Tree-Ring Analysis of Timbers from the Rigging Loft and Chapel Undercroft, Trinity House, Broad Chare, Newcastle upon Tyne, Tyne and Wear

R E Howard, Dr R R Laxton and Dr C D Litton

© English Heritage 2002
ISSN 1473-9224

The Centre for Archaeology Reports Series incorporates the former Ancient Monuments Laboratory Report Series. Copies of Ancient Monuments Laboratory Reports will continue to be available from the Centre for Archaeology (see back of cover for details).

Tree-Ring Analysis of Timbers from the Rigging Loft and Chapel Undercroft, Trinity House, Broad Chare, Newcastle upon Tyne, Tyne and Wear

R E Howard, Dr R R Laxton and Dr C D Litton

Abstract

Summary Twenty-seven samples from the "rigging loft" building, plus twelve samples from the undercroft of the separate, though adjacent, chapel of the Trinity House complex in Newcastle upon Tyne, were analysed by tree-ring dating. This analysis produced three site chronologies, and the dating of a further single sample.

The first site chronology, NWCASQ01, consists of ten samples and has 128 rings spanning the period AD 1397 to AD 1524. All samples are from the roof of the rigging loft and indicate that the present roof is a replacement of the original medieval one, being made of timber felled in AD 1524.

The second site chronology is made up of five samples, four from the chapel undercroft and one from the ground-floor ceiling of the rigging loft. It has 234 rings spanning the years AD 950 to AD 1183. One timber from the chapel undercroft was certainly felled in AD 1183 and it is possible that the other four were felled at the same time. However, it is equally possible that some of the timbers have different felling dates, though one is unlikely to have been felled later that AD 1209. These samples are possibly reused in their present location. However if they are in their original position they would represent the remains of a very early pre-chapel building on the site.

A third site chronology, NWCASQ03, consists of 3 samples from the rigging loft roof. It has 82 rings but it cannot be dated.

A single sample, NWC-ASQ18, from the ground-floor ceiling of the rigging loft was also dated. This has 69 rings spanning AD 1381 to AD 1436. The timber represented was felled in AD 1436.

Keywords

Dendrochronology
Standing Building

Author's address

University of Nottingham, University Park, Nottingham, NG7 2RD
Many CfA reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subject to external refereeing, and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore advised to consult the author before citing the report in any publication and to consult the final excavation report when available.

Introduction

Trinity House, Newcastle (NZ 253640; Figs 1 and 2), comprises a number of distinct, separate, buildings all grouped around a courtyard. The buildings range in date from the medieval period to the early nineteenth century and include Dog Bank Building, otherwise known as the "rigging loft" after a former use, a chapel, hall, school room, board room, and almshouses. Surveys of Trinity House have previously been undertaken and include McCombie (1985) and Ryder (2001 unpubl).

The earliest extant document relating to the site is dated to AD 1524 , being made by the Guild of the Blessed Trinity. This states that in AD 1505 the site had consisted of a messuage with cellars, and a garden with appurtenances in Broad Chare, and that a building once known as Dalton's Place stood here. It was upon this site that the chapel, hall, almshouses etc were to be built.

The AD 1524 documents refer to earlier deeds of sale, now lost, which would put the existence of the site and possibly Dog Bank Building itself as early as AD 1421 . The AD 1524 document also states that lofts were added on the north side of the curtilage and above the cellars of Dog Bank Building. It is not clear here whether "above" is used in the sense of directly over the lower rooms of Trinity House, or lying adjacent to, but higher up the low hill upon which Dog Bank Building stands. Archaeological excavations have shown that the area where the Trinity House complex now stands was possibly part of the river Tyne at least as late as the twelfth century. If this interpretation is true it is unlikely that buildings stood here at that time (Ryder pers comm.).

From AD 1530 the Guild start to keep account books and the history of the rest of the site is well known from these sources. These describe amounts expended in maintenance, repair, and further building. They also give a description of the rooms and their uses, and amounts paid for the benefit of the poor housed within. Of these the purchase of coal for heating, and of soap for washing, are common features.

