LAWRENCEHOLME FARM, OULTON, CUMBRIA
 TREE-RING ANALYSIS OF TIMBERS
 FROM THE BUILDINGS

SCIENTIFIC DATING REPORT
Alison Arnold, Robert Howard and Cliff Litton

Lawrenceholme Farm, Oulton, Cumbria Tree-Ring Analysis of Timbers from Buildings

Alison Arnold, Robert Howard and Cliff Litton

© English Heritage 2007
ISSN I749-8775
The Research Department Report Series, incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers are advised to consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Lawrenceholme Farm, Oulton, Cumbria Tree-Ring Analysis of Timbers from Buildings

Alison Arnold', Robert Howard' and Cliff Litton²

Summary

A total of 31 samples was obtained from the timbers within four separate buildings at Lawrenceholme Farm, Oulton. Of these 31 samples, 22 were measured, nine samples having too few rings for reliable analysis. From these measured data, five separate site chronologies, accounting for a total of 11 samples, were created. These chronologies have overall lengths of between 68 and 162 rings.

Despite being compared to an extensive collection of reference chronologies, none of the five site chronologies, nor the 11 remaining measured but ungrouped samples, could be dated.

Keywords

Dendrochronology
Standing Building

Authors' Addresses

${ }^{\prime}$ Nottingham Tree-Ring Dating Laboratory, 20 Hillcrest Grove, Sherwood, Nottingham, NG5 IFT
Telephone: OII5 9603833
Email: AlisonArnold@tree-ringdating.co.uk, RobertHoward@tree-ringdating.co.uk
${ }^{2}$ Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD.
Telephone: 01I5 95I 4960. Email: cdI@maths.nottingham.ac.uk

Introduction

Lawrenceholme (Laurrence Island) (NGR NY232526, Figs I and 2), situated in Wedholme Flow (a marsh), was, in the nineteenth century, a settlement of two farms with a number of bothies and outbuildings. According to local tradition, it once contained a hermit. There are presently on the site two mainly clay dabbin houses (house 'A' and house ' B ') as well as a fine two-storey stone house (house ' C '), now used for storage. There is also a mixed stone/clay cruck barn (barn I), plus a mainly clay dabbin cruck barn (barn 2). There is also a series of modern farm buildings. Although the clay dabbin house, ' A ' was inhabited within living memory, only the more recent clay building, house ' B ', is now lived in. The mixed stone/clay cruck barn (barn I) is attached to the older, uninhabited, stone house (house ' C '). The second cruck dabbin barn is attached to the uninhabited clay dabbin house 'A'.

Sampling and analysis by tree-ring dating of timbers from the four clay buildings at Lawrenceholme Farm were commissioned by English Heritage. This analysis was undertaken as a part of a pilot research project on the clay buildings of the Solway Plain in Cumbria, which aims to develop a firm evidence base for this nationally important and threatened building type. The project ultimately aims to understand the significance of these historic structures and to inform their conservation, by raising awareness of their historical significance and extent, and promoting a programme of training in the specific craft skills necessary to repair and maintain these buildings.

Sampling

From the timbers available, a total of 3I core samples was obtained, the samples being spread as evenly and as widely as possible between the four clay buildings. This total, which comprised all of the suitable timbers, might have been considered insufficient to date some of the structures investigated, apart from the fact that they were part of the pilot project. Each sample was given the code LRH-A (for Lawrenceholme, site 'A') and numbered $01-3 \mathrm{I}$. The positions of these samples are marked on Figures 3 and 4a-d. Details of the samples are given in Table I. In this Table, all frames or trusses, and individual timbers, are identified and numbered according to the plans provided.

The Laboratory would like to take this opportunity to particularly thank Mr and Mrs McKie of Lawrenceholme Farm for their help and cooperation during sampling. We would also like to thank Nina Jennings for her constant efforts in promoting this project, for arranging access to the site, and for providing the details in the introduction above. The Laboratory would also like to thank Peter Messenger for his helpful discussions on the possible phasing and interpretation of the building.

