Tree-Ring Analysis of Timbers from Hubbards Farm, West Drayton Road, Hillingdon, Middllesex

R E Howard, Dr R R Laxton and Dr C D Litton

© English Heritage 2003
ISSN 1473-9224

The Centre for Archaeology Report Series incorporates the former Ancient Momuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back cover for details).

Tree-Ring Analysis of Timbers from Hubbards Farm, West Drayton Road, Hillingdon, Middlesex

R E Howard, Dr R R Laxton and Dr C D Litton

Summary

Thirty-six timbers from a wide range of locations in this barn were cored for tree-ring analysis, this coring being undertaken in two stages of sampling. The analysis of these cores produced a single site chronology consisting of ten samples, being of combined length 233 rings. Although cross-matches with a number of relevant reference chronologies, particularly those from southern England, were possibly originally indicated, subsequent and further analysis indicated the t -values to be too low for reliable cross-matching and the building must therefore remain undated.

Keywords

Dendrochronology
Standing Building

Author's address

University of Nottingham, University Park, Nottingham, NG7 2RD

[^0]
Introduction

Hubbards Farm (TQ 077813; Fig 1) is situated at West Drayton, near Uxbridge, in the London borough of Hillingdon on the west side of London. The building is a timber-framed structure of six bays, and forms part of a late medieval farmstead group that also includes two timber-framed barns and a small timber-framed granary. The smaller of the barns was recently destroyed by fire and the remaining buildings are all in urgent need of repair. The group of buildings now sits uncomfortably between a main road and a modern housing estate, parts of which are still under construction. There is currently a proposal to convert the six-bay structure (the subject of this report) to modern residential accommodation.

The building is aligned north- south, and has been built in three distinct stages, see Figure 2. Bays 1 to 3 (numbering from the north end) represent an original three-bay timber-framed structure. Bays 1 and 2 are (and always have been) open from ground to roof and some of the roof timbers in this area are smoke-blackened. There is evidence for the existence of a former loft or platform at firstfloor level in bay 1, however it is possible that this was a secondary feature. Bay 3 was storied from the outset with its first floor open to the roof; it was separated from bays 1 and 2 by a closed cross frame partition wall (truss 3). What type of building is indicated by this initial three-bay structure is not known. Conceivably, the building was built as a house and was the home of a poor farmer and his family. Certainly the two-unit house (comprising an open hall at one end and a service bay with chamber above at the other end) was a common type in and around London in the late fifteenth and early sixteenth centuries.

If the structure was not a house, then perhaps it was used to house livestock (there is clear evidence that the ground floor of bay 3 was used as a stable in the last century). Alternatively, the building may have been built as a forge (perhaps accounting for the presence of smoke blackening over the central and northern bays) or was designed with some other semi-industrial or small scale manufacturing function in mind. One other possibility, although so far without any firm archaeological or historical support, is that the building may have been some sort of detached kitchen building serving a former nearby grand house.

Probably within fifty years or so of the first building being constructed it was extended by a further two bays at its southern end. This additional section was also a timber-framed structure. It was built in-line with the earlier building and its roof followed the same ridge line and roof pitch as the original roof. Just as the original building had terminated in a half-hip at its southern end (ie bay 3) so this later extension also terminated in a half-hip at its southern end (bay 5). Whereas the function of the earlier building is unknown, it seems fairly certain that the additional two-bay structure was used as stabling from the outset.

Beyond the southern end of the two-bay extension is a final timber-framed bay (bay 6). This bay was probably added in the eighteenth or nineteenth century and served as a loose box. As in the case of the period II building, the period III building was constructed so that its side walls and roof followed the lines of the original period I building. In addition, just like the periods I and II building the roof of the period III building terminated in a half-hip at its southern end.

The east and horth exterior walls have been rebuilt in yellow stock brick and the south and west walls have later weatherboarding over the original timber framing. The roof is of clasped-purlin construction throughout, with diminished principal rafters. The only real difference between the roof construction of the period I structure (bays 1 to 3) and the period II extension (bays 4 and 5) is that in the period II extension the common rafters are pegged through to the purlins; in the period I building, by contrast, the rafters simply rest over them. Spanning the centre of the two-bay addition
is an arch-braced collar truss, the timbers of which have failed and been given further support by an inserted truss comprising a tie beam with struts to the purlins. The cross frame dividing the single storey section at the northern end of the building (truss 2) features diminutive curved braces between the wall posts and the tie beam. The wall posts of this cross frame have empty mortices in their inner faces for a beam spanning between the wall posts at first-floor level. This evidence and the presence of a window opening at first-floor level in the north gable (now blocked) points to there having once been a loft of some kind over the northernmost bay.

