Centre for Archaeology Report 36/2005

Tree-Ring Analysis of Timbers from White Hart Yard, 10-16 Cloth Market, Newcastle Upon Tyne, Tyne and Wear

A J Arnold, R E Howard and C D Litton

© English Heritage 2005
ISSN 1473-9224

The Centre for Archaeology Report Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back cover for details).

Tree-Ring Analysis of Timbers from White Hart Yard, 10-16 Cloth Market, Newcastle Upon Tyne, Tyne and Wear

A J Arnold, R E Howard and C D Litton

Abstract

Summary Samples were taken from timbers in both the front (roof, ground-floor and first-floor ceiling beams) and rear ranges of this building. Analysis undertaken on 31 samples resulted in 27 of these grouping to form site sequence NWCDSQ01. This site sequence contains samples from all areas sampled, and spans the period AD 13911529.

Prior to tree-ring analysis being carried out, this building was thought to date to the first half of the sixteenth century. It was uncertain, however, whether the ranges were contemporary or of slightly different dates. Dendrochronological dating has shown that the timbers from the rear-range roof were felled in AD 1527, with those from the ground and first-floor ceiling beams and the roof of the front range being felled two years later in AD 1529.

Keywords

Dendrochronology
Standing Building

Author's address

Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD

Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in CfA reports are those of the author(s) and are not necessarily those of English Heritage.

Introduction

The White Hart Yard site (Fig 1; NZ 246641), comprises one and one-half medieval burgage plots in one of the best-preserved sections of the prenineteenth century town. Development has grown from the front range along both sides of the plot around a central lane, closed to the rear (east) by the incursion of nineteenth-century Grey Street. It is thought to have originally been constructed in the sixteenth century, but was refronted in the late eighteenth century.

Front Range

This range consists of three storeys and four bays, with the third bay being a vehicle entrance to White Hart Yard (Fig 2). At ground-floor level, the bay to the left of the yard entrance has several large, close-set ceiling beams. The whole of the first floor is one large four-bay room, divided by heavy ceiling beams, between which are close-set joists with trilobe mouldings and elegantly run-out stops. The roof of this range is a ridge-braced kingpost and tiebeam roof structure. The sequence of carpenters' marks beside the ridge brace mortices on the king posts suggests that the roof is in situ. This part of the building has been dated on stylistic grounds to the first half of the sixteenth century.

Rear Range

This is a two-storey, four-bay wing. It is described as having similar heavy first-floor ceiling beams to those of the front range (English Heritage 2001), but at the time of the inspection and sampling these were no longer visible. It has a ridge-braced kingpost and tiebeam roof, of slightly cruder construction, but otherwise identical to that of the front range. A similar, if not identical date in the first half of the sixteenth century is suspected.

The Laboratory would like to thank Martin Roberts of English Heritage for his advice during assessment and John Nolan of Northern Counties Archaeological Services who provided Figures 2-15.

Sampling and analysis by tree-ring dating was commissioned and funded by English Heritage to inform the forthcoming conversion and restoration works, and to contribute to the establishment of a regional roof typology. By dating these ranges it was hoped to accurately date the fireplace, door jamb, and floor-joist moulding, by association.

Sampling

Core samples were taken from 35 oak beams, and each sample was given the code NWC-D (for Newcastle, site 'D) and numbered 01-35. Eleven samples were taken from ground and first-floor ceiling beams of the front range (NWC-D01-11), 12 from the roof structure of the front range (NWC-D12-23), and 12
from the rear-range roof (NWC-D24-35). The position of all samples was noted at the time of sampling and has been marked on Figures 3-15. Further details relating to the samples can be found in Table 1. Ceiling beams and roof trusses have been numbered from north to south (front range) and from east to west (rear range).

