Centre for Archaeology Report 12/2003

Tree-Ring Analysis of Timbers from Staircase House, (30A \& 31 Market Place), Stockport, Greater Manchester

R E Howard, Dr R R Laxton and Dr C D Litton

© English Heritage 2003
ISSN 1473-9224

Tree-Ring Analysis of Timbers from Staircase House, (30A \& 31 Market Place), Stockport, Greater Manchester

R E Howard, Dr R R Laxton and Dr C D Litton

Summary

Fifty-one samples were obtained from within this building of which forty-three were analysed in conjunction with approximately 90 other samples obtained by other Laboratories during previous programmes of dating. This combined analysis produced four site sequences.

The first sequence, which included twenty-three newly measured samples, has 168 rings and spans AD 1489 - AD 1656. Interpretation of the sapwood indicates that two phases of felling are represented, the first in $\mathrm{AD} 1612-18$, the second in $\mathrm{AD} 1652-56$.

The second sequence consists of three new samples having 180 rings spanning AD 1069 AD 1248. It is unlikely that these timbers were felled before AD 1263, and they probably represent reused material.

The third sequence also includes three new samples and indicates timber felled in AD 1459, AD 1536, and between AD 1591 to AD 1616.

The fourth sequence contains four new samples. Although 101 rings long, it cannot be dated.
This programme of analysis confirms the use of probable late-thirteenth or early-fourteenth century timber, a mid fifteenth-century phase of building, the use of timber felled in the midsixteenth century, and the extensive early seventeenth-century redevelopment. This analysis. however, also shows a hitherto undated mid seventeenth-century phase of felling.

Keywords

Dendrochronology
Standing Building

Author's address
University of Nottingham, University Park, Nottingham, NG7 2RD

Many CfA reports are interim reports which make available the results of specialist investigations in advance of fill publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in CfA reports are those of the author and are not necessarily those of English Heritage.

Introduction

Staircase House, sometimes referred to as "Staircase Café", comprises a confusing and rambling range of timber-framed buildings on several levels fronting, and running northwards from, the north-east side of the market place in Stockport (SJ897906; Figs 1 and 2). The apparently long history of the site, its development and alterations, the fact that the land slopes away to the rear or north of the building, and that a street frontage is to be found along its east side have made for a juxtaposition of garrets and gables. A schematic outline plan of the site is given in Figure 3, showing the site broken up into its basic elements of street frontage, timber-framed and stonebuilt rear wings, the jettied structure, and the northern and southern warehouse.

In its original form it is believed to have been a timber-framed merchant's townhouse with warehousing and storage, and is thus an important survival in the town. It is currently listed as a Grade II* building. Parts of the building have already been the subject of tree-ring analysis. A small number of samples were obtained in AD 1990 during minor works to the upper floors. The dating at this time of three samples from the cruck elements indicated a probable mid to late fifteenth-century felling date for the timbers used in this early phase (Esling et al 1990).

A further very modest number of samples was obtained in AD 1996 (Tyers 1996). It was only as a result of a subsequent fire that a more substantial programme of sampling was initiated. The results of this work show that the felling of some timbers used here may have taken place in the mid-sixteenth century, with modifications on a larger scale taking place later using timber felled in the early seventeenth century (Tyers 1999). There was also evidence at this time that timber probably originally felled in the late-thirteenth century was reused here.

Although hindered by partition walls, roofs, ceilings and other obstructions, plus safety considerations, these three episodes of tree-ring analysis have between them already produced cores from 90 different oak timbers. Unfortunately, almost certainly due to the limited nature of access to large quantities of timbers from any one phase, the number of samples from this site that have been dated is low.

Since 1999 30A \& 31 The Market Place have been purchased by Stockport Metropolitan Borough Council to become the centrepiece of a Heritage Lottery funded redevelopment of the area into retail, museum, and information space. The fire action, subsequent repairs and the current (AD 2002/3) redevelopment has provided an opportunity to re-examine the structure in terms of its possible historical phasing and sequential development. This work, with its removal of many latter internal divisions and its provision of large scale scaffold platforms, has allowed greatly increased access to areas and timbers that were previously beyond reach.

Sampling

As a result of previous tree-ring analysis it was believed that the building contained two distinct phases, the original late fifteenth-century merchants town house and its subsequent modification in the early seventeenth century, with minor elements of other phases of felling representing other alterations also being present. The current programme of sampling and analysis by tree-ring dating of timbers from this building were commissioned by English Heritage. The purpose of this was to provide a more extensive range of samples so that, in conjunction with those obtained previously, a greater proportion of the total might be dated. It was hoped that this would provide a more comprehensive chronological framework for the development of the complex and hence guide repair priorities.

Thus. fifty-one different oak timbers from a wide range of locations within the building were sampled by coring. Each sample was given the code STK-A (for Stockport, site "A"). Given that 90 samples have already been obtained from this complex these new samples were numbered consecutively $91-141$. Since one of the purposes of this programme of analysis was to provide material for dating, timbers were selected by a number of criteria. Timbers were selected for sampling not only on the basis of their appearing to be original or directly related to a phase or structure, but also on having sufficient rings for satisfactory analysis by tree-ring dating and on the basis of having sapwood or the heartwood/sapwood boundary. Timbers were also selected if it was thought that they would provide good dendrochronological samples, that is those with plenty of rings, whether they had the heartwood/sapwood boundary or not. This was done in order to increase the chances of dating a greater proportion of the timbers and make the site chronology more robust. Timbers which appeared to be reused within a phase or structure were also sampled.

In respect of this sampling strategy however, it was very noticeable that a great many timbers were very wide ringed, thus having too few rings and being unsuitable for analysis, despite their size. This was particularly so with the wall framing on the east, northern, and western side, and with the timbers of the majority of roofs. It was only with persistent examination that additional timbers with sufficient rings could be found.

