Centre for Archaeology Report 37/2005

Tree-Ring Analysis of Timbers from Poltimore House, Poltimore, Devon

A J Arnold, R E Howard and Dr C D Litton

© English Heritage 2005
ISSN 1473-9224

The Centre for Archaeology Report Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back cover for details).

Tree-Ring Analysis of Timbers from Poltimore House, Poltimore, Devon

A J Arnold, R E Howard and Dr C D Litton

Abstract

Summary Analysis was undertaken on 55 samples taken from timbers of the south, east and north-range roofs, from floor beams of the ground and first-floor frames, and from two stud posts in the east-range attic, resulting in the construction and dating of two site sequences.

The first contains 29 samples and spans the period AD 1380-1559. The second contains 16 samples and spans the period AD 1534-1725.

The earliest timbers in the north-range roof are dated to AD 1559. Also dated to the mid-sixteenth century are roof timbers and the stud posts in the east range (AD 1544-69), although this roof also shows evidence for repair in the first half of the eighteenth century. The south-range roof contains timbers felled in AD 1725.

Timbers were also dated in the ground and first-floor frames in the south and east ranges. Four elements in the south-range ground and first-floor frames were dated to the late-seventeenth or early-eighteenth centuries, though these frames also contained material dating to the mid-sixteenth century (AD 1547-72). Floor timbers of the ground-floor frame in the east range were also dated to AD 1547-72.

Keywords

Dendrochronology
Standing Building

Author's address

Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD

[^0]
Introduction

Poltimore House is situated just to the north of Exeter (Fig 1; SX 9678 9635), and was the residence of the Bampfylde family (Lords Poltimore, after AD 1831). Thought to originate in the late-sixteenth century, this building has been extensively extended and remodelled in the late-seventeenth, nineteenth, and twentieth centuries until it now almost completely fills an internal courtyard (Figs 2-4). In recent years this building has been used as a private hospital.

The oldest, surviving part of the building is the L-shaped portion formed by the east wing and the three-gabled eastern part of the north wing (Fig 5), along with the polygonal stair turret (Fig 6). The presence of this stair turret suggests an originally quadrangular plan for the building, although there is no other architectural or documentary evidence for this. It is unknown as to whether the two wings belong to the same construction programme but both are thought to date to the end of the sixteenth century.

The next building period is thought to have occurred in about AD 1700 with the construction of the south front. This has been attributed variously to Sir Coplestone Bampfylde (2 ${ }^{\text {nd }}$ Bart; Images of England List Description) who died in AD 1691 or Sir Coplestone Bampfylde ($3^{\text {rd }}$ Bart; Fortescue Foulkes, nd) who died in $A D$ 1727. It is of 11 bays, of which the central three project slightly. (Figs 7 and 8). The east wing is also believed to have been remodelled at this time. That work was carried out in the late-seventeenth century is further evidenced by the inscription of a stone gate pier at the main entrance to the estate of the date AD 1681. The original entrance has been obscured by a single-storey porch with Doric columns which was added in about AD 1831.

The date of the west wing, which closed the court, is difficult to judge on architectural features but is thought to be AD 1800.

The Laboratory would like to thank Alan Payne of the Friends of Poltimore House for his advice and assistance in arranging access. Christine Locatelli of The University of Sheffield Dendrochronology Laboratory provided the photographs and the building plans were drawn by Louis Hawkins, Architect.

Sampling and analysis by tree-ring dating was funded by English Heritage to inform conservation and restoration plans being produced for the building.

Sampling

Fifty-five core samples were taken from roof, stud posts, and floor timbers at Poltimore House. Each sample was given the code POL-B (for Poltimore) and numbered 01-55. Samples were taken from the south-range roof (POL-B0112), the east-range roof timbers and two studs from the attic (POL-B13-28), the north range roof (POL-B29-40), the first-floor frame (POL-B41-49), and the ground-floor frame (POL-B50-55). When the west-range roof was inspected with a view to sampling, a substance that was thought likely to be asbestos
was seen. In the interests of health and safety, it was felt that the quickest and easiest way to mitigate the problem would be to avoid the area until a full asbestos survey had been undertaken and any possible hazard removed. The position of all samples was noted at the time of sampling and has been marked on Figures $9-14$. Further details relating to the samples can be found in Table 1. Trusses have been numbered north to south (east range roof) and east to west (north and south range roofs) as shown in Figures 9-11.

Analysis and Results

All 55 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. These samples were then compared with each other by the Litton/Zainodin grouping procedure (see appendix).

At a least value of $t=4.5,45$ samples grouped, forming three site sequences. Firstly, 29 samples matched each other and were combined at the relevant offset positions to form POLBSQ01, a site sequence of 180 rings (Fig 15). This site sequence was then compared with a large number of relevant reference chronologies for oak indicating a consistent match when the date of its first ring is AD 1380 and of its last measured ring is AD 1559. The evidence for this dating is given by the t-values in Table 2 .

Two samples matched each other and were combined at the relevant offset positions to form POLBSQ02, a site sequence of 97 rings (Fig 16). This site sequence was then compared with the reference material where it was found to match at a first-ring date of AD 1564 and a last ring date of AD 1660. The evidence for this dating is given by the t-values in Table 3.

Finally, 14 samples matched each other and were combined at the relevant offset positions to form POLBSQ03, a site sequence of 192 rings (Fig 17). This site sequence was consistently dated against the reference material at a first-ring date of AD 1534 and a last measured ring date of AD 1725 (Table 4).

It was then ascertained that site sequence POLBSQ02 and POLBSQ03 matched each other at the expected offset at a value of $t=4.1$. Another site sequence was then constructed containing all 16 samples (Fig 18). This new site sequence, POLBSQ04, was matched at a first-ring date of AD 1534 and a last measured ring date of AD 1725. The evidence for this dating is given by the t-values in Table 5.

The remaining ten ungrouped samples were then compared individually against the reference material but no consistent match could be found and these samples remain undated.

Interpretation

Analysis of 55 samples taken from timbers at Poltimore House has resulted in the dating of two site sequences.

The first, POLBSQ01, of 180 rings, contains samples from the north and eastrange roofs and from ground and first-floor joists, and spans the period AD 1380-1559. Ten of these samples are from the north-range roof. Of these, one (POL-B34) has complete sapwood and a last measured ring date of AD 1559, the felling date of the timber represented. Of the other nine, seven have the heartwood/sapwood boundary ring, which is broadly contemporary and suggestive of a single felling. The average of this is AD 1536, which allows an estimated felling date to be calculated for the seven timbers represented to within the range $A D$ 1551-76, consistent with a felling of $A D$ 1559. The other two north-range roof samples do not have the heartwood/sapwood boundary ring and so an estimated felling date cannot be calculated, except to say that with last measured ring dates of AD 1503 (POL-B35) and AD 1507 (POL-B37) this would be AD 1519 and AD 1523 at the earliest, respectively.

Twelve of the samples are taken from timbers of the east-range roof and the two stud posts in the east-range attic. Of these ten have the heartwood/sapwood boundary ring, which is broadly contemporary and therefore suggestive of a single felling. The average heartwood/sapwood boundary ring date for these ten samples is AD 1529, which calculates to an estimated felling date for the timbers represented to within the range AD 154469. The other two samples from the east range, both roof timbers (POL-B13 and POL-B19) do not have the heartwood/sapwood boundary ring, however, both have the last measured ring date of $A D$ 1509, which means that at the earliest these two timbers would have been felled in AD 1525, making it possible that these two samples were also felled sometime within the range $A D$ 1544-69.

Seven samples from the ground and first-floor frames were dated within this site sequence. Six of these samples, four from the south range and two from the east range, have the heartwood/sapwood boundary ring date, which is broadly contemporary. The average of this is AD 1532, which calculates to an estimated felling date range of $A D$ 1547-72 for the six timbers represented. Sample POL-B43, from the first-floor frame of the east range does not have the heartwood/sapwood boundary ring and, therefore, other than an estimated earliest possible felling date of AD 1484 it is not possible to assign a felling date range to this timber.

The second site sequence, POLBSQ04, of 192 rings, contains 16 samples and spans the period AD 1534-1725. Eleven of the samples in this site sequence are from timbers of the south-range roof. One of these, POL-B07, has complete sapwood and the last measured ring date of AD 1725, the felling date of the timber represented. Six of the other south-range roof timbers in this sequence have the heartwood/sapwood boundary ring. In all six samples this is broadly contemporary and therefore, suggestive of a single felling. The average heartwood/sapwood boundary ring date of these six samples is $A D$

1705, which calculates to an estimated felling date within the range AD 172345 (allowing for sample POL-B12 having a last measured ring of AD 1722 without complete sapwood). This date range is consistent with these timbers also having been felled in AD 1725. The remaining four south-range roof samples in this site sequence do not have the heartwood/sapwood boundary ring, however with last measured ring dates ranging from AD 1662 (POL-B03) to AD 1698 (POL-B08) it is possible that these samples were also felled at the same time as the others.

Also contained within this site sequence are four samples taken from floor beams, three from the ground-floor frame of the south range, and one from the first-floor frame of the south range. Three of these have the heartwood/sapwood boundary ring. In the case of two of these (POL-B53 and POL-B54), this is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring of these two samples is AD 1656, which allows an estimated felling date to be calculated for the two timbers represented to within the range AD 1671-96. The third sample with the heartwood/sapwood boundary ring is POL-B49. The heartwood/sapwood boundary ring for this sample is AD 1684, slightly later than that of the other two samples. This gives an estimated felling date range for POL-B49 of AD 1699-1724. The third sample from the ground-floor frame, POL-B55, does not have the heartwood/sapwood boundary ring and, therefore, an estimated felling date range cannot be calculated for the timber it is taken from. However, with a last measured ring date of AD 1597 this is estimated to be AD 1613 at the earliest.