Analysis

Each of the 31 samples obtained was prepared by sanding and polishing. It was seen at this time that nine samples, LRH-A03, A04, AI3, AI4, AI5, AI9, A23, A25, and A29, had less than the minimum of 54 rings required for reliable tree-ring dating and were rejected from the programme of analysis. The annual growth-ring widths of all the remaining 22 samples were, however, measured, the data of these measurements being given at the end of the report.

The growth-ring widths of all 22 measured samples were compared with each other by the Litton/Zainodin grouping procedure (see Appendix). At a minimum value of $t=4.5$, five groups,
comprising one group of three samples and four groups of two samples each, could be formed. The cross-matching samples were combined with each other at their indicated positions (see bar diagrams Figs 5-9) to form site chronologies LRHASQ0I-SQ05. These site chronologies range in length from 68 rings to 162 rings.

Each of the five site chronologies, plus the remaining II measured but ungrouped samples, was then compared to an extensive collection of reference chronologies for oak. There was, however, no satisfactory cross-matching at any position. All the samples must, therefore, remain undated for the moment.

Interpretation and conclusion

Although there is no dating for any site chronology or any of the individual samples, it would appear very likely that some of the grouped samples represent timbers felled at the same time. Samples LRH-A27 and A30, for example, representing the two principal rafters of the same truss in house ' A ', have identical relative heartwood/boundary positions in site chronology LRHASQ03. Samples LRHA26 and A28, also from house ' A ', also have the same relative heartwood/sapwood boundary positions as each other in site chronology LRHASQ04. A third example of identical relative heartwood/sapwood boundaries may be seen with samples LRH-AOI and A02 in site chronology LRHASQ05. In this case the samples represent the two blades of a single cruck truss in cruck barn I. In each case it is very likely that the pairs of timbers represented by each individual site chronology were felled at the same time.

Such an interpretation is further supported by the fact that the pairs of samples cross-match with each other with values high enough to suggest that the timbers might be derived from the same tree, or at least from trees growing very close to each other. Samples LRH-A27 and A30, for example cross-match each other with a value of $t=10.3$. While this does not prove that the timbers were from the same tree, it is unlikely that two different trees which were once growing close to each other were felled at different times and yet ended up as one of a pair of cruck blades or rafters.

Table I: Details of samples from buildings at Lawrenceholme Farm, Cumbria

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
Cruck barn I						
LRH-A0I	Cruck blade A	61	21 C	------	------	------
LRH-A02	Cruck blade AI	63	15	------	------	------
LRH-A03	North-west purlin	nm	---	------	------	------
LRH-A04	South-west purlin	nm	---	------	------	------
LRH-A05	Ridge to west	59	8	------	------	------
LRH-A06	North-east purlin	54	h/s	------	------	------
LRH-A07	South-east purlin	75	17	------	------	------
LRH-A08	Collar A - AI	59	29C	------	------	-----

Cruck barn 2

LRH-A09	Cruck blade BI	162
LRH-AI0	Backing rafter BI	100
LRH-AII	Purlin AI-BI	55
LRH-AI2	Cruck blade A	54
LRH-AI3	Collar A - AI	nm
LRH-AI4	Backing rafter AI	nm
LRH-AI5	Collar B - BI	nm
LRH-AI6	Cruck blade AI	83

h/s	------
h/s	------
h/s	---
h/s	--
---	------
---	------
--	------
10	------

Table I: Continued

Sample	Sample location
number	

Total
*Sapwood

First measured ring date

Last heartwood ring date

Last measured ring date
LRH-AI7 South-west purlin 58
LRH-Al8 North-west purlin 77
LRH-AI9 West ridge beam
LRH-A20 West lintel to doorway
nm

LRH-A21 Middle lintel to doorway
92
LRH-A22 East lintel to doorway
LRH-A23 Lower south-east purlin
nm
LRH-A24 East ridge
LRH-A25 Lower north-east purlin

House A (west section)

LRH-A26	Lower south-east purlin	74
LRH-A27	North principal rafter	66
LRH-A28	Upper south-east purlin	70
LRH-A29	Collar	nm
LRH-A30	South principal rafter	68
LRH-A3I	South common rafter 3	89

*h/s = the heartwood/sapwood boundary is the last ring on the sample C = complete sapwood retained on the sample
nm = sample not measured

Figure I: Map showing the location of Lawrenceholme Farm, Oulton, Cumbria.

