90 & 51 & 100 & 86 & 71 & 164 & 253 & 344 \\ 172 & 119 & 172\end{array}$

9073849186
ELY-C169B 145
$\begin{array}{llllllllllllllllllllll}240 & 215 & 279 & 176 & 221 & 186 & 112 & 91 & 92 & 112 & 121 & 86 & 130 & 80 & 197 & 127 & 133 & 97 & 118 & 110\end{array}$
7712523027323620123813094150215221175161165142179157129143

94839310081
ELY-C170A 68
319351331255329260259351236274317417354315135369434467357270
356236288242386305261328320265251174160224316179153204244134 $\begin{array}{llllllllllllllllll}91 & 75 & 73 & 86 & 121 & 76 & 84 & 121 & 159 & 151 & 136 & 138 & 163 & 119 & 134 & 123 & 82 & 106\end{array} 114156$ $\begin{array}{lllllll}108 & 111 & 137 & 133 & 129 & 154 & 203 \\ 242\end{array}$
ELY-C170B 68
304342322255316280255340259269311427339307133392410468364283
351232279241398298249334324255249184151234310190150213234159

102112146125135161194222
ELY-C171A 99
$\begin{array}{llllllllllllllll}183 & 219 & 154 & 226 & 108 & 118 & 41 & 81 & 95 & 161 & 120 & 178 & 225 & 166 & 113 & 115\end{array} 51118112174$
$\begin{array}{llllllllllllllllll}155 & 113 & 238 & 189 & 204 & 183 & 167 & 165 & 140 & 180 & 125 & 152 & 154 & 102 & 72 & 102 & 91 & 106 \\ 158 & 161\end{array}$
$\begin{array}{llllllllllllllllllllllll}122 & 151 & 183 & 205 & 185 & 167 & 159 & 267 & 260 & 246 & 290 & 305 & 294 & 226 & 213 & 195 & 171 & 134 & 148 & 135\end{array}$

$\begin{array}{llllllllllllllll}251 & 162 & 112 & 87 & 66 & 93 & 99 & 100 & 71 & 54 & 59 & 52 & 78 & 85 & 75 & 71\end{array} 88$
ELY-C171B 99

1501112172032111911721491311651381501361157810886110151161

$\begin{array}{llllllllllllllll}241 & 188 & 124 & 100 & 84 & 132 & 87 & 117 & 85 & 53 & 66 & 47 & 79 & 98 & 78 & 66\end{array} 90$
ELY-CI72A 94

427469369491395419268342230163248307230228166201246270359329
$\begin{array}{llllllllllllllllllllll}251 & 270 & 136 & 92 & 81 & 102 & 134 & 186 & 144 & 106 & 68 & 113 & 119 & 133 & 104 & 72 & 79 & 61 & 76 & 108\end{array}$ $\begin{array}{lllllllllllllllll}110 & 62 & 65 & 79 & 108 & 127 & 117 & 96 & 84 & 79 & 116 & 113 & 95 & 77 & 56 & 78 & 100 \\ 108 & 108 & 135\end{array}$ $\begin{array}{lllllllllll}68 & 47 & 37 & 66 & 60 & 77 & 47 & 58 & 75 & 54 & 84 \\ 68 & 61 & 91\end{array}$
ELY-C172B 94

430460374489409402298321238177241309228234162200254292370334 $\begin{array}{lllllllllllllllll}234 & 274 & 130 & 91 & 85 & 113 & 151 & 186 & 150 & 112 & 77 & 104 & 119 & 149 & 96 & 54 & 72\end{array} 6273100$
$\begin{array}{lllllllllllllllllll}88 & 54 & 58 & 76 & 106 & 131 & 111 & 94 & 84 & 79 & 106 & 117 & 100 & 67 & 68 & 72 & 93 & 100 & 112\end{array} 129$

ELY-C173A 75

$\begin{array}{llllllllllllllll}187 & 92 & 134 & 149 & 172 & 226 & 170 & 145 & 119 & 77 & 108 & 67 & 89 & 94 & 129\end{array}$
ELY-C173B 75
$\begin{array}{lllllllllllllllllllll}223 & 204 & 183 & 135 & 98 & 141 & 161 & 151 & 133 & 285 & 237 & 248 & 175 & 154 & 119 & 250 & 246 & 147 & 207 & 106\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}226 & 158 & 89 & 99 & 144 & 127 & 174 & 204 & 169 & 223 & 238 & 194 & 137 & 217 & 258 & 232 & 271 & 213 & 190 & 199\end{array}$
 $\begin{array}{llllllllllllll}168 & 90 & 122 & 148 & 179 & 237 & 149 & 172 & 95 & 96 & 69 & 94 & 90 & 102\end{array} 147$
ELY-C174A 54

ELY-C174B 54
200164216185242176217296303294317249229275242205197179124125
$\begin{array}{llllllllllllllllllllllllll}141 & 116 & 180 & 221 & 205 & 200 & 188 & 188 & 282 & 284 & 189 & 157 & 158 & 251 & 236 & 275 & 288 & 283 & 213 & 191\end{array}$
$\begin{array}{lllllllllllllllllll}111 & 215 & 246 & 234 & 178 & 114 & 113 & 116 & 127 & 144 & 118 & 125 & 141 & 115\end{array}$
ELY-C175A 60
$\begin{array}{lllllllllllllllllll}96 & 110 & 102 & 139 & 99 & 108 & 91 & 97 & 100 & 157 & 160 & 154 & 125 & 125 & 179 & 162 & 142 & 112 & 121\end{array} 95$