The final sample in site sequence POLBSQ04 is POL-B20, taken from the east range. The last measured ring on this sample is the heartwood/sapwood boundary ring. This is dated to AD 1701 which calculates to an estimated felling date range for the timber represented of $A D$ 1716-41, consistent with a felling of AD 1725 with those timbers from the south-range roof.

All felling dates have been calculated using the estimate that 95\% of mature oak trees from this area have between 15-40 sapwood rings.

Discussion

On stylistic grounds, the earliest part of the building was believed to be the Lshaped portion formed by the east wing and the eastern part of the north wing. This was thought to be sixteenth century with the surviving features suggesting a date nearer AD 1600 than AD 1550. Roof timbers and two stud posts from these two areas have been dated to AD 1559 (north wing) and AD 1544-69 (east wing), in fact nearer to AD 1550 than AD 1600. Without an absolute felling date for the east-range roof it is still uncertain as to whether these two parts of the building represent a single construction phase or two separate building phases, however, it is known that they both belong to the midsixteenth century.

The south front has been attributed to both Sir Coplestone Bampfylde ($2^{\text {nd }}$ bart; died AD 1691) and Sir Coplestone Bampfylde (3 $3^{\text {rd }}$ bart, died AD 1727). Roof timbers from this part of the building have been dated to AD 1725 and, therefore, this is now known to be the work of the $3^{\text {rd }}$ bart. A single timber from the east range has been dated to $A D$ 1716-41, supporting the suggestion that work in this part of the building was also being undertaken at this time.

Timbers from the ground and first-floor frames in the east and south ranges have been dated to the mid-sixteenth (AD 1547-72) and the late-seventeenth/early-eighteenth (AD 1671-96 and AD 1699-1724) centuries. In the case of those from the south range these must represent the secondary use of timbers, some of them probably from original construction timbers, as this range has been shown to be built with timbers felled in AD 1725.

The west range cannot be closely dated on architectural features but is thought to be c AD 1800. It is unfortunate that the possible presence of asbestos in this area meant sampling could not be undertaken at this time. If in the future, this material was found not to be asbestos or was removed and this part of the building made safe for sampling, it might be beneficial to return and sample timbers from its roof in order to clarify the development of Poltimore House.

Bibliography

Alcock, N W, Warwick University, Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, and Miles, D H, 1989 Leverhulme Cruck Project Results: 1988, Vernacular Architect, 20, 43-5

Alcock, N W, Howard, R E, Laxton, R R, and Litton, C D, and Miles, D H, 1991 Leverhulme Cruck Project (Warwick University and Nottingham University Tree-ring Dating Laboratory Results: 1990, Vernacular Architect, 22, 45-7

Arnold, A J, Howard, R E, and Litton, C D, 2003a Tree-ring analysis of timbers from the roofs of the Lady Chapel north and south aisle, and the Choir south aisle, Worcester Cathedral, Worcester, Cent for Archaeol Rep, 96/2003

Arnold, A J, Howard, R E, and Litton, C D, 2003b Tree-ring analysis of timbers from Hulme Hall, Allostock, Near Northwich, Anc Mon Lab Rep, 84/2003

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-E01, Queens Univ, Belfast

Bridge, $M, 1988$ The Dendrochronological Dating of Buildings in Southern England, Medieval Archaeol, 32, 166-74

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 21, 37-40

Fortescue Foulkes, J, nd Story of Poltimore House, privately printed
Howard, R E, Laxton, R R, and Litton, C D, 1997 Nottingham University TreeRing Dating Laboratory Results: general list, Vernacular Architect, 28, 124-7

Howard, R E, Laxton, R R, and, C D, 1999 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 30, 90-1

Howard, R E, 2001 unpubl, Nottingham University Tree-ring Dating Laboratory unpubl computer file for Nevile Holt, Leicestershire, NVHASQ03

Howard, R E, Laxton, R R, and Litton, C D, 2001 Tree-ring analysis of timbers from the East roof of the East Range of the Cloister, Wells Cathedral. Somerset, Centre for Archaeol Rep, 49/2001

Howard, R E, 2002 unpubl, composite working mean of material from West Sussex and Wiltshire, unpubl computer file SOUTH1, Nottingham Univ TreeRing Dating Laboratory

Howard, R E, Laxton, R R, and Litton, C D, 2003 Tree-ring analysis of timbers from Staircase House (30A \& 31 Market Place), Stockport, Greater Manchester, Centre for Archaeol Rep, 12/2003

Howard, R E, and Litton, C D, 2004 unpubl Nottingham University Tree-Ring Dating Laboratory unpubl computer file for Stoneleigh Abbey, STOASQ02

Howard, R E, Laxton, R R, and Litton, C D, forthcoming Tree-ring analysis of timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its uses in dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for Oak, 1158 - 1540, Medieval Archaeol, 33, 90 - 8

Tyers, I, and Groves C, 1999 unpubl England London, unpubl computer file LON1175, Sheffield Univ

Table 1: Details of tree-ring samples from Poltimore House, Poltimore, Devon

Sample number	Sample location	Total rings	Sapwood rings*	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
South Range: roof						
POL-B01	South principal rafter, truss 1	87	14	1635	1707	1721
POL-B02	North principal rafter, truss 1	80	21	----	----	----
POL-B03	North principal rafter, truss 2	64	--	1599	----	1662
POL-B04	South lower purlin, trusses 3-4	116	h / s	1592	1707	1707
POL-B05	South mid purlin, trusses 4-5	137	--	1536	--	1672
POL-B06	North principal rafter, truss 8	64	17	1656	1702	1719
POL-B07	North lower purlin, trusses 8-9	94	23C	1632	1702	1725
POL-B08	South principal rafter, truss 9	100	--	1599	---	1698
POL-B09	North principal rafter, truss 9	123	h/s	1580	1702	1702
POL-B10	South principal rafter, truss 10	107	--	1580	----	1686
POL-B11	Collar, truss 10	101	h/s	1609	1709	1709
POL-B12	North walliplate, trusses 8-9	84	20	1639	1702	1722
East Range: roof and stud posts						
POL-B13	Main joist, truss 3	103	--	1407	---	1509
POL-B14	Main joist, truss 4	94	h / s	1424	1517	1517
POL-B15	Main joist, truss 5	128	h / s	1413	1540	1540
POL-B16	East common rafter 6, bay 4	67	h / s	1464	1530	1530
POL-B17	East common rafter 4, bay 4	73	h / s	1470	1542	1542
POL-B18	West lower purlin, trusses 1-2	73	h / s	1454	1526	1526
POL-B19	West lower purlin, trusses 3-4	95	--	1415	----	1509
POL-B20	East principal rafter, truss 6	88	h / s	1614	1701	1701
POL-B21	East upper purlin, trusses 6-south end	59	10	----	----	----
POL-B22	Collar, truss 3	90	h / s	1446	1535	1535
POL-B23	Collar, truss 4	99	h / s	----	----	----

POL-B24	East principal rafter, truss 3	106	h / s	1422	1527	1527
POL-B25	East lower purlin, trusses 2-3	69	h / s	----	---	---
POL-B26	East principal rafter, truss 4	71	h / s	1454	1524	1524
POL-B27	Stud post 3, bay 4	58	h / s	1472	1529	1529
POL-B28	Stud post 4, bay 4	68	h / s	1453	1520	1520
North Range: roof						
POL-B29	West purlin to east gable roof, (south)	144	h/s	1391	1534	1534
POL-B30	South queen post to west truss, east gable	145	h / s	1394	1538	1538
POL-B31	East purlin to west gable roof	117	h / s	1420	1536	1536
POL-B32	East principal rafter to west gable (south)	111	h / s	1425	1535	1535
POL-B33	East common rafter 1, west gable (south)	77	h / s	---	----	----
POL-B34	East purlin to east gable (south)	111	32C	1449	1527	1559
POL-B35	South principal rafter to east gable roof	115	--	1389	\cdots	1503
POL-B36	South purlin, bay 2	134	h / s	1406	1539	1539
POL-B37	South principal rafter, truss 2	99	--	1409	---	1507
POL-B38	South purlin, trusses 1-2	132	h / s	1405	1536	1536
POL-B39	South queen post to truss 2	141	h/s	1393	1533	1533
POL-B40	South principal rafter, truss 1	62	h / s	----	---	----
East Range: First-floor frame						
POL-B41	Joist, room 50	168	21	1380	1526	1547
POL-B42	Joist, room 50	71	08	--	----	----
POL-B43	Joist, room 50	83	--	1386	---	1468
POL-B44	Common joist, room 48	127	h / s	----	----	----
POL-B45	Common joist, room 48	154	01	1383	1535	1536
POL-B46	Common joist, room 48	91	21C	----	----	----

South Range: First-floor frame						
POL-B47	Main joist, room 58 (east beam)	64	10	1491	1544	1554
POL-B48	Main joist, room 58 (west beam)	145	09	1390	1525	1534
POL-B49	Main joist, room 59h	66	h/s	1619	1684	1684
South Range: Ground-floor frame						
POL-B50	Main joist, room 4 (west)	112	h/s	1422	1533	1533
POL-B51	Main joist, room 4 (east)	70	h/s	--	---	---
POL-B52	Common joist 6, room 4	93	h/s	1435	1527	1527
POL-B53	Common joist, room 4	88	h / s	1564	1651	1651
POL-B54	Common joist, room 4	88	h/s	1573	1660	1660
POL-B55	Common joist, room 4	64	-	1534	----	1597

*NM = not measured;
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample
$\mathrm{C}=$ complete sapwood retained on sample, last measured ring is the felling date.

