Centre for Archaeology Report 88/2003

Tree-Ring Analysis of Timbers from Dilston Castle, Dilston Hall, Corbridge, Northumberland

A J Arnold, R E Howard and Dr C D Litton

© English Heritage 2003
ISSN 1473-9224

Tree-Ring Analysis of Timbers from Dilston Castle, Dilston Hall, Corbridge, Northumberland

A J Arnold, R E Howard and C D Litton

Abstract

Summary Twenty-five samples were obtained from a number of elements of the Chapel and tower house at Dilston Castle. Analysis of these produced a single site chronology comprising twenty-one samples with a combined overall length of 210 rings. This site chronology was dated as spanning the years AD 1402 to AD 1611.

Interpretation of the sapwood indicates that probably all the dated timbers represented were felled in AD 1611 and relate to documented remodelling in AD 1616. There is no confirmed tree-ring evidence for any earlier or later material.

Keywords

Dendrochronology
Standing Building

Author's address

University of Nottingham, University Park, Nottingham, NG7 2RD.

[^0]
Introduction

Dilston Castle stands about a kilometre south-west of Corbridge, near Hexham in Northumberland (NY 962533; Figs 1 and 2). Being originally built c AD 1400 as a tower house on the site of an earlier structure, it was extensively modified in the fifteenth and sixteenth centuries. It was further altered in AD 1620 and became part of Dilston Hall. Later still, in AD 1710-15, it became part of a large mansion built by the 3rd Earl of Derwentwater. Unfortunately the third Earl was executed in AD 1716 for his part in the Jacobite rebellion. The property then passed to his son and upon his death, in AD 1731, the Derwentwater estates were seized by the Government and passed to the Greenwich Hospital Trustees. They demolished most of the buildings in AD 1765 leaving only the tower house standing.

Adjacent to the castle a small chapel survives. The date for its original construction is not known, but documentary sources indicate that remodeling was completed in AD 1616. However it was believed that parts of it may be older than this, possibly dating to an undocumented Tudor phase. A new roof was put on to the chapel in the AD 1730s (completely covering and protecting the earlier one), but later removed. Observation and recording of the interior plaster shows that there was once a large first-floor gallery at the west end of the chapel. It is not known when this was removed.

The castle and chapel site are grade I listed and a Scheduled Ancient Monument. It is listed as category B on the English Heritage Building's at Risk Register.

Sampling

Sampling and analysis by tree-ring dating were commissioned by English Heritage on behalf of the owners of the buildings, North Pennines Heritage Trust. The purpose of this was to provide a precise date for a number of elements of the castle and chapel as part of a larger programme of repairs, recording, and research.

In particular the Laboratory was asked to sample three elements of the chapel. The first of these was the timbers of present chapel roof. This comprises five trusses of cambered tiebeams (giving a very shallow pitch roof), with ridge beams and purlins. A ground-floor plan of the chapel is provided in Figure 3 and the roof is illustrated in Figure 4.

Secondly the Laboratory was asked to sample what appeared to be the original joists of the first-floor gallery, sited at the west end of the chapel. The remains of these joists were found as cut-off beam-ends buried in sockets in the walls beneath the plaster. They were only discovered when the plaster was removed during renovation as part of a programme to reinstate the gallery.

The third element of the chapel to be sampled was a timber lintel over a doorway to the stairs which would have lead up to the gallery. This door is shown in Figure 4.This lintel was so badly decayed and rotted that it was uncertain if it was one timber or two.

The importance of these timbers lay in determining whether or not they belonged to some early undocumented, possibly Tudor, phase or if they belonged to the early seventeenth century or later remodeling phase.

A number of single timbers from the castle were also to be sampled. These consisted of lintels over doors and windows. On the basis of their architectural style and positioning they were deemed to date to various phases of the castle's developmental sequence in the fifteenth, sixteenth, and eighteenth centuries. It was hoped that by dating the timber the date of the opening, and thus the phasing of elements of the castle, might be determined.

Thus, from the available timbers a total of twenty-five samples was obtained. Each sample was given the code DST-A (for Dilston, site "A") and numbered 01-25. Timbers were selected on the basis of
their having sufficient rings for suitable analysis and for having sapwood, or at least the heartwood/sapwood boundary.

Fifteen samples, DST-A01 - A15, were obtained as cores from the roof of the chapel. A further four samples, DST-A16-A19, were obtained as slices from the beam ends of the joists of the former gallery. These beam ends had been removed from their sockets due to decay and were not required for reuse or reincorporation into the building. Two slices, DST-A20 and A21, were obtained from the lintel of the door to the gallery stairs in the chapel. This timber was also removed due to severe decay and was again not required.

In the castle slices were obtained from two lintels removed from the south window in the south tower, samples DST-A22 and A23. Finally, cores were obtained from a lintel over what was believed on stylistic grounds to be an early eighteenth-century window (DST-A24) and a doorway into the stair tower on the second floor (DST-A25).