ELY-C175B 60
$\begin{array}{llllllllllllllllllll}10 & 10 & 10 & 13 & 11 & 12 & 10 & 9 & 12 & 16 & 19 & 16 & 14 & 13 & 18 & 15 & 14 & 15 & 12 & 10\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}14 & 10 & 14 & 15 & 20 & 13 & 19 & 13 & 18 & 15 & 20 & 14 & 19 & 18 & 20 & 15 & 11 & 14 & 25 & 20\end{array}$
$\begin{array}{llllllllllllllllllll}16 & 15 & 15 & 12 & 10 & 15 & 18 & 16 & 19 & 15 & 15 & 16 & 16 & 12 & 18 & 16 & 15 & 18 & 19 & 12\end{array}$ ELY-C177A 54
733573471448541362414459356425481533352465298288261185144178
$\begin{array}{lllllllllllllllllllllllllll}182 & 209 & 167 & 139 & 133 & 199 & 142 & 176 & 119 & 102 & 118 & 175 & 131 & 139 & 148 & 135 & 161 & 133 & 138 & 121\end{array}$

ELY-Cl77B 56
$\begin{array}{lllllllllllllllllll}535 & 356 & 460 & 295 & 284 & 263 & 190 & 139 & 174 & 184 & 210 & 166 & 140 & 134 & 163 & 168 & 150 & 125 & 112\end{array} 120$ $\begin{array}{lllllllllllllllllllllll}182 & 157 & 150 & 182 & 139 & 142 & 135 & 152 & 122 & 123 & 93 & 125 & 119 & 120 & 115 & 111 & 157 & 148 & 128 & 161\end{array}$ $\begin{array}{lllllllllllllllllll}124 & 96 & 96 & 133 & 159 & 173 & 165 & 193 & 182 & 173 & 196 & 202 & 124 & 111 & 177 & 202\end{array}$
ELY-C178A 77

$\begin{array}{llllllllllllllllllllllll}171 & 163 & 95 & 127 & 94 & 133 & 107 & 80 & 81 & 93 & 106 & 67 & 93 & 59 & 67 & 61 & 86 & 83 & 92 & 66\end{array}$
$\begin{array}{lllllllllllllllllll}48 & 63 & 42 & 66 & 75 & 63 & 70 & 70 & 68 & 49 & 51 & 51 & 56 & 28 & 42 & 52 & 32 & 35 & 44 \\ 50\end{array}$
$\begin{array}{llllllllllllllll}41 & 32 & 26 & 35 & 43 & 36 & 51 & 43 & 48 & 42 & 45 & 54 & 75 & 41 & 60 & 49\end{array} 60$
ELY-C178B 96
$\begin{array}{llllllllllllllllllllll}303 & 348 & 227 & 258 & 182 & 172 & 148 & 146 & 238 & 195 & 161 & 163 & 170 & 164 & 224 & 29 & 181 & 194 & 294 & 253\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}220 & 279 & 177 & 173 & 293 & 165 & 220 & 166 & 145 & 132 & 185 & 157 & 191 & 160 & 102 & 178 & 173 & 153 & 160 & 131\end{array}$
$\begin{array}{llllllllllllllllllllll}120 & 107 & 176 & 172 & 88 & 133 & 109 & 155 & 93 & 106 & 89 & 93 & 101 & 81 & 80 & 69 & 69 & 67 & 85 & 89\end{array}$
$\begin{array}{llllllllllllllllll}76 & 77 & 53 & 54 & 45 & 64 & 88 & 54 & 70 & 66 & 68 & 50 & 60 & 53 & 46 & 29 & 38 & 56 \\ 30 & 49\end{array}$
$\begin{array}{llllllllllllll}37 & 46 & 43 & 31 & 26 & 34 & 48 & 39 & 40 & 45 & 47 & 34 & 54 & 52\end{array} 6149$
ELY-CI79A 61

 157
ELY-Cl79B 61
$\begin{array}{llllllllllllllllllllllllllll}428 & 310 & 229 & 263 & 396 & 517 & 535 & 683 & 664 & 356 & 463 & 241 & 188 & 148 & 173 & 215 & 286 & 195 & 222 & 128\end{array}$

$\begin{array}{lllllllllllllllllllllllllllll}228 & 187 & 173 & 106 & 142 & 134 & 155 & 171 & 144 & 99 & 91 & 119 & 157 & 154 & 153 & 167 & 161 & 163 & 207 & 199\end{array}$ 154

ELY-C180A 69

$\begin{array}{llllll}141 & 178 & 126 & 150 & 141 & 136 \\ 117 & 112119\end{array}$
ELY-C180B 69
297378462444515309361402394349299207133161170192202174167340 323259219183259339283293216202189303262265265180191195180127

ELY-C181A 112

464326314246292197255272405251236160295261380386214305327392
475317262202282259155137111179176185205210171146222108111101
$\begin{array}{llllllllllllllllll}85 & 71 & 129 & 129 & 136 & 92 & 74 & 116 & 179 & 124 & 98 & 111 & 90 & 88 & 123 & 110 & 73 & 112 \\ 84 & 92\end{array}$
$\begin{array}{lllllllllllllllll}82 & 77 & 93 & 124 & 96 & 115 & 108 & 108 & 95 & 64 & 116 & 93 & 87 & 90 & 76 & 59 & 81 \\ 67 & 90 & 80\end{array}$

$\begin{array}{lllllllllll}152 & 106 & 87 & 86 & 86 & 104 & 135 & 89 & 133 & 172 & 112 \\ 83\end{array}$
ELY-C181B 112
464338315240291199255278414266235160293257371385217304325394 46431127321428727115913910318317818821219616215821012011498
 $\begin{array}{lllllllllllllllll}80 & 70 & 94 & 130 & 90 & 111 & 114 & 108 & 92 & 79 & 110 & 96 & 88 & 88 & 71 & 63 & 70\end{array} 637978$
 $\begin{array}{llllllllllll}151 & 102 & 89 & 86 & 88 & 104 & 135 & 85 & 136 & 171 & 112 & 86\end{array}$

ELY-C182A 76

45153154100199257244273378244396342314291285249245319320274
$\begin{array}{lllllllllllllllllll}219 & 220 & 216 & 320 & 251 & 360 & 273 & 234 & 215 & 282 & 243 & 173 & 185 & 143 & 133 & 179 & 205 & 137 & 180 \\ 189\end{array}$