The first-floor frames in bays 3,4 , and 5 have all been raised by approximately $1 \mathrm{ft}(300 \mathrm{~mm})$. The upper parts of the wall frames generally preserve much of their original lath and plaster infilling. The wooden laths are mostly held together with ties made from strands of hazel or willow.

A dendrochronological analysis of the timber frame unfortunately failed to date any of the timbers in the building, however from the style of its carpentry it seems likely that the period I structure was built in the late fifteenth or sixteenth century. Given the degree of similarity between the carpentry of the period I and period II structures, and the minimal amount of weathering on the (formerly external) timbers of truss 4, it seems likely that the period II extension was added quite soon after the period I building was first constructed.

Sampling

Sampling and analysis by tree-ring dating of Hubbards Farm were commissioned by English Heritage. The purpose of this was to inform a spot-listing request and proposal for conversion to residential use by establishing dates for a number of elements in the building. In particular this was to establish whether both ends of the building, including the hipped south gable roof and first-floor frame, were all of the same date and whether or not there was a sequential development of the site.

Thus, after discussion with Richard Bond, of English Heritage, and in conjunction with the English Heritage brief a total of eighteen core samples was initially taken. The analysis of these initial samples proved inconclusive (see analysis below) and a further eighteen samples were subsequently obtained, making a total of thirty-six samples. Each sample was given the code WDR-A (for West Drayton, site "A"), and numbered $01-36$. The positions of these samples are marked on drawings and elevations adapted by Richard Bond from a set of measured drawings of the building made by Jon Lowe of CgMs Ltd, and provided by English Heritage These are reproduced here as Figures 3ae. Details of the samples are given in Table 1.

The Laboratory would like to take this opportunity to thank Shaun Andrews of OTM Architectural of High Wycombe, for helping with access, and for useful on-site discussions. We would also like to thank Richard Bond for providing much helpful input on the interpretation of possible phasing and for providing drawings for locating sample positions. Richard Bond also provided the site description used in the introduction above.

The Laboratory would also like to thank Cathy Groves of the University of Sheffield Dendrochronology Laboratory for her efforts and help in analysing this site.

沓

Analysis

The eighteen cores obtained in the initial stage of sampling were prepared by sanding and polishing. It was seen at this stage that three of them had fewer than 54 rings, the minimum number for
satisfactory analysis, and the annual growth-ring widths of these were not measured. The data of the fifteen measured samples are given at the end of the report. The annual growth-ring widths of the fifteen measured samples were then compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum value of $t=4.5$ two groups of samples could be formed.

The two samples of the first group cross-match with each other, as shown in the bar diagram Figure 4, to form a site chronology, WDRASQ01, of length 75 rings. Site chronology WDRASQ01 was then compared with a series of relevant reference chronologies for oak. There was, however, no satisfactory cross-matching and this site chronology remains undated.

The two samples of the second group cross-match with each other, as shown in the bar diagram Figure 5, to form a site chronology, WDRASQ02, of length 169 rings. Site chronology WDRASQ02 was also compared with a series of relevant reference chronologies for oak, indicating cross-matches, with low t-values, at two different positions. The earlier of these indicates a possible last measured ring date of AD 1567 , the later position indicates a possible last measured ring date of AD 1579. The t-values of these cross-matches are given in Tables 2 and 3 .

Because of the inconclusive nature of these results a second batch of eighteen samples was obtained. These were taken not only from the additional areas of interest, but also from the same parts of the building as the earlier group of eighteen samples. Thus a total of 36 samples was obtained.

Each of the additional eighteen samples was prepared by sanding and polishing. It was seen at this stage that, while some of these had sufficient rings for satisfactory analysis, a good number of samples did not. This was particularly so of the six samples, WDR-A26 - A31, from the first-floor joists in bay 4, and the five samples, WDR-A32 - A36, from the timbers of the northern-most truss, truss 1. Because of the way these timbers were either covered in heavy layers of paint or lime wash, and, or, because they were buried deeply in the walls of the structure, it was not immediately apparent that they were often of a small scantling, producing very short cores, and having wide rings. It was felt, however, that an attempt at obtaining a few satisfactory cores should be made. In any case, such samples, having only $15-25$ rings, were not measured. The data of the six measured additional samples are also given at the end of the report.