Analysis and Results

Four samples (NWC-D01, NWC-D24, NWC-D26, and NWC-D29) had too few rings to be dated securely, and so were rejected prior to measurement. The remaining 31 samples were prepared by sanding and polishing, and their growth-ring widths were measured; these measurements are given at the end of the report. Usually the ring widths of each sample are measured twice, with these two sequences of measurements then matched together to form an average sequence. When more than one core is taken from a single timber, each sample is measured once only, with all sequences from this timber again matched together to form an average sequence. In the case of NWC-D30 two core samples were taken, one of which had 60 rings and one had 30 rings. When these two sets of sequences were matched together at the relevant offset they formed an average sequence of 63 rings. These samples were then compared with each other using the Litton/Zainodin grouping procedure (see appendix).

Twenty-seven samples matched each other with a minimum t-value of 4.5 , and were combined at the relevant offset positions to form NWCDSQ01, a site sequence of 139 rings (Fig 16). This site sequence was then compared to a large number of relevant reference chronologies for oak, indicating a consistent match when the date of its first ring is AD 1391 and of its last measured ring is AD 1529. The evidence for this dating is given by the t-values in Table 2.

Attempts to date the remaining four samples by comparing them individually to the reference material were unsuccessful, and these samples remain undated.

Interpretation

Analysis of 31 samples taken from timbers in the front and rear ranges of White Hard Yard, Newcastle, has resulted in the construction and dating of a single site sequence. Site sequence NWCDSQ01, of 139 rings, contains 27 samples, and spans the period AD 1391-1529.

Nine samples are from ceiling beams of the ground and first floors in the front range. Of these, seven have complete sapwood and a last measured ring date of AD 1529, the felling date of the timbers represented. The other two dated samples taken from the ceiling beams have similar heartwood/sapwood boundary ring dates. The average of these is AD 1502 which, taking into account sample NWC-D03 having a last measured ring date of AD 1527 with incomplete sapwood, allows an estimated felling date to be calculated for the
two timbers represented to within the range $A D$ 1528-42, consistent with a felling date of AD 1529.

All 12 samples from the roof timbers of the front range were successfully dated. Of these, three have complete sapwood and a last measured ring date of $A D$ 1529, the felling date of the timbers represented. Five other roof timbers have heartwood/sapwood boundary ring dates consistent with a single felling. The average of these five heartwood/sapwood boundary ring dates is $A D$ 1505, which, allowing for sample NWC-D23 having a last measured ring date of AD 1528 with incomplete sapwood, calculates to an estimated felling date for the five timbers represented to within the range AD 1529-45. The remaining four roof samples do not have the heartwood/sapwood boundary ring and so an estimated felling date range cannot be calculated for them. However, by adding the minimum expected sapwood rings (15) to the last measured ring dates of AD 1461 (NWC-D14), AD 1467 (NWC-D18), AD 1497 (NWC-D21), and AD 1504 (NWC-D22), this would provide terminus post quem dates of AD 1476, AD 1482, AD 1512, and AD 1519, respectively.

Six of the samples taken from the timbers of the rear-range roof are included in site sequence NWCDSQ01. Of these, four have complete sapwood and a last measured ring date of AD 1527. The average heartwood/sapwood boundary ring date of the other two roof timbers is AD 1506 which, given that sample NWC-D35 has a last measured ring date of AD 1524 with incomplete sapwood, allows an estimated felling date range to be calculated for the two timbers represented of AD 1525-46, consistent with a felling date of AD 1527. In calculating felling date ranges, this Laboratory uses the estimate that 95% of mature oak trees from this area have between 15-40 sapwood rings.

Discussion

Prior to the tree-ring analysis, the front and rear ranges had been dated to the first half of the sixteenth century on the basis of roof type and similarity to other dendrochronologically-dated roofs in the area, such as Kepier Hospital, West Range, Durham (AD 1522; Howard et al 1996) and the Rigging Loft, Trinity House, Newcastle (AD 1524; Howard et al 2002). However, it was uncertain whether the two ranges were contemporary or, if not, what difference in date there was between them.

Tree-ring dating has shown that the roof of the rear range is constructed from timbers felled in AD 1527, two years earlier than the front range roof and ceiling beams, which are built of timbers felled in AD 1529.