Where possible the locations of the cores and slices were recorded at the time of sampling on drawings provided, these being reproduced here as Figures 5 and 6. The most notable absence is a plan of the roof or the drawing of a typical truss. However, for Laboratory purposes, a sketch was made and the positions of the samples recorded on this. This sketch is not shown in this preliminary draft in the hope that a suitable illustration may be found.

Given that some timbers had been removed prior to sampling as a consequence of building works the Laboratory is reliant on information provided about these. Details of the samples are given in Table 1. In this table, where possible, the trusses are numbered from east to west with members described on a north - south basis as appropriate. Other timbers are listed by the locations and descriptions provided.

The Laboratory would to take this opportunity to thank Frank Geicco of the North Pennines Heritage Trust for assisting during sampling, and for providing photographs and drawings, and for providing information about the timbers.

Analysis

Each of the twenty-five samples was prepared by sanding and polishing and the width of their annual growth-rings measured. The data of these measurements are given at the end of this report. The samples were then compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum value of $t=4.5$ a groups of twenty-one samples cross-match with each other at relative positions as shown in the bar diagram Figure 7.

These twenty-one samples were combined with each other at their relative offset positions to form DSTASQ01, a site chronology with a combined overall length of 210 rings. Site chronology DSTASQ01 was compared with a full series of relevant reference chronologies for oak, giving it a first ring date of AD 1402 and a last measured ring date of AD 1611. Evidence for this dating is given in the t-values of Table 2.

Site chronology DSTASQ01 was compared with the four remaining ungrouped samples but there was no satisfactory cross-matching. These four ungrouped samples were then compared individually with a full range of reference chronologies but again there was no further satisfactory cross-matching. These samples must, therefore, remain undated.

Interpretation

Seven of the dated samples, DST-A04, A05, A09, A10, A13, A16, and A17, from the gallery floor in site chronology DSTASQ01 retain complete sapwood and thus have the last ring produced by the trees they represent before they were felled. In each case the last measured ring date is the same, AD 1611 and this is thus the felling date of the trees. The relative position of the heartwood/sapwood boundary on the other dated samples, where it exists, indicates that the majority of the timbers were likely to have been felled in AD 1611 too.

The timber represented by a further sample in site chronology DSTASQ01, sample DST-A24, a window lintel, is also from the castle. Although it is believed on structural and stylistic grounds that the window opening is of eighteenth-century date, it is more likely that the timber was felled in the early seventeenth century rather than the eighteenth. Sample DST-A24 cross-matches with the main group very well at its given date, with a value of $t=5.9$, and no eighteenth-century date is indicated when it is compared individually with the reference chronologies. It is likely that this early seventeenth-century timber was reused in a later remodeling of the castle.

A lesser degree of certainty could be expressed about the felling date of the timbers represented by samples DST-A20 and A21, and samples DST-A22 and A23. These are the two samples from the lintel of the doorway to the chapel gallery stairs, and the two samples from lintels of the south window in the south tower of the castle respectively. Due to decay none of these samples retains a measurable certain heartwood/sapwood boundary ring, they have become damp and they have rotted to such an extent that the outer rings cannot be prepared for measurement. However, estimating the number of unmeasured rings would put what is probably the heartwood/sapwood boundary at a relative position consistent with a felling of AD 1611 for these timbers also. However, it is possible that some of these timbers could have a slightly different felling date.

Conclusions

Analysis by tree-ring dating has produced a single site chronology, DSTASQ01, of twenty-one samples with a combined overall length of 210 rings. This chronology has been dated as spanning the years AD 1402 to AD 1611. Interpretation of the sapwood indicates that probably all the dated timbers were cut in a single phase of felling in AD 1611.

Such a date is closely correlated with the documentary evidence for the completion of remodeling work on the chapel in AD 1616. The analysis shows that there are only a few years between felling and use. Of equal note is the fact that the dated timbers of the castle were felled at this time too. Although it was expected that some material of the fifteenth, sixteenth, and eighteenth centuries might be found, this has not been the case. It would appear that timber cut in the early seventeenth century was later reused.

The samples from four other timbers could not be dated. There is no obvious reason why these four samples should not cross-match and date. There is no indication of narrow or complacent rings which might make dating difficult.