The annual growth-ring widths of all twenty-one samples that were measured were then compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum value of $t=4.5$ a single site chronology could be formed. This consisted of the four samples in the site chronologies WDRASQ01 and WDRASQ02 from the initial analysis, plus all six of the additional measured samples. The relative off-sets of the ten samples are shown in the bar diagram, Figure 6. These ten samples were combined to make a final site chronology WDRASQ03, being 233 rings long.

Site chronology WDRASQ03 was then compared with a series of relevant reference chronologies for oak, this indicating a possible cross-match and date at only one position. However, although the number of cross-matches and the t-values for the earlier date were largely eliminated, those for the later, with a possible last ring date of AD 1579 were still not high enough for reliable dating. The t values for this possible date are given in Table 4.

Site chronology WDRASQ03 was compared with the remaining eleven measured but ungrouped samples. There was no satisfactory cross-matching. Each of the eleven ungrouped samples was then compared individually against the reference chronologies. Once again there was no satisfactory cross-matching or dating.

Given the constraints of dendrochronology and that no truly reliable cross-match or t-values can be indicated it is felt advisable not to confirm the possible tentative date and to declare the building undated.

This may be particularly advisable in this unusual situation. As will be seen from the bar diagrams, and from Table 1, the site chronologies, and some of the individual samples, have high numbers of rings. The growth, however, are not unduly distorted but the rings are in many cases very tight and show evidence of compaction. It is felt possible that it is because of this high number of rings that the samples are undateable. The trees the sample represent may have been growing under adverse or stressed conditions producing very narrow rings which are not truly representative of the climatic conditions during their period of growth, and thus any cross-matching and apparent dating may be spurious and incorrect. The growth patterns of the samples are not represented by any available reference chronology including those held by other tree-ring dating laboratories.

Conclusion

Despite an apparently satisfactory site chronology having been created with the material from this site, and having individual samples with high numbers of rings no satisfactory dates have been obtained. This site must therefore remain undated.

However, though no absolute dating is available it appears that there is very little, if indeed any, time gap between the felling date of the timbers in the period 1 building and those used in the period 2 building. This similarity of phasing may be seen by the fact that some of the samples from each of these buildings in site chronology WDRASQ03 (bar diagram Fig 6) have identical last measured complete sapwood ring positions. While it is of course possible that some timbers might have been stored and used later than others it is certain that trees used in both parts were cut at the same time. Thus, while there is certainly a structural break in the building it is possible that construction of the phase 2 part followed on very shortly from that of phase 1 .

Bibliography

Alcock, N W, Warwick University, Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-Ring Dating Laboratory, and Miles, D, 1989 Leverhulme Cruck Project Results 1988 List 30 nos 1, 6, Vernacular Architect, 20, 43-6

Alcock, N W, Warwick University, Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-Ring Dating Laboratory, and Miles, D, 1991 Leverhulme Cruck Project Results 1990 List 41 nos 2, 3, 6, 12, Vernacular Architect, 22, 45 - 7

Bridge, M 1988 The Dendrochronological Dating of Buildings in Southern England, Medieval Archaeol, 32, 166-174

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 33 no 11b Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 21, 37-40

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 unpubl site chronology from Wicham, Hants, unpubl computer file WICHSQ01, Nottingham University Tree-Ring Dating Laboratory

Fletcher, J, 1978 unpubl computer file JMF-100, deceased
Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1988 List 28 no 15 - Nottingham University Tree-Ring Dating Laboratory results: Kent, Vernacular Architect, 19, 46-9

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 nos 8, 22 - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 List 57 nos 6a, 6b, 7, Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1995 List 60 nos 5c, 13, - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 26, 47-53

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 no 1b, - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 27, 78-81

Howard, R E, Laxton, R R, and Litton, C D, 1996 unpubl site chronology from Rectory Farm, Weston upon Trent, unpubl computer file WUTASQ08, Nottingham University Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, and Litton, C D, 1997 List 75 no 6, - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 28, 124-7

Howard, R E, Laxton, R R, and Litton, C D, 1998 Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep 30/98
"
Howard, R E, Laxton, R R, and Litton, C D, forthcoming - Nottingham University Tree-Ring Dating Laboratory results: dendrochronological dating for English Heritage, Vernacular Architect

Laxton, R R, Litton, C D, and Simpson, WG, 1984 List 12 no 10, - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15, 65-8

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for oak, 1158-1540, Medieval Archaeol, 33, 90 - 8

Tyers, I, 1997 Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

Tyers, I, and Groves C, 1999 unpubl England London, unpubl computer file LON1175, Sheffield Univ