Figure 2: Map of Lawrenceholme Farm, Oulton, Cumbria.

Figure 3: Schematic plan of clay buildings at Lawrenceholme Farm, indicating the positions of the timbers sampled for dendrochronology. Based on original drawings by Nina Jennings

Figure 4a: Barn I - schematic section of cruck truss A-AI (truncated by modern roof line) to show sampled timbers. Shaded areas indicate redundant half-lap joints (viewed from the east looking west)

Figure 4b: Barn 2 - schematic section of truss B-BI to show sampled timbers. The shaded area indicates a redundant half-lap joint (viewed from the west looking east)

Figure 4c: Barn 2 - schematic section of truss A-AI to show sampled timbers. The shaded area indicates a redundant half-lap joint (viewed from the west looking east)

Figure 4d: House A - schematic section of west wing central truss to show sampled timbers (viewed from the west looking east)

Figure 5: Bar diagram of the samples in site chronology LRHASQ0I

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
C = complete sapwood retained on sample

Figure 6: Bar diagram of the samples in site chronology LRHASQ02
Relative

heartwood/sapwood
boundary position47
47

Figure 7: Bar diagram of the samples in site chronology LRHASQ03

white bars = heartwood rings, shaded area = sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample

Figure 8: Bar diagram of the samples in site chronology LRHASQ04

Relative

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample

Figure 9: Bar diagram of the samples in site chronology LRHASQ05

```
LRH-AOIA 6I
```

52846155642150950254634336033 I 20526125239841852427188 I32 2II
27023418722226525124134629640638339731841633217897101169260
8875 II5 I27 I67 III 871641862068474736583 I20 165 270251288
329
LRH-AOIB 61
547471567457505489545346359335 22। 272269387431512266101129201
274229187226260259236346294406384399321426337172 I25 88165263
9077 IIO I26 I6। II7 $80174178207837077587913417026 \mid 254293$
328
LRH-A02A 63
297322375339248426433297 30I 377 32I 430441322275368410375410267
332338380224 I20 88 ।I2 I 38 I64 I27 I 38 I82 207219249280308313406361
293234 I85 I 34132201308 I2। 468896 I57 99861891991971375977
IOI 154 I71
LRH-A02B 63
318320398308330353350326297361327422429323264367420367412267
339328415225 II5 87 I26 I54 I59 I28 I39 I79 206218255282302299394342
288229 I9| I35 I3I 204290 I32 60829016299741871932041337070
113146187
LRH-A05A 59

86 100 I26 I20 I79 I34 233 159 I29 $878945467055 \quad 526480$ ।47
LRH-A05B 59

196227171154196169191119147951881721681672392261781147694
82 IOI I25 I26 I80 I33 234 I53 I38 869539636472465277 I86
LRH-A06A 54
$292420375273186186210195195158|20190198| 5418|20719017423618|$
$18324021518319319415516313717916417918520813017419222 \mid 134146$