Bibliography

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file $M G B-E O I$, Queens Univ, Belfast

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992a List 44 no 18 - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University, Thornes, R and Hook, R, Royal Commission on the Historical Monuments of England, 1992b List 47 no 3 - Nottingham University Tree-Ring Dating Laboratory: Truncated principal trusses project, Vernacular Architect, 23, 59 - 61

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook R, Royal Commission on the Historical Monuments of England, 1993 List 50 no 4 - Nottingham University Tree-Ring Dating Laboratory: Royal Commission on the Historical Monuments of England, joint northern medieval roofs survey, Vernacular Architect, 24, 45-6

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1994 List 58 no 4 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological Survey 1992-93, Vernacular Architect, 25, 41 - 3

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University, Roberts, M, North East Vernacular Architecture Group, 1995 List 62 no 3a - Nottingham University Tree-Ring Dating Laboratory: Buildings of the religious estates in medieval Durham; dendrochronological survey, 1994 5, Vernacular Architect, 26, 55-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 no 8 - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 27, 78-81

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, IIII

Table 1: Details of samples from Dilston Chapel and castle, Dilston Hall, Corbridge, Northumberland

Sample no	Sample location	Total rings	$\begin{gathered} \text { *Sapwood } \\ \text { rings } \end{gathered}$	First measured ring date	Last heartwood ring date	Last measured ring date
Chapel timbers						
DST-A01	Tiebeam, truss 1	144	no h/s	AD 1414	---	AD 1557
DST-A02	Ridge beam, truss 1-2	135	11	AD 1458	AD 1581	AD 1592
DST-A03	North purlin, truss 1-2	55	5	-------	------	--
DST-A04	Tiebeam, truss 2	91	26C	AD 1521	AD 1585	AD 1611
DST-A05	Ridge beam, truss 2-3	172	39 C	AD 1440	AD 1572	AD 1611
DST-A06	South purlin, truss 1-2	54	h/s	-------	------	------
DST-A07	Tiebeam, truss 3	188	30	AD 1421	AD 1578	AD 1608
DST-A08	North purlin, truss 3-4	122	no h/s	AD 1428	-----	AD 1549
DST-A09	South purlin, truss 3-4	166	30 C	AD 1446	AD 1581	AD 1611
DST-A10	Tiebeam, truss 4	111	20 C	AD 1501	AD 1591	AD 1611
DST-A11	Ridge beam, truss 4-5	54	no h/s	AD 1425	--	AD 1478
DST-A12	North purlin, truss 4-5	129	20	AD 1475	AD 1583	AD 1603
DST-A13	South purlin, truss 4-5	210	26C	AD 1402	AD 1585	AD 1611
DST-A14	Tiebeam, truss 5	140	h/s	AD 1436	AD 1575	AD 1575
DST-A15	Ridge beam, truss 3-4	62	no h/s	------	------	------
DST-A16	Gallery floor joist	206	33 C	AD 1406	AD 1578	AD 1611
DST-A17	Gallery floor joist	175	30 C	AD 1437	AD 1581	AD 1611
DST-A18	Gallery floor joist	90	8	AD 1499	AD 1580	AD 1588
DST-A19	Gallery floor joist	98	no h/s	AD 1426	------	AD 1523
DST-A20	Lintel, chapel door to gallery stairway	90	no h / s	AD 1456	---	AD 1545
DST-A21	Lintel, chapel door to gallery stairway	58	no h/s	AD 1490	------	AD 1547

Table 1: continued

Sample no	Sample location	Total rings	$\begin{aligned} & \text { *Sapwood } \\ & \text { rings } \end{aligned}$	First measured ring date	Last heartwood ring date	Last measured ring date
Castle timbers						
DST-A22	Lintel 1, south window, south tower	104	no h/s	AD 1457	------	AD 1560
DST-A23	Lintel 2, south window, south tower	91	no h / s	AD 1477	------	AD 1567
DST-A24	Lintel over eighteenth-century window	57	h / s	AD 1519	AD 1575	AD 1575
DST-A25	Lintel to second floor door in stair tower	78	h / s	------	------	------

Table 2: Results of the cross-matching of site chronology DSTASQ01 and relevant reference chronologies when first ring date is AD 1402 and last ring date is AD 1611

Reference chronology Span of chronology t-value
Ingleby Manor, Ingleby Greenhow, N Yorks

$\mathrm{AD} \mathrm{1429-1563}$	7.4	(Howard et al 1993)
$\mathrm{AD} \mathrm{1441-1656}$	6.5	(Howard et al 1996)
$\mathrm{AD} \mathrm{401-1981}$	6.3	(Baillie and Pilcher 1982 unpubl)
$\mathrm{AD} \mathrm{1390-1619}$	6.2	(Howard et al 1995)
$\mathrm{AD} \mathrm{1436-1623}$	6.1	(Howard et al 1992a)
$\mathrm{AD} \mathrm{1468-1578}$	6.1	(Howard et al 1994)
$\mathrm{AD} \mathrm{1364-1531}$	5.1	(Howard et al 1992b)
$\mathrm{AD} \mathrm{882-1981}$	5.0	(Laxton and Litton 1988)