$220175325 \quad 245183289203162150140158120123164112140$
ELY-C182B 76
5714815999200278239276381239379337299308270288246315293241
215215217315254363270233218276251169187146132181195140180182

219176324243183304216144168136154139127161118152
ELY-C183A 56
200133135141132141429290255200315396485444411278258440426407
398318420419105109108199243252256330271242382269234210219212

ELY-C183B 65

165260258278271217208312214223192202191250234198163121218322
$\begin{array}{lllllllllllllllllllllll}228 & 266 & 208 & 193 & 147 & 178 & 158 & 189 & 207 & 166 & 145 & 106 & 108 & 98 & 131 & 144 & 132 & 165 & 125 & 103\end{array}$
91130109114148

ELY-C185A 121

432273230267480676471377179120190259461403339241206235215221
175199308237137233313247303284415395338151141108137151171148
1561699789961371221008986921299992698075725693
8685445338373553424675534045446574626660
7254669476284343144251394031303148382228
2542423538462822292840303539375349343141
28

ELY-C185B 121
439261238253456598484376189114192260466402334245219216215213
192199297236157225290247302285421405321157144110126159172161
1341809188931431121148298941318881788173705999
7777565532433150345475454542425994546261
7348749074373927272850354336292153372329
2135433838422728253031293242454749474136
55
ELY-C302A 150
$\begin{array}{lllllllllllllllllllll}174 & 147 & 114 & 113 & 166 & 205 & 230 & 177 & 131 & 55 & 228 & 176 & 108 & 160 & 271 & 187 & 264 & 357 & 224 & 182\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}262 & 162 & 162 & 154 & 129 & 168 & 130 & 185 & 262 & 183 & 148 & 186 & 136 & 216 & 221 & 240 & 195 & 258 & 217 & 184\end{array}$ $\begin{array}{llllllllllllllllllllll}188 & 172 & 209 & 155 & 123 & 65 & 111 & 159 & 119 & 119 & 156 & 175 & 154 & 108 & 81 & 87 & 163 & 156 & 125 & 135\end{array}$ $\begin{array}{llllllllllllllllll}172 & 174 & 114 & 129 & 100 & 72 & 72 & 112 & 93 & 120 & 102 & 100 & 95 & 82 & 94 & 100 & 91 & 61 \\ 78 & 83\end{array}$ $\begin{array}{lllllllllllllllllll}62 & 62 & 65 & 65 & 62 & 84 & 88 & 96 & 93 & 94 & 46 & 66 & 60 & 56 & 61 & 77 & 68 & 52 & 40 \\ 54\end{array}$ $\begin{array}{llllllllllllllllll}56 & 50 & 39 & 50 & 46 & 44 & 61 & 62 & 74 & 62 & 62 & 65 & 51 & 29 & 46 & 63 & 72 & 87 \\ 67 & 65\end{array}$

ELY-C302B 150
$\begin{array}{lllllllllllllllllllllll}195 & 152 & 113 & 114 & 159 & 197 & 224 & 156 & 134 & 48 & 236 & 178 & 108 & 185 & 259 & 198 & 269 & 344 & 263 & 191\end{array}$

$\begin{array}{lllllllllllllllllllllll}182 & 160 & 204 & 155 & 130 & 52 & 119 & 159 & 120 & 138 & 153 & 162 & 154 & 108 & 82 & 86 & 167 & 158 & 139 & 133\end{array}$
$\begin{array}{llllllllllllllllll}156 & 167 & 113 & 137 & 102 & 78 & 87 & 110 & 85 & 122 & 94 & 91 & 99 & 71 & 102 & 104 & 87 & 67 \\ 81 & 84\end{array}$
$\begin{array}{llllllllllllllllllll}80 & 52 & 63 & 70 & 74 & 81 & 88 & 92 & 110 & 84 & 51 & 67 & 57 & 57 & 65 & 76 & 68 & 57 & 35 & 54\end{array}$
$\begin{array}{lllllllllllllllllll}54 & 52 & 47 & 49 & 50 & 48 & 53 & 63 & 74 & 58 & 63 & 71 & 45 & 42 & 42 & 62 & 74 & 85 & 65 \\ 65\end{array}$

ELY-C303A 90
$\begin{array}{llllllllllllllllll}185 & 93 & 84 & 122 & 124 & 160 & 72 & 72 & 87 & 82 & 106 & 77 & 92 & 88 & 113 & 96 & 95 & 52 \\ 34 & 39\end{array}$
$\begin{array}{lllllllllllllllllll}41 & 52 & 75 & 111 & 98 & 89 & 121 & 75 & 67 & 72 & 47 & 56 & 79 & 84 & 127 & 120 & 82 & 86 & 79\end{array} 106$
$\begin{array}{llllllllllllllllllll}125 & 100 & 102 & 125 & 121 & 117 & 83 & 90 & 116 & 80 & 72 & 115 & 108 & 108 & 71 & 102 & 104 & 95 & 117 & 153\end{array}$
$\begin{array}{lllllllllllllllllllllllllllll}116 & 127 & 170 & 153 & 106 & 146 & 165 & 147 & 139 & 180 & 136 & 195 & 192 & 230 & 240 & 263 & 212 & 234 & 241 & 267\end{array}$
$\begin{array}{llllllllllllllll}193 & 157 & 173 & 198 & 242 & 237 & 179 & 209 & 224 & 262\end{array}$
ELY-C303B 90
$\begin{array}{lllllllllllllllllll}183 & 92 & 90 & 113 & 125 & 160 & 72 & 71 & 89 & 78 & 111 & 72 & 91 & 87 & 112 & 102 & 94 & 48 & 34\end{array} 42$
$\begin{array}{lllllllllllllllllll}40 & 52 & 79 & 108 & 100 & 89 & 123 & 81 & 67 & 68 & 52 & 61 & 76 & 73 & 132 & 120 & 85 & 76 & 90\end{array} 112$
$\begin{array}{lllllllllllllllllllll}124 & 102 & 102 & 130 & 120 & 116 & 83 & 96 & 104 & 82 & 72 & 117 & 102 & 116 & 73 & 93 & 106 & 97 & 117 & 158\end{array}$