LRH-A06B 54
269457357272188198225177193158126198199157179204177185231191

LRH-A07A 75
36629139520627128326625821013927928925122820496 II6|35 9863

606898 ।10 134 104 164 I19 94536239571061851531282038451
3842365651627454100151140130187105 I52
LRH-A07B 75
36829439821925728226126920213727129925821920595 I20 I2। 10571
$102|2713| 1831681251351341631422|2| 76|3411515917517| 585548$
666498 IOI I36 IO3 I7I I23 9052574259 I02 I90 I49 I36 2078847

```
    36 39 42 52 53 57 76 60 97 l49 |39 | 33 |82 |06 |54
LRH-A08A 59
    |55 |88 262 27| 320 360 45| 404 333 244 |8| 230 |47 27| 283 292 2|5 20| 20| |45
    85 85 49 83 69 99 |45 |40 IIO I64 I32 95 82 I04 76 73 83 |32 IO0 I||
    99 62 72 56 53 75 83 l0| |23 98 84 |23 |29 |29 ||4 |89 99 |26 |74
LRH-A08B 59
    I73 I88 27| 29| 3|9 360446 40| 346 253 |90 223 |56 279 268 29| 209 2|| |97 |52
    73 83 54 87 70 I06 |38 |49 ||4 |57 ||0 |07 8| I04 74 67 89 |27 I03 98
    99 54 85 58 46 82 74 |05 ||2 ||8 80 ||9 |47 |25 |09 |7| |23 |25 |57
LRH-A09A 162
    I96 I3| 75 I86 II7 |43 I87 I65 I84 337 I89 |38 |33 |20 92 |49 |28 I73 ||9 95
    78 I72 I59 240 279 244 I60 ||9 68 l04 |52 |75 |58 l96 227 |47 ||7 |32 97 82
    |IO I4| IOO I58 |32 |45 86 90 60 75 37 35 57 68 86 76 IO4 |39 93 |26
    233 I35 l40 l83 I25 I36 I53 l67 |36 I6| I58 99 74 7| 49 I20 I56 99 90 7|
    73 71 81 72 68 73 66 67 40 31 32 36 42 29 33 44 58 45 50 51
    43 57 70 63 82 l24 77 36 5| 37 44 70 79 50 69 86 Il5 60 67 l00
    83 I04 98 80 ||2 I73 |IO ||2 22| I34 95 90 II2 67 IO3 82 90 I23 86 80
    66 85 64 83 ||4 88 9| 68 63 |35 80 I06 94 l26 66 54 58 l07 89 62
    4865
LRH-A09B I62
    2|0 |22 86 l68 |33 |28 |84 |53 |80 309 |79 | 30 |36 ||6 9| |58 |45 |85 |05 85
    82 l65 l63 240 283 25| I8| 93 67 ||3 |47 |67 |63 |87 227 |74 ||5 |48 98 96
    |26 I23 |IO I64 I3| I40 I03 70 75 67 35 40 55 73 88 73 |I7 |39 89 |35
    2|4 I4| I55 I72 I32 I30 I57 I64 I38 I66 I58 I05 82 67 48 II9 I54 I04 78 83
    77 75 77 76 74 77 66 63 29 37 34 32 36 34 26 50 59 43 53 48
    45 45 79 74 75 ||9 79 45 4| 39 47 67 79 55 68 82 ||3 63 6| lO|
    8| II3 93 82 II5 I65 I40 95 2IO I40 98 87 II5 69 99 88 80 I|4 99 68
    76 85 59 IO| IO5 93 86 70 68 I20 66 I|3 l06 I25 46 54 65 96 80 73
    5472
LRH-AIOA 100
```



```
    |49 |I8 ||5 79 94 I80 87 93 99 83 94 64 76 50 60 73 67 48 6| 49
    67 56 38 39 5| 73 50 55 52 47 82 I|| IO2 ||8 I79 ||9 45 68 40 64
    I03 75 8| 77 |54 |83 ||3 73 |39 ||8 |57 |27 I09 ||| |99 |20 ||3 2|4 |23 |09
    222 204 |45 IO| 87 86 I34 I58 96 58 9| 55 67 80 65 64 58 39 45 58
LRH-AIOB IOO
```



```
    I6| I25 I2| 77 89 I78 8| 96 I|4 77 97 63 75 45 56 80 58 47 47 54
    68 42 45 36 52 76 50 56 53 44 84 l00 lO| I2| l76||8 44 63 46 63
    99 74 75 89 |54 |79 |02 79 |4| ||0 |67 |3| 96 ||3 205 ||4 |26 22| ||6 96