Figure 1: Map to show general location of Dilston Castle

© Crown Copyright and database right 2013. All rights

Figure 2: Map to show specific location of Dilston Castle

Figure 3: Ground-floor plan of the chapel at Dilston Castle

Figure 4: The Chapel at Dilston viewed looking west (trusses 3 and 4 (west- most) in view

Figure 5: Drawing to show location of samples

NPHTO2 DIL-A DILSTON CASTLE PROJECT

Figure 6: Drawing to show location of samples

timber lin ST SW 1

Figure 7: Bar diagram of the samples in site chronology DSTASQ01 sorted by sample location

Data of measured samples - measurements in 0.01 mm units

```
DST-A01A 144
13519720117614798249174185137199214160244251287202276 312249
293223207189192165158206172207191160228220178169160149207189
179116161134103112106108113107100103 92109 95 78 98 75 50 70
51 89 91 85 64 82 68 89 82 82 75 67 75 109 69 94112 87 97 101
103849796106127106115 84 87 157145180142191201156155167282
203213189144152153133129119109133135154120103105137123146150
1441661251007811313493 80 83 80 91 84 66 76 82 98 116 97 103
747975 81
DST-A01B 144
159207201206137102258161204162212214155248246284201273 309256
285232200176169147158199163233259239215224171171153154210182
162129153140104106100112106113 99 99 84103 94 71 92 85 54 62
50 94 96 75 67 80 72 92 82 81 72 73 78 97 79 104 101 93 96 98
948796 971131181051078185149143181140180214157144158277
212216183146144156140121118115137130157124 91 106140131 149148
155160128898411213891 84 85 77 91 92 65 78 58 95 111102 101
677176 93
DST-A02A 135
180236223192220220189244259305283212224230153152163230193246
204154146152172158160179203210 150160125101124 72 44 36 51 47
61666147526878 93 98 8296 94108116120122122103101 125
7212211510073 72 82 80 114 84 79 79 97 91 87 95 86 90 103 89
78 91 109 101 63 73 71 77 79 85 87 100 104 122 91 96 99 90 74 97
7273626777 78 68 57 57 51 46 61 72 76 103 93 91 81 79 69
5410067 99 86 98 76 74 88 81 73 64 70 69 85
DST-A02B 135
169223222198231216202250244303279170226222164142182195195 260
198150155143174152165185205 20315415612111012974 384647 52
596559485169817810588103 98 114117107130121104105122
82115106 91 82 70 83 85 100 92 86 78 96 98 87 95 90 85 109 86
82 88 108 106 57 75 71 75 89 79 87 98 107 125 93 108 97 71 79 91
70 72 66 67 79 69 74 55 62 58 38 67 73 76 108 85 97 77 87 53
62997286 89 91 84 78 97 77 72 65 73 74 75
DST-A03A 55
144271277161 171 178 158209219235208247231170151169139155257203
186255160171153132125146144136122132130127168236169181106 94
6563123158169153139116128141158161134160157
DST-A03B 55
156267275153171183159199203229224266230143152159148174252204
160237154172161120131152155139118130123133171235148180104 96
6370128152171163132117126148175 153142163160
```

DST-A04A 91
18119215419919617312116217615411196119112125212160121202206
1451411201201301298913113015920816612415211990129127189162
13515313216912714110794154172146128200164158149108108151102 $\begin{array}{llllllllllllllllllllllll}116 & 110 & 92 & 119 & 88 & 115 & 68 & 53 & 71 & 78 & 66 & 65 & 95 & 108 & 90 & 55 & 57 & 48 & 54 & 64\end{array}$ $\begin{array}{llllllllll}76 & 30 & 43 & 42 & 44 & 39 & 46 & 36 & 35 & 59 \\ 55\end{array}$
DST-A04B 91
16919814519521617613717912715111695117105111212150132202203 1471351261091371289812614314620516213412212399128130184151 12615114615613215211295140153146135200157160140111109156101
 $\begin{array}{lllllllll}76 & 38 & 40 & 45 & 35 & 45 & 43 & 36 & 36 \\ 59 & 54\end{array}$
DST-A05A 172
164159154174249209192170190241204179221217265196262186162166 147184153152152165167229207194260186153158162241198292238209
 624846426372889789968693107931277998103119124

 $\begin{array}{lllllllllllllllllll}81 & 73 & 82 & 73 & 100 & 72 & 76 & 55 & 46 & 56 & 84 & 83 & 92 & 92 & 88 & 75 & 83 & 56 & 65 \\ 79\end{array}$

$\begin{array}{llllllllllllllllllll}67 & 80 & 74 & 81 & 112 & 83 & 67 & 67 & 86 & 101 & 113\end{array}$
DST-A05B 172
160161163177249213159196184237181180216229253196272178147181 150187162143151163170217122117174177148155161240202278244212

$\begin{array}{lllllllllllllllllllllllllllllllllll}97 & 85 & 84 & 76 & 83 & 86 & 106 & 87 & 81 & 81 & 88 & 104 & 90 & 100 & 90 & 97 & 84 & 78 & 65 & 80\end{array}$