With the success of the dendrochronological dating, we now have precise dates for the roof and floor structures of the front range and roof of the rear range. In addition, the dating of the ceiling beams provides dating evidence for the type of moulding seen on these beams, information which might prove useful in other buildings. The design of fireplace and door jamb type seen at this building can now also be precisely dated by association with the dated timbers. The dating evidence of type of roof construction found here will be
added to that already known and assist in the refinement of the roof typology for this area.

All 27 dated samples had matched each other to form a single site sequence. This suggests that the dated timbers from which this building was constructed were all from the same woodland source.

Bibliography

Arnold, A J, Howard, R E, and Litton, 2002 Tree-ring analysis of timbers from Finchale Priory Barn, Brasside, Durham, Centre for Archaeol Rep 99/2002

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-E01, Queens Univ, Belfast

English Heritage, 2001 Quick search results - full description, loE number 304504, Images of England, http://www.imagesofengland.org.uk/search/details.aspx?pid=1\&id=304504, accessed 16/06/2005

Hillam, J and Groves C M, 1991 Tree-ring analysis of oak timbers from Aydon Castle, Corbridge, Northumberland, Anc Mon Lab Rep, 42/1991

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1991 Nottingham University Tree-Ring Dating Laboratory: general list, Vernacular Architect, 22, 40-3

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook R, Thornes, R, Royal Commission on the Historical Monuments of England, 1992 Nottingham University Tree-Ring Dating Laboratory: truncated principal trusses project, Vernacular Architect, 23, 59-61

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Roberts, H M, North East Vernacular Architecture Group, 1996 Nottingham University Tree-Ring Dating Laboratory: buildings of the religious estates in medieval Durham; dendrochronological survey 1994-5, Vernacular Architect, 27, 85-6

Howard, R E, Laxton, R R, and Litton, 2002 Tree-ring analysis of timbers from the Rigging Loft and Chapel Undercroft, Trinity House, Broad Chare, Newcastle upon Tyne, Tyne and Wear, Centre for Archaeol Rep, 63/2002

Siebenlist-Kerner, V, 1978 Chronology, 1341-1636, for hillside oaks from Western England and Wales, in Dendrochronology in Europe (ed J M Fletcher), BAR Int Ser, 51, 295-301

Table 1: Details of tree-ring samples from White Hart Yard, 10-16 Cloth Market, Newcastle upon Tyne

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Front Range						
Ground-floor ceiling beams						
NWC-D01	Beam 1	NM	--	----	----	----
NWC-D02	Beam 2	68	17	1449	1499	1516
NWC-D03	Beam 3	81	22	1447	1505	1527
NWC-D04	Beam 4	72	22 C	1458	1507	1529
NWC-D05	Beam 5	75	23C	1455	1506	1529
NWC-D06	Beam 6	74	22 C	1456	1507	1529
First-floor ceiling beams						
NWC-D07	Beam 1	76	25C	1454	1504	1529
NWC-D08	Beam 2	64	25C	----	---	---
NWC-D09	Beam 3	63	21C	1467	1508	1529
NWC-D10	Beam 4	85	17C	1445	1512	1529
NWC-D11	Beam 5	83	25C	1447	1504	1529
Roof						
NWC-D12	East principal rafter, truss 1	51	15	1469	1504	1519
NWC-D13	West principal rafter, truss 1	58	h / s	1449	1506	1506
NWC-D14	East principal rafter, truss 2	71	--	1391	----	1461
NWC-D15	West principal rafter, truss 2	70	27C	1460	1502	1529
NWC-D16	Tiebeam, truss 2	93	21C	1437	1508	1529
NWC-D17	East principal rafter, truss 3	80	12	1437	1504	1516
NWC-D18	West principal rafter, truss 3	77	--	1391	---	1467
NWC-D19	Post, truss 3	75	26C	1455	1503	1529
NWC-D20	East principal rafter, truss 4	93	h/s	1414	1506	1506
NWC-D21	West principal rafter, truss 4	99	--	1399	----	1497