Table 1: Details of samples from Hubbards Farm, West Drayton, Middlesex

Sample number	Sample location	Total rings
WDR-A01	Tiebeam, truss 3	74
WDR-A02	West upper stud post, truss 3	76
WDR-A03	West main stud post, truss 3	97
WDR-A04	Stave, west bay 3	60
WDR-A05	East main wall post, truss 4	66
WDR-A06	West main wall post, truss 4	55
WDR-A07	Tiebeam, truss 4	67
WDR-A08	Collar, truss 4	nm
WDR-A09	West brace, tiebeam to post, truss 4	54
WDR-A10	West main wall post, truss 5	nm
WDR-A11	East brace, post to tiebeam, truss 5	57
WDR-A12	West intermediate stud post, bay 5	168
WDR-A13	East principal rafter, truss 6	128
WDR-A14	Tiebeam, truss 6	69
WDR-A15	East brace, post to tiebeam, truss 6	nm
WDR-A16	Central lower stud post, truss 6	65
WDR-A17	West upper stud post, truss 6	65
WDR-A18	East wall plate, truss 4 - 6	54
WDR-A19	East joist 8, first-floor frame, bay 3	nm
WDR-A20	West joist 2, first-floor frame, bay 3	77
WDR-A21	West joist 6, first-floor frame, bay 3	61
WDR-A22	West joist 7, first-floor frame, bay 3	92
WDR-A23	West joist 10, first-floor frame, bay3	69
WDR-A24	East rail, truss 6	180
WDR-A25	West rail, truss 6	196
WDR-A26	East joist 11, first-floor frame, bay 4	nm

*Sapwood rings	First measured ring date
30 C	------
21 C	------
19C	----
h/s	------
h / s	------
10	------
26C	------
--	------
no h/s	------
--	------
5	---
30C	-----
25C	------
10	------
--	------
17C	------
15C	------
h/s	------
--	------
h/s	----
no h/s	------
h/s	------
2	------
no h / s	------
32 C	-------
--	------

Last heartwood
ring date

Last measured ring date ring date

Table 1: continued

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
WDR-A27	West joist 8, first-floor frame, bay 4	nm	--	------	------	------
WDR-A28	West joist 9, first-floor frame, bay 4	nm	--	------	------	------
WDR-A29	West joist 12, first-floor frame, bay 4	nm	--	------	------	------
WDR-A30	West joist 11, first-floor frame, bay 4	nm	--	------	------	------
WDR-A31	West joist 10, first-floor frame, bay 4	nm	--	------	------	------
WDR-A32	West stud post, truss 1	nm	--	------	------	------
WDR-A33	East stud post, truss 1	nm	--	------	------	------
WDR-A34	East cross-rail, truss 1	nm	--	------	------	------
WDR-A35	West main wall-post, truss 1	nm	--	------	------	------
WDR-A36	Tiebeam, truss 1	nm	--	------	------	------

* $\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last ring on the sample C = complete sapwood retained on sample
$\mathrm{nm}=$ sample not measured

Table 2: Results of the possible cross-matching of site chronology WDRASQ02 and relevant reference chronologies when first ring date is AD 1399 and last ring date is AD 1567

Reference chronology \quad Span of chronology t-value

JMF-100	AD $1467-1557$	5.2	(Fletcher 1978 unpubl)
Pye Comer, Moulsford, Oxon	AD $1340-1558$	4.3	(Alcock et al 1991)
England London	AD $413-1728$	4.2	(Tyers and Groves 1999 unpubl)
Sinai Park, Burton on Trent, Staffs	AD $1227-1750$	4.1	(Tyers 1997)
White House, Blyth, Notts	AD $1453-1595$	4.0	(Howard et al 1994)
Southern England	AD $1083-1589$	4.0	(Bridge 1988)
Manor Road, Didcot, Oxon	AD $1415-1509$	3.8	(Alcock et al 1989)
High Street, Kinver, Staffs	AD 1431-1562	3.7	(Howard et al 1995)
Folly House, Steventon, Oxon	AD $1437-1542$	3.6	(Alcock et al 1989)
Cobham, Kent	AD 1317-1662	3.6	(Howard et al forthcoming)
Kent-88	AD $1158-1540$	3.5	(Laxton and Litton 1989)

Table 3: Results of the possible cross-matching of site chronology WDRASQ02 and relevant reference chronologies when first ring date is AD 1411 and last ring date is AD 1579