Table 2: Results of the cross-matching of site sequence POLBSQ01 and relevant reference chronologies when the first-ring date is AD 1380 and the last-ring date is $A D 1559$

Reference chronology	t-value	Span of chronology	Reference
England, London			
Southern England	6.3	AD 413-1728	Tyers and Groves 1999 unpubl
Kent	5.3	AD 1083-1981	Bridge 1988
Pye Corner, Moulsford, Oxon	4.8	AD 1158-1540	Laxton and Litton 1989
Wells Cathedral, E range roof C1-19	6.7	AD 1340-1558	Alcock et a/ 1991
Lacock Abbey, Wilts	5.8	AD 1279-1451	Howard et al 2001
The Forge, Church St, E Hendred, Oxon	5.5	AD 1395-1546	Esling et al 1990

Table 3: Results of the cross-matching of site sequence POLBSQ02 and relevant reference chronologies when the first-ring date is AD 1564 and the last-ring date is AD 1660

Reference chronology	t-value	Span of chronology	Reference
England	5.7	AD $401-1981$	Baillie and Pilcher 1982 unpubl
England, London	5.1	AD 413-1728	Tyers and Groves 1999 unpubl
Stoneleigh Abbey	6.1	AD 1398-1658	Howard et al 2004 unpubl
Nevile Holt, Leicestershire	5.9	AD 1570-1638	Howard 2001 unpubl
Sinai House, Burton on Trent, Staffs (central range)	5.3	AD 1555-1665	Howard et al 1999
Staircase House, Stockport, Greater Manchester	4.9	AD 1069-1248	Howard et al 2003
Bolsover Castle (Riding House), Derbys	4.7	AD 1494-1744	Howard et al forthcoming

Table 4: Results of the cross-matching of site sequence POLBSQ03 and relevant reference chronologies when the first-ring date is AD 1534 and the last-ring date is AD 1725

Reference chronology	t-value	Span of chronology	Reference
England, London	7.4	AD 413-1728	Tyers and Groves 1999 unpubl
East Midlands	5.9	AD 882-1981	Laxton and Litton 1988
England	5.5	AD 401-1981	Baillie and Pilcher 1982 unpubl
Worcester Cathedral	6.7	AD 1484-1772	Arnold et al 2003a
Manor Ho, Templecombe, Somerset	6.2	AD 1486-1591	Howard et al 1997
South	6.0	AD 1458-1681	Howard 2002 unpubl
Hulme Hall, Allostock	5.6	AD 1574-1689	Arnold et al 2003b

Table 5: Results of the cross-matching of site sequence POLBSQ04 and relevant reference chronologies when the first-ring date is AD 1534 and the last-ring date is AD 1725

Reference chronology	t-value	Span of chronology	Reference
England, London	8.2	AD 413-1728	Tyers and Groves 1999 unpubl
East Midlands	6.6	AD 882-1981	Laxton and Litton 1988
England	6.3	AD 401-1981	Baille and Pilcher 1982 unpubl
Worcester Cathedral	7.1	AD 1484-1772	Arnold et al 2003a
Manor Ho, Templecombe, Somerset	7.1	AD 1486-1591	Howard et al 1997
South	6.7	AD 1458-1681	Howard 2002 unpubl
Sutton Scarsdale manor, Derbys	5.9	AD 1520-1632	Howard et al 1997

Figure 1: Map to show the location of Poltimore House

Figure 2: Ground-floor plan (Louis Hawkins, Architect)

Figure 3: First-floor plan (Louis Hawkins, Architect)

Figure 4: Second-floor plan (Louis Hawkins, Architect)

Figure 5: The rear (or north) wing (Christine Locatelli)

Figure 6: The polygonal stair turret, from the internal courtyard (Christine Locatelli)

Figure 7: The south front (Christine Locatelli)

Figure 8: South range roof, truss 4 (Christine Locatelli)

Figure 9: South range, second-floor plan, showing truss numbering and location of samples POL-B01-12 (Louis Hawkins, Architect)

Figure 10: East range, second-floor plan, showing truss numbering and the location of samples POL-B13-28 (Louis Hawkins, Architect)

Figure 11: North range, second-floor plan, showing truss numbering and the location of samples POL-B29-40 (Louis Hawkins, Architect)

Figure 12: First-floor plan, showing the location of samples POL-B41-46 (Louis Hawkins, Architect)

Figure 13: South range, first-floor plan, showing the location of samples POL-B47-49 (Louis Hawkins, Architect)

Figure 14: South range, ground-floor plan (room 4), showing the location of samples POL-B50-55 (Louis Hawkins, Architect)

Figure 15: Bar diagram of sample in site sequence POLBSQ01 sorted by area

| Offset | | Total Rela
 rings |
| :---: | :---: | :---: | :---: | :---: |
| | East range floor frames | |

East range: roof and stud timbers

	North range roof			115		124
9	POL-B35					
29		POL-B37			99	128
13		POL-B39	h/s		141	154
11		POL-B29	h]s		144	155
45		POL-B32	n/s		111	156
40		POL-B31	n/s		117	157
25		POL-B38	h/s		132	157
14		POL-B30	n / s		145	159
26		POL-B36	h/s		134	160
69		POL-B34	32 C		111	148
0	50	100	150	200	Years	elative
1380	1430	1480	1530	1580	Calen	ar years (AD)
	Heartwood rings Sapwood rings					

$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last measured ring
C = complete sapwood on sample, last measured ring is the felling date.

Figure 16: Bar diagram of samples in site sequence POLBSQ02 sorted by area

Offset

Total Relative last heartwood
rings ring position

South range floor frames

\square Heartwood rings
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last measured ring.

Figure 17: Bar diagram of samples in site sequence POLBSQ03 sorted by area

Offset	Total rings	Rel ring	
South range floor frames		64	64
0	POL-B55		
85		60	151

East range roof
$80 \quad \begin{array}{llll}\quad \text { POL-B2O } & \text { hls } & 88 & 168\end{array}$

Heartwood rings
Sapwood rings
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last measured ring $\mathrm{C}=$ complete sapwood retained on sample, last measured ring is the felling date

Figure 18: Bar diagram of samples in site sequence POLBSQ04 sorted by area
Offset
South range floor frames
0 POL-B55
30 POL-B53 hs
39 POL-B54 hls
85 POL-B49 hls

East range roof

$80 \quad$| POL-B2O | his | 88 | 168 |
| :--- | :--- | :--- | :--- |

South range roof

$65 \quad$| | POL-B03 | 64 |
| :--- | :--- | :--- |

2

137139
46
$65 \quad \square$ POL-B08
107153

46 POL-B09 hs
$100 \quad 165$

58
POL-B04 hls
123169

75
122
101
105

| POL-B12 | 20 | |
| :--- | :--- | :--- | :--- |
| | 84 | 169 |

| 98 | POL-B07 | 23 C |
| :--- | :--- | :--- | :--- | | | | | 150 | 200 | Years relative |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 50 | 100 | 150 | 1734 | Calendar years (AD) |
| 1534 | 1584 | 1634 | 1684 | | |

\square Heartwood rings
Sapwood rings
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last measured ring $\mathrm{C}=$ complete sapwood, last measured ring is the felling date

Data of measured samples - measurements in 0.01 mm units

POL-B01A 87

210198214195141139142158258232313302195321342309202191213212 294266322222139249279227240213188192140253186237247261331293 242225243228156197171232168220198249150132179210115102157167 1851941351952151781161011321079076145142155140164156203131 160164145132101103136
POL-B01B 87
161194208196145137151148258209301310188342358281195188211214 288273328234195243270235234203196190135253186227236263336276 25524224122314720316622716923019622416013218522394122168161 17820013420020017511793137949869153153160146155174184147 164155149128109113131
POL-B02A 80
244134141142174214136157113169231191138119141851348815286

 84130171173293159176143235174189174150118159152175178121171
POL-B02B 80
265140130124182229128136116202224189131118127861338017581
 $70 \quad 5977130189148119211921259811518418916012782100105169$ 67140171159318128176155252178179168155128168157174187118148 POL-B03A 64
$28232531231530331224527916210114312917925124021175 \quad 5373110$ 112168196160169192328216231296285254316307345209228252320329 352247152247221147185261189203161179219261305307248230286208 160251272254
POL-B03B 64
25132036028231834521329115510814313717321625120082476899 112172212203168200311241249250246267331319355209225251309338 353257167241230131183260195197163186219259278299246227278207 166254264259
POL-B04A 116
1651721511942061511072051841551211239182156147158136114125 86148941141091241499381122115135122122738410414514089 $119 \quad 82711095613012310116314612414812613918312612998132133$ $\begin{array}{lllllllllll}92 & 74 & 81 & 101 & 87 & 98 & 154 & 88 & 135 & 85 & 93 \\ 171 & 122142124111 & 137115164111\end{array}$ 180174163169151198160158196132219169165143177208157164163126 $\begin{array}{llllllllllllllll}103 & 175 & 91 & 161 & 170 & 124 & 133 & 94 & 101 & 76 & 86 & 103 & 116 & 68 & 81 & 96\end{array}$
POL-B04B 116
12616417220219815414121616015112711610596145143163129128136 73146103116971311069083133117143114109838699127144110 $129 \quad 938310260156121105153164126157119133186125125100135131$ 1067571105881201201031278489190101138124122113121168106 176177152172153199163134217111226170162152193193144148139131 $\begin{array}{llllllllllll}119 & 162 & 90 & 152174 & 128 & 122 & 97 & 98 & 81 & 84 & 116 & 102 \\ 78 & 66 & 122\end{array}$