$\begin{array}{llllllllllllllllll}200 & 141 & 172 & 203 & 240 & 234 & 184 & 208 & 212 & 296\end{array}$
ELY-C304A 148

$\begin{array}{lllllllllllllllllllllll}136 & 213 & 173 & 149 & 119 & 193 & 154 & 248 & 233 & 104 & 85 & 68 & 55 & 99 & 137 & 143 & 178 & 164 & 108 & 146\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}113 & 120 & 108 & 78 & 65 & 74 & 88 & 97 & 125 & 135 & 108 & 106 & 112 & 104 & 108 & 82 & 84 & 96 & 94 & 104\end{array}$
$\begin{array}{lllllllllllllllllll}69 & 57 & 53 & 43 & 50 & 56 & 57 & 53 & 42 & 48 & 47 & 53 & 57 & 67 & 112 & 106 & 114 & 108 & 113\end{array} 97$

$\begin{array}{lllllllllllllllllllllllllll}116 & 136 & 130 & 79 & 60 & 66 & 76 & 65 & 90 & 129 & 113 & 110 & 116 & 120 & 141 & 129 & 139 & 145 & 161 & 201\end{array}$

ELY-C304B 149
$\begin{array}{llllllllllllllllllllll}311 & 226 & 164 & 268 & 387 & 323 & 260 & 320 & 357 & 378 & 303 & 228 & 162 & 242 & 226 & 379 & 337 & 296 & 198 & 205\end{array}$
26832532225528327324523224619014916022195142221153179134226

$\begin{array}{lllllllllllllll}104 & 104 & 157 & 157 & 122 & 145 & 142 & 110 & 104 & 93 & 95 & 108 & 97 & 108 & 80 \\ 63 & 50 & 53 & 58 & 62\end{array}$

847798130124137133146121137118134151200146174100168162178
$\begin{array}{lllllllllll}212 & 195 & 137 & 303 & 196 & 161 & 137 & 92 & 122\end{array}$
ELY-C309A 64
$\begin{array}{llllllllllllllllll}191 & 226 & 132 & 162 & 151 & 204 & 152 & 98 & 94 & 73 & 61 & 87 & 147 & 166 & 217 & 193 & 147 & 137\end{array} 10097$

120102164184
ELY-C309B 64
$\begin{array}{lllllllllllllllll}197 & 230 & 131 & 162 & 156 & 198 & 151 & 102 & 91 & 72 & 80 & 82 & 156 & 169 & 205 & 200 & 155 \\ 135 & 99 & 85\end{array}$
$\begin{array}{llllllllllllllllll}70 & 66 & 115 & 58 & 50 & 106 & 100 & 106 & 121 & 125 & 132 & 145 & 125 & 132 & 116 & 127 & 90 & 116\end{array} 131129$

11199151141
ELY-C310A 72
$\begin{array}{llllllllllllllllllll}171 & 156 & 112 & 120 & 192 & 242 & 307 & 234 & 118 & 129 & 158 & 183 & 257 & 278 & 208 & 98 & 62 & 140 & 160 & 149\end{array}$

$\begin{array}{llllllllll}114 & 83 & 89 & 61 & 62 & 65 & 56 & 77 & 67 & 88 \\ 74 & 104\end{array}$
ELY-C310B 72
$\begin{array}{llllllllllllllllllllllll}156 & 161 & 124 & 116 & 174 & 250 & 332 & 234 & 112 & 124 & 143 & 200 & 247 & 293 & 188 & 100 & 67 & 134 & 156 & 146\end{array}$

$\begin{array}{llllllllllllllll}129 & 95 & 115 & 97 & 97 & 140 & 100 & 87 & 117 & 108 & 115 & 143 & 112 & 93 & 73 & 108 \\ 88 & 74 & 96 & 106\end{array}$
$\begin{array}{llllllllll}114 & 96 & 79 & 55 & 67 & 70 & 73 & 67 & 60 & 86 \\ 87 & 84\end{array}$
ELY-C311A 96

ELY-C311B 96

ELY-C312A 160
$\begin{array}{llllllllllllllllll}92 & 81 & 82 & 86 & 90 & 74 & 62 & 53 & 65 & 104 & 85 & 100 & 82 & 73 & 78 & 58 & 47 & 53 \\ 78 & 75\end{array}$
$\begin{array}{lllllllllllllllll}79 & 71 & 80 & 89 & 54 & 70 & 83 & 83 & 89 & 93 & 84 & 62 & 78 & 68 & 54 & 60 & 90\end{array} 749399$
$\begin{array}{llllllllllllllllll}70 & 93 & 86 & 87 & 69 & 63 & 65 & 84 & 124 & 102 & 77 & 93 & 66 & 55 & 65 & 51 & 71 & 97\end{array} 7379$
$\begin{array}{lllllllllllllllll}74 & 100 & 73 & 72 & 77 & 68 & 92 & 66 & 88 & 99 & 135 & 85 & 62 & 48 & 55 & 74 & 125\end{array} 75104116$

$\begin{array}{llllllllllllllll}72 & 93 & 108 & 99 & 99 & 104 & 108 & 69 & 66 & 66 & 57 & 75 & 66 & 76 & 53 & 69 \\ 69 & 62 & 50 & 66\end{array}$
$\begin{array}{llllllllllllllllll}62 & 76 & 79 & 77 & 71 & 117 & 108 & 80 & 83 & 78 & 84 & 92 & 55 & 66 & 136 & 118 & 95 & 75 \\ 72 & 94\end{array}$
$\begin{array}{llllllllllllllll}55 & 68 & 38 & 44 & 75 & 62 & 79 & 45 & 55 & 72 & 83 & 70 & 89 & 78 & 117 & 60\end{array} 6960$