$\begin{array}{llllllllllllllllll}71 & 89 & 78 & 68 & 100 & 75 & 73 & 48 & 51 & 61 & 78 & 85 & 89 & 98 & 76 & 86 & 67 & 57 \\ 46 & 84\end{array}$

$\begin{array}{lllllllllllllllllll}75 & 79 & 72 & 85 & 109 & 79 & 75 & 57 & 93 & 81 & 104 & 107\end{array}$
DST-A06A 54
239168255284261301274343250286267233285184213210232188152247 212187188190150144174158183163137157155192178138217177191201 202285200272244265123163197178269276238229
DST-A06B 54
215168241297261308265352242270279230290191220205241147162249 167201187181165143180162182166140150161187183132214176193201 202282202266259263121157205169273266279211 DST-A07A 188
21017521311216212312611814111414314511213012092115796062 62641261099565829912416623824820119612910614511899131 $1341691381251191191211238285 \quad 67 \quad 67 \quad 78 \quad 80 \quad 929081 \quad 797282$

 $\begin{array}{llllllllllllllllll}56 & 67 & 50 & 41 & 39 & 49 & 63 & 70 & 57 & 57 & 46 & 47 & 80 & 68 & 65 & 55 & 57 & 45 \\ 62 & 74\end{array}$ $\begin{array}{lllllllllllllllllll}79 & 51 & 61 & 64 & 55 & 50 & 45 & 49 & 41 & 68 & 63 & 51 & 67 & 51 & 54 & 49 & 48 & 58 & 54 \\ 57\end{array}$ $\begin{array}{lllllllllllllllllll}56 & 49 & 40 & 37 & 39 & 41 & 43 & 43 & 53 & 65 & 60 & 59 & 54 & 54 & 60 & 59 & 50 & 52 & 64 \\ 62\end{array}$
 5160635947545785

DST-A07B 188
189175217114160114128127130123132159106126120101111796561 597011511692677810212716421325320119912511214711284116 1361661371331091261261051018061637976899487747675 1111051031061029411892868798108747389126746267103 73929612398114113140144145175105101749792971009672 5264504437496572535644497866665556466181 7953655653524647476263575850595245536155 4758364039434041536066566153586053507162 5842465655596049565753615093536157454864 5962625954474881
DST-A08A 122
2612512422051871371661571791327686841199511815012276107
$\begin{array}{lllllllllllllllllll}96 & 114 & 87 & 109 & 67 & 91 & 82 & 71 & 70 & 46 & 65 & 53 & 58 & 66 & 56 & 67 & 58 & 72 & 79\end{array} 118$
$\begin{array}{llllllllllllllllllll}99 & 65 & 67 & 92 & 77 & 71 & 67 & 74 & 72 & 87 & 66 & 67 & 89 & 97 & 55 & 72 & 84 & 84 & 96 & 99\end{array}$
8987997175788611196919211311892989013812911098
101104728873696779766660684643454637344348
4246384035454951526047524348385244504142 3962
DST-A08B 122
24322924018719014317114317014073971011169313514011898113 98929493798780706266645761756648705877110 $\begin{array}{llllllllllllll}105 & 71 & 73 & 94 & 79 & 64 & 74 & 71 & 61 & 98 & 70 & 85 & 93 & 59 \\ 75 & 88 & 102 & 101\end{array}$ 8788100757370841051079496113127821008713913811289 $\begin{array}{lllllllllllll}114 & 102 & 79 & 82 & 78 & 68 & 62 & 80 & 72 & 76 & 68 & 63 & 48 \\ 46 & 40 & 45 & 34 & 36 & 50 & 42\end{array}$ 4446393932445258456444504649404651424142 4254
DST-A09A 166
6813513013413013513914210193108124113110927274767985
118113127111921281351211231441191691091411291258287105122
131164122111140134173170161203225209194185244163162126220140
1491692382091751801481029389879710689636360514452
$\begin{array}{llllllllllllllll}56 & 57 & 61 & 51 & 63 & 58 & 45 & 68 & 80 & 62 & 46 & 44 & 52 & 58 & 73 & 70 \\ 56 & 62 & 78 & 66\end{array}$

60567287108114868987938179821171047784689371

595558466372
DST-A09B 166
104160131138128138127150100911011051111138466658073106 1171171271051061271371141161561211521451401261377691109126
132165126118132140206157163197225204199185244158163129217153
148167228214174185146110909698959588706558434454
$4860644958564968756156455057706956 \quad 658469$
$\begin{array}{lllllllllllllll}67 & 58 & 69 & 77 & 78 & 81 & 81 & 65 & 72 & 70 & 53 & 59 & 53 & 67 & 63 \\ 69 & 88 & 82 & 74 & 67\end{array}$