POL-B05A 137

12214213918214717413511610812689115155230140185154129164108 $\begin{array}{lllllllllllllllll}91 & 105 & 125 & 102 & 84 & 79 & 103 & 77132121 & 78 & 97 & 83 & 107114 & 98 & 91 & 90 & 126 & 123\end{array}$ 8211214313821692141121147122150133138140105137123161189203 1731331311591251281151091258416515516515213113394180149141 1021571551111221881551361051067884103128121104100797761 $\begin{array}{lllllllllllllllllll}42 & 103 & 91 & 91 & 113 & 121 & 96 & 90 & 88 & 83 & 81 & 51 & 59 & 63 & 79 & 78 & 64 & 54 & 48 \\ 53\end{array}$ $\begin{array}{lllllllllllllllllllllll}62 & 61 & 71 & 57 & 71 & 45 & 47 & 104 & 84 & 107 & 88 & 77 & 110 & 91 & 132 & 169 & 222\end{array}$
POL-B05B 137
101137134189141162141113115107114123191224133180146126164137
 9110713914521610212713415612714413913615198140132162189207 187134131164121139115991218313715515415912313791175135157 10715014411613918316212212694839310512212910311084807085 $\begin{array}{llllllllllllllll}56 & 107 & 99 & 88 & 122 & 130 & 100 & 93 & 84 & 91 & 86 & 51 & 62 & 72 & 78 & 79 \\ 70 & 49 & 45 & 64\end{array}$ $\begin{array}{llllllllllllllllllllllllll}55 & 66 & 72 & 60 & 66 & 47 & 41 & 99 & 86 & 108 & 86 & 81 & 121 & 97 & 147 & 166 & 206\end{array}$
POL-B06A 64
194306302274408390469335266286294282301369350365363362214225 193308274318293256246194171166249205177225245190137158153173 1751691631271031051051151318981109103116111124122132134106 112121134121
POL-B06B 64
187306315266411395469317345280293288300367332365372362205226 172295260303289256233202185162258201184230240204129140156157 175175155130102105101109141958410396124108109133128138108 110123142107
POL-B07A 94
1051058315385165195160188185138118122129176110178131105126 14012114018015811814090142185179131149213204189194251165202 247283211213141199235157229180240210156122175121148181208159 $11914312915319415116312816713391114111139 \quad 3964108130104161$ $\begin{array}{lllllllllll}141 & 167 & 97 & 76110 & 89 & 138 & 131 & 83 & 95 & 129 & 99 \\ 173 & 125\end{array}$
POL-B07B 94
104999014688165195157202172155110113137181114163102125126 140121141191155127136118152189166143152238150188219227167234 271277207220158178225175220197231207155126164123152175196158 12814014614119515917013514113878120106434365105129104149 $\begin{array}{lllllllllllllll}136 & 172 & 97 & 77 & 111 & 88 & 133 & 130 & 85 & 82 & 133 & 108 & 169 & 121\end{array}$
POL-B08A 100
180294279286323244290246336129150177186218215270157906067 79105147159175195217246283230270289243266278291276235267174 231153153214191164216280172256163226246290268308340321342331 231362301346223300304365311346243236229312324287250215251223 221241217239177169175217167168184173158158118112119162155160 POL-B08B 100
222282289288285222299236306149144160196188196262198934565 64113146149182151237242282226270288248273278279295216280171 232154160207190174223283177249145206270286264300330351357324 228362308339225295314357312351267241228301336267252223245235 22523721725118617017321918517918418516215711995118165157182

POL-B09A 123

131357279376371418262192220254179278287290337355266289379453 3894784044113653163484162432422052031612021638357435794 1231009892119116133103133112123124157200145191187206192208 182153164173131202262227251136190172187212289316285258258247 286253231185261217231190241224287208266378277209156187192156 274222245188147150194165162199222173128128125173172175167166 153129121
POL-B09B 123
148366279393351408273191204255176294270288330355268300382444 385489392437375300356412224246201216153195173194754465102 1271049194117125145116118118124111168204160181183192201206 168148165164145201265217248166188171185198301324279273259214 321256212170235217245188235219278215268362282212158193177162 257226249185152139201175155206202171141128132161194164167168 146128137
POL-B10A 107
231439411352360376351374327329246457356228290297293265316346 255299286268301242276238212274252336222299275915681151147 157153152130149137155166176171176184250282208355305429269247 227214165275255329322211277178184263309290306337315340340243 410260231208263405348210277236235220259357294196208220258214 235199195154139132161
POL-B10B 107
306452392361360378345366311330250476351237283293298245318324 280301285288311235279235210265259340226282281777580139152 162142146130150133157158171159179170244270214348308438281243 235215176281269314329205283160199248298292303323302327341249 390261236203259401357211285244231221283366309205202226247219 233197192143164128176
POL-B11A 101
171116136721501411251121341367511015613910111210311689107 14715911611011563956910411314014712012210310010112471111
 158150164166177168131137153131147254147246158131115179181124 1411521341321581001342001491751291489414419316611112288121 150
POL-B11B 101
1621171308314312413411513614186107147140114891138583107 $129165105136927187818411311715111610511986112126 \quad 66108$ $79 \begin{array}{llllllllllllllllllll}79 & 96 & 100 & 73 & 80 & 81 & 92 & 98 & 90 & 88 & 57 & 128 & 97 & 122 & 213 & 172 & 211 & 170 & 201 & 267\end{array}$ 157139162160178142135142156137135277152264167126122191175138 130135138132165107128210192166139138108138198176959090142 121
POL-B12A 84
293319326298282268244274225281247236220226197183315263253247 23523220520022519421116617917419515211814320016812698151128 1071471421751411268987921441311621191028388110118121170 $\begin{array}{llllllllllllllllllllll}125 & 109 & 92 & 95 & 107 & 138 & 79 & 75 & 66 & 90 & 127 & 106 & 107 & 141 & 124 & 92 & 87 & 121 & 111 & 77\end{array}$ 8689166125

POL-B12B 84

283314323269278236269267215266249240234226205191314256252251 21922519918623716121615819317220615512014019816912889140133 $123140143172135136 \quad 9683801321471471329878 \quad 9097133128148$
 $68 \quad 99169150$
POL-B13A 103
218302229245233231235232166152141168140161191197230230228164 114205162149130190162175210167153167125137141143102102127121 130128130114110921171141091341221131007477108109112134145 129153103136149122125104134132133118124123157136125130119122 12712411211010310710912212416414213513011497114143177161196 234240255
POL-B13B 103
219293233257232216257236166164129198158154213205245239234151 129185165145138189165156215139149165113125149151102102120139 13012515613295951141171051361231201008267122104114123132 133150108129147124120111127127132114125132168141129139106131 1141291111199310510712111315016311613911993119139187153193 229233260
POL-B14A 60
512482360236253249270279283231202193821141989197161132105 $741242172152121851379395117138126129111137 \quad 7687596377$ $91 \quad 9281119107 \quad 771006810210311717412766109137198208124157$ POL-B14B 70
$13515513610110311015310711712615077926180 \quad 97116111118147$ 144109113829810211915213272106132179196144153291155168183 $\begin{array}{llllllllllllllll}163 & 116 & 186 & 113 & 85 & 84 & 83 & 61 & 109 & 68 & 56 & 76 & 68 & 80 & 83 & 112 \\ 87 & 68 & 62 & 59\end{array}$ $\begin{array}{lllllllllll}109 & 67 & 108 & 92 & 109 & 129 & 102 & 88 & 97 & 89\end{array}$
POL-B15A 128
2523644522988918718325123126332025323716370128120136112162
 $\begin{array}{llllllllllllllllllll}69 & 77 & 55 & 96 & 79 & 81 & 49 & 28 & 36 & 79 & 95 & 46 & 48 & 65 & 86 & 53 & 75 & 112 & 96 & 154\end{array}$ 131106265216137201188263228225153218172113127147134245168228 11121123817915215710310699153157128125155139149108114258181 163129120588097123150108236247288185148191200166212236151 180115157179173229186153
POL-B15B 128
2753414423178518116724621425733225124315981134132128141157 $\begin{array}{llllllllllllllllll}190 & 161 & 172 & 107 & 62 & 59 & 96 & 85 & 85 & 105 & 49 & 34 & 73 & 104 & 84 & 68 & 94 & 61 \\ 40 & 53\end{array}$ $\begin{array}{llllllllllllllllllllllll}56 & 83 & 78 & 77 & 91 & 68 & 42 & 38 & 41 & 78 & 82 & 46 & 54 & 64 & 91 & 51 & 75 & 113 & 102 & 156\end{array}$ 120118309207141200193258221236148220176107130141144239156242 12118023218115015810612192146157121131154136148106116265196 166125120618382127141131249253295185149172211179217236143 194120175214179216193147

POL-B16A 67

1701091452251331182371632701341129260718210014610412472 146164145136142180606231301183357249333218200132156167199217 26210314514811517117922526419219013710783138186216178258161 273140118187226203177