Drawings showing the layout of the building made by Greater Manchester Archaeological Unit were provided by English Heritage, with other drawings being supplied by the architects, Donald Insall. Given that these are survey or building plans they do not always show individual timbers, and the positions of the beams samples can be marked only approximately. These drawings are reproduced here as Figures 4-7 Details of the samples are given in Table 1 and can be used in conjunction with the drawing to locate timbers sampled. In this report all elements of timbering. trusses, frames. bays, posts, etc, have been numbered and described on a north to south, or east to west basis as appropriate.

The Laboratory would like to take this opportunity to thank a number of people for their help and cooperation during this programme of sampling. Firstly we would like to thank Robina McNeil of Greater Manchester Archaeological Unit for her help in discussing the possible phasing of the building. We would also like to tank Robin Fraser of Donald Insall Associates, Architects for arranging site access and for helpful on-site discussions. We would also like to thank John Baskerville, foreman and site agent to the builders for being so enthusiastic about the project, and providing ladders, cables, lights, and other equipment during sampling.

We would also like to thank Ian Tyers of the University of Sheffield Dendrochronology Laboratory for so readily making available the data from the 1996 and 1999 programmes of sampling and for providing copies of the report.

Analvsis

Each of the fifty-one newly acquired samples was prepared by sanding and polishing. It was seen at this stage that eight samples had less than 54 rings, too few for satisfactory analysis, and the amual growth-ring widths of these were not measured. The data of the remaining 43 samples measured are given at the end of the report. For the purposes of analysis the growth-ring widths of the 43 newly measured samples and the measured samples from the earlier analysis by the Sheffield University Laboratory were all compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum t-value of 4.5 four groups of samples, which
included a mixture of new samples and those obtained previously, could be formed. Other groups, which contained only samples from the previous analysis, could also be formed, but as they have already been reported upon they are not repeated here.

The growth-ring widths of all cross-matching samples obtained in all programmes of coring were combined at the indicated relative off-set positions to form site chronologies STKASQ01 STKASQ04. Each of the four site chronologies was then compared with a series of relevant reference chronologies for oak. This indicated dates for three site chronologies, the t-values for this dating being given in Tables $2-4$. Each of the four site chronologies was then compared with the other three and with the remaining newly measured, ungrouped, samples but there was no further, satisfactory, cross-matching.

Each of the 10 remaining newly measured ungrouped samples were then compared individually with a full range of relevant reference chronologies for oak but, again, there was no further satisfactory cross-matching.

Although the four site chronologies STKASQ01 - STKASQ04 have been produced by analysis of cll samples obtained from this site, for the purposes of this report the relative off-set positions of the newly acquired samples only in each group are shown in the bar diagrams, Figures $8-11$; for the purposes of clarity the samples obtained in earlier programmes are omitted. Because of this method of all inclusive analysis but exclusion of earlier samples from the bar diagrams, it will be seen that in some instances, site chronology STKPSQ03 for example (Fig 10). some of the newly measured samples do not overlap with each other by very much, or indeed, in one instance, at all. This analysis is summarised below/overpage.

Site chronology	Number of newly taken samples	Number of rings	Date span (where dated)
STKASQ01	23	168	AD 1489-AD 1656
STKASQ02	3	180	AD 1069-AD 1248
STKASQ03	3	$54(A 104)$ $111($ A106/136)	AD 1406-AD 1459 $1466-A D ~ 1576$
STKASQ04	4	101	Undated
Ungrouped	10	---	Undated

Interpretation

Analysis by dendrochronology has produced four site chronologies. The first and largest site chronology. STKASQ01, includes twenty-three newly acquired samples which together have a combined length of 168 rings. This is dated as spanning the period AD 1489 to AD 1656. It is believed that the two major phases of felling are represented by this site chronology. This is shown in Figure 8 and also in Figure 12 where the newly acquired samples are sorted by sampling group and shown in relative last ring position.

The first major phase is represented by the samples from the ceiling joists of the ground-floor room G8 (samples A97-A100), the samples from the roof timbers of first-floor room F10 (samples A103, A107, A108, and A112) and the samples from the wall timbers of the first-floor room F10 (samples numbered between A113-A123). Samples within each of these groups retain complete sapwood with last measured complete sapwood rings dates, and thus felling dates, of AD 1617 (STK-A97), AD 1612/1618 (STK-A112/A108), and AD 1620 (sample STJ-A116), respectively. The relative positions of the heartwood/sapwood boundaries on the other dated samples within this sub group appear to be consistent with the same, or very similar, felling dates. The second major phase of felling, represented by site chronology STKASQ01, may be seen in the roof and wall timbers of the first floor, room F11 (samples STK-A141, and samples A126/127 respectively), the timbers of the roof over the second-floor room S5 (samples A128, A130, and A134), and probably in the timber of the west wall of room G5 (sample STK-A95). Two samples in this sub-group, STK-A128 and A130, again retain complete sapwood, with last measured rings dates of $A D 1652$ and $A D 1656$ respectively. Again, the relative positions of the heartwood/sapwood boundaries on the other dated samples within this sub-group appear to be consistent with the same, or very similar, felling dates.

The second site chronology, STKASQ02 (Fig 9), includes three newly acquired samples of combined length 180 rings and dated as spanning the years AD 1069-AD 1248. None of the samples in this group, all from reused rafters of the roof over room FllA, has the heartwood/sapwood boundary. Because of this it is not possible to say when the timbers they represent were felled but while two could have been felled earlier in the thirteenth century, it is unlikely that at least one of them STK-A138, was felled before AD 1263. This date is based on a 95% confidence limit of 15 rings for the minimum number of sapwood rings the trees might have had. Trees with such high numbers of rings are relatively uncommon particularly in the later medieval period. This, and their last ring dates, would suggest that the trees represented were felled in the early fourteenth-century at the latest.

The third site chronology, STKASQ03 (Fig 10), also contains three newly taken samples. However, these three samples appear to represent three phases of felling. The first phase is represented by sample STK-A104 from a roof timber of room F10. This sample has complete sapwood with a last measured ring date of AD 1459. It is possible, though not at all certain, that this is a reused timber from the original mid to late fifteenth-century cruck building.