    224 20I l35 I02 9| 80 I48 I54 8| 63 82 53 77 73 6| 64 48 46 52 63
LRH-AIIA 55
264 256 I69 I6| I79 I80 458 593 40| 2|5 I7| 28| |68 I72 I67 I5| ||9 323 283 273
282488378 306 223 I05 9| IIO 74 I26 I37 I77 I03 I00 83 I09 I06 I69 I9| 206
I83 3|3 263 28| 244 294 2|9 |92 |66 |43 ||6 224 239 256 I97
LRH-AIIB 55
295 249 |65 |63 |85 I82 396 596 377 2|| |78 260 |68 |7| |67 |4| |33 323 280 280
```

```
320490390 303 234 99 IO| 99 8| |22 |39 |77 |23 9| 86 I02 98 |67 I89 225
|84287280285 247 308 2|5 203 l57 |54 ||5 2|0 235 220 I74
LRH-AI2A 54
    50 66 I04 I50 I96 I97 2|| 3I0 268 224 I90 I89 |49 ||4 82 83 95 9| 68 78
```



```
83 73 104 97 65 56 54 57 40 57 76 92 88 |33
LRH-AI2B 54
    55 57 IO| I59 I45 2I9 230 328 307 2|9 I8| I77 |45 I08 83 80 97 9| 73 82
    93 98 |IO |46 I24 I20 79 90 ||5 I26 I05 96 95 |34 |IO I26 96 I03 74 87
    72 80 100 97 68 60 56 56 39 58 68 96 9| l28
LRH-AI6A }8
250 370 229 217 2I7 197 12| 93 99 73 76 9| 68 79 88|48 l80 207 223 208
278 30। 292 353 395 44| 352 300 233293 209 202 |86 |3| I82 282 2|5 233 220 223
2I0 I86 I73 22| 207 l95 269 2|7 20| 22| |47 |69 |83 I73 |47 |69 |69 |33 ||2 |46
I80 |50 ||4 87 67 62 80 69 ||8 I7| ||8 |56 |62 |34 ||5 ||| 64 ||0 72 63
93 105 |45
LRH-AI6B }8
24| 38| 236 225 2|7 2|4 |2| 94 87 72 7| 90 65 69 8| |36 I7| 209 205 202
```



```
207 l85 l74 22| 209 l9| 267 2|9 l97 228 |52 l65 I73 l66 l60 I77 l63 |34 |23 |32
I87 I5| ||5 87 67 68 65 75 ||3 |73 I25 |46 I7| |40 ||2 IO2 90 |IO 68 60
90 98 14|
LRH-AI7A 58
390443 6II 679 668 802709740 65I 65I 727 6I5 7I8 434467432390 342 387 253
```



```
|23 |I9 92 73 8| 62 84 I07 |46 l69 95 78 67 94 59 73 66 8|
LRH-AI7B 58
358475588680673 8047I3740 64| 654 7|| 58973447545| 400 355 336 387 245
252 285 |76 |62 2|6 I74 208 |98 203 |46 |22 ||8 77 79 65 |22 8| 78 82 |24
II9 |22 87 78 7| 63 89 I06 I38 |4| I04 7| 72 88 58 72 67 80
LRH-AI8A 77
4I9 389 32। 334404 3794375|3 305 343 340229243293259 |80 |9| |68 |64 |89
|6| I74 |4| |50 90 7| 66 40 45 44 92 55 59 63 58 6| 70 50 45 6|
    47 42 73 76 86 67 65 ||2 92 84 9| 99 54 72 77 7l 59 58 53 58
    70 49 44 37 44 59 43 42 35 41 37 45 40 46 56 40 54
LRH-AI8B 77
    387 393 336 357 366 3884|4497348393 329234255275 259 I70 I94 I69 |69 I90
    I64 I72 |43 150 90 7| 67 30 57 39 8| 60 56 63 6| 60 62 55 43 59
    46 42 68 66 84 64 62 l22 87 83 93 104 52 74 87 73 60 58 5% 53 59
    68}53344 39 42 64 36 45 36 40 39 42 37 49 67 44 49
LRH-A20A }6
    |62 |40 |22 95 87 60 76 58 86 92 ||0 |32 |60 |33 ||2||2||4 |05 6| 97
    82 IO2 I07 I|3 I05 63 77 69 56 63 8| I06 76 IO4 |27 I23 IO| IIO 79 62
    53 67 I05 I04 I46 I23 88 I72 202 I84 I50 |I9 |42 I73 224 IIO I57 I3| I|O I22
    106 89
LRH-A20B }6
|67 |37 I22 I04 78 64 67 60 82 97 IO| |4| |87 |3| |09 ||9 96 92 74 89
```