POL-B16B 67
173107145233132111243154279152104111559646810115412414987 158152173101141206562221304176350251332213210130156174202222 26710814315211716718523725821620313410688126195212174257167 274134123188226183184
POL-B17A 73
323291372232142120944581126184971661051923031777993124 27112117712229216227519215711912622923516725283102159208155 $\begin{array}{llllllllllllllll}197200 & 153 & 232 & 260 & 106 & 84 & 85 & 86 & 193 & 146104 & 176 & 93 & 118 & 63 & 70 & 130 \\ 189 & 127\end{array}$ 183176957392104299156121134182215287
POL-B17B 73
$288307367221143160101 \quad 5989124203811739118927716684105127$
28410917212429414227919815113011421623817125282102168205165
$18821715721625010370891011771539718790124 \quad 7156131209121$
195187907789114283177130118191210237
POL-B18A 73
$\begin{array}{lllllllllllllllll}93 & 127 & 113 & 100 & 121 & 69 & 46 & 66 & 59 & 94 & 61 & 55 & 79 & 93 & 73 & 47 & 51 \\ 50 & 54 & 60\end{array}$ $\begin{array}{llllllllllllllllll}94 & 88 & 85 & 43 & 104 & 82 & 112 & 85 & 91 & 58 & 75 & 74 & 105 & 93 & 69 & 82 & 69 & 53 \\ 56 & 38\end{array}$ $88 \quad 65101 \quad 72 \quad 84 \quad 637290137187206129149187190214222251262193$ 198127113951021141481271421441427799
POL-B18B 73
$\begin{array}{lllllllllllllllll}89 & 131 & 109 & 102 & 120 & 66 & 49 & 68 & 53 & 99 & 56 & 52 & 82 & 87 & 73 & 44 & 51 \\ 46 & 60 & 50\end{array}$ $\begin{array}{lllllllllllllllllll}100 & 76 & 98 & 42 & 95 & 89 & 103 & 77 & 83 & 71 & 73 & 77 & 89 & 93 & 90 & 74 & 66 & 46 & 64 \\ 38\end{array}$ $\begin{array}{llllllllllllllll}78 & 73 & 79 & 76 & 80 & 72 & 63 & 86 & 131 & 184 & 202 & 140 & 137 & 194 & 185 & 218 \\ 215 & 253 & 253 & 206\end{array}$ 1891291129810511814312613914115276113
POL-B19A 95
$\begin{array}{llllllllllll}185 & 102 & 61 & 83 & 100117137227155157158 & 109 & 99 & 95 & 129 & 90 & 97 & 99 \\ 111 & 80\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllll}87 & 91 & 73 & 79 & 55 & 48 & 70 & 95 & 96 & 80 & 72 & 85 & 105 & 96 & 80 & 91 & 106 & 137 & 133 & 160\end{array}$ 173158100931161311221471481691251711281271001461149284148 1311621231231079211614214316012011583149150
POL-B19B 95
$1721065990991161402271411661531001108512419198102108 \quad 70$ $\begin{array}{llllllllllllllll}126 & 106 & 94 & 88 & 84 & 110 & 114 & 101 & 40 & 48 & 67 & 70 & 97 & 66 & 97 & 63 \\ 73 & 60 & 80 & 93\end{array}$ $\begin{array}{llllllllllllllllllllll}69 & 89 & 76 & 70 & 70 & 45 & 74 & 92 & 104 & 66 & 78 & 76 & 107 & 106 & 84 & 109 & 105 & 116147 & 166\end{array}$ 176159102107105133134146156151128161116133851461218990156 1431661101251109511414514917311711187140167
POL-B20A 88
3998571135194222295350405390332344229269250306297226305205 220239220330241161193188134259197265285167280250315220188191 204280211240256195254268304273265216218174328208291391350411 336371327294273163264220271198247218264142145172226123102126 147171270213212198221133
POL-B20B 88
$422 \quad 90 \quad 80121191221305355380385332333236285288286298223285213$ 216254217338235132200194152257184256294191277259311207203185 200284223251248176289271283269275211230171326218282380352416 359353319294284147256220259200248214259135137197215132107132 150174249186225202226149

POL-B21A 59
193242470353403383535471435340284268222237225324207224174152 186185337239342214283155224199195233255300206191180176281312 28626526322217113914210293108112118123124176180145195126 POL-B21B 59
200238475352404368538478429325290266215239238318216221179150 190191333239337218286159222202197244252290218191176174290311 30626727222517014713010597104115118132129152192125193164 POL-B22A 90
$\begin{array}{lllllllllllll}97 & 79 & 102 & 111 & 82 & 74 & 93 & 65 & 85 & 86 & 116 & 101 & 111 \\ 77 & 52 & 65 & 78 & 114112 & 127\end{array}$ 119144180139160138176148128155133110132145166148152150133143 $\begin{array}{lllllllllllllll}128 & 138 & 150 & 114 & 133 & 98 & 85 & 83 & 97 & 91 & 102 & 83 & 78 & 97 & 75 \\ 69 & 67 & 88 & 125 & 119\end{array}$ 15516719519715517717819820416312314514021716317317418015980 16317214414416517210910991119
POL-B22B 90
$\begin{array}{lllllllllllllll}83 & 84 & 99 & 108 & 80 & 76 & 90 & 70 & 93 & 94 & 126 & 96 & 102 & 74 & 52 \\ 69 & 79 & 106 & 117 & 114\end{array}$ 113158185139138142163147131175129122118153167147157140125148
 15218219122015017817819621416012915214020815416018717215787 14916614514115718310311587115 POL-B23A 99
1021361251651061261271201231341191391431269682126114106131 $\begin{array}{llllllllllllllllllllllll}131 & 97 & 101 & 79 & 88 & 94 & 101 & 125 & 98 & 108 & 86 & 59 & 71 & 76 & 81 & 95 & 108 & 122 & 122 & 169\end{array}$ $\begin{array}{llllllllllllllll}103 & 112 & 98 & 90 & 94 & 109 & 93 & 79 & 74 & 94 & 86 & 96 & 94 & 81 & 99 & 114 \\ 118 & 102 & 88 & 84\end{array}$ $\begin{array}{lllllllllllllllll}79 & 73 & 80 & 65 & 84 & 103 & 73 & 108 & 121 & 85 & 97 & 93 & 78 & 70 & 104 & 130 & 89 \\ 122 & 158 & 107\end{array}$ $\begin{array}{llllllllllllllllllllllllll}153 & 112 & 98 & 110 & 93 & 90 & 83 & 56 & 79 & 71 & 119 & 111 & 106 & 132 & 110 & 94 & 158 & 89 & 97\end{array}$
POL-B23B 99
1001331331711071191281201211341161391571189897107116109139

 $\begin{array}{lllllllllllllllllll}75 & 80 & 76 & 63 & 96 & 94 & 74 & 107 & 129 & 73 & 96 & 86 & 83 & 72 & 102 & 127 & 92 & 119 & 161\end{array} 109$ $145113107104 \quad 958980636784119104109134111891608795$ POL-B24A 106

 11912110410715418018215417813914411315019414494120135186193 2262042321832181601651501751551099714811510311470897988 $\begin{array}{llllllllllllllllllllllllllll}86 & 81 & 79 & 71 & 83 & 98 & 93 & 75 & 54 & 111 & 115 & 81 & 115 & 104 & 98 & 93 & 105 & 123 & 100 & 104\end{array}$ $120 \quad 93103100 \quad 9896$
POL-B24B 106
 $\begin{array}{llllllllllllllllllllll}68 & 57 & 54 & 88 & 89 & 71 & 103115 & 101 & 112 & 100 & 110 & 163 & 128 & 150118 & 81 & 122 & 85 & 123\end{array}$ 10711510410616118017617316613513711915218315188114140182171 2321922241912211481501611771571209514411619811674628469 $\begin{array}{llllllllllllllllllllllll}85 & 75 & 71 & 75 & 67 & 99 & 73 & 80 & 57119 & 112 & 92 & 108 & 110 & 95 & 103 & 103 & 118 & 100 & 96\end{array}$ 119106105989799

POL-B25A 69
15822422620023522620612712819623214517320026318611556132116 180173178175918385102108257209156193147277145152208182196 $\begin{array}{llllllll}134 & 77 & 87 & 65 & 78 & 91 & 98 & 142 \\ 217 & 246 & 305 & 236 & 252 & 281 & 326 & 195 \\ 223 & 251 & 189 & 251\end{array}$ 263202246236149188134216156
POL-B25B 69
18823623023822621818613313419222613319022328917713464106124 18715213917876868592111278166159195138265138161220190153 $161 \quad 85 \quad 717179184149243214294267263263336207217262199240$ 256206239239150188136206162
POL-B26A 71
1751901951481569073101159127107135181184214184223182135109 114160191961061441261701792202402743012622942162361317690 136126212199124153239221345258254163132145175174144203244194 22117212688118169123103125141148
POL-B26B 71
169186194147154887593160126112130173198204185229173152100 12016117510013312513517318520524627130125927423123611870102 133107203179119146235212338247235146146146176196143185253185 23019211288106188131120120157156 POL-B27A 58
126136121222187129144165173201196177282222269242145133246173 13317826713526723515321620414313919919086127133156200167175 $16415918714997131149228157151147119112 \quad 9066114103124$ POL-B27B 58
135125134211193114165178178216167206249216291224161123257173 12520224912927223215518323712315619819387121130148197172176 16816418714211012315423414415014512612182663104120126 POL-B28A 68
13217017714615720213215612114415114411611015712874141100121 106901621738815111916817614019625518525220313910016014789 1141561261931321121091571031091241678710294148204180172179 19720515097117111179138
POL-B28B 68
14416017815215020013315913313414215610711315313365141106117 110105138182891391421501811411942521862402101519515813188 1041531042211141101121501141021211698710794153166178175159 20222014694128109176154
POL-B29A 144
18311323121522732721596101129163185171146131119123919494 $\begin{array}{llllllllllllllllll}116 & 83 & 100 & 116 & 88 & 69 & 70 & 66 & 87 & 77 & 86 & 92 & 135 & 102 & 85 & 56 & 63 & 68 \\ 73 & 73\end{array}$ $\begin{array}{llllllllllllllllllll}86 & 52 & 72 & 40 & 98 & 60 & 67 & 49 & 55 & 67 & 66 & 69 & 71 & 41 & 79 & 73 & 84 & 46 & 89 & 43\end{array}$ $\begin{array}{llllllllllllllllllll}43 & 47 & 79 & 56 & 62 & 67 & 51 & 52 & 45 & 33 & 34 & 70 & 57 & 48 & 40 & 32 & 48 & 48 & 25 & 32\end{array}$ $\begin{array}{lllllllllllllllllll}36 & 36 & 47 & 46 & 47 & 54 & 33 & 21 & 43 & 40 & 59 & 51 & 52 & 79 & 53 & 58 & 39 & 28 & 29 \\ 30\end{array}$ $\begin{array}{llllllllllllllllllll}47 & 38 & 54 & 44 & 43 & 46 & 52 & 49 & 40 & 41 & 53 & 49 & 58 & 72 & 51 & 35 & 39 & 44 & 34 & 27\end{array}$ $\begin{array}{lllllllllllllllllll}48 & 53 & 54 & 53 & 42 & 39 & 56 & 62 & 59 & 48 & 46 & 60 & 76 & 53 & 50 & 63 & 90 & 81 & 51 \\ 52\end{array}$ $87 \quad 45 \quad 63 \quad 73$