NWC-D22	East principal rafter, truss 5	69	--	1436	----	1504
NWC-D23	West principal rafter, truss 5	91	24	1438	1504	1528
Rear Range						
Roof						
NWC-D24	North principal rafter, truss 1	NM	--	---	----	----
NWC-D25	King post, truss 1	56	22C	1472	1505	1527
NWC-D26	South principal rafter, truss 2	NM	--	---	---	----
NWC-D27	King post, truss 2	65	15	1454	1503	1518
NWC-D28	Tiebeam, truss 2	60	21C	1468	1506	1527
NWC-D29	North principal rafter, truss 3	NM	--	----	---	---
NWC-D30	King post, truss 3	63	12	\cdots	----	----
NWC-D31	King post, truss 4	74	h / s	----	----	\cdots
NWC-D32	Tiebeam, truss 4	74	15C	1454	1512	1527
NWC-D33	South principal rafter, truss 5	56	12 C	1472	1515	1527
NWC-D34	King post, truss 5	50	10	---	---	--
NWC-D35	Tiebeam, truss 5	86	15	1439	1509	1524

*NM = not measured;
**h/s = the heartwood/sapwood ring is the last ring on the sample;
${ }^{* *} \mathrm{C}=$ complete sapwood retained on sample, last measured ring is the felling date.

Table 2: Results of the cross-matching of site sequence NWCDSQ01 and relevant reference chronologies when the first-ring date is $A D 1391$ and the last-ring date is $A D 1529$

Reference chronology	t-value	Span of chronology	Reference	
England				
Wales and West Midlands	8.2	AD 401-1981	Baillie and Pilcher 1982 unpubl	
Aydon Castle, Corbridge, Northumberland	7.5	AD 1341-1636	Siebenlist-Kerner 1978	
1-2 The College, Cathedral Precinct, Durham	7.9	AD 1424-1543	Hillam and Groves 1991	
Finchale Priory Barn, Brasside, Durham	7.2	AD 1364-1531	Howard et al 1992	
Nether Levens Hall, Kendal, Cumbria	7.1	AD 1395-1677	Arnold et al 2002	
35 The Close, Newcastle upon Tyne	7.0	AD 1365-1513	Howard et al 1991	

Figure 1: Map to show the location of White Hart Yard, Cloth Market

Figure 2: Plan of buildings in the complex, building under investigation outlined in red (Northern Counties Archaeological Services)

Figure 3: Ground-floor plan showing the location of samples NWC-D01-06 (Northern Counties Archaeological Services)

Figure 4: First floor plan showing the location of samples NWC-D07-11 (Northern Counties Archaeological Services)

Figure 5: Attic plan showing truss numbering (Northern Counties Archaeological Services)

Figure 6: Front range; truss 1 (north face), showing the location of samples NWC-D12 and NWC-D13 (Northern Counties Archaeological Services)

Figure 7: Front range; truss 2 (north face), showing the location of samples NWC-D14-16 (Northern Counties Archaeological Services)

Figure 8: Front range, truss 3 (north face), showing the location of samples NWC-D17-19 (Northern Counties Archaeological Services)

Figure 9: Front range; truss 4 (north face), showing the location of samples NWC-D20 and NWC-D21 (Northern Counties Archaeological Services)

Figure 10: Front range (north face), truss 5, showing the location of samples NWC-D22 and NWC-D23 (Northern Counties Archaeological Services)

Figure 11: Rear range, truss 1 (west face), showing the location of samples NWC-D24 and NWC-D25 (Northern Counties Archaeological Services)

Figure 12: Rear range, truss 2 (west face), showing the location of samples NWC-D26-28 (Northern Counties Archaeological Services)

Figure 13: Rear range, truss 3 (west face), showing the location of samples NWC-D29 and NWC-D30 (Northern Counties Archaeological Services)

Figure 14: Rear range, truss 4 (west face), showing the location of samples NWC-D31 and NWC-D32 (Northern Counties Archaeological Services)

Figure 15: Rear range, truss 5 (west face), showing the location of samples NWC-D33-35 (Northern Counties Archaeological Services)