Reference chronology Span of chronology t-value

East range, Ighthan Mote, Kent	AD 1393-1468	5.1	(Howard et al 1995)
Cottage range, Ightam Mote, Kent	AD 1392-1463	4.7	(Howard et al 1994)
Chilton Manor, Sittingbourne, Kent	AD 1368-1520	4.0	(Howard et al 1988)
Hagworthingham Church, Lincs	AD 1336-1533	3.8	(Laxton et al 1984)
Old Queens Head, Sheffield	AD 1370-1498	3.7	(Howard et al 1992)
Wicham, Hants	AD 1373-1503	3.7	(Esling et al 1990 unpubl)
Coat's Barn, Cosby, Leics	AD 1426-1562	3.7	(Alcock et al 1991)
New Chapel, Ightham Mote, Kent	AD 1394-1465	3.6	(Howard et al 1994)
Kent-88	$\mathrm{AD} \mathrm{1158-1540}$	3.6	(Laxton and Litton 1989)
Lacock Abbey, Wilts	$\mathrm{AD} \mathrm{1395-1546}$	3.5	(Esling et al 1990)
Cobham, Kent	$\mathrm{AD} \mathrm{1317-1662}$	3.5	(Howard et al forthcoming)

Table 4: Results of the possible cross-matching of site chronology WDRASQ03 and relevant reference chronologies when first ring date is AD 1411 and last ring date is AD 1579

Reference chronology	Span of chronology	t-value	
Bremhill Farm, Calne, Wilts	AD 1353-1484	4.8	(Alcock et al 1991)
Rectory Farm, Weston on Trent, Derbys	AD 1362-1503	4.5	(Howard et al 1996 unpubl)
Chicksands Priory, Beds	AD 1200-1541	4.1	(Howard et al 1998)
Lacock Abbey, Wilts	AD 1395-1546	4.0	(Esling et al 1990)
Eckington, Derbys	AD 1365-1480	3.9	(Howard et al 1992)
Church Cottage, Cadeby, Leics	AD 1362-1472	3.7	(Alcock et al 1991)
Kent-88	AD 1158-1540	3.7	(Laxton and Litton 1989)
Trentham's Barn, Purley, Berks	AD 1404-1512	3.6	(Howard et al 1996)
Restoration House, Rochester, Kent	AD 1378-1505	3.6	(Howard et al 1997)

Figure 1: Map to show specific location of Hubards Farm

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Plan at ground-floor level to show phases of construction

Figure 3a: Drawing of truss 3 to show timbers sampled (viewed from the south)

Figure 3b: Drawing of truss 4 to show timbers sampled (viewed from the south)

Figure 3c: Drawing of bay 3 to show timber sampled
(viewed from the east)

Figure 3d: Plan to show timbers sampled

Figure 3e: Drawing of truss 1 to show timbers sampled (viewed from the south)

Figure 4: Bar diagram of the samples in site chronology WDRASQ01

Figure 5: Bar diagram of the samples in site chronology WDRASQ02

Off-
Oet

set
white bars $=$ heartwood rings, shaded area $=$ sapwood rings $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
C $=$ complete sapwood retained on sample

Figure 6: Bar diagram of samples in site chronology WDRASQ03 sorted by sampling period

white bars = heartwood rings, shaded area = sapwood rings $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample $\mathrm{C}=$ complete sapwood retained on sample