POL-B29B 144
1751172282192383311951341121542021811781471201231268510486 $\begin{array}{lllllllllllllllllll}119 & 83 & 91 & 129 & 92 & 67 & 70 & 65 & 82 & 87 & 88 & 90 & 131 & 95 & 87 & 65 & 60 & 64 & 81 \\ 69\end{array}$ $\begin{array}{lllllllllllllllllll}85 & 55 & 74 & 45 & 93 & 56 & 70 & 51 & 59 & 60 & 67 & 64 & 65 & 49 & 69 & 77 & 77 & 58 & 79 \\ 47\end{array}$ $\begin{array}{llllllllllllllllllll}43 & 47 & 78 & 60 & 62 & 68 & 56 & 53 & 33 & 32 & 38 & 72 & 50 & 38 & 48 & 40 & 43 & 43 & 26 & 33\end{array}$ $\begin{array}{llllllllllllllllllll}35 & 39 & 42 & 40 & 50 & 57 & 32 & 26 & 41 & 41 & 56 & 51 & 52 & 81 & 55 & 59 & 34 & 32 & 28 & 27\end{array}$ $\begin{array}{lllllllllllllllllllll}53 & 40 & 44 & 48 & 45 & 49 & 47 & 50 & 38 & 41 & 54 & 46 & 62 & 75 & 51 & 37 & 36 & 43 & 38 & 28\end{array}$ $\begin{array}{llllllllllllllllllll}43 & 58 & 48 & 53 & 49 & 35 & 40 & 68 & 65 & 46 & 46 & 62 & 71 & 62 & 41 & 72 & 86 & 78 & 58 & 45\end{array}$ $\begin{array}{llll}82 & 54 & 65 & 71\end{array}$
POL-B30A 145
224343283259216330241276277215206158199240314115217246349318 2623231851222061572782042311972511708464192919584120111 $\begin{array}{lllllllllllllllllll}92 & 166 & 134 & 95 & 92 & 87 & 93 & 84 & 96 & 51 & 45 & 91 & 111 & 105 & 67 & 98 & 89 & 59 & 75 \\ 70\end{array}$ $82828081110 \quad 756368107175175147190204181136198159139118$ 131177181111151125117181165184203187209148160112250180139116 16414517613311111910013713712513085996614814799175185156 2118911580135176180132147127111656917018115610820111481 110237181191139
POL-B30B 145
211326278255217325243282277212191148213235339117223251349329 $251322196118203157284204226200250169885289 \quad 959488121107$ $\begin{array}{llllllllllllllllll}93 & 171 & 132 & 86 & 92 & 91 & 91 & 87 & 92 & 53 & 51 & 85 & 115 & 102 & 72 & 94 & 79 & 70 \\ 71 & 73\end{array}$
 11920218396129116118187159200210197221122159126237174140115 165152168135120120101126134125138859867141145103170180168 2178410689123173180125153132110745717918416110319311176 133225197187134
POL-B31A 117
403331280351466375149177216239298279320379270359193197177199 193183175115122139262285184214191157138184230192165198183125 1011051361211351171382111541301551551211379016712088116121 $153110172193209131147119 \quad 996012481749515111616913410481$ 6810214915321315315712715518814717520823518612898106116173 $172102131113168 \quad 761101202111961321671109493129149$
POL-B31B 117
429343283364465388145170229227285308313365275357204201169202 191187186123110130275274205205189156144182229186174194185134 1051061361251441051422151521291601381281408916912991111127 $1381081811932131021551098876109 \quad 90711001701291551369796$ 7210213417721715314313514520215217021123218613779101131184 179123120109162861061172082001361661099293108181 POL-B32A 111
$\begin{array}{llllllllllllllllllllllll}135 & 56 & 55 & 69 & 67 & 70 & 69 & 88 & 44 & 68 & 82 & 75 & 52 & 50 & 110 & 122 & 149 & 173 & 138 & 79\end{array}$ $\begin{array}{lllllllllllllllll}109 & 112 & 139 & 111 & 94 & 69 & 76 & 69 & 58 & 103 & 87 & 57 & 69 & 82 & 77 & 53110 & 208 \\ 216 & 175\end{array}$ 211274338273251321465485514458523516313360280302235263243280 2641841972041181461471521401952222772071471221001056564115
 $\begin{array}{llllllllll}51 & 99 & 108 & 94 & 94 & 124 & 123 & 68 & 60 & 48 \\ 57\end{array}$

POL-B32B 111
$\begin{array}{lllllllllllllllllllllllllllll}125 & 55 & 45 & 79 & 59 & 73 & 72 & 95 & 37 & 76 & 69 & 81 & 52 & 48 & 100 & 139 & 155 & 152 & 124 & 70\end{array}$
 200322282254212330478549497464527541308358273291234261238281 25718520421210514114615714117522728620914312688945294118
 $\begin{array}{llllllll}64 & 91 & 105 & 95 & 97 & 116 & 117 & 54 \\ 63 & 65 & 81\end{array}$
POL-B33A 77
 1161088971031219180749312613115117016015799149146203 20315615229516930120014514622120931514712211213813219017399 141112126146132215152101176143168170181153105113116 POL-B33B 77
 120107938186129898076105122135147174164162100150129215 217159148276166302201143156212193322150128107154146191171103 13511111615113023013411616114917717118114810011687
POL-B34A 111
33531126631622023921432426624417411914315787128103767482 $\begin{array}{llllllllllllllllll}46 & 82 & 57 & 50 & 79 & 78 & 113 & 105 & 49 & 112 & 98 & 83 & 120 & 91 & 96 & 105 & 67 & 85 \\ 71 & 71\end{array}$ $\begin{array}{llllllllllllllllllll}60 & 86 & 74 & 56 & 84 & 67 & 56 & 74 & 73 & 66 & 79 & 56 & 63 & 48 & 63 & 72 & 66 & 40 & 64 & 66\end{array}$
 $\begin{array}{lllllllllllllllllll}87 & 131 & 102 & 72 & 48 & 59 & 83 & 78 & 93 & 77 & 66 & 64 & 80 & 74 & 69 & 71 & 60 & 57 & 42 \\ 63\end{array}$ $\begin{array}{lllllllllll}55 & 58 & 52 & 51 & 46 & 49 & 42 & 38 & 47 & 52 & 57\end{array}$
POL-B34B 111
29629725432220922820132526225118110213315092125997178181 $\begin{array}{llllllllllllllll}56 & 69 & 61 & 46 & 75 & 86 & 116 & 104 & 53100 & 96 & 80 & 113 & 87 & 90 & 97 & 75 \\ 84 & 71 & 76\end{array}$ $\begin{array}{llllllllllllllllllll}56 & 82 & 72 & 66 & 77 & 67 & 65 & 72 & 66 & 51 & 73 & 57 & 50 & 49 & 67 & 62 & 52 & 48 & 61 & 74\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}82 & 79 & 95 & 94 & 77 & 95 & 103 & 62 & 67 & 90 & 99 & 70 & 94 & 122 & 93 & 108 & 85 & 80 & 106 & 71\end{array}$ $\begin{array}{lllllllllllllllllll}93 & 106 & 105 & 80 & 59 & 47 & 94 & 82 & 82 & 69 & 57 & 60 & 90 & 60 & 74 & 63 & 59 & 63 & 61 \\ 57\end{array}$ $\begin{array}{lllllllllll}67 & 61 & 52 & 58 & 43 & 48 & 48 & 40 & 46 & 47 & 57\end{array}$
POL-B35A 115
485335209123384264254229238324507318279273236282257273170223 20827714516819121713111769191112206145211172150150985388 $\begin{array}{llllllllllllllllll}76 & 80 & 89 & 143 & 85 & 125 & 128 & 114 & 75 & 99 & 122 & 88 & 137 & 125 & 84 & 74 & 95 & 96118 \\ 105\end{array}$ 12510876116591541131688212312680817812212278131141159 $\begin{array}{llllllllllllllllllllllllll}115 & 81 & 91 & 63 & 104 & 85 & 111 & 85 & 44 & 76 & 72 & 128 & 95 & 141 & 129 & 186 & 126 & 85 & 98 & 67\end{array}$ $\begin{array}{llllllllllllll}149 & 73 & 56 & 68 & 66 & 52 & 95 & 66 & 105 & 47 & 71 & 64 & 90 & 112\end{array} 270$
POL-B35B 115
488329213123377235216205235323496320282278226277280253190208 2062761481761962051411178720695196148198180144138926187
$\begin{array}{lllllllllllllllllllllll}77 & 90 & 83 & 144 & 87 & 105 & 123 & 113 & 111 & 84 & 109 & 86 & 148 & 114 & 99 & 73 & 82 & 103 & 110 & 108\end{array}$ $\begin{array}{lllllllllllllllllll}126 & 95 & 89 & 114 & 68 & 139 & 125 & 156 & 108 & 104 & 117 & 83 & 82 & 93 & 113 & 108 & 98 & 119 & 142 \\ 157\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}117 & 93 & 101 & 61 & 88 & 99 & 112 & 94 & 37 & 83 & 72 & 104 & 109 & 140 & 128 & 184 & 115 & 88 & 97 & 81\end{array}$ $\begin{array}{lllllllllllll}129 & 83 & 58 & 59 & 74 & 56 & 104 & 70 & 90 & 51 & 60 & 63 & 81 \\ 122 & 267\end{array}$

