ISSN 1749-8775

ST MARY'S CHURCH, BEESTON-NEXT-MILEHAM, NORFOLK TREE-RING ANALYSIS OF TIMBERS FROM THE NAVE ROOF

SCIENTIFIC DATING REPORT

Dr Martin Bridge

ARCHAEOLOGICAL SCIENCE

Research Department Report 038-2007

Tree-Ring Analysis of Timbers from the nave roof at St Mary's Church, Beeston-next-Mileham, Norfolk

Dr Martin Bridge

Summary

Twenty samples were taken from various timbers of the nave roof, predominantly principal rafters and hammerbeams. Measurements from one group of seven timbers matched each other and were combined into a single site master chronology, **BEESTONI**. Two further timbers matched each other and were combined into a second site master. Neither of these sequences, nor any of the other measured but ungrouped samples, could be dated, even though one series contained 222 rings.

Keywords Dendrochronology Standing Building

Author's Address

Institute of Archaeology, University College London, 31–34 Gordon Square, London, WC1H 0PY. Tel: 020 7679 1540. Email: <u>martin.bridge@ucl.ac.uk</u>

Introduction

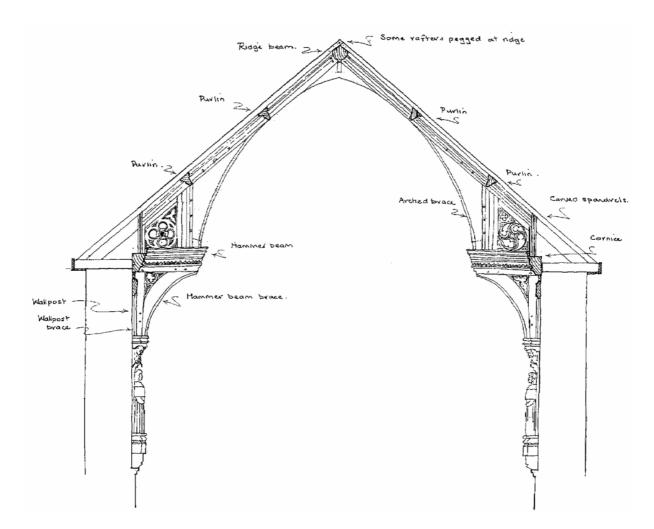
The grade-I listed medieval Beeston-next-Mileham parish church (NGR TF 894 153; Fig 1) was receiving grant aid towards repairs of the nave roof at the time of this investigation. Pevsner (1961) describes the roof as "a special pleasure". The hammerbeams are supported on very tall wall-posts with fine carved figures (Figure 2), and the hammerbeams are connected by shallow longitudinal arched braces. These alternate with short horizontal pieces with figures against them, supporting principals. There are four bays and the roof is thought to be of fifteenth-century date. Tree-ring analysis of this roof was requested to inform these ongoing repairs.

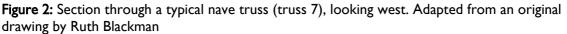
Figure 1: Map showing the location of St Mary's Church, Beeston-next-Mileham (circled).

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Methodology

The site was visited in July 2006 and again in March 2007. In the initial assessment, accessible oak timbers with more than 50 rings and traces of sapwood were sought, although slightly shorter sequences are sometimes sampled if little other material is available. Those building timbers judged to be potentially useful were cored using a 15mm auger attached to an electric drill. The cores were glued to wooden laths, labelled, and stored for subsequent analysis.


The cores were prepared for measuring by sanding, using an electric belt-sander with progressively finer grit papers down to 400 grit. Any further preparation necessary, eg where bands of narrow rings occurred, was done manually. Suitable samples had their tree-ring sequences measured to an accuracy of 0.01 mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by lan Tyers (2004). Cross-matching and dating was accomplished by a combination of visual matching and a process of qualified statistical comparison by computer. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted to allow visual comparisons to be made between sequences on a light table. This method provides a measure of quality control in identifying any errors in the measurements when the samples cross-match.


In comparing one sequence or site sequence against another, *t*-values over 3.5 are considered significant, although in reality it is common to find *t*-values of 4 and 5 which are demonstrably spurious because more than one matching position is indicated. For this reason, it is necessary to obtain some *t*-values of 5, 6, and higher, and for these to be well replicated with different, independent chronologies and with local and regional chronologies well represented, unless the timber is imported. Where two individual sequences match with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have been derived from the same parent tree.