Figure 16: Bar diagram of samples in site sequence NWCDSQ01 sorted by area

Data of measured samples - measurements in 0.01mm units

NWC-D02A 68

375360394284319385268326354349284318267271316266228293300393
302285326330278199219237191262281227262277232157190223303250
24021918416315511314123514010719017112613495150147185180210
208166191184171168167166
NWC-D02B 68
354371366279316367290318353358283339288270318269225292302396 308290328320276201216239198258296226255279233159194210304247 240213178168152124139237133119184169133133100144148178186210 195176196172185162166166
NWC-D03A 81
114206227184181166135150142166150130119137109151116122138152 194194152195168141177234237256285225240269252297286245272355 43734126928824231218723924132821425228718415098112181162173 112199201177170143139127124129114163142114110110109152128132 157
NWC-D03B 81
122193205183177169141177138181141123116132109152110110148143 210216164183195143181226251244274240248260253303285254265355 43034526628724132118223624731822525428917714997112165162179 114196187185172143134139130120114161146114114107108143140127 158
NWC-D04A 72
238204183175213317367274353417425333377303298275297348218294
284324252250207246251214221320228240192203196184163163251182 161176218122144133241180171123159159113107135178121166172188 188194177165195152125156208246182144
NWC-D04B 72
164193186185209309368275356433430343377328295260299361232295 275347275250201241237230221301245231185211201188156163266183 158174220127146128242188171134156162129116149147130167164188 192229141189184126128143184253175154
NWC-D05A 75
320447425435365467360320328346301373386355335288260367296328 399253292275258274257311225205136163194137192187222271220165 171210130138146192113906095129162142175208168125151163143 $\begin{array}{lllllllllllll}126 & 113 & 107 & 116 & 104 & 75 & 78 & 74 & 62 & 74 & 78 & 74 & 108 \\ 91 & 97\end{array}$
NWC-D05B 75
316465432420352491359334336347304367404358309299268384311405 401237291265265268262319241189144159198126197192216276201182 170214125138150185117946096128170138165218162138138172149 $\begin{array}{lllllllllll}119117110 & 114 & 113 & 69 & 78 & 70 & 57 & 79 & 75 & 82 & 114 \\ 98 & 97\end{array}$

[^0]NWC-D10B 85
417357385349395366443411337392423443366334373382320349290210 248262265310223233229199197155212211220202204169175172147144
148156200192179131120120132194243291212190263226164143179275 265309199212209184184197195183158167176170184177108101120143 141141102100127
NWC-D11A 83
258433312281351374314357338434454427384356293324341306313320 362337316303300243156180201232213189238177201233207198181209 259193160156941158410714022015810615013310210792150177170 $\begin{array}{llllllllllllllll}128 & 115 & 111 & 112 & 95 & 72 & 80 & 72 & 99 & 92 & 73 & 83 & 107 & 92 & 102 & 88 \\ 76 & 97 & 77 & 91\end{array}$ 846881
NWC-D11B 83
244471263264360371306363340410422427380339297309330319303316 355335318308288241154171203209217192229178191242210196177206 250201159156104107100981392091481181431279910997148177176 $\begin{array}{lllllllllllllll}124 & 125 & 109 & 113 & 105 & 70 & 72 & 76 & 98 & 93 & 76 & 82 & 99 & 102 & 93 \\ 100 & 75 & 88 & 74 & 82\end{array}$ 676763
NWC-D12A 51
218267283208257198211249219248199172148212214159144144203165 17716515717111911314214311092115131831906312215618498120 11315014512712789135116159159172
NWC-D12B 51
180262288208256204216252209235203174149221210159159146200161 183162159168931031441431219210713283878712615218092126 11514715811214799131128170151126 NWC-D13A 58
343298540442354308211277289198159163159158152208147265252246 227251342276289327360319323347341251237310289194223226299209 236193177231165124225203151125158210125129107168141164 NWC-D13B 58
337290529420355321211269289193158175155148167171148265255230 228254335270278316348321334341362255239292289202207221276208 234189181232164133222208154134153194126124109174146157 NWC-D14A 71
166177291221236195163255215244190176175183219213156135137176 131177122159269241224266244353288200268218259228225278343196 173236187146220187157166180201213162170199167141187158141120 140204126153136138140116106137145
NWC-D14B 71
190186284223235187181263212236179180175192215216135156128181 160146123157277238267248223361283212260213261231218280327185 169237154161203192158173160182232156182196163141182175153137 146213116174161151130129109125124