Data of measured samples - data in 0.01 mm units

```
WDR-A01A 74
    178250334 396 311 315458468352458581521395217171161214244352374
    302363220 93 73 78120160135152176199162179294227296249205104
    534964699889101110121112108125120160153 75 85 120 67 77
    87971281031241091508377 57 85 64 89130
WDR-A01B 74
    184239339365321313459463354460558519384222163170209249321375
    312356198 94 66 80133170140151187197155170289234289248199114
    5641 54 83 98 95 87119113125 8612711015514316181 78 65 75
    90 90100115126104151 75 73 54 72 78 84126
WDR-A02A 76
    256337274150182266240174224315233206224162207244221184324361
    3053102332572402816475 88132112108138212169153145201260229
    285189251304214246230213243249206236103 46 52 34 38 50 69 90
    87 89100 75 38 39434665 76 86 106138157 67 67
WDR-A02B 76
    227329287143166264264163245325269200211176200226210175 303 364
    29033422625424426159689812313494140197170144137199256247
    27718826029420224722520724724319624110241 32 58 53 49 54 87
    84 9611073 44 38434267 78 80 99109113166103
WDR-A03A }9
    260449 328176164252256286267260150152151150151144158157186246
    243295217189275256191137124172233197 82 58 79 68130141104 80
    92115155223170203 93 70 93 146197208163177215186 78 64 62 90
    71116115144162131177195136151 76 96 90114156164162150141195
    157217188157157 95 55 93 54 61 88 60 63 89 91 105 131
WDR-A03B }9
    194458295193176241249284268247158141148159148147157143191227
    243293212191270259191127118176233190 88 66 82 67 123148 99 87
    881231562111731998679 96126198191167180218174 92 75 49 87
    74110119145167130170192135159 87 92 86113154166151174116201
    165193156182157 96 49 91 60 60 81 70 77 76 88 98 143
WDR-A04A }6
    458336317237233305309276161183188120166176124129161115 96 136
    121153111185 98 77 91 84110 99126 72 60108 95 128100 84135116
    85175174144133117 80104 53 63 86 75 76 106121 69 102 85 53108
WDR-A04B }6
    479324328212231295292279172179189129175165120127149110 93 132
    123143113 78 90 80 84 881101061226860103 94131103 97 118123
    121 168189139142121 79 83 57 53 74 74 63100 97 70 89 90 82 86
WDR-A05A 66
    21 5961 72 137184255314414229175172168138213168154173149173
    188186138189233270148181125138 94 86 84 97 83 96 146132109105
    105118 99113105 96 861311241111931041031001001101008810787
    10977105948193
```

WDR-A05B 66
37669784124173267306322165167179164145213170148171152186 1821781391852452811571841141409477881007910513214593108 11310810911410599881241101117894101981011041177510794 10088968884102
WDR-A06A 55
358323377318444247226232176158164164216172224277444338207321 236260278246195191215192184148155112135124125140101140135129 126141117106154114113155929777688481108
WDR-A06B 55
315322353283455234251171160149141156220183214254413292234325 265280283241229187234180161142139120139115123151100127135112 128151126991641011077412384817381108104
WDR-A07A 67
295248432312291297262303240302293300289260173767181130208
16215318218521320321322125523712899777789120152126120142 13217218023816917088109797274979199107142116150128137 11467639297107139
WDR-A07B 67
298263415301294310257277215297296267303266192906378128198 148159151184201195205205254255111906081101138160136136166 14816121621018215610212973656284909497142130144128150 100696910583116146
WDR-A08A 46
302462298233266224198253255283256224193164232213218116134159 9176229272212196180141161114129146150183195253178178138157
222141168106125179
WDR-A08B 46
306467286202274216213235248283257238194191198191206135124174 92110216266202190201131158116132140160165179257183168136135 227132103235133205
WDR-A09A 54
77721011315596119234162191149162204245349210201183222345 279272220220253334396274347364315399558433480402282330284174 278305361414473340313438403479541389354227
WDR-A09B 54
54601041305194118251180214155176198233282240198178233370 278301211229246334392281331367329402537474476417273328296160 279306349416472369320431394503539403368222
WDR-A10A 39
626631704646382600554713277632425666597804470713613498151167
14019815115922823510685454645115124252163166194201160
WDR-A10B 39
658633763584414586547708274623436616614786490715626484157174 12815614518525119610648444847110135235159196201178161 WDR-A11A 57
115121134127975512321411695230171127116109155179976084
49503662638173103181156124120201361235184218167138139
9715313917315215896130243208392258256161143127162