The second phase of felling represented in site chronology STKASQ03 is that indicated by sample STK-A106, also a roof timber of room F10. This again has complete sapwood with a last measured ring date of AD 1536.

The third phase of felling seen in this group is represented by sample STK-A136, a stud post from the south wall of the southern warehouse. This only has the heartwood/sapwood boundary, this being dated to AD 1576 . Using a 95% confidence limit for the amount of sapwood on mature oaks of 15-40 rings would give the timber represented by this sample an estimated felling date in the range $A D 1591-A D 1616$. It is just possible that this sample represents timber felled as part of the major early seventeenth-century redevelopment of the site.

The fourth and final site chronology, STKASQ04 (Fig 11), contains four newly measured samples of combined length 101 rings. This site chronology cannot be dated. It does however represent at least two distinct periods of felling. The earliest is certainly represented by sample STK-A109, which has complete sapwood. This earlier phase of felling might also be represented by sample STK-A133. This sample does not have the heartwood/sapwood boundary but is
unlikely to have been felled earlier than 15 years after its last heartwood ring date. This would put its felling at about the same time as that represented by sample STK-A109. A later phase of felling is represented by sample STK-AI29 which has a heartwood sapwood/boundary at a relative position well after the last complete sapwood ring on sample STK-A109.

This interpretive information may be summarised below:

Site chronology	Sampling area	Sample numbers	Felling date (actual or estimated)
STKASQ01	Ground-floor room G8, ceiling joists First-floor room F10, roof timbers First-floor room F10, wall timbers First-floor room F12, wall timbers	$\begin{gathered} \mathrm{A} 97, \mathrm{~A} 98, \mathrm{~A} 99, \mathrm{~A} 100 \\ \mathrm{~A} 103, \mathrm{~A} 107, \mathrm{~A} 108, \mathrm{~A} 112 \\ \mathrm{Al} 13, \mathrm{~A} 116, \mathrm{~A} 118 \\ \mathrm{~A} 120, \mathrm{~A} 121, \mathrm{~A} 122, \mathrm{~A} 123 \\ \mathrm{~A} 116, \mathrm{~A} 119 \end{gathered}$	AD 1612-20
	Ground-floor room G5, wall timbers First-floor room F11/F11A Second floor, walls and roof over room 55	$\begin{gathered} \mathrm{A} 95 \\ \mathrm{~A} 141, \mathrm{~A} 126, \mathrm{~A} 127 \\ \mathrm{~A} 128, \mathrm{~A} 130, \mathrm{~A} 134 \end{gathered}$	AD 1652-56
STKASQ02	Roof over first floor room F11A	Al38, Al39, Al40	Probably not before AD 1263
STKASQ03	Roof of first-floor room F10 Roof of first-floor room F10 First floor, south warehouse	$\begin{aligned} & \text { A104 } \\ & \text { A106 } \\ & \text { A136 } \end{aligned}$	$\begin{gathered} \text { AD } 1459 \\ \text { AD } 1536 \\ \text { AD } 1591-\mathrm{AD} 1616 \end{gathered}$
STKASQ04	Cruck truss Second-floor room S5 Roof over second-floor room S5	$\begin{gathered} \text { A109 } \\ \text { A129 } \\ \text { A132, A133 } \end{gathered}$	Undated Undated Undated

Conclusion

Sampling and analysis by tree-ring dating in the present programme, as in the AD 1999 analysis, has again shown that the early seventeenth-century redevelopment and alteration of the site was extensive. Given that timber used in this work was felled over a period of AD 1612-18, the work may have taken some time and have been of an extremely large scale and of early seventeenthcentury date as expected.

As in the previous analysis, this programme has also found very slight evidence of the use of timber felled in the sixteenth century, and of timber probably felled in the later thirteenth or early fourteenth century. There is also one instance of timber felled in the mid-fifteenth century. Unlike the earlier work however, this analysis has found modest evidence of a further programme of felling dating to the mid-seventeenth century which may represent a subsequent phase of redevelopment hitherto undated by dendrochronology, but possibly suspected by the structural survey.

Thus, although there is growing evidence for the use of late-thirteenth and early fourteenth century timber, this is not clearly related to a specific structure or distinct phase of building. The firmest evidence for the early history of the building remains the mid fifteenth-century cruck phase. There is then some evidence for the use of mid sixteenth-century timber, but this again, based on the tree-ring dating, is ephemeral and indistinct. It is possible however, that the timber framing of the east, north, and west walls, which were unsuitable for analysis by dendrochronology, might belong to this phase. The next two distinct stages are the early and mid seventeenth-century redevelopment phases.

Eleven of the newly acquired samples remain ungrouped and undated in this analysis. Although not especially long, the longest with 87 rings being STK-A110, they are all suitable for tree ring analysis: the shortest sample is ATK-A125 with 54 rings. Apart from a few of the samples being short-ringed. and two having possible very slight distortion, there is nothing particularly unusual about any of these samples, none of them showing stress or complacency that might make crossmatching and dating difficult.

Bibliography

Baillie, M G L, 1977 An oak chronology for south central Scotland, Tree-ring Bulletin, 37, 33-44
Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file $M G B-E O I$, Queens Univ, Belfast

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 33 nos 2, 4, 8a/b - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 21, 37-40

Fletcher, J, 1978 unpubl computer file MC10---H, deceased
Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1986 List 18 no 6b - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 17, 52

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1993 List 49 no 2 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1991-92, Vernacular Architect, 24, 43-4

Howard. R E. Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1994a List 58 no 8 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1992-93, Vernacular Architect, 25, 41-3

Howard. R E, Laxton, R R. Litton, C D, and Simpson, W G, 1994 List 57 nos 4a, 4b, 13 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1995 List 61 no 3 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1994-95, Vernacular Architect, 26, 53-4

Howard. R E. Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1996 List 66 no 5 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1995-96, Vernacular Architect, 27, 81-4