When cross-matching between samples is found, their ring-width sequences are averaged to form an internal 'working' site mean sequence. Other samples may then be incorporated after comparison with this 'working' master until a final site sequence is established. This is then compared with a number of reference chronologies (multi-site chronologies from a region) and dated individual site masters in an attempt to date it. Individual long series which are not included in the site mean(s) are also compared with the database to see if they can be dated.

The dates thus obtained represent the time of formation of the measured rings in each sample. These dates require interpretation for the construction date of the phase under investigation to be determined. An important aspect of this interpretation is the estimate of the number of sapwood rings missing. The sapwood estimates used here are based on those proposed for this area by Miles (1997), in which 95% of oaks contain 9–41 rings. Where complete sapwood or bark is present, the exact date of tree felling may be determined

The dates derived for the felling of the trees used in construction do not necessarily relate directly to the date of construction of the building. However, evidence suggests that, except in the reuse of timbers, construction in most historical periods took place within a very few years after felling (Salzman 1952; Hollstein 1965).

<u>Results</u>

Trusses were numbered from the east end, with the nine trusses forming four bays with intermediate divisions. A total of twelve cores was taken from various elements within the roof on the first visit. The subsequent failure of a site chronology to date led to a second cohort of eight samples being taken. Details of the locations and ring series are given in Table 1. Some cross-matching was found between the individual samples.

A group of seven timbers matched each other (Table 2) and were combined into a site master chronology, **BEESTON1**. This chronology failed to date. The relative positions of overlap of the series in the site master are shown in Figure 4. Samples **bee03** and **bee02** matched each other (t = 5.7 with 66 years overlap) and these two series were combined into a single sequence, **BEESTON2**, which did not match the first site series, and failed to date. The remaining individual series did not match either of the above two site series, or the independent reference material. The ring-width data for the two site series are presented in Table 3.

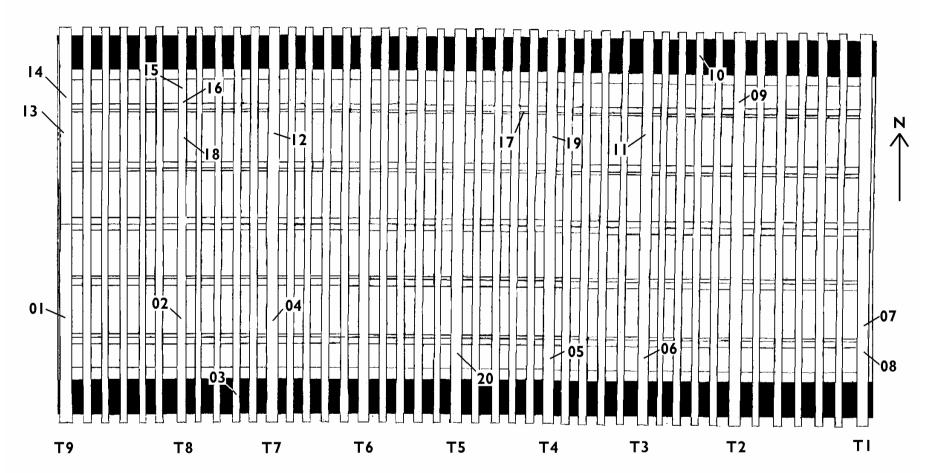


Figure 3: Plan of the nave roof showing the approximate locations of the samples taken for dendrochronology. Adapted from a drawing by Ruth Blackman

Sample	Timber and position	No	Mean	Mean	Sapwood
Number		of	width	sens	complement
		rings	(mm)	(mm)	
bee01	South principal rafter 9	<45	NM	-	H/S
bee02	South principal rafter 8	91	1.57	0.21	H/S
bee03	Sole plate 2 in bay T7–T8 south	66	2.12	0.19	H/S
bee04	South principal rafter 7	71	1.88	0.22	?H/S
bee05	Hammerbeam 4 south	64	2.54	0.17	?H/S
bee06	Hammerbeam 3 south	222	0.91	0.20	5
bee07	South principal rafter I	77	2.08	0.15	21?C
bee08	Hammerbeam I south	66	2.75	0.22	4
bee09	Hammerbeam 2 north	46	2.20	0.24	-
beel0	Sole plate 2 in bay T2–T3 north	<45	NM	-	3
beell	North principal rafter 3	62	2.20	0.21	I
beel2	North principal rafter 7	48	2.23	0.21	-
beel3	North principal rafter 9	49	3.26	0.16	-
beel4	Hammerbeam 9 north	<45	NM	-	-
beel 5	North arch-brace truss 8	<45	NM	-	-
beel6	Hammer-post truss 8 north	<45	NM	-	-
beel7	North lower purlin, bay 4	43	2.97	0.17	H/S
beel8	North principal rafter 8	72	1.97	0.24	H/S
beel9	North principal rafter 4	61	2.01	0.17	H/S
bee20	Wall post 5 south	93	1.59	0.18	H/S