ELY-C312B 161
$\begin{array}{lllllllllllllllll}89 & 71 & 74 & 90 & 85 & 75 & 53 & 62 & 62 & 108 & 80 & 102 & 75 & 74 & 82 & 56 & 44 \\ 51 & 83 & 74\end{array}$

$\begin{array}{lllllllllllllllll}65 & 94 & 88 & 81 & 68 & 67 & 73 & 80 & 118 & 106 & 73 & 90 & 68 & 58 & 61 & 52 & 72 \\ 98 & 68 & 88\end{array}$
$\begin{array}{llllllllllllllllll}74 & 100 & 68 & 78 & 77 & 62 & 95 & 67 & 85 & 95 & 139 & 90 & 73 & 49 & 48 & 71 & 119 & 86 \\ 102 & 110\end{array}$
$\begin{array}{llllllllllllllllll}91 & 92 & 62 & 50 & 86 & 93 & 102 & 95 & 75 & 102 & 97 & 81 & 74 & 99 & 97 & 123 & 116 & 104 \\ 88 & 110\end{array}$
$\begin{array}{lllllllllllllllll}73 & 91 & 117 & 93 & 99 & 106 & 104 & 63 & 61 & 70 & 47 & 75 & 61 & 65 & 62 & 68 & 62\end{array} 63 \begin{array}{ll}58 & 68\end{array}$

$\begin{array}{lllllllllllllllll}65 & 53 & 40 & 52 & 88 & 67 & 57 & 56 & 40 & 76 & 81 & 66 & 91 & 73 & 115 & 72 & 65\end{array} 6353$
68
ELY-C313A 92
$\begin{array}{lllllllllllllllll}275 & 141 & 199 & 154 & 172 & 142 & 158 & 169 & 119 & 102 & 110 & 129 & 127 & 94 & 130 & 82 & 127 \\ 129 & 117 & 155\end{array}$
$\begin{array}{llllllllllllllll}81 & 102 & 106 & 132 & 108 & 138 & 100 & 176 & 104 & 102 & 108 & 131 & 127 & 133 & 115 & 106\end{array} 1028284148$
$\begin{array}{lllllllllllllllll}100 & 121 & 82 & 111 & 112 & 78 & 102 & 104 & 85 & 139 & 119 & 89 & 95 & 98 & 83 & 118 & 87 \\ 95 & 125 & 116\end{array}$
$\begin{array}{lllllllllllllllll}98 & 129 & 96 & 129 & 132 & 122 & 127 & 134 & 135 & 111 & 133 & 95 & 125 & 100 & 78 & 80 & 106 \\ 96 & 70 & 100\end{array}$
$\begin{array}{lllllllllll}70 & 95 & 74 & 77 & 89 & 75 & 78 & 72 & 80 & 62 & 60\end{array} 70$
ELY-C313B 92
$\begin{array}{llllllllllllllll}259 & 145 & 188 & 167 & 169 & 132 & 172 & 168 & 134 & 122 & 116 & 151 & 124 & 102 & 125 & 99 \\ 136 & 148 & 130 & 145\end{array}$

$\begin{array}{llllllllllllllllllllllll}99 & 110 & 80 & 115 & 110 & 79 & 102 & 100 & 89 & 130 & 117 & 87 & 95 & 100 & 81 & 117 & 91 & 88 & 127 & 117\end{array}$

ELY-C501A80
252325136154117146621331581567913112110014274957079104
1041011068079738596889086105798866731291149691
791228490104675784537055443533375375738998
769873809610610583103109129859310113212611694123133
ELY-C501B80
20432314315711613167129171157991301401051506297807586
951061048078748496899085988995746913612111177
90109839495676596576257453533375774719098
86877895111102107869811612289939913212212499137130
ELY-C502A72
151821822442962542882902161831491081481651571721191329398
987714311510510797108981011271231161931118483544970
531168191978188123881411071158781887759586577
999968941771531156869113130148
ELY-C502B72
149811812542912523052792231751549814415816216311213787107
8781138120111107921229410010411711921210410182634259
65123771041037579109841271231027982887364605675
929261981601511207066128109147
ELY-C503A95
2672792047646513810612810318415914115810610273211166162
114152180107141144171528914014286182104981531081007284
9910813512391107749311499916898808075619910686
95749696958782681016955484838353739424068
59577064868111498888681749470151
ELY-C503B 95
3292891857647454110014711720116814716910610469215165159
122152188101144142168479312413877165109961701061068776
1001311331139798789899102987598747785619510888
817710794869190681015960605236293345354869
53637767837612096849576818876124

ELY-C504A211

81635244362524202446456271749210983725368 96811004544615143405252725244593069575366 63778397751119481526655524055505335201222 2624272828393255465037563021374050444335 3737363244373226313640314940573934554637 4752424641283150474252444544444332302428 2032455244385954615651384854624937514546 5344364151464142364632354035334746505552 3236364144474641352134365043314035483533 4532395836354333222130293237433935332532 5441293736395354394555
ELY-C504B211
110625544342626172942456272739310889735274 9581973850624746394059794046503475524973 68738796671109776567156543839544838222417 2224243232364345524942512925383852435131 4538362645403630273836404636504634393645 3849464132243745505051414936423727343121 2320474441534655635549384642655148504448 5043363948453847374540283324363542616448 3534304048364538342535334641284542424338 4732384734375023212431364032414133332840 4245343739325140385044
ELY-C505A70
1231447566100556637393838547195206195198275229241 213338275192160300223259267253208161161153150202150269211250 208272275284366315224285256236234207223202214160190216159205 158162191167138184177184171176
ELY-C505B70
125143696697545746443744437687205192199272230257 208329280195162293224266266244213159169156143192156272211248 207273298273365315230280252230235199228210209162195219149210 167153192166135181191132175189