Howard. R E. Laxton, R R, and Litton, C D, 1998 unpubl, Dovebridge, Derbyshire, unpubl computer file $D O V B S Q 01$, Nottingham University Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, and Litton, C D, 2002 Tree-ring amalysis of timbers from Blackfriars Priory, Ladybellgate Street, Gloucester, Centre for Archaeol Rep, 43/2002

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Siebenlist-Kerner, V, 1978 Chronology, 1341-1636, for hillside oaks from Western England and Wales, in Dendrochronology in Europe (ed J M Fletcher), BAR Int Ser, 51, 295-301

Tyers, I, 1996 Tree-ring analysis of oak timbers from 30a (Staircase Café) and 31 Market Place, Stockport, Greater Manchester; Anc Mon Lab Rep, 28/96

Tyers, I, 1999 Tree-ring analysis of timbers from 30a and 31 Market Place, Stockport, Greater Manchester; ARCUS Rep, 451

Table 1: Details of samples from Staircase House, Stockport

Sample number	Sample location
	Cellar / basement

Ground floor

STK-A95	Upper stud, west wall room G5	80
STK-A96	Lower stud, west wall room G5	76
STK-A97	Joist 5 from east wall, room G8	64
STK-A98	Joist to party wall, rooms G7/8	60
STK-A99	Joist 3 from east wall, room G8	64
STK-A100	Joist 1 from east wall, room G8	82

First floor (roof timbers)

STK-A101 East purlin to east dormer, room F10
STK-A102 Yoke to west cruck truss, room F10
STK-A103 North purlin, east end room F10
STK-A104 South common rafter, east end room F10
STK-A105 North common rafter, east end room F10
STK-A106 Common rafter, east pitch of north dormer, room F10
STK-A107 South commion rafter, west end room F1057

STK-A108 Common rafter, east pitch of north dormer, room F10
STK-A108 Common rafter, east pitch of north dormer, room F10 67
*Sapwood
rings

First measured Last heartwood Last measured ring date ring date ring date

AD 155

D 1554
AD 1528
AD 1552
AD 1524

AD 1637

AD 1602

AD 1596
AD 1605

AD 1637

AD 1617
AD 1587
AD 1615
AD 1605

16 C
13 c
12 C
14 C
13 C
14 c
14C

AD 1525
AD 1406

AD 1466
AD 1552
AD 1552

AD	1595
AD	1447

AD	1523
AD	1594
AD	1604

AD 1608
AD 1618

Table 1: Continued

Sample number	Sample location	Total
	First floor (roof timbers) continued	rings

$\begin{array}{ll}\text { STK-A109 } & \text { Yoke to east cruck truss } \\ \text { STK-A110 } & \text { North common rafter, east end room F10 }\end{array}$
STK-A111 South lower purlin, east end room F10
STK-A112 South common rafter, east end room F10
Total rings

First floor (wall timbers)

STK-A113 Main corner post, north wall room F10
STK-A114 Wall post, west wall room F12
STK-A115 Upper stud post, north wall room F10
STK-A116 Lower rail, west wall room F12
STK-A117 Upper rail to west of doorway, rooms F10/12
STK-A118 Upper rail to east of doorway, room F10/12
STK-A119 Upper rail, west wall room F12
STK-A120 Lower stud post, north wall room F10
STK-A121 Door jamb, room F10/12
STK-A122 Middle rail to east of doorway, room F10/12
STK-A123 Stud over door, rooms F10/12

First floor (ceiling timbers)

STK-A124 Ceiling joist 7 from east, room F11
STK-A125 Ceiling joist 6 from east, room F11
STK-A126 Ceiling joist 2 from east, room F11
STK-A127 Ceiling joist 4 from east, room F11

106
*Sapwood
rings

First measured Last heartwood ring date ring date

Last measured ring date
\qquad

21 C
17
14
15 C

AD 1559
AD 1597
AD 1612
h / s
h / s
13
20 C
no h / s
2
7
12
no h / s
h / s
h / s
AD 1518

AD 1551
$-\cdots-$
AD 1532
AD 1538
AD 1514
AD 1503
AD 1520
AD 1489
AD 1603

AD 1600

AD 1594
AD 1602
AD 1596

AD 1598
AD 1594
AD 1603
$\cdots----$
AD 1620
$\cdots--$
AD 1596
AD 1609
AD 1608
AD 1571
AD 1598
AD 1594

h / s
4
$\mathrm{~h} / \mathrm{s}$

AD 1572
AD 1572
AD 1637
AD 1632

AD 1641
AD 1632

Table 1: Continued

Sample number

Sample location

Second floor (wall timbers)

Total rings
*Sapwood
rings 32C
STK-A129 Bressummer at stairs, room S5 59
STK-A130 Wall post, east side room S5
STK-A131 Lower stub rail, east wall room S5

Second floor (roof timbers)

$\begin{array}{ll}\text { STK-A132 } & \text { South principal rafter, east gable over room S5 } \\ \text { STK-A133 } & \text { North principal rafter, east gable over room S5 }\end{array}$
h/s
STK-A134 South V-strut east gable over room S5
h/s
20 C

First floor (wall and roof timbers)
STK-A136
STK-A137 post to south wall of southern warehou
Rail to north wall of southern warehouse
STK-A138 Common rafter 3, west pitch, roof over room 11A
STK-A139 Common rafter 12, west pitch, roof over room 11A
STK-A140 Common rafter 13, west pitch, roof over room 11A
STK-A141 Common rafter 7, west pitch, roof over room 11A
63
77

180
110
66
54

STK-A135 South stud, east gable over room S5
55

First measured ring date

Last heartwood
Last measured

date	ring date	ring date
AD 1525	AD 1620	AD 1652
----	----	----
AD 1573	AD 1653	AD 1656
----	----	----

*h/s = the heartwood/sapwood boundary is the last ring on the sample
$\mathrm{C}=$ complete sapwood retained on sample, last measured ring date is felling date of tree $\mathrm{c}=$ complete sapwood retained on tree but all or part lost from sample during coring