7348435751336073786951414951544551516066
645258466266
DST-A10A 111
396539334517318372271456409320359258313266267232269379292330
20418914819021824213316112210590779292123137153150217299
27116513315814913610712916121721017012212314610193131161170

170178210274184182118148200239245206215193214273153176197187 17516214916614514813788116117121121148174166109939382111
9582116120127122116112111154155
DST-A10B 111
395524339514323359295443417318364252319261270232276376294335
200186151182239233132145131107907587101118150149143221327
26816612516215013311212216520520316611713013210486124179173
161173225266164180128153189239266199215196207280153173197191
18516614417613615813195113117118129143174169121928883109
11181118131113127114117115151163
DST-A11A 54
116128129165224357241264247318286302234169111125138165166182 124108111100132103121130145145121153152109130130126109121109
128131177188149184137117116120188170157243
DST-A11A 54
114136135165231356261272248322305298226174116128139156163180 1351091111281231211081161451251181501391121341281118891107 120117172162141166134109116125174189166207
DST-A12A 129
12710112612011710810781105112138166143115112145132178146133 132134118133118140106105103145124148155125134126116998596

$\begin{array}{llllllllllllllllll}54 & 51 & 52 & 44 & 50 & 75 & 66 & 46 & 35 & 37 & 57 & 64 & 47 & 56 & 62 & 60 & 71 & 62\end{array} 6357$

$\begin{array}{llllllllllll}81 & 80 & 66 & 66 & 56 & 76 & 74 & 80 & 86\end{array}$
DST-A12B 129
12610012312911411110684106116135157144125113133134175139139 140129127130116150110105981471281521361281361231071018681
$\begin{array}{llllllllllllllllll}93 & 72 & 88 & 83 & 78 & 55 & 57 & 44 & 37 & 31 & 43 & 51 & 43 & 43 & 52 & 48 & 46 & 38\end{array} 4953$

$\begin{array}{llllllllllllllllllllllllll}85 & 85 & 67 & 72 & 92 & 93 & 97 & 84 & 68 & 86 & 82 & 76 & 65 & 59 & 78 & 74 & 75 & 103 & 113 & 114\end{array}$
$\begin{array}{llllllllllllll}92 & 67 & 64 & 67 & 65 & 70 & 71 & 87\end{array}$
DST-A13A 210
539280738726716713595164171119100128175201177112170133
125167106133116122115891109186788282747363124458

6065861128011793731011001109193118111798710210291
$\begin{array}{lllllllllllllllllllllll}71 & 79 & 102 & 75 & 84 & 95 & 83 & 75 & 72 & 83 & 52 & 43 & 61 & 55 & 67 & 62 & 53 & 58 & 36 & 37\end{array}$
$\begin{array}{lllllllllllllllllll}32 & 29 & 21 & 24 & 22 & 20 & 34 & 35 & 26 & 32 & 21 & 35 & 34 & 29 & 28 & 30 & 24 & 35 & 36 \\ 41\end{array}$
$\begin{array}{lllllllllllllllllll}25 & 37 & 38 & 41 & 38 & 35 & 36 & 36 & 41 & 46 & 39 & 48 & 31 & 37 & 32 & 39 & 33 & 44 & 43 \\ 47\end{array}$
$\begin{array}{llllllllllllllllll}54 & 44 & 42 & 36 & 37 & 36 & 31 & 45 & 49 & 46 & 45 & 53 & 46 & 49 & 44 & 45 & 39 & 48 \\ 43 & 48\end{array}$

$\begin{array}{lllllllll}34 & 29 & 34 & 31 & 25 & 29 & 24 & 30 & 27\end{array} 31$
DST-A13B 210
5910084689026515915592170163114102131165208164121168134
1171701041201151191178311210886748282797358424351

$\begin{array}{llllllllllllllllllllll}67 & 66 & 80 & 105 & 93 & 111 & 93 & 74 & 94 & 110 & 107 & 90 & 102 & 113 & 110 & 85 & 90 & 94 & 104 & 92\end{array}$ $\begin{array}{llllllllllllllllll}70 & 78 & 100 & 80 & 80 & 90 & 85 & 75 & 83 & 82 & 53 & 50 & 61 & 56 & 65 & 64 & 51 & 58 \\ 38 & 36\end{array}$
$\begin{array}{lllllllllllllllllll}35 & 25 & 25 & 17 & 26 & 21 & 38 & 32 & 28 & 28 & 27 & 31 & 34 & 28 & 27 & 33 & 28 & 36 & 38 \\ 35\end{array}$