[^1]NWC-D19A 75
131241271188247210185271250250226233281292247284253329255223 25722719921315315920216413812811615718414414814714214810893 13318213812918115411014410018315520011314214112812991109134 126130153181181163147143116178139139148137178 NWC-D19B 75
148245260191288187178261252249226228274282248274263320249225 231222200217145158201163143123116120199138149155144143111109 13718213713215014710914310116915919413214013513013690101135 118138144173190167152133114173147134142145165
NWC-D20A 93
160222181220264130144135146184169223251223210262232212248159
169165158164163149200213181193240186188211150160175167277196 16815518617111014517415814914913612814916619117217294143137 91115142125110119126153179106122981321531411381039710179 $9710314613579118127115 \quad 85 \quad 65129122107$
NWC-D20B 93
160211184205256128164144160192161231260232216270237213247147 158161161173152147195216179190248181179213152162174173272198 166153193154112160169170143143135126142182188165175101136145 9912015013910310612714516711999107135159149132999210783 91109129128911131321138159145131109
NWC-D21A 99
411401252144193230226237170165147117110135125112160156158203 148216134160204193205239233238321225231256187215195194196165 154177225181198210182198216164160168167233215204159196186160 14516616313814611112814014320316715816513814089139129113137 $\begin{array}{lllllllll}65 & 89135151 & 129 & 97 & 86121119105112102 & 96120 & 73 & 92127123116\end{array}$ NWC-D21B 99
363392278155194222216229161188159122110137136118153150159197 150231146159221202202239229247313242209279184215190200186163 143167226180205216177175210169153176163251217200162200182161 143171159146138110128142146190162155162148134100127132123128 671091461591199593112117105115104971119183121126124 NWC-D22A 69
159155152129167223150157189156138177156148149157214179239168 1821961491111461381361381451301401631651371931419312086 $\begin{array}{llllllllllllllllll}137 & 123 & 97 & 98 & 128 & 134 & 149 & 104 & 87 & 86 & 136 & 132 & 118 & 116 & 84 & 93 & 111 & 64 \\ 84 & 98\end{array}$ $\begin{array}{llllllll}120 & 113 & 83 & 95 & 106 & 86 & 59 & 61\end{array} 72$
NWC-D22B 69
176160171125169209160150185159141174159148143155221177219190 1781921471131621331381421431221291551771531701499811890100 135112104104122136141118898812913411712282911136284198 $122110 \quad 83 \quad 95103 \quad 89 \quad 5968 \quad 69$

```
NWC-D23A 91
    184121152168139128178123125184128135144141229186176146163154
    127116 131 117113 78 94 98 94 120136100100109101 124 91 103 118 117
    98103100 99 101 75 84 64104106 95 105 71 71 72 55 68 84 77 98
    78 104 108 97 53 51 57 86 96 68 81 74 71 65 55 61 57 62 73 62
    65}7164\mp@code{71
NWC-D23B }9
170126155168140134171124128186133133144143235188177152170148
124122130122110 84 87 103 87118148 99 98 111106119 93 97 123116
    94107 100 102 101 79 78 71 106 108 88 110 68 64 64 68 64 74 81 82 97
    86
    65
NWC-D25A 56
238248198198135171188251196181218226149194216207156153185174
161147148194235152145174202150121 80152169193129168184167148
122129154150178134141162132116102 96117132153158
NWC-D25B 56
    126256203187144179185253191191211223161191214217145155197167
158146145200218163148168192149129 83142160192130170179162148
134123154149177130143163137111104103114128153107
NWC-D27A 65
    128174205217234268200193189170198227268229239192181162214204
    153190223203221255210207199206185204213211193187164139189154
    185204221181181151150141106 77158174157137142161126102112123
    124124132102140
NWC-D27B 65
    121173215223236267192198191180193223266236238194176 185 220194
    162177210199220251220197200208189191214219175 180172142193158
    177199217195158153141135 99 77 160178167125159170128101 114131
127116139107144
NWC-D28A 60
601698657504360337 397510394450331433306366411329282465501517
380 308223245289225225265348221217241295 179 209196278 230203162
181217150122158211148178 156122144174166 114113 69 83 94 87 89
NWC-D28B 60
627698665510358336393505 399430330426312367415334288462503516
383309217249286235218266333224212243312170223194274223222 141
203204159119155219150176153117139174162115105 78 80 98 85 82
NWC-D30A 60
148156158132181185211168192206189190209229216208188220251240
249205199241218256202186227203169202209159163102120153190158
178147249209208206196240226202182183148223197184185215217187
NWC-D30B 30
237225152164195275206265199296264270266245 274 261235231214170
227198179203256283195168144179
```