Table 2: Results of the cross-matching of the newly measured samples in site chronology STKASQ01 and relevant reference chronologies when the date of their first ring is AD 1489 and their last ring date is AD 1658
Reference chronology Span of chronology t-value

England	AD	$401-1981$	11.0
(Baillie and Pilcher 1982 unpubl)			
East Midlands	$\mathrm{AD} 882-1981$	8.5	(Laxton and Litton 1988)
Scotland	$\mathrm{AD} 946-1975$	8.2	(Baillie 1977)
Frith Hall, Brampton, Derbys	$\mathrm{AD} \mathrm{1480-1602}$	7.8	(Howard et al 1993)
Dimple Farm, Matlock, Derbys	$\mathrm{AD} \mathrm{1497-1593}$	7.8	(Howard et al 1996)
Dovebridge, Derbys	$\mathrm{AD} \mathrm{1502-1617}$	7.6	(Howard et al 1998 unpubl)
Bedehouses, Wirksworth, Derbys	$\mathrm{AD} \mathrm{1479-1583}$	7.5	(Howard et al 1994a)
Wales and West Midlands	$\mathrm{AD} \mathrm{1341-1636}$	6.1	(Siebenlist-Kerner 1978)
MC10---H	$\mathrm{AD} \mathrm{1386-1585}$	6.6	(Fletcher 1978 unpubl)

Table 3: Results of the cross-matching of the newly measured samples in site chronology STKASQ02 and relevant reference chronologies when the date of their first ring is AD 1069 and their last ring date is AD 1243

Reference chronology	Span of chronology	t-value	
England	AD $401-1981$	7.2	(Baillie and Pilcher 1982 unpubl)
Brecon Cathedral	$\mathrm{AD} \mathrm{996-1227}$	6.1	(Howard et al 1994b)
St Hugh's Choir, Lincoln Cathedral	$\mathrm{AD} 882-1391$	5.2	(Laxton and Litton 1988)
Gloucester Blackfriars	$\mathrm{AD} \mathrm{1024-1237}$	5.1	(Howard et al 2002)
Sandwell Priory, West Midlands	$\mathrm{AD} \mathrm{1042-1158}$	4.9	(Howard et al 1986)
Ordsall Hall, Stockport	$\mathrm{AD} \mathrm{1076-1345}$	4.8	(Howard et al 1994b)
Hansacre Hall, Staffs	$\mathrm{AD} \mathrm{965-1279}$	4.4	(Esling et al 1990)

Table 4: Results of the cross-matching of the newly measured samples in site chronology STKASQ03 and relevant reference chronologies when the date of their first ring is AD 1406 and their last ring date is AD 1576
Reference chronology Span of chronology t-value

England
East Midlands
Scotland
New Mills, Derbys
Ordsall Hall, Stockport
Offerton Hall, Derbys
Frith Hall, Brampton, Derbys
Wales and West Midlands

Span of chronology t-value

AD	401-1981	9.5	(Baillie and Pilcher 1982 unpubl)
AD	882-1981	8.4	(Laxton and Litton 1988)
AD	946-1975	6.1	(Baillie 1977)
AD	1417-1566	9.1	(Esling et al 1990)
AD	1385-1512	8.1	(Howard et al 1994b)
AD	1401-1592	7.6	(Howard et al 1995)
AD	1480-1602	7.3	(Howard et al 1993)
AD	1341-1636	7.0	(Siebenlist-Kerner 1978)

Figure 1: Map to show general location of Staircase House

Figure 2: Map to show specific location of Staircase House

© Crown Copyright and database right

Figure 3: Schematic plan of Staircase House at ground-floor level

Figure 4: Drawing to show approximate location of sampled timbers from the cellar / basement

Figure 5: Drawing to show approximate location of sampled timbers from the ground floor

Figure 6: Drawing to show approximate location of sampled timbers from the first floor

Figure 7: Drawing to show approximate location of sampled timbers from the second floor and roof

Figure 8: Bar diagrams of the newly measured samples in site chronology STKASQ01, shown in order of last ring position

Figure 9: Bar diagrams of the newly measured samples in site chronology STKASQ02
Relative

Figure 10: Bar diagrams of the newly measured samples in site chronology STKASQ03

Figure 11: Bar diagrams of the newly samples in site chronology STKASQ04

white bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample
$\mathrm{c}=$ complete sapwood on sample, all or part lost during sampling

Figure 12: Bar diagrams of the newly measured samples contained in site chronology STKASQ01, sorted by sampling area in order of relative last ring position

white bars $=$ heartwood rings, shaded area $=$ sapwood
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on
$C=$ complete sapwood retained on sample
$\mathrm{c}=$ complete sapwood on sample, all or part lost during sampling

Data of measured samples - measurements in 0.01 mm units

STK-A95A 80
289528372498392307231128144607348184189175176204216265186 188280231124113140138205173100771771268810927628928122273 871051341246410717183734548364637634656433860 1329420314315016314297108102107141125711041061011376847 STK-A95B 80
284523351501392303217121150597252178184175166195244253185 191269219128117136144193179102671901418710626229029323284 881031331216910916785804730424938644850494546
1379919014814816714410210395127133124671111061011377051 STK-A96A 76
12612012714218919629325310093988897127179188237209327284 2051761552542502541096293808713112115215395123180135141 245204249195173178143196182142156231149161182197200202214214 168184162198181445326332251198133134128222325305 STK-A96B 76
125120142144181213231268112891018598139162188242215329278 21217315126924526110270758586133122147152103127168141137 240204278162186170148178191130156224124162176195202212205219 177185152222161456341324230200140133122227318262 STK-A97A 64
11993928794173154168113176169126119124231178197173177203 26520417818413318324718915716516614919614672976569106266 205282263234196203204224157209210223218271208182192192145172 197292233292
STK-A97B 64
10993958196180143165121176169121121125229192183176168214 248205173179149175241197163165166154192141771057574110252 214290252232196198212220165201210224224267209186185186163164 193295215303
STK-A98A 60
172169167151169131130141119139159179197181114153150148126150 1301702161661681841291048693901299812812412015412496105 117140148136140159165151187150143145202175151146184162204215 STK-A98B 60
181176162179167153121149120141160195208178110158134144143150 1351712261791811671061157892961259913412911115911792110 115129157142128164162162179140146145199178148160170154195212 STK-A99A 64
35424524717413490189170164140113154177142130145179195236244 2282593012471792031962322762421981981971762261741161199586 801341451631651231601269912185120139155171180137148126120 135191234224