 $\begin{array}{llllllllllllllllll}37 & 38 & 45 & 48 & 31 & 32 & 25 & 43 & 37 & 33 & 35 & 40 & 35 & 35 & 49 & 28 & 38 & 30 \\ 39 & 38\end{array}$ $\begin{array}{lllllllll}34 & 31 & 33 & 23 & 31 & 29 & 31 & 24 & 30 \\ 39\end{array}$
DST-A14A 140
156134121118123133118127153155118139134154136138148147133111
151116927692929684981028711286839898618565104
998882808711188108879590120101105111889198113100
1301151031471201106794145152138126174168151121161245186205
152128138138121110116125149116159140126112128129141137138150
$\begin{array}{llllllllllllllllllllllll}104 & 84 & 63 & 92 & 107 & 77 & 73 & 76 & 65 & 128 & 84 & 87 & 101 & 104 & 139 & 128 & 115 & 101 & 79 & 99\end{array}$

DST-A14B 140
167138128115128126133114143147123133141150148143143139147120
120122878088971028398106105100998110393698262103
$\begin{array}{lllllllllllllllllllllllllll}99 & 85 & 84 & 78 & 82 & 119 & 88 & 106 & 83 & 88 & 90 & 126 & 103 & 112 & 111 & 86 & 90 & 98 & 114 & 100\end{array}$
1371081151481241006794136160139143177164153122144229191207
147127145135118114114128138136167139119112139137127142140137
12784729797778273691118983106961371431061057596

DST-A15A 62
1181201401181099285114128107120114129118115123107678497
11111612812311612410210110011112010098112101114897110372
84859511310910882876463889171104106116798111584
119174
DST-A15B 62
1161121381291088783109124115129104132118109111106697092
11911013112611913710111110111112010192114102110977410095

123178
DST-A16A 206
28116417916414112914713611913711615212895162126121838077

$\begin{array}{llllllllllllllllllllllllllllllllllll}76 & 56 & 57 & 53 & 63 & 63 & 56 & 66 & 66 & 70 & 68 & 70 & 63 & 70 & 78 & 65 & 73 & 71 & 52 & 60\end{array}$
$\begin{array}{llllllllllllllllll}54 & 59 & 48 & 67 & 41 & 67 & 72 & 57 & 60 & 85 & 56 & 57 & 61 & 57 & 57 & 57 & 58 & 59\end{array} 6863$
$\begin{array}{llllllllllllllllll}57 & 41 & 39 & 49 & 59 & 52 & 43 & 66 & 43 & 61 & 55 & 69 & 69 & 72 & 71 & 46 & 59 & 52 \\ 56 & 63\end{array}$

$26 \quad 5543495480$
DST-A16B 206
187145165156107151150148118133116150125102156117109927482

$\begin{array}{llllllllllllllll}104 & 88 & 102 & 88 & 69 & 56 & 60 & 71 & 62 & 52 & 69 & 64 & 60 & 73 & 66 & 66\end{array} 59 \begin{array}{ll}38 & 63\end{array} 67$

$\begin{array}{llllllllllllllllll}51 & 55 & 53 & 58 & 50 & 65 & 66 & 62 & 61 & 85 & 58 & 57 & 53 & 61 & 61 & 55 & 55 & 62\end{array} 6958$
$\begin{array}{llllllllllllllllll}62 & 46 & 51 & 41 & 54 & 51 & 63 & 58 & 55 & 60 & 55 & 63 & 56 & 60 & 76 & 66 & 52 & 53 \\ 60 & 67\end{array}$
$\begin{array}{llllllllllllllllll}45 & 54 & 67 & 56 & 55 & 47 & 51 & 47 & 59 & 60 & 50 & 44 & 47 & 57 & 55 & 45 & 38 & 41 \\ 57 & 44\end{array}$
$295742 \quad 625274$
DST-A17A 175
266222197245256191313250227225222152186165177201182182180212
12912814413613312311910813911313311990100113918296123109 $130 \quad 999270615062616376848298101929296104105111$ 9081838675869113613914112712514313014012710395116107 7910410692866149627610790961019981739498101102
 841051021079710710110277946871891181039997889696 $\begin{array}{llllllllllllllllllllllllll}113 & 99 & 103 & 105 & 99 & 95 & 86 & 99 & 95 & 106 & 107 & 88 & 102 & 86 & 118 & 69 & 97 & 102 & 105 & 79\end{array}$ $\begin{array}{lllllllllllllllllllll}72 & 77 & 76 & 90 & 104 & 66 & 81 & 85 & 84 & 94 & 76 & 72 & 72 & 75 & 94\end{array}$
DST-A17B 175
247222205222270260284271225208245185207172202203179192178205
1471281431181291091091001331031201159188112667592138113 11810010172595159596272102107921119293101112106107