NWC-D31A 74

24220017416812692721127379111114165182168178217198234177 231187215201219172209219180193260267259236271278321256420354 226313242284301320332291275273226272206191202178180172195204 189155124171201167144139217216223251249284 NWC-D31B 74
$175181174172120 \quad 9280987187105121163184167198223197233175$ 233192214203217170223206175201253276287234266275321255412383 231314240279306334327287263274228273206209198170185173198202 193163123162200172147136217213215255244289 NWC-D32A 74
255279416446316348338298348361348322283360318312300307257246 209238276274327361335365381368323260396409297246214161233184
18323526222217623125319811782180232199226210249177188172143
136166162157190232194164179164185206195189
NWC-D32B 74
335269419449323347341294356363338346282351308311298310265238
209234279275333357341364379359322265390408298237213162237198
19123424722716823924719911277179248197229211240184184181132
121171162153186224206173185161176199189174
NWC-D33A 56
210223270270222286277244196255264245250235242323229237200242 253207218241291250225275250194193177275305235180231270229217 197225165221198162264231241182174125148123154143 NWC-D33B 56
210220263274221289273241191252268238246246225309226234203220 255202253250279248218257260204179164257298217179246269221216 189224192226196144252235243181174116136133154142
NWC-D34A 50
190137222169201263212182254296364418310350259314269289272254 242289352329227200263250234222264188133198200221168267304354 13795119155186225248440476342
NWC-D34B 50
163103241182194278220185244290359415312349265312271286275242 252290352331220224241252235216262178144206194218167264298373 12897129146191221249438476330 NWC-D35A 86
212284364343404355354261337353286261391311334331222305299262 200242244224266195189155158177195215195144166136180166127128 19017116524523016215816720615513314313114711998120162160137 1801771101005991129131136107157130116768299113129138140 $\begin{array}{lllll}149 & 130 & 83 & 74 & 70 \\ 82\end{array}$

NWC-D35B 86
189241337340425364358255333362294265390312341315212295307257 194250234235274187187156153180198216197142145139197170129145 201165177245238165160174220153131133154139109108121159159129 $1891721178469 \quad 901221271351131571291178571105109135136135$ $\begin{array}{lllll}152 & 126 & 87 & 69 & 72 \\ 87\end{array}$

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building' (Laxton and Litton 1988) and, Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary (H / S) . Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig. 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measure twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5 . The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify, For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15$ $9)$ and $26(-35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