STK-A99B 64
34126324117911795200179159141127160153138132139170186235236 2132823372591931971882342842471972062031622251761151248991 881321391571741161721429911293125140152189179139155127118 142190234228
STKA100A 82
208145218201186188167214201184170229171187188218229188158158 13623120229425531632932123020712513111393129169156213126132 147132168131176179187133130184223188207161141164242137145158 162145170111101948473126251189231246177161193126186173179 196204
STKA100B 82
178151214194196189169210201175174232172180186222233186142170 14023020228925730735731122620413213211590136183150226128151
144155151128167165196136132187219189208162143158239133147148 165151166136102938676124252161222245162128143133182179176 192244
STKA101A 61
456630590838636564592224194219167128144252215168197147188141 16415618230322694176168818166821001141491809810478103 1051101251011601221981518876153175197194217198148176195256 254
STKA101B 61
430633603858669585598233204220171139158259215165198154183151 15015621429421910916419490766486961201521821001087498 113109132881641182041609084155161197207207187133163195237 277
STKA103A 84
1571461461971751351341521511421858614314112318098126167132 15712211818616816815411311260915262691071281129385101 85907691981441091471431331421121241031221271108392139 1511346842403337347789103877282566370587393 51666956
STKA103B 84
1661151512081631271341551511341848014212313318199129154141 1491221311861721641571181176389555576109123112849494 97828394871421151371431341451151191011231281128496121 1511336344432944487788117778081507073566893 75735773
STKA104A 54
406222231416327279259248200249174266263209284280217296229236 23430731928520921627520129218116416916612511411211212717892 11415529333923714613611411094148152186223 STKA104B 54
447232231410408242262238194229175286260208261284225299249238 23131030529222820926519028016615614919511611510610813517283 12416728232924514612912110599156143189200 STKA105A 58
198214254265205237156176222396277239242273275209242237180361 373242334278247274270273194210251246180194131132149156120141 117135138204136154194219228140149151153195189198222193

STKA105B 58
192209249250199250158179222400279238241265285214261238187356 368238340286221283289253204207248248175209118147150161122148 118140137220139166192192200155148148144200181228214217 STKA106A 71
2413363091491381511882452143183041377781881207392107106
 160164150195176181253148141125122112116111136163141160244210 1531097162621057710281145192
STKA106B 71
2463382961561321491812502163232991417688941127592105113 120150756453484448401071267213613294120147132139177 163171140198176183253149143121126115114112140155141173263174 150114676964977610978153192
STKA107A 57
226239177176142129164251237239213205237210205144214207202193 1902042021951641351361361991851661761631732111731071179688 115234246211195178182119125143162179214191187195218 STKA107B 57
234244191176149114169247244241210200240199208142213198209196 1951952012041581421391332051801551811571662331451159611087 146232246191188172187132114145154162248157212202228 STKA108A 67
265274189166136122183273251261227206241215227138201201195184 19318222919817114514713620018114916716015919816810011510186 152227236211194184184124106143141168173206183195155150133168 19222114017999157179
STKA108B 67
244267190165135120178286261247222215234210224132207197206202 1931772331991621401461322071771451671511661991669911810086 145236241209199180181130104138133156203188185189154138170153 182208157149132166172
STKA109A 67
256150196174260211177113214244203192255128140216193193174148 1762571551321691901332001841931861101351311861892291718576 13021625020021817216223912511010810283107117104119979882 79915884113102119
STKA109B 67
259142195171257222182125214231208188240132139215192195167158 1662241611351421921441991971991891121251351831912141888271 1482072392042181691772231041191151141071141131221061177775 83109558013479110
STKA110A 87
$\begin{array}{lllllllllllllllllll}33 & 41 & 51 & 72 & 51 & 46 & 52 & 55 & 62 & 53 & 58 & 33 & 30 & 54 & 43 & 50 & 62 & 69 & 96 \\ 74\end{array}$
$\begin{array}{llllllllllllllllll}68 & 71 & 58 & 48 & 60 & 51 & 46 & 52 & 58 & 47 & 59 & 70 & 60 & 68 & 67 & 66 & 67 & 78 \\ 83 & 48\end{array}$
$\begin{array}{lllllllllllllllllll}31 & 30 & 33 & 30 & 42 & 32 & 71 & 42 & 44 & 32 & 56 & 40 & 38 & 55 & 50 & 36 & 60 & 63 & 102\end{array} 71$
9188111871109912311110813698136168116114123182189184134 106128104124140219193

STKA110B 87

$\begin{array}{lllllllllllllllllll}36 & 49 & 50 & 69 & 53 & 50 & 47 & 53 & 60 & 54 & 59 & 29 & 34 & 51 & 44 & 48 & 65 & 70 & 89 \\ 81\end{array}$
$\begin{array}{lllllllllllllllllll}68 & 70 & 54 & 53 & 56 & 51 & 51 & 57 & 52 & 59 & 52 & 62 & 61 & 72 & 64 & 64 & 72 & 78 & 86 \\ 42\end{array}$
$\begin{array}{llllllllllllllllll}31 & 32 & 35 & 30 & 40 & 38 & 66 & 44 & 40 & 43 & 36 & 44 & 48 & 43 & 49 & 37 & 58 & 70 \\ 87 & 65\end{array}$
938211085110100126104115132101123157130120106201160173150 106128105113134213193
STKA111A 55
467690764614647533710759602700620325245306350613325246286367 458381462370551451389458387531299626306133118180224234204242 297634294138127194246283241261255136997189
STKA111B 55
500693727619663455658751598597619327231311366627322241291364 435377458389531456377468390516331619313131121181226287229275 312636302145110184234290242254253138968096 STKA112A 54
135103165105119158134118140186242208128121179161186161184136 1512001091091431051521441259183536093149171181212174159
169137147195165194199153185172136152125121
STKA112B 54
174110157116116160136113150181243216133120182163173172200136 143202106109142981741591248088575696165168179210166149 132152155175171192198155195164142150115130
STKA113A 86
201286230208177227208174228207219158110174192173148273174175 1991422231341411471081441201351241681501891552031441479871 1501811851721071271311168394131248241177146132147129147115 1201521581171039787991248845614672105144216209241192 210183124170187184