 9599101114116917793931081061091229611210196999596 841121031101099299100829062768810910710397899199 9910710810195100859010710596111828010292969610786 $\begin{array}{lllllllllllllllllllll}70 & 75 & 76 & 95 & 87 & 74 & 88 & 80 & 89 & 98 & 67 & 78 & 68 & 77 & 87\end{array}$
DST-A18A 90
901121098610515418418020318716691105111124128132120120114 $\begin{array}{llllllllllllllllllllllllllllllllllll}75 & 86 & 80 & 78 & 67 & 86 & 101 & 95 & 69 & 91 & 109 & 110 & 97 & 102 & 81 & 81 & 99 & 111 & 103 & 97\end{array}$ 15316392109106110109746510477119140117947278886674 1119410411211113710210850609911012684109103107111123111 15516212314510011492133141201
DST-A18B 90
1011331037180119176159177170138102110108124109114102111112
96104928372971029877858911411611110193132129126106

93868810494118103107465898951308210611697118109116
136138122123120100100127134143
DST-A19A 98
341286206388320338377240443404318249244138187194179278365309 246271282251223310291235243227194215173141164107129149144194 208270276275255183142169159240238265336391226331280209170151 21327528024327719524615210611916712191108117937693131128 111147170124121120122152138186217209304312296235159203
DST-A19B 98
332286211384305343400228453393296254233150191188181287366309 228292286253212290290235233240175213164144138124129136145164 225262279271254199140163133261250271319358239327275190153160 2242932662642312002621221111402149389103122908090130128 111143161123139124113154133194187257301290288223171215

DST-A20A 90
119796266545542517899951066247646152556764
 13811913615216111511811315115813112714011412716511612388117 9684891188911311710510579135676386788811210885101 9611080991027469585494
DST-A20B 90
$\begin{array}{lllllllllllllllll}139 & 95 & 67 & 66 & 61 & 48 & 43 & 56 & 74 & 90 & 96 & 105 & 63 & 52 & 69 & 61 & 46 \\ 74 & 52 & 69\end{array}$
 158124132143143134113113163130155112128128135140125104105102 9990881091031121231011129713560598780851061077687 6611076871057167945084
DST-A21A 58
137160181149172176172150154225182184147123189168182151123159 1341661361231101191371241191461181341481281251261309373119 135121135108116110107999110511612610411599119107110
DST-A21B 58
112150166144170191161164157212190167140134183174188146145165 1191731321261111251321231271371071381431271301301288773114 124130127123110113102891019313111711296104121114109 DST-A22A 104
17813717220923618114915613412013818314416121013312077131177 16516013611912513516695991011321121231301301051098785105
98100949359615796114146144154139109908810486108110
11610892901059795119153145128110103119130132108127155142
1411251681621101081121081261301241289110092131122101116146 115115134163
DST-A22B 104
19215315021421818715415713113613916915416120712912487125176 171162135120132144152119991081391081121251151261028892100 9899979965546296117141140126137118899010599108126 1021089097101929213913215112589103143122122114122162150 140115176155120841041181261271151259996111101104118128109 13098138145
DST-A23A 91
1782081861511932031891941762141621601221278811784707593 8062767355515683126156111112120958790103110111117 110112981059299107120167137137129115144155142126148194183 17215419420914113011612216813813814498129119119126119138170 1181171611901961801902131409562
DST-A23B 91
2062131741501762142061871652412442021531421301211019678105 9191858554415796125165137121119107829912694109121 127110989796103103127155155140121114158128130135142201167 18515619121513412012713215413713614096127118122114123133183 11011915515623515418121013310778
DST-A24A 57
42035024520889169263317257347329417334285270320459379347256
349403328275308279282266236268366346376273259340341273177113
1262023152702312501781797991173191267190203171168

DST-A24B 57
39735324020298188254317266315362413305314276334365403323262 335423316268332284265282252257385318357282252354349282147109 1701843042722282701741788990158185262186210175173 DST-A25A 78
212284293264248291246287216193222198109121821611621028979 5791101107123103998168537610112810590799686114154
131157145163911201032111841871761772482038395117126208202 2072141049789921191641291261571561527262100114138 DST-A25B 78
183277281262250313252280216194218201103124811721481178271 64909711411410997886255749712898103879799109129 1261891721411001431012021961811791812251959398130116208206 2022199510793103111164127123161158139787497103129
of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straight forward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify, For example, sapwood can be seen in the comer of the rafter and at the outer end of the core in Figure 2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et ai 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of 6 ($=15$ 9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. (Oak boards quite often come from the Baltic and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56)).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood but that none of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to
t-value/offset Matrix

Bar Diagram

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t values.

The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.
have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998 and Miles 1997, 50-55). Hence provided all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, figure 8 and pages $34-5$ where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storing before use or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Fig 7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomena can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Fig. 6 Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Fig 7. (b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, Tree-Ring Bulletin, 33, 7-14

English Heritage, 1998 Dendrochronology; Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxon, R R, Litton, C D, and Howard, R E, 2001 Timber; Dendrochronology of Roof Timbers at Lincoln Cathedral, English Heritage Research Transactions, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architecture, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