	C45	C08	C 05	C04
C45		+20	+37	+47
C08	5.6		+17	+27
C 05	5.2	10.4		+10
C04	5.9	3.7	5.1	

Bar Diagram

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages $34-5$ where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this,
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: NWC-D06A 74
 222322302259328327294237261231263418449379396348297223225382 229300181211161184155205129176193166138154184147198134143161 18717499100124108118110186156130107147140125104123181116171 $120 \quad 771331041089588105104127120127102125$
 NWC-D06B 74
 235324297189337330286243255228271407463376411351300241224364 223309181217163175173209135175196165136150187147195146140168 19717796106118125114112181155130110148143112114124176127175 11587116115109947312890127131122104113 NWC-D07A 76
 408322446504486430411344368448344346411464514371391355344281 233317373322323334265354391336260218268353253250265238217206 163203277186186202160138137110152136185145172171139129107104 133116159158148166136107144122135101113137119124 NWC-D07B 76
 369324500483505404413355374425334360407470518361396357333274 254310376335311354262343381340262228272349260263256241230202 17919327417518719715513713310515212617414417417413313892109 128131153149143167140121142120138101104122108109 NWC-D08A 64
 424451454505448377380292217251251269292340247265322350263342 4064093332062272081681681212022992411542292381541621257659
 9185117144
 NWC-D08B 64
 440545527517411351366257197229256269290337251263321348259319 4084013312122201951891651241982972321662292401581541226761 $\begin{array}{llllllllllllllllll}48 & 31 & 43 & 47 & 59 & 63 & 60 & 67 & 55 & 82 & 102 & 90 & 88 & 131 & 100 & 93 & 59 & 53 \\ 52 & 76\end{array}$ 9587107167
 NWC-D09A 63
 390389377336387347358353448381421343519357368477446396381336 405308307295249255252255287342299231280314210186152243223216 204184246227209201189186169195163152234177137124105117139136 12212598
 NWC-D09B 63
 395391377331390351344351439371429336527355367475446406366351 393309333291265252251274277350305237280298214202157261228219 193190246230213211167192175209146154236179131132102117132124 142125107 NWC-D10A 85 392346395381403364459406351401417448365336373378327346292208 248261261298214240227197206155207208218198200165176185146153 145155198190181128131111133190252298206210268223151150171284 27130019721320518918020020219813815818317021016997107113146 13316010096125

[^1]: NWC-D15A 70
 172199221229266269336354320272290308233311260310276311269200 234217243256202172265289255213183156190135124191174151139149 12210010685124125131128157151169147165206128152120106138187 130119839898111147138144130 NWC-D15B 70
 189195232229265267310352327268291289236298269334260293272217 237219240245186182270296248209172154183134124184174141135155 14411511483133133133121161156172147163197129161123130108174 134118928410599150136163130 NWC-D16A 93

 7289100145158121188207264179266237228180187165190199130184 171171162148130148143135138146140152130176156133109122161139 118131148127159116144936710913112913613412414093225230284 2102062241701461091222201731591121191271221229812113297131 $\begin{array}{lllllllll}104 & 132 & 122 & 104110 & 88 & 64 & 89 & 83 & 112 \\ 86 & 91 & 94\end{array}$
 NWC-D16B 93
 9311391131120123191238252190251240241188180177185204127188 164170168152124151142133138141145153127173164117112125155139 115132158116162128134927410513312813813112115093161244286 207207213177152103122218168155131134132113115105119127107130 $\begin{array}{lllllllllll}106138 & 121 & 97 & 105 & 92 & 64 & 90 & 77 & 102 & 101 & 78 \\ 85\end{array}$
 NWC-D17A 80
 213209154203225187198257212158170151131142176210134195135125 1831428214415812710411210410414515814316014711912085111131 143111117100127149102727211415214512186 $\begin{array}{lllllllllllllllllll}80 & 71 & 80 & 72 & 79 & 43 & 48 & 70 & 85 & 75 & 71 & 79 & 93 & 72 & 46 & 50 & 60 & 56 & 58 \\ 70\end{array}$ NWC-D17B 80
 198217156207225187192246198148170147135142169208136188134130 17012411214315510711310810510514515214316316012311486119138 $1351241101111201481048567119167140122 \quad 76 \quad 85 \quad 85 \quad 70 \quad 62 \quad 7182$ $\begin{array}{llllllllllllllllllll}83 & 70 & 80 & 72 & 80 & 48 & 43 & 64 & 87 & 88 & 69 & 79 & 99 & 63 & 53 & 47 & 57 & 63 & 55 & 63\end{array}$ NWC-D18A 77
 208208283227252249237308254257242241275139148180169191189214 196158185222357325325387269429330291338289319341329351407293 193319178233224240259241199266290207202235197136189175147130 16520015419515414716611412113814510111512396100131 NWC-D18B 77
 228210295189247262203302250271244232261137147183165192179189 184177185210336362303396267415327289346271323347326348414302 180330174233223236254239186261283200197253195144189183145125 173208149173159149164126111134166104114128111100111