ELY-C506A 79

24526725024919216719112216711095906847685976644053 4055105112189171164229235228174235211177176207212192189192 140120105104124189128195162254201274226278281266173174170166 19713915515316510914899851029999123133116177187160212 ELY-C506B 79
27427824024619616618513116099105886846714681704342 4154112109193172163229226232175244205176154212204198171191 144119103108104194130202173245214275174272282273164160174175 1881521531381661221401008311089109119123109187181147227

ELY-C507A54

464407291249261311353189182297186162191182146167105129163227
132213213236208201277351310354261208246255299205171144160116
11914516122517414215212379130116116186179
ELY-C507B 54
412417283246262333338200178287187169177190134169110127197220 137229211238196206279357300356270208243277305199171141158115 11615216320115414514512795123107125194154

ELY-C508A71
341279213293274259408414315356358293332174114136160168146182 138200177162134174203190157178179159149145111118135135159126 9853515379905952636755797772704949596049 6038398056767448375159
ELY-C508B 78
334291214299262260406423313355356295322168125132153155141168 139212187166123174199199148176175172149143105130128134152122 10151654979895648686554846978644353615949
503849795680605557563655415152705774
ELY-C509A64
30328130430032319121321917231615617924513213414414416110073
1008890100814854416383101416975694499120144192
17312010317921022421618220216113214212215916815214511810270 108117134175
ELY-C509B64
23028030630330920020622117032017417924012913214913915810277 9390999584435734738489466972685586123144191
17210911219321221821718319117012114013715616914714810711868 106109125179
ELY-C510A 68
224122270130170288439506598622634281517419202301215340429190 10611512514087123193861181081026684508482113536363 6971799715413816610165819410510312311683676970105 11077866558527887
ELY-C510B68
211119270126174282442508603622639285519414191296219346441206 78111125128106100199901231001287284537369128487654 677076105156140168827873981001101191197868807998 11272887358627497
ELY-C511A 54
226244357379320189331173155199180144204115219239345232257271
27119013518030932344222820316316119515413813899111117147135
125102173131111111127102100134152120156172
ELY-C511B54
242236397393282241319206188202205160190119204241346232238244 28521512119331729537824120115417119615613513810795119156129 124109163123120105122109100133149118161154 ELY-C512A54
11899217215251162196244169143132200278149198238212113203143 197153195227125248203137266336283236176156164157163175195144 1521021901221381281098267118143150116152
ELY-C512B 54
128111208208255172192248171134130191295158193231213106204145 196157193227134235213130265321291236177156165160166175196143 144111182135134143958779104139116128155
ELY-C513A 58
9610928022222524231917326312818320522829735523729625718796 80176188173279208214142121608312211914912411192483674 6057969256731101071271191711371138811119910799
ELY-C513B 58
12214228121422325531816526214019220122829935623030125318797 79191173177282209215136120607912311615013810087464172 516489996268114108124119176127114101112185102102

ELY-C514A 65
372309226279361423398220202193275376357271385198225186203199 30719525426416582125170185118198214215180204108125153126166 14312786821201891841752099571559998156134145145153153 103207158145185
ELY-C514B65
375323233282347434402195205196286383408267384204221185205194 21920827124916880126170187124188211218171214106131140128173 12513088841322021751732328671509095153129157147146152 95203154150164
ELY-C515A58
1922072331841351451241463092708814413323022124012813811272 851039180128198117130114248263309176150799996100173156 1411451571261101311377858445661505967100136136 ELY-C515B58 1651942301871531421211523272368614714222123324311213610977 89104937813419110812096241260314179153749810092186154 1441381541281151321427547535960546457100130122 ELY-C516A95
210224368321198106121115255116102219204119241160129302206160 921791351061821771011591271328511310887160131108100128113 119149120777910011419782110132819783148135527511975 10510270628684106141169961381201151211371051239610171 606078899165807155861071231044990

ELY-C516B95

153215372320192951039524111079219208110240163140307185173 961731411011781741111521281418111710383145139114106114116 147156124729310310119890120128819180156135567811271 101110715393831131401611001451171061211331201228410950 62688392816682722897114999786108
ELY-C517A89
139151130221138290217206241265227236252224119178186192299174 197249158174151197130115105197156137158110102118115193168169 15218117613213724221220716516411012413917118618010114710569 1281861351429812113295112123145100110158150132108145227111 106207222194210236326188294
ELY-C517B 89
130152126223136293224200247258226259232222117187175202304166 191249174172136202129111108182150170164110116118107189163178 1471891751381432151992071681709513812517219117110713612173 1341831331439712012895101128140106113157168132118121210134 114225204174224210325196250
ELY-C519A 54
152761016386181375159225265344438379371356353277322292285
237257252220112171193215153132147174108146111125152129121115
1331171071271268884101133142121848075
ELY-C519B 54
13579946585176256173264259328386349373377353278319281288 229261246211117171189215151130176168117156107129132141131117 1381231071171319857110135144115918899

ELY-C520A56

28721823234941741337126225424623822524219711886133232178216 1631911131428210215116317213410416119016218686100197167120 1019587968812517010813572941201608383121

ELY-C520B 56
33321921835841539036926624924723822223120212187126232182219 1671731221657295151154164107120150186164187100113182179138 103957911384132158132130878312813275123101
ELY-C521A54
23040141938136925825023422722623120911386133232177222165182 119167561001441681561201041631771601881069218918313710891 8511479129165128130788812713582100148
ELY-C521B 54
24735240139136426222324424622322920413076140212182203172173 12815464991601701581331031651841641968891192167128103103 801028612016510713384871261388394117
ELY-C522A54
581391281261351561591201069956106166151227243205218182204 19614214613214010114514819216015713913712415798131153158156 14515714312812513611010011811415797164154

ELY-C522B 54

97138118134135154145124103896299171146211246213211194202 18014914313514010513715217815317113214213715489138149152151 15615513813113012711311311210516990167125