POL-B39A 141
20119037529919616823718417515816411384174191274108199238355 34132234012366145117190166177157266180
$\begin{array}{llllllllllllllll}112 & 69 & 103 & 82 & 64 & 89 & 93 & 101 & 113 & 119 & 48 & 45 & 89 & 108 & 74 & 65 \\ 84 & 83 & 50 & 54\end{array}$ $\begin{array}{llllllllllllllllll}66 & 63 & 76 & 46 & 79 & 105 & 63 & 58 & 53 & 83 & 106 & 91 & 82 & 86 & 64 & 61 & 76 & 77 \\ 62 & 76\end{array}$ $\begin{array}{lllllllllllllllllll}90 & 74 & 115 & 102 & 69 & 74 & 63 & 67 & 88 & 73 & 92 & 179 & 145 & 144 & 77 & 84 & 81 & 52 & 105 \\ 86\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}84 & 89 & 79 & 92 & 73 & 57 & 67 & 52 & 52 & 70 & 74 & 62 & 114 & 134 & 107 & 69 & 113 & 122 & 77 & 138\end{array}$ $\begin{array}{lllllllllllllllll}62 & 55 & 74 & 93 & 107 & 90 & 79 & 79 & 67 & 111 & 47 & 44 & 91 & 102 & 90 & 57 & 90\end{array} 6251 \quad 57$ 93
POL-B39B 139
24020637033519616921919017015716712378166187242106199233368
$\begin{array}{lllllllllll}341321281 & 125 & 72140 & 116193 & 161187 & 153 & 268 & 196 & 60 & 52 & 86 \\ 82 & 86 & 61 & 113\end{array}$
$\begin{array}{llllllllllllllll}122 & 78 & 108 & 88 & 70 & 96 & 95 & 106 & 115 & 117 & 60 & 43 & 80 & 105 & 97 & 51 \\ 82 & 72 & 52 & 59\end{array}$
$\begin{array}{lllllllllllllllllll}58 & 68 & 74 & 57 & 81 & 111 & 71 & 51 & 51 & 83 & 110 & 94 & 72 & 81 & 71 & 62 & 72 & 73 & 76 \\ 61\end{array}$
$\begin{array}{llllllllllllllllllllllll}91 & 72 & 109 & 107 & 58 & 66 & 71 & 57 & 98 & 67 & 93 & 193 & 147 & 119 & 90 & 82 & 76 & 52 & 99 & 96\end{array}$

$\begin{array}{lllllllllllllllllll}57 & 57 & 71 & 91 & 108 & 94 & 69 & 75 & 78 & 98 & 91 & 84 & 96 & 100 & 49 & 87 & 76 & 92 & 116\end{array}$
POL-B40A 62
201174152153256207183232200152176224229211189165180159151200 269201227241136180175220210132173158164157146155177138158215
361346291321257191197213149163146102111112105224258211265300
227209
POL-B40B 62
198164151146231210190263198154178227240207198206177141152204 286210213241146170173217199126179166169165134163147142161212 358344293324238198192204148169136101114104124229269213274271 219218
POL-B41A 168
217307350505420470724544377461383322349833461635511534439415 4324593663043264054624684473863663222772652661539070121111 1031151151441771911541251601211281311441251051461031109490 86100118778192105102120130131124135105134117148159135109 11092117125120136157192182158196188221235245259247165200184 213254202202224204169165157133180160148170209166323291227259 341308260284275206162292247216169166148165212227158151117178 $\begin{array}{llllllllllllllllll}148 & 129 & 140 & 95 & 112 & 89 & 80115 & 68 & 74 & 91 & 162 & 101 & 111 & 81 & 100 & 91 & 82 & 95 \\ 80\end{array}$ $\begin{array}{lllllll}106 & 98 & 90 & 102 & 86 & 81 & 89\end{array} 68$
POL-B41B 168
264299338518427465726544387475376326367811491620509530405398 4154543823033184034754644443853753212792652501479174117112 103108114150169205145128164107132136135126108160841059795 $8299118 \quad 85 \quad 7883113 \quad 94120136126124122115131126143158132128$ 9793125124120140154190176165194194224247224266222145208195 235259193254194201171181154159155160149174211176320296222286 302317261308262194201263229210167160153161212190155153119178 $\begin{array}{lllllllllllllllllll}150 & 128 & 133 & 102 & 106 & 86 & 73106 & 96 & 77 & 84 & 156 & 106 & 101 & 81 & 90 & 110 & 80 & 82 & 100\end{array}$ $\begin{array}{lllllll}89 & 105 & 81 & 99 & 78 & 79 & 72\end{array} 92$

POL-B42A 71
$138164130114104136142130120109121 \quad 98 \quad 9961 \quad 66$ 101117175127118123126146158144146109126125140126146124163197 153172136156144108126114142157176125133135140128110105145157 120951001089811112310011998109
POL-B42B 71
$1371771191181101271451311191011279191 \quad 6867679796107114$ 103116176128126134128150159127153104128121140121137129163197 165162132156141102116106139161169122141135146115121106144172 106921021071071081338913484138
POL-B43A 83
275379311253246111109177207202176169151160126129136174160156 176106997910215015822718613676847188105119141180144113
 $\begin{array}{lllllllllllllllllll}90 & 97 & 97 & 121 & 86 & 51 & 76 & 81 & 77 & 69 & 78 & 91 & 74 & 44 & 64 & 54 & 85 & 100 & 73 \\ 58\end{array}$ 8888112
POL-B43B 83
307379315237251107107182200228173195143162131138150171156149 183113108911061241842111721438079669296117141183122108 $\begin{array}{llllllllllllll}51 & 62 & 53 & 78 & 111 & 115 & 149 & 133 & 126 & 126 & 89 & 90 & 69 & 104 \\ 89 & 95 & 94 & 54 & 44 & 65\end{array}$ $\begin{array}{llllllllllllllllll}94 & 80 & 88 & 133 & 100 & 50 & 85 & 76 & 83 & 60 & 78 & 94 & 69 & 48 & 49 & 58 & 82 & 99 \\ 73 & 67\end{array}$ 7686122
POL-B44A 127
165262209196209170207163108154127134160155175213180123154135
 1301512682111511712261431272091681431592021501046711797111 $\begin{array}{llllllllllllll}101 & 93 & 132 & 115 & 121 & 94 & 105 & 81 & 98 & 98 & 130 & 86 & 97 & 111 \\ 90 & 70 & 60 & 59 & 52 & 55\end{array}$
$\begin{array}{llllllllllllllllllll}45 & 46 & 52 & 50 & 55 & 66 & 86 & 76 & 53 & 47 & 45 & 62 & 36 & 48 & 55 & 67 & 58 & 47 & 53 & 22\end{array}$ $\begin{array}{lllllllllllllllllll}42 & 77 & 44 & 66 & 49 & 47 & 66 & 56 & 55 & 49 & 50 & 64 & 71 & 43 & 102 & 79 & 76 & 57 & 72 \\ 61\end{array}$ $\begin{array}{lllllll}74 & 95 & 84 & 70 & 93 & 77 & 40\end{array}$

POL-B44B 127

182264212195202177203175103169190175212144158208172134152141 1431751632502012711531211099478116 1451422532141441812301361311931921471512081481018810487113 $\begin{array}{lllllllllllllll}96 & 96 & 129 & 116 & 121 & 91 & 106 & 85 & 96 & 83 & 134 & 77 & 104 & 96 & 93 \\ 60 & 53 & 51 & 54 & 44\end{array}$ $\begin{array}{llllllllllllllllllll}43 & 55 & 46 & 50 & 64 & 65 & 83 & 85 & 51 & 46 & 49 & 52 & 40 & 48 & 61 & 57 & 58 & 50 & 58 & 24\end{array}$ $\begin{array}{llllllllllllllllllll}45 & 71 & 48 & 62 & 51 & 55 & 65 & 56 & 52 & 44 & 44 & 49 & 65 & 60 & 76 & 59 & 77 & 50 & 75 & 58\end{array}$ $\begin{array}{lllllll}70 & 78 & 81 & 79 & 83 & 69 & 67\end{array}$
POL-B45A 154
350424360402281283242270327191294308466449346309281334450364 289303316409287277133298224231259243245170114168177262198176 27125119421010516015620918319117018523120715799114114156124 $93638013813211011197 \quad 779511415415415617516913186109199$ 14111513118420315614315615919217210817318393122136171208165 142164152196122818512611280901129518013110011910782113 $\begin{array}{llllllllllllllllllllllll}126 & 116 & 82 & 62 & 57 & 66 & 103 & 75 & 92 & 171 & 153 & 166 & 178 & 93 & 89 & 105 & 141 & 91 & 97 & 117\end{array}$ $\begin{array}{lllllllllllll}81 & 81 & 72 & 48 & 47 & 56 & 95 & 79 & 113 & 73 & 63 & 48 & 80 \\ 103\end{array}$