STKA113B 86

221268197255177226203173219199223165113161193171162258194186 2071542211561201371231531101331191981561991591791401439679
1521981791651201121471089296126250239174136142147136147148
132108149117103938398126765454495591107216135239200 203165122172188156
STKA114A 54
237294163121174207179229211192216217180200179135209190239211 209236239252151188178185174150161123144168251167184212167203 204284239294167122174200189221211191210231
STKA114B 54
267265187138161180214235219171197232175184190135207197197210 218238232268157267163183186130163111156180223188171186172223 236228260275187137162183210230211177195231 STKA115A 79
206259240273179227224244250166135192177259215256233243217240 1802042121381131271612643152311531311731448710183118206140 22011814012517918412617917116212813011212421092911146182 $8016518519218929819313812715713182128 \quad 892936247286$

STKA119B 72

STKA120B 95
13114014088130220152211186141121111125175176123105155118126 139186147160175115190129108189153172133165183174221175148193 1319695104137164169180108881189874718210699816466 $\begin{array}{llllllllllllllllll}71 & 66 & 75 & 72 & 63 & 79 & 76 & 59 & 53 & 62 & 57 & 65 & 80 & 52 & 56 & 54 & 42 & 55 \\ 58 & 109\end{array}$ 130104148112118113125132100106173117104127161
STKA121A 69
106179308211230158264171192186188164168119100113227160240184 1321121121231591821109414314412313516813814015011821610392 190164166122164174166189163164166125766670119158143173108 1121321058285104112121153

STKA121B 69

111184318213243163243175202183220156182126115131212147229182 15512611412316417610110315713012013516714014615512416312089 211158170129146175160201163187170126736875120143140177110 1081301028679105111121126

STKA122A 79

225337203204262169279221244194191232258222239202137113155164 241109130173156201149177175280306274202197921157352105192 17219314313319914113311614113312510283165145236203150107144 2131051251231241451531216254475056200224264293241295 STKA122B 79
262332233206248170287218250191202225244212218200131115157157 257124114174157183133186183280285271208183101127696795186 16218712914521114813311115212710610566160148227210146109148 2001121161051151361531224467465654193223264287250247 STKA123A 106
228318274139121178210309209175427265130124124109190151178181 23719816522016215517912894137227144203154152115129123159180
8898136113142135189123164174122194143117185198168124156179 18119916213516213785597397137128151102107133828372108 109124908379101961109499102967463776980878063 $\begin{array}{lllll}51 & 49 & 53 & 46 & 74 \\ 84\end{array}$
STKA123B 106
182329279145117173215304218169364246120136123128184159183155 242168168217159170178136105123221134199152156122117126165186 9695144119134138181142168151118196136118185199169129157182 17719916612815713386656810314013014610698135100887099
 5543415283151
STKA125A 54
7762107146163184130124144213155149175122166145105986266 80968393127108117137142179175161144123132114120131138110 12013616012690498463608071118151183 STKA125B 54 757191129173193117122150202164155166117161147125845761 89958387125117126118148181182162134126130110123119134110 11814516311092509773536681113151159

```
STKA126A 70
    136 138 137 162 122 118 102 170 123 128 56 48 41 46 35 36 34 57 46 83
    76112 84113142109121146140 79 65 74 161 122 176 196 153 98 142 108
    139120103108112147170154228149175119131117154148148190137180
    229124108166133203196142191151
STKA126B 70
    119134141 175 109 119 97 162 127 135 47 44 51 46 37 34 32 53 49 82
    90101 84113131114101151140 86 78 71 161 120181 205 143115137 105
    149109 99107117139176143231158212132130105167143150188141160
    220129110167125207217142142151
STKA127A 61
    186282345 380247218186286273254 63 44 41 46 48 45 42 66 69 109
    129200188215169107133158147 62 60 69 128 137 129 107 87 70 79 69
    87111195104123109118149168171153138125 87119132164236178184
289
STKA127B }6
203 302 353 384253201200 284291 268 58 47 44 52 39 51 38 65 711119
127194194221170122136 157 138 81 54 65 124 151 141 99 93 69 88 69
    81112 90 98103130133149164169160131116101110131182226181179
256
STKA128A 128
    92147161174146140158246 221 119121 74 97 127118 170 80 84 101 92
    83 65 76 106 93 93 124105 99 80 91 102 94 99 107 93 83 62 91 110
    66 74 85 120 93 74 92 71 99 118 103 136 106 118 121 151 86 98 106 137
    119111123102126 91 105 78 109103139106 92 106 122 85 67 49 49 71
    50}7169955[1154 37 52 41 39 39 33 40 40 32 44 45 34 35 42
    384460 97 157 144141 138 96 146 183125131178 80 96 143 128 85 85
    121156118130134 84128128
STKA128B 128
    98143146 188143135154254195138135 64 97 137 126 178 79 82 100 87
    79 65 74 110}90288127108104 75 88 106 85 105 111 84 84 72 87 106
    6976 87 119 92 76 92 71 95 1151111131113108128126 91 95 94 131
    114108116 92 134 92 115 74 98 114136 85 104 97 126 84 67 49 46 76
    52}65\mp@code{68}515[53 52 38 47 42 37 36 35 344 48 29 43 43 38 39 37
    43 39 63 99 157138135145100144177130126184 86 90 146119 93 92
    96183105125117124115146
STKA129A 59
    285327345375338279246298224199225232238176182214182195232236
    296254290287323289353 309206258235274233161180236236194181158
    197222196162163176166197115132144228169205217181278184 200
STKA129B 59
323340343402352282243297212202241223235198188199185225250246
318239297283321297348307207284216278222178175 230227197188154
222251186162150186163193126131146218169219220176274210179
STKA130A }8
524481249206258179324374284321175 3092342941911221395867113
116105206 158112149127 96 76 62 105 108 101 145 125 89 83 110 80 56
87 88 118 65106128 94167111130116 91 79 120101 107 126 91 70 116
61 92 116 88119 175 134 90 208 88 58890}77106 85 85 66 84 84 83
70 85 66 75
```