ELY-C523A54

104130117134130159155121102926597169138241254203201189188 19414914715214810613215318715216914213912914899128155156152 15316712913611713711496127111162103139135
ELY-C523B 54
881331111341381561411251099357102173148230261204209185193
19714714115215094148154195134174144144120157105119161154156 1491621411261271321141101161111619815996

ELY-C524A68

181175182178167155174244247258232247342453286365342354292325 20315618728622121118120218516517016592130171139979594118 9472958286445867766583848984887851405060 5046476048434159

ELY-C524B68

190172163156185187204245212268175251334448305372366328287306 19615219328423420718321117916716716589130170149999980127 9586918684545265795887818489868247445156 5044486050414456

ELYC525A 56

179191213237237263227233323472302373379311266273198153186258 2172101742191691731681699012716115493907812893858885 89616582976777888791878251424662

ELY-C525B 56

172192210240238269216230350457312370374321268279204154196298 22720318021417217917017588143164149929786129101798592 87587175927186909285819252434367 ELY-C526A 77
121144132164139191220190194188218255208180171221192226282289 310299267185204271220211206184142947576123137141120140157 11015310580105130116144120137115951471281331221391319874 77958518718519922917512014310984109132948860

ELY-C526B77
124137134170130191232186192186213262208179177218196217280303 302302268180197278223212202189135887477122135128116141159 10415010480951331201371231421299812713511712312613610265 77929418019019123417212914695821141271017258

ELY-C527A 83
217180171172220235195242206326216256182180249241273309268171 11714326922219225827621421013916222918016814415094906858 6488143241118100136143160119127145174123145234189227157152 981321672241962783412111951118914115116617312411310210076 118137161 ELY-C527B 83
167175157177198249191258201338217264186184244247277315261181 11316627820919626328321620914715623617417113515492936958 669014123912093139138165113134127178132139233183236159154 10113116621619628435319420511686146157161168137115949378 108146149

ELY-C528A67
563560576684470555583548540480425355308239201162183283181316 2001871681891381071301111331144689102130156186142126135166 7087104116111911409510510113386689710713912211299153 1271231341439313787
ELY-C528B67
506550579675470554589552541457408358305242193164176301179315 1991831561911431101171261181284586101127146170133146131169 73921031211108413697981031188176104106156109115108168 118128115149149101125
ELY-C529A68
308350290231219280270356323348257285314384263393331250228251 123193241246229224215176168158169126145270176190102110125140 131194148129164111164141164901331681731762291731179199157
1051391851501639193144

ELY-C529B68

285355308223226275269358327341255283319381265388342254244249 146189235256229227201185168164165128146276168184109113121128 1541871521331721071591361758712416916217923618211783126138 11313719214417872105147
ELY-C53067
197257267380327228417399247474320373423242192168200186162158 20996133127117781006086951395795991209197144164162 161124921101081108972875757836170796580586870 93738662878990
ELY-C530B67
128206260366315237381394249479319387413253184164206188167159 202103134121115819357891021405793931219495137180153 174119981091101119069855952737265726577607169 89778472838370
ELY-C531A112
13322417522717129128532615818929222642728425799194163300105 631331237214414512524515312462886956799655726698 7390786612494818010595161201130619296811838272 139546256906141389479889071638963879210588 8093697711010213194867798907010910466100563883 616870566260775584769886

ELY-C531B 112
27022216820219129727932116118628522547731626099192161303106 501431196715314412724315913965757354839650716797
65878665116968283114931631871286093100841719475 1255559628763553592689310761619465929810984 69897077112105136839473917379991106486643681 73787057555377607270109125

ELY-C532A 86

92118211152159143104275202224305236164195293248159238189204 3911892102951741531281791941151001659596946364779098 107123859692978412813415612712111585123148137191108194 195160140881321271021031242041791891381709561701076751 103136121165185182
ELY-C532B 86
96112202147156155121281207205322244176208268260147240179208 38919921429615915912418318712110416096979159647883113
10811592859889871391261511161221118696159139185117200
1831611367813513595891402021771811791619162841106051
105124115172188191

ELY-C533A 64

20319317316024419520414416915219412413415012522078169145171
185826640494768889282869095100946558707499
9211913012912811711111111713910913092809069906810784 78938088
ELY-C533B64
202214163181241190200149164159188112131138132164107171128171 178865846454868948494761027511110878627471102 83137129136112104104135113124128130106647976926310686 78788090
ELY-C536A54
212203160117381222241236219266180110163141140251262178219178 173203215278331193239168235231225237194230204286172218203195 259183181172146106158154151192249254202247
ELY-C536B 54
222198162112399212244204214240205158172139147241277163213176 181207224256326194284157240246238232185246206265189202228194 230195174173147125162142150204247212217244
ELY-C537A86
234208168171150144146111781019495126118113120145151115219
1391551751721421541207766631331171361391278990657772
10281154122173150186181238264353243209216201199179157176167
139150172156194150187211142134113169163114141155186174156161
169160147160176171
ELY-C537B 86
2251971731721461261451198010510387142111105125146132131210 1331571741751571401138657701301291291411198880826976 8981144116175135196191224270357220222202199214191162178172 144155171149186145169222163112178170131132160176185161176173 169156142169174171
ELY-C538A97
339432388389286316373243317224178176218206194200148117127103 791038287122103123124136167151188119137133133117147157171 1259714713512611093808677785770739111311195113113 100132135122120123115132124148151154118132153158190155207183 145111185245189231248233231205219202194170206206217