Table 1: Details of oak (*Quercus* spp.) timbers sampled from the nave roof of St Mary'sChurch, Beeston-next-Mileham, Norfolk

NM = not measured; H/S = heartwood/sapwood boundary; C = complete sapwood

Table 2: Cross-matching between series forming the site master BEESTONI

Sample	bee08	bee09	beell	beel2	beel8	bee20
bee04	5.0	2.2	4.3	4.3	3.8	2.7
bee08		5.8	4.9	4.5	5.5	4.2
bee09			3.7	5.8	3.0	3.3
beell				3.6	4.2	2.5
beel2					1.3	1.3
beel8						4.5

	Span	of ring sequ	ences			
bee04	· · ·	1	·	1	<u>ן</u>	
	bee08					
	beed)9				
	bee1	1				ł
bee12						
0	bee18					
bee20						
		50	1	r	I	1

Figure 4: Bar chart showing the relative positions of overlap of the samples included in the undated site master, **BEESTONI**; the hatched parts of the bars represent sapwood rings

Interpretation and Discussion

Despite cross-matching between several of the samples, and an individual series in excess of 200 rings with no apparent unusual growth patterns, none of the series produced from the nave roof could be dated. The timbers may have come from an area with a unique microclimate, or could have been imported from outside Britain, although the latter idea seems somewhat unlikely. The reference material included material from the near Continent.

The one notable timber is **bee06**, which contained over two hundred rings. This is quite unlike any other timber in the roof and may represent a reused timber, or wood imported to the area.

Acknowledgements

This work was commissioned by John Meadows of the Scientific Dating Service, English Heritage. I thank the architect, Ruth Blackman, for making access arrangements, introducing me to the site, remaining at the site throughout my work to provide safety cover, and for supplying the drawings adapted for use in this report. Cathy Tyers (Sheffield University) and John Meadows (English Heritage) made useful comments on an earlier draft of this report.

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Hollstein, E, 1965 Jahrringchronologische von Eichenholzern ohne Walkande, *Bonner Jahrbuecher,* **165**, 12–27

Miles, D, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Pevsner, N, 1961 The Buildings of England: North-west and South Norfolk, London

Salzman, L F, 1952 Building in England down to 1540, Oxford

Tyers, I, 2004 Dendro for Windows Program Guide 3rd edn, ARCUS Rep, 500b

Ring widths (0.01mm)						no of trees				
BEESTONI										
150	240	253	253	239	210	212	260	284	251	2 2
254	120	134	136	279	269	268	190	254	295	2 2 2 2 2 2 3 3 3 3
275	279	249	242	252	295	287	186	190	208	3 3 3 3 4 4 4 4 5
170	164	246	223	275	261	176	125	201	241	5 5 5 5 6 7 7 7 7 7
226	209	215	190	119	123	136	193	235	192	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
144	163	165	143	160	218	228	210	197	194	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
157	190	221	191	223	225	256	293	218	237	7 7 7 7 6 6 6 6 6 6
231	178	190	240	180	185	203	255	278	283	666666665
206	192	143	197	201	159	122	200	218	210	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
222	201	213	229	249	201					4 4 4 3 3 2
BEES	TON	12								
482 ·	450	435	465	426	562	449	333	187	199	
123	87	72	82	75	100	53	79	84	93	
77	75	77	93	255	233	261	172	133	225	2 2 2 2 2 2
198	163	174	155	184	148	138	202	177	228	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
211	188	198	161	187	155	162	171	149	128	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
145	165	159	174	188	250	194	118	103	158	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
169	203	212	244	167	174	199	210	173	144	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
139	169	244	149	143	180	126	149	166	206	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
158	118	137	145	136	131	179	145	190	156	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
159										1

Table 3: Ring width data for the undated site chronologies $\ensuremath{\mathsf{BEESTON1}}$ and $\ensuremath{\mathsf{BEESTON2}}$