47464059688472104179155128113186333215208235181123156
10615116118315716799154243212366267257183120185156
WDR-A12A 169
$\begin{array}{llllllllllllllll}63 & 53 & 62 & 62 & 68 & 59 & 57 & 90 & 73 & 78 & 80 & 67 & 85 & 95 & 67 & 67\end{array} 45756268$
64504245736375517476861181021368711299114146129
15611199119991321871508811112211911284110142111120100119
122122139114126146112136165133150160158157106143161643540
44555780929391809171961039074869884756665
7087708589795911910310312514510714910217073492834
685263981077410211212310389918171538346566466
$76117931041097262454279597298717091899145 \quad 59$
$8173 \quad 6076 \quad 6975686292$
WDR-A12B 169
$\begin{array}{llllllllllllllll}81 & 58 & 57 & 67 & 68 & 53 & 59 & 85 & 67 & 81 & 71 & 78 & 84 & 81 & 70 & 64 \\ 57 & 69 & 75 & 67\end{array}$
65494545776068567586831231031347511794129159132
150117101120991371851608811312211911885105148106122114115
119125149113120135112140159154160161151157105144163683540
$\begin{array}{llllllllllllllll}49 & 67 & 58 & 89 & 81 & 86 & 93 & 76 & 91 & 74 & 97 & 94 & 80 & 79 & 81 & 95 \\ 89 & 70 & 59 & 72\end{array}$
55937083947673128999411213910915110417370443034
556799107741111011231039382838851524666576865
6812094105979073416055637094678086105863358
$\begin{array}{llllllllll}87 & 77 & 60 & 72 & 69 & 74 & 76 & 70 & 99\end{array}$
WDR-A13A 128
86114112120138166145115128135130142109124136115151148167178
147155150156153116151147127192155194175138150185107754764
566379851071118987811171261037810197100102737990
1117810199109771061111241191631261411071728441304269
4083106857794131911009186874337596182747365
751151071217887795956.6650636254587070495965
7054675360606783
WDR-A13B 128
72102113107150163145119131122140138107124136110160142172176
166158150144153131149150120184141184176136152187105685457
54487393116115100848511711298831019595100787497
1068010310011083971181211251601261281121808344344366
327610089918513089989184874252476478737168
$\begin{array}{ll}72 & 120 \\ 109 & 128 \\ 68 & 89 \\ 74 & 65 \\ 65 & 56 \\ 81 & 61 \\ 50 & 55 \\ 67 & 63 \\ 48 & 65 \\ 33 & 49\end{array}$
6548665561616278
WDR-A14A 69
28318034215811596926694101117281384266131322365275351306
263208126139239334310297383212169196273287189237305241216208
150144145164207281301314232232272332229178139122129154237178
14410463864587112192244
WDR-A14B 69
29317634817111483104649896124285394274127307370279386298
241204124156234345301296373217163198272302207234303233220211
9148139160163216288290324232252285351235182129136173160205

```
WDR-A21B }6
226346247193266371376412302299379376259215203 350 303199358241
28224813794110158203120254169270341224272307352352272248128
575285138134151151151104159246260 96 54 68116100138109134
158
WDR-A22A 93
215350280352446280275160306252249268272350327209135208204158
170146154178219231273 308303 31027718915078111141149157202218
2161451611651471011031181341471411541505970109130147130196
190185183221198173265228202159230200187605051 59 83130125
216181209262176 83 49 67 70 108152128119
WDR-A22B }9
309347282369435280280162309256242268259355334215135207198154
171144164168215230272321294316283193148 82105140151158207224
221149161160159106 98113140145156149141 5560113121138134186
215187173225192189262229213153230206181 63 53 58 47 86 140120
210165215282185 74 51 51 85103152138133
WDR-A23A }6
42357456851214911058 91 1491172001431691581582282496976144
147143140109147156756786152190159132207202156318309443415
489449361349374 370126455895166144211260274298347106 29 39
7992137181111161144224240
WDR-A23B}6
59456226522515012261 931361192011681841391632422517174144
137153135104146160736578170202174149251184149300297433 397
46444334633939038312255569415813821826127326833466 27 37
    5789158166113156138234249
WDR-A24A }18
    16413611894151109145146162168179105145544280255231196139167
    117180173140 57 87 78 105126108 99 67 88 70 111 73 45 38 50 60
    59 92 51 63 69 47 54 50 52 53 64 104 87 100 84 55 69 89 84 77
    84 68 74 43 43 49 71 56 68 53 52 83 80 78 66 62 60 66 63 61
    40 68 68 64 73 56 43 60 81 62 63 63 69 69 79 109 73 87 67 103
    80 88 93119112 99 95 91 80104132 95 68100103123102 84 109102
    9510287103104117115105999669108118 9013911411712687115
    116 72 41 32 37 48 52 45 51 60 45 52 59 61 87 91 91 91 86 64
    47 48 37 40 39 61 46 73 88 87 49 1101111106141173116219107155
WDR-A24B 180
    11113311898119110151149156179167129118543279241241197129166
    114186212142 60 90 78 102 125 114 87 65 81 78 94 82 44 38 48 66
    47 90 51 59 66 56 52 49 47 52 68 95 98 89 80 57 71 92 90 70
    84 60 74 49 36 56 71 59 59 55 51 87 74 83 64 61 66 64 63 58
    43 67 68 70 67 53 44 52 84 63 57 66 66 69 77 103 82 82 76 109
    74809610311510288 94 7611413397 60 98 97127104 91 101112
    9710194106 95126113 99103 82 72114121 87137119126119 88112
    131 62 48 27 46 45 44 51 54 54 47 46 68 56 84 82 95 94 77 54
    56 3943 34 50 5945 65 87 93 46106101 122139166106199103128
WDR-A25A 133 乿
    73 78 60 58 62 61 63 54 42 63 58 62 56 46 26 56 77 52 57 64
    80 72 67 95 69 63 67 84 58 68 72 73 102 86 84 85 65 101 104 87
    6375 84 78 70 69 87 100 76 87 78 80 90 89 109 90 79 67 62 99
```

[^1]
APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Baillie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used aimost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date, how this is done is explained below.