ELY-C538B97
324420373395285303360266306256179164221210198208140116125105 811027493119108122128131169128205118132141141120127178185 13213212614311910998828176756082641001019592129123 94132131118131116119127125149140162115132136178181161198181 157119199218209216241224217231232216185176183201228
ELY-C540A 73
19622026519620528122713888138183148185169203301188199163270 173165109222110106105967857484569605473688972108 136179183207192288251239216182176175187167203243270345251346 264258236378314233243253293305299350421
ELY-C540B73
22624025219822025822313290133173145188165181258204230181267 169172105207117111101968548385160645866649962110 141182180205196275256235226176171179192167201249266349251351 279249237381310233242269290302305346443
ELY-C541A68
1381972051671772551741802061241479296140178103135827288 108123106848711710945508916710613311611884985860106 1141071181173855611101089010793755897761529989128 12291104123106795374
ELY-C541B68
1182122101671832571721812001301528490145181103126767881 1241279790861239549518317211112611911987877061104 1141151111134251611121099010891826483831549686119 11810599111106785191
ELY-C542A 59
1491791891561851321461552091941581271341079585113129101186 15610612821535019213417513711723210115045944045039721317496 10115418115917215511593133123187189162145180164160185163 ELY-C542B 59
15219019115717012615815121518918211014110988110105132100204 14910613221033616912917814013322185134472411455397222166110 9614719513315717610198133116193183174143170159154173172 ELY-C543A63
1131049212117926024022515816414417017226521322833324092116 227266164200238264171188123120172122197122941059380150213 1847255621291811982259999131201163174443281196167260392 404288339
ELY-C543B63
1167611311518024524423016818316216217127720223732224199121 231253174212240259167192111106170141197118961088874152224 18875556613017919722310485133200166172465226221194273400 408285340

ELY-C544A 54

1491641661822153422592653722481422662212883613304012287868 951661852103212801319481161191284280267281247231250307206 178190260191221192238226811547794116146
ELY-C544B 54
1461641591891753532672663722481452702093193513283882407960 9316619620934627512210884123200306283260280264246237300203 1702072781872081972212466916163111128157

ELY-C545A 54
11619623515910817315322432318935530918913914118130943730976 1077294127211366255303267303247270332250271200181167178319 862689120813220316014888106140213205208
ELY-C545B 54
13619922119811517914420435418833931818015012618728347929690
987894137197363282299268313271279331247258200190170181287
1022571011981391861781329299149214221199
ELY-C548A61
388419482447437333333320298201132162136171157261189184152159 192219176303309447155293319312183280291288215229128218136156 17411811310394186155177188305235244170153173211241171165165 216
ELY-C548B61
375468464438450358350347296195141165154159153265191176157165 193226180289325438145306298318187276300275222220139206125151 1591191139995176162183189317230228178152177215242148181155 226
ELY-C549A 56
158268179207177333202209228256176276330417412380382391138177 22319215227026926219615213996156183309228261230142175194177
16611591836084100157156168136201183131145163
ELY-C549B56
172240187213189283249201219262192260381391432373416366128163 23021016627226530921517012498148209340235207214152165210179 1441089473746892179139163150198175138167159
ELY-C550A54
10710711568143265271356121172369334330376320353262277134184 256312354251246241222167226262192342272214231187143254207236 304274274139189211189142176292265310300291
ELY-C550B 54
791261047315225323337689179379330335372314364264260139182 265308346253250240219175206283199335257210247181148238227236 294279276135180220182154177297257302300286
ELY-C551A 70
204359285429308341374455360312332342329247197188274326286258 16913517216116112618016321018715811214216917412011712013381 68616010810111286686549538572728275666895103 1099177997910065804955
ELYC551B 70
170335298431343320365424374317355354331245203182274338280262 16814518017516612616816319616916110013418215612511910318872 704868961021248770555460737178737663799592 11611273958610553845469
ELY-C552A83
235373230891211109412075138227213277172148177228248196189 22411317421425722933320328225021498140184272170240234287168 278811291151751409212210515910219018419115011412883116174 280338248178150199229381115106127168175179109103787581115 107130178

ELY-C552B 83
2663602221051139911011384138202232263171146179233258191185 222111179218250213349209291244188102137186273160238226269183 28087125107169147951161091619324218419015911711779117175 25833126818213822523434210911812416221115112595837974109 109120176 ELY-C553A 65
294255273224338321275430331304356238180166225227162141181131 140147146106183123127186219151157177175164225257241214253138 10410413516314811613611072140162219210177196148141107197174 173181169151147
ELY-C553B65
279251278231343335297438332354360241184147210224168148180151 118154148109185124128181222138147177184165222246240242239136 8711513416213812513110292135155228219166194150154103198157 185187170170156
ELY-C554A60
221270284175316293405216323383258530348309394279184184292260 22217824820418119815989132123176165209112159174208204278259 307297458175161221256290138155173169631041421411499596118 ELY-C554B60
227234331176331298351274279391283515360301412257196178314247 21617624320317720915397133105160163216118154187208206276256 293307464198148227231281155157174163661111331461539987114 ELY-C555A 58
41413811115720921823123231222315212617912310611999100159190 188110103132164183227256453409213130103171318279349254319420 26512912825334236332437332323726924617216711011372103 ELY-C555B 58
393137115154215200241228309230161143170125115112100100166187 195107112125161187213253431435173110101146257281330255312407 24713611526935938331036032126727125414615810210975104 ELY-C556A60
255148985811114216915117329023640738432011514710528013387 21321584236162228335204221154202172162181194179163147179153 203159121185163146172169171246266229102135193264314229210187 ELY-C556B60
2801291195611515218114716628321143239133611516093288144101 20022288227163242322198233147198197150190196190177149202151 22415010919516615017117417623725624799133159219352237193196

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building' (Laxton and Litton 1988) and, Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary (H / S) . Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig. 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measure twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et ai 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of 6 ($=15$ 9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

Bar Diagram

0	10	1	1	1	1	1	1	1	1	1	1	
0	20	30	40	50	60	70	80	90	100	110		

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages 34-5 where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: white bars $=$ heartwood rings, shaded area $=$ sapwood rings
 $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
 $C=$ complete sapwood retained on sample, the last measured ring date is the felling date of the timber