POL-B45B 154
388400360390296299249257338188310310480461344302286338454364 299305307415289277143288229228269236251175132181169274186166 27627319718712316115621219018716619320621216297101104150125 $109 \quad 5881129136101116103629511515415515417915713988104204$ $146116143166208169143162155187171112179169 \quad 99104152188202173$ 147168149199121877912111384971121171551369212610579112 $\begin{array}{lllllllllllllllllllllll}121 & 115 & 75 & 56 & 68 & 64 & 94 & 65 & 107172 & 154 & 165 & 184 & 85 & 93 & 99 & 141 & 104 & 84 & 105\end{array}$ $\begin{array}{llllllllllll}97 & 77 & 56 & 50 & 45 & 55 & 96 & 93 & 103 & 95 & 55 & 49 \\ 68 & 111\end{array}$
POL-B46A 91
177285324311303248201252277322280203233234244314247278205167 183243134192243171140119185106145139169149237353278248198148 9217712815588949312810483113989211313810910490 132107107159109185236253227198181176171213159164187377230155 132111105107119153104117155123155
POL-B46B 91
202292318328294235211251267311272209231237239313250274207177
172245152165254169128120174125146115188138245346281235185166 $\begin{array}{llllllllllllll}88 & 157161 & 164 & 81 & 113 & 84 & 146 & 90 & 89 & 111 & 104 & 98 & 99 & 160 \\ 113 & 112 & 72 & 78 & 89\end{array}$ 120105115137112168270228209222161195160211152165185375248158 123118100116107162105111157103190
POL-B47A 64
337411464496618567680449403340450651553493334337382503468277 453448488581374276294331393357267373282317206209228284247281 316179198258260337311331280346330202219260379246303245190209 243223177124

POL-B47B 64

316398483496612595678467408372462645579481333344394493451328 485435500562369278286341382363252360277304222205247288252274 314187182256259335314311285349332206224256375229298258180217 268223185136
POL-B48A 145
329469408522386465350271419393383456342299327240291269276214 1692502331801751791549216411813218217617616412073689263 $\begin{array}{llllllllllllllllll}45 & 42 & 72 & 69 & 59 & 137 & 95 & 121 & 109 & 90 & 78 & 97 & 79 & 60 & 57 & 68 & 115 & 109\end{array} 94134$ 121106115138118131105100139861021051001241319813216015396 $\begin{array}{llllllllllllllllllll}107 & 91 & 88 & 80 & 63 & 74 & 93 & 69 & 71 & 64 & 72 & 115 & 71 & 90 & 115 & 74 & 87 & 58 & 72 & 62\end{array}$ $\begin{array}{llllllllllllllllllll}69 & 66 & 69 & 50 & 64 & 53 & 81 & 51 & 55 & 60 & 46 & 52 & 60 & 66 & 67 & 61 & 54 & 54 & 62 & 73\end{array}$ $\begin{array}{llllllllllllllll}80 & 88 & 138 & 96 & 108 & 86 & 72 & 78 & 74 & 103 & 79 & 90 & 83 & 103 & 68 & 56 \\ 46 & 64 & 43 & 50\end{array}$ $\begin{array}{lllll}41 & 90 & 55 & 60 & 71\end{array}$
POL-B48B 145
338471414520391450352264433374389468341296305250277270287219 $1772442261841631701559216311015618417117917512671 \quad 6981 \quad 64$ $\begin{array}{llllllllllllllll}35 & 48 & 70 & 68 & 65 & 133 & 97 & 114 & 108 & 101 & 76 & 82 & 87 & 62 & 57 & 74 \\ 118 & 124 & 96 & 142\end{array}$ 12611111713512312910599127949410411412311611011217014082 $\begin{array}{llllllllllllllllll}111 & 85 & 84 & 91 & 67 & 78 & 106 & 63 & 72 & 68 & 70 & 106 & 101 & 83 & 120 & 71 & 92 & 57 \\ 79 & 52\end{array}$ $\begin{array}{llllllllllllllllllll}60 & 66 & 61 & 61 & 59 & 59 & 85 & 53 & 55 & 57 & 56 & 52 & 49 & 69 & 74 & 58 & 54 & 51 & 60 & 73\end{array}$ $\begin{array}{llllllllllllllllll}78 & 81 & 144 & 91 & 105 & 82 & 80 & 71 & 77 & 96 & 89 & 81 & 85 & 101 & 83 & 43 & 53 & 47 \\ 46 & 57\end{array}$ $\begin{array}{lllll}38 & 83 & 51 & 56 & 67\end{array}$

POL-B49A 66
486721492537512611655603540507552466471519510416426334474424 438535438305339240311318171334294286273192198200260278274227 247407362305295302270211174244208217217268294364332298316294 228282257290297310
POL-B49B 66
378701501537520609649620539497536456459503488404414329473430
425530433328335229326300192330302284271194199207252260265236
238422374304298290255211177250212206218268292352351298310282
246256273299293321
POL-B50A 112
$\begin{array}{lllllllllllllllllllllll}79 & 80 & 87 & 117 & 95 & 75 & 152 & 91 & 123 & 118 & 125 & 112 & 136 & 203 & 166 & 117 & 86 & 82 & 86 & 103\end{array}$
 106146124131188223201164181166193125138201193163143164173187 $14317414813011410814176104120 \quad 78 \quad 84841121061108911411769$
 $\begin{array}{llllllllllll}127 & 90 & 63 & 70 & 58 & 76 & 82 & 91 & 58 & 85 & 57 & 96\end{array}$
POL-B50B 112
$\begin{array}{llllllllllll}83 & 78 & 85 & 116116 & 67142 & 94 & 123116144 & 116 & 164175 & 160119 & 93 & 90 \\ 81 & 99\end{array}$ $\begin{array}{llllllllllllllllllll}90 & 62 & 70 & 92 & 109 & 125 & 119 & 168 & 101 & 83 & 90 & 90 & 139 & 167 & 212 & 140 & 136 & 82 & 62 & 85\end{array}$ 115127143126172232210156182167187129128208192158157160181177
 $\begin{array}{lllllllllllllllllll}95 & 97117 & 81 & 118 & 73 & 78 & 108 & 79 & 90 & 138 & 115 & 108 & 144 & 77 & 86 & 73 & 110 & 78 & 97\end{array}$ $\begin{array}{lllllllllll}116 & 101 & 65 & 67 & 58 & 70 & 77 & 93 & 68 & 80 & 50\end{array} 90$
POL-B51A 70
23181160191240366418352421416490429366400375423371358436442 371284362351478468367465359339350317286338306373333224286281 193183237338277302262200203279392390441403369332208227216234 228213244174255193267302292243
POL-B51B 70
13497169189235421440347431413493444372405363398364345458434 370288379344476468374470360355348312300344305377337222282280 190187236343272297261192212272406407418410371338214217232222 242207251183253190260301287250
POL-B52A 93
1434334117160142148171112681019110612113588894958497
 $\begin{array}{llllllllllll}161 & 132 & 89 & 114 & 106 & 133 & 120 & 144 & 116148 & 117 & 102 & 82 \\ 62 & 55 & 63 & 54 & 38 & 58 & 73\end{array}$ $\begin{array}{llllllllllll}61129 & 98 & 106 & 70 & 90 & 113 & 109 & 140 & 124 & 61 & 107112 & 82 \\ 71 & 66 & 99 & 89 & 118 & 108\end{array}$ $\begin{array}{lllllllllllll}76 & 39 & 51 & 40 & 58 & 38 & 40 & 57 & 47 & 43 & 40 & 36 & 62\end{array}$
POL-B52B 93
$1194635115155153149157 \quad 9169110100101138 \quad 90 \quad 9010196$
 $\begin{array}{lllllllllllll}162 & 128 & 91 & 124 & 105 & 121 & 119 & 142 & 101 & 148 & 133 & 98 & 77 \\ 63 & 50 & 62 & 51 & 47 & 53 & 63\end{array}$ $6011910010174490109107151119 \begin{array}{lllllllll}71 & 98 & 121 & 74 & 77 & 62 & 95 & 92 & 118 \\ 1111\end{array}$ $\begin{array}{lllllllllllll}87 & 39 & 47 & 49 & 53 & 43 & 44 & 46 & 44 & 50 & 47 & 22 & 42\end{array}$

```
POL-B53A 88
    253233156172150181196172185157192131164127112134152 86 94115
        88109 93106 79 93122141179 214161173150139156130154100135135
    193113128142149124131120118110139152127168159114132191168119
    148101102112153145158141169122124136137232272152160178190162
    139159189167175149168182
POL-B53B }8
    302230162178145198195156196151187136156133107139136107 87102
    105108 92 98 76 99 120135136177166163143144153132152 97147127
    196109129133142119134121128109130146154149151129127205163117
    145 90111109148150139153164117127132135231252153167163193161
    147161183153163162175167
POL-B54A }8
205221194187145118177239129149134124158179158151183141 172 208
158185160119215203173149129173156 198145183213196168150158142
166153198105138175139149217167171152159167145173163166148168
162144163194218227175197207209219146161 179160178177 163184181
160141194172157167121162
POL-B54B }8
207214183182160119167238149155114126147168157151174173171172
175 193164124190199173150135164174191139192210186163 155 172141
169160184119134172144156212177172159163161157171165161133164
156153176188213236175204210207215157181173 155185175151184180
158150189181161152152144
POL-B55A 64
375467352331298480366441419404309326258249319346402346 266189
263275158189181222198176262168209174160127115143176150113141
203155148172196258259170251153154196160146189193104101122133
144141143147
POL-B55B}6
354469376307281490374434428387310317269253310350401342260201
2642781521791892272201572691774191181149128117146162185117139
191174136186187231276169259149151205167141182213104 90134120
127140149144
```


APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building' (Laxton and Litton 1988) and, Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$. Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig. 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measure twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify, For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15$ 9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

	C45	C08	C05	C 04
C45		+20	+37	+47
C08	5.6		+17	+27
C05	5.2	10.4		+10
C04	5.9	3.7	5.1	

Bar Diagram

C45

SITE SEQUENCE

C08

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t. values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages 34-5 where 'associated groups of fellings' are discussed in detail). However. if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835 . In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conchusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

 Opinions expressed in CfA reports are those of the author(s) and are not necessarily those of English Heritage.