STKA130B 84
4453182162422571863223622722981893112272831851251396857101 1231041951561271621329074669610911113912389781097366
839211259114130901711121441188879123951091238870111 62911119911717312910519592608781109828266888085 75806395
STKA132A 67
16794108848711212586119182212168146185172269194223276334 2172722441751821501931792612212952301922542862352731378982 4084106104106296113212151163177131153188175195125117108126 119151153148160150186
STKA132B 67
12170133879111111480119179216183124199168274206219248338
2382852391561901561861792622202842131932232762062731637975
528499107141283127194156157165142154192180192117137102138
118168153135158143154
STKA133A 55
194144155201187179202174251267183256244371363398352296230310 243283308541279403337264334255344304359332363256241448462352 34721763414653737357138114139155164190 STKA133B 55
237140143199210188191191277224207245258344362395367298249306 240270293493276401338281325263330292391311360288269435527375 33621768453856727064137112140159151203 STKA134A 55
17011713315814711796109142147198200180190291282234321215261 251264278244245235284209201147199209237262220236182172152169 165207284160226298241224196170209174162165203
STKA134B 55
17012213515813812082116146143195200178196316294232317214255 232275282235252203263219198156183230230279211227193152144190 160201282149197293267231185182202154168174271 STKA135A 54 382399280289396261303328335398391356374340344241215238199249 27629527938022619929728934846744137496856467089134118 125119104116123138174226247263114112141156

STKA135B 54

383409269285392267266337341397372345375362373242213246186238 27828629534521619428228735746340639576653477089136116 131118103119124134183203233268112114137154 STKA136A 63
1341771902251441651171298487122655654575783122127136 170153211174206208269232220186125105129145154183268201190133 130209159139162197276274215265238118143136118162160154171167 132163224
STKA136B 63
1741751882241641541171309880107575749585682115141133 14218619717821020023826321018914698121164149191258209187142 107200161144160208267293209253247119131139120154160165145149 141160201


```
STKA140B 66
143177152141209251332242258210224167180234194227209218161219
123134137175205218181168264241166116154209139149248198273162
137142164163200216195200116104110157203308239191169220201137
119108123162204258
STKA141A 54
203302352381257201200285290267137152173222204199145171117107
138217274256197209226162146124106147199190144165120128172208
269298188214220245378273318243264248221258
STKA141B 54
186282344 381249210189286273253115134182211220197144179103129
141207257262184210244164148120106155187190170138127142139232
271298203196224249389259314249269235241278
```


APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Baillie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used aimost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date, how this is done is explained below.

The Practice of Tree-Ring Dating at the Universify of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building bistorian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insentions Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local clinate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Fig 2. Cross-section of a ratter showing the presence of sapwood rings in the comers, the arrow is pointing to the heartwood/sapwood boundary (H/S). Also a core with sapwood: again the arrow is pointing to the H/S The core is about the size of a pencil.

Fig 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electic drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged 10 be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost This can be difficult as these outer rings are often very sof (see below on sapwood) Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widihs. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with nourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a,b, Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C 45 best when it is at a position starting 20 rings after the first ring of 45 . and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t value between C45 and C08 is 56 and is the maximum between these two whatever the position of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5 . The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately
average sequence of ring widihs with a master sequence than it is to date the individual component sample sequences separately

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal i-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and C 05 . They are the most similar pair with a t-value of 10.4 . Therefore, these two are first averaged with the first ring of $\mathrm{C} 05 \mathrm{at}+17$ rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences C 08 and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ning is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper comers of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively sof and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood nings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling

Various estimates have been made for the average number of sapwood rings in a mature oak. One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date. Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981; see also Hillam et al 1987).

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings. We would use these estimates, for example. in calculating the range for the conmon felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood/sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings were only lost in coring, because of their softness By measuring in the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is ofen better than the 15 to 40 years later we would have estimated without this observation.

T-value/Offset Matrix

	C45	C08	C 05	C 04
C45		$+20$	+37	+47
C 08	5.6		+17	+27
C 05	5.2	10.4		$+10$
C04	5.9	3.7	5.1	

Bar Diagram

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

C45

C08

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the 1 -values.
The t-value offset matrix contains the maximum t-values below the diagonal and the offsets above it.
Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t -value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Even if all the sapwood rings are nissing on all the timbers sampled, an estinate of the felling date is still possible in certain cases. For provided the original last heartwood ring of the tree, called the heartwood/sapwood boundary (H/S), is still on some of the samples, an estimate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates

If none of the timbers have their heartwood/sapwood boundanies, then only a post quem date for felling is possible.
5. Estinating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken in situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak uee whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from $A D 882$ to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989) The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988a). Other laboratonies and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widihs first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irespective of the climate, the widths are first standardized before any matching between them is attempted These standard widths are known as ning-width indices and were first used in dendrochronology by Baille and Picher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7. Here ringwidths are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence starting in 1835 . In both the widths are also changing rapidly from year 10 year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Baillie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier.

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midands Master Dendrochronological Sequence, EM08/87.

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each, on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, 1982 Tree-Ring Danng and Archaeology, London
Baille, M G L, 1995 A Slice Through Time, London
Baillie, MGL, and Picher, JR, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archacology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A.D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, $429-40$

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