The Practice of Tree-Ring Dating at the Universify of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building bistorian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insentions Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local clinate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Fig 2. Cross-section of a ratter showing the presence of sapwood rings in the comers, the arrow is pointing to the heartwood/sapwood boundary (H/S). Also a core with sapwood: again the arrow is pointing to the H/S The core is about the size of a pencil.

Fig 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electic drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged 10 be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost This can be difficult as these outer rings are often very sof (see below on sapwood) Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widihs. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with nourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a,b, Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C 45 best when it is at a position starting 20 rings after the first ring of 45 . and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t value between C45 and C08 is 56 and is the maximum between these two whatever the position of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5 . The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately
average sequence of ring widihs with a master sequence than it is to date the individual component sample sequences separately

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal i-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and C 05 . They are the most similar pair with a t-value of 10.4 . Therefore, these two are first averaged with the first ring of $\mathrm{C} 05 \mathrm{at}+17$ rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences C 08 and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ning is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper comers of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively sof and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood nings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling

Various estimates have been made for the average number of sapwood rings in a mature oak. One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date. Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981; see also Hillam et al 1987).

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings. We would use these estimates, for example. in calculating the range for the conmon felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood/sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings were only lost in coring, because of their softness By measuring in the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is ofen better than the 15 to 40 years later we would have estimated without this observation.

T-value/Offset Matrix

	C45	C08	C 05	C 04
C45		$+20$	+37	+47
C 08	5.6		+17	+27
C 05	5.2	10.4		$+10$
C04	5.9	3.7	5.1	

Bar Diagram

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

C45

C08

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the 1 -values.
The t-value offset matrix contains the maximum t-values below the diagonal and the offsets above it.
Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t -value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Even if all the sapwood rings are nissing on all the timbers sampled, an estinate of the felling date is still possible in certain cases. For provided the original last heartwood ring of the tree, called the heartwood/sapwood boundary (H/S), is still on some of the samples, an estimate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates

If none of the timbers have their heartwood/sapwood boundanies, then only a post quem date for felling is possible.
5. Estinating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken in situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak uee whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from $A D 882$ to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989) The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988a). Other laboratonies and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widihs first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irespective of the climate, the widths are first standardized before any matching between them is attempted These standard widths are known as ning-width indices and were first used in dendrochronology by Baille and Picher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7. Here ringwidths are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence starting in 1835 . In both the widths are also changing rapidly from year 10 year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Baillie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier.

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midands Master Dendrochronological Sequence, EM08/87.

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each, on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, 1982 Tree-Ring Danng and Archaeology, London
Baille, M G L, 1995 A Slice Through Time, London
Baillie, MGL, and Picher, JR, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archacology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A.D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, $429-40$

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: Many Cff reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

[^1]: 897598961018981951006537363238514961547564
 90889510710211574996131454453807572798312598 $8677575355474540594954 \quad 6276$
 WDR-A25B 196
 102871179810990165143131147128881231308887123756562 $\begin{array}{lllllllllllllll}83 & 80 & 95 & 104 & 94 & 92 & 63 & 64 & 60 & 73 & 61 & 75 & 39 & 52 & 77 \\ 68 & 62 & 55 & 58 & 66\end{array}$
 11280118881081261361309897888294113887893105110108
 $\begin{array}{lllllllllllllllll}73 & 54 & 78 & 91 & 74 & 31 & 22 & 36 & 41 & 48 & 55 & 42 & 57 & 71 & 74 & 76 & 63 \\ 72 & 64 & 61\end{array}$ 4552748060627068937888889362831159011211394
 $\begin{array}{llllllllllllllll}133 & 94 & 143 & 64 & 40 & 30 & 42 & 80 & 69 & 83 & 87 & 73 & 87 & 83 & 93 & 79 \\ 91 & 85 & 81 & 69\end{array}$
 $\begin{array}{lllllllllllll}78 & 75 & 68 & 82 & 58 & 54 & 48 & 50 & 80 & 51 & 53 & 68 & 83 \\ 52 & 76 & 81\end{array}$