82 IOI I25 122 IOI $67866370627910477104133108991027 \mid 57$
 III 98
LRH-A2IA 92

LRH-A2IB 92

LWH-A22A 85
 238360282335338433 38। 35I 499365383318293375292290305379334380
 I52 209 I88 253 I86 I82 I6| I46 |44 IIO I70 237258227244 I95 I97 2II I9| 222
22। I89 262245334
LWH-A22B 85
30। 227293283 24I 217 I98 I70 I87 II3 968987 I35 I48 I69 207228232 I93
249354292329335442379356495368383316294383299287306378344373
 $1442 \mid 5$ I80 258 I85 I88 I59 I45 I43 II7 I58 229266234235204 I99 205 I90 222 201 20I 259235 33I

LRH-A24A 62

$41234636525513222029429718626522822932|1852||2464| \mid 259$ |7| 23| 29I 327 34I 3II 265330258254194328359245 I69 25I 244281355222298250
 178214
LRH-A24B 62
440337373261128219272313170289215242318182206238421282167230 289327331336262319255256220312353246 I8। 233237296351224287246
 I79 209
LRH-A26A 74

II6 II8 I33 II8 7976 I35 I8। 223227209263320 I88 235 I70 210 I48 I64 I34 I42 III 9| I43 l35 85 l99 I59 I37 IIO I2I I30 II3 I02 I00 86 I08 I84 I46 I75 I9। I74 240239244207286207324 I53 I43 2422533 I7

LRH-A26B 74

2232427210512910094189122230204159574931589111794 I02 IOI I27 II8 7080 I35 I75 22। $2272202603 \mid 7205227$ I75 208 I52 I6| |30
 $2001662362402482092792 \mid 2322$ I54 I45 235278304

```
LRH-A27A 66
    I87274372325 3|9 386472 264505 363 25| 245 334 229 |4| |56 ||5 |76 |4| |36
    246 I22 I03 |I5 |49 |IO I02 74 70 |33 ||7 97 |28 ||4 |22 9| 89 62 79 65
    67 92 I00 I28 |46 |50 I5| |57 |29 ||0 |64 |37 |07 |56 |4| |45 |47 ||3 ||8 |33
    163 179 I24 108 I6| 201
LRH-A27B }6
    I77 279 364 33| 3|| 397 45| 244 478 356 259 254 330 2|9 |4| |70 |26 |69 |58 |34
255 II9 IO4 II2 I5I I20 90 87 8| II9 I05 88 I35 II7 I26 9| 89 69 78 57
    73 94 l0| | 38 |4| |49 |39 |56 |30 l06 |47 |40 ||3 |55 |50 |3| |50 |22 |2| ||6
    I58 I75 II9 IOI I68 206
LRH-A28A 70
```



```
    I26 94 II9 I07 I04 82 95 I30 94 6| l00 6| 85 I63 I23 I34 I4| I09 I73 I84
    |48 |43 170 I09 95 55 69 l08 59 | 36
LRH-A28B 70
    236 II8 9| II9 I55 II5 I86 I74 I08 70 94 66 97 I5| I78 I68 I66 I57 I85 I86
    I05 I33 I86 225 2I8 I85 |42 I22 I60 89 |32 I09 |69 |58 I84 ||2 ||3 |02 7| |58
    |34 99 |40 l04 l02 84 92 |3| 88 6| l00 66 8| l6| |20 l37 I5| IO| l65 20|
    I58 |45 I80 IO| 99 52 67 II2 66 I20
LRH-A30A }6
    29| 307 350 37| 268 373443 330 345 325 23| 205 308 258 I80 2|| I93 236 |57 I57
    22I I2I II6 IOI I54 I42 II8 96 IIO I49 I03 87 I30 I38 I3| |37 I23 9| 87 74
    87 87 II| I53 |43 I27 ||9 |50 ||6 I05 |26 96 80 I|8 IO0 92 89 87 77 66
    83 8| 67 58 85 96 85 8|
LRH-A30B }6
2I2 299 350 3|6 279 365452 3|5 354 334 237 l96 3|2 253 l67 2I7 I78 27| I75 l66
2|6 I27 I27 ||3 |39 |55 I23 93 |I7 |43 87 84 I27 |3| |32 |3| |26 95 79 73
    77 96 93 |56 |44 |3| ||4 |29 |26 ||| |30 9| 78||8 97 92 96 85 75 7|
    83 82 58 63 87 94 9| 87
LRH-A3IA }8
```



```
    I52 I80 I29 I27 76 93 95 I39 I80 I50 I44 I09 II7 I|6 I35 I07 IO| I06 IO| 95
    IO| 93 77 83 92 l25 l42 |46 92 89 IO| 87 70 44 7| l06 IO| I26 I37 I2|
    IO4 86 92 IO9 IO4 II7 92 73 79 88 9| 97 84 94 70 98 74 7| 94 |lO
    106 |I3 I09 106 99 87 I03 99 II7
```

```
LRH-A3IB }8
    |36 89 99 |22 |38 |38 |5| ||3 |23 l03 84 |5| |53 |30 |29 |5| |4| |23 ||7 |58
    |55 l63 l39 |26 69 93 95 l55 l73 |55 |5| l07 l09 |25 |35 l04 ||5 l02 l0| 89
    86 IO4 76 79 96 I22 I50 I33 IO0 IO2 88 88 76 40 79 I| 85 I30 I22 IIO
    9| 90 9| 97 II7 IOI IO9 66 75 9| 99 83 IO7 75 78 98 89 56 II3 93
    IIO I20 99 II3 94 88 I07 I07 I33
```


APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building'(Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure I where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure I, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The crosssection of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a
timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure I: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976.

Figure 2: Cross-section of a rafter showing the presence of sapwood rings in the left hand corner, the arrow is pointing to the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$. Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Figure 3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Figure 4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton I988; Laxton et al 1988; Howard et a/ 1984-1995).

This is illustrated in Figure 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ringwidth sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig 5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et a/ 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of 6 (=15-9) and a maximum of $4 \mathrm{I}(=50-9)$. If the last ring of CRO-A06 has been dated to I 500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 154I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about I20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et $\mathrm{a} / 200 \mathrm{I}$) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of I5 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and I526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages $34-5$ where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et a/ 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in I835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.
t-value/offset Matrix

Bar Diagram

1	1	1	1	1	1	1	1	1	1	1	10
0	10	20	30	40	50	60	70	80	90	100	110

C45

Figure 5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Appendix -9

Figure 6: Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Figure 7 (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Figure 7 (b): The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-I4

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I984-95 Nottingham University TreeRing Dating Laboratory results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 198I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38I-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ringwidth sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II58 to I540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, I99I Statistical models of dendrochronology, JArchaeol Sci, I8, 2940

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