It is with two parts of the Trinity House complex in particular, Dog Bank Building and the chapel undercroft that this report is particularly concerned.

The buildings

Dog Bank Building - the "rigging loft"

Dog Bank Building, or the "rigging loft", is the best preserved medieval structure on the site. It comprises a three storeyed parallelogram block enclosing the north side of the courtyard. On the basis of the stylistic evidence of the stonework, window and door openings etc, and on the basis of the original steep pitch of the roof, deduced from survey work, the building is believed to be of early fourteenth-century date.

The present lower-pitched roof of the rigging loft is believed to be a later, probably sixteenth-century, replacement of the original. This present roof is of five full bays plus a further half-bay at each end in consequence of the parallelogram plan of the building (Fig 3). It consists of six trusses with slender king-posts, some of the king posts having braces rising to the square set ridge; coupled common rafters are to be found between each truss. The principal rafters carry double purlins to each pitch.

There are no timbers to be seen on the second floor of the rigging loft and whilst large timbers are visible on the first floor these had too few rings for satisfactory analysis by dendrochronology. The ceiling of the ground floor, however, consists of five large principal transverse beams supporting numerous smaller common joists (Fig 4). The principal beams are substantial timbers and it is believed that they are possibly original although other interpretations suggest that they are later insertions, possibly of seventeenth-century date. One of them, beam
number four, counting from the east, is of some sort of softwood, and may in fact be nineteenth or even twentieth century in date. A further beam, number three, is spliced to another timber at its northern end very close to where it runs into the north wall. Some of the principal beams are supported by timber posts, beam number two for example to north and south end, and number three at its south end only. The posts are largely buried in the walls and apart from one are difficult to access. The ends of some of the other principal transverse beams are supported by metal posts.

It is believed that the common joists which the main principal beams support are all reused, or at least not in their original positions. This is because none of the common joists are jointed into the principal beams and all are cut off where they meet the principals; the ends of the common joists sometimes slightly overlap side-by-side with each other on the principal beams. Some of these common joists have redundant mortices also. There is thus appears to be considerable evidence of possible alteration to the ceiling timbers and hence considerable uncertainty as to its date.

The chapel undercroft

The documentary evidence shows that the chapel building, separate but adjacent to the rigging loft, was founded in AD 1505. However, recent repair and restoration at the chapel has revealed what are believed to be early wooden timbers. The ground-floor room, or undercroft, of the chapel, contains a large axial spine-beam in its western half, the beam being in three sections joined by scarfs (Fig 5).

The spine-beam is supported at its mid-point by a timber Samson post. The post has straight braces rising on its east and west sides, post and braces rising to a horizontal "bolster" beam, on the same line as, and supporting, the spine-beam. To the west end of the undercroft the spine-beam continues to a stone cross-wall where it is supported by a slightly curved brace or bracket. At the east end the spine-beam runs into the brick wall of an internal partition where again there is a curved bracket. None of these timbers show any architectural or structural evidence for being reused in their present location.

In the eastern half of the undercroft the spine-beam is missing altogether, but excavation of the floor revealed the shaped stone plinth for a second Samson post. The undercroft also has three window openings. Each of these has at least three and sometimes four closely set timber lintels.

Sampling

Sampling and analysis by tree-ring dating of the two buildings of Trinity House described in the introduction above, the rigging loft and the chapel undercroft, were commissioned by English Heritage. The purpose of this was to assist in informing listed Building Consent proposals and establish a possible sequential development and alteration of the site. It was hoped that dendrochronological dating would provide dating of otherwise undocumented buildings on the site to inform forthcoming repairs and contribute to site interpretation. It was further hoped that tree-ring dating would also help in the construction of regional roof typologies.

For the rigging loft sampling was to concentrate firstly on the roof to establish whether or not this replacement dated to the sixteenth-century, and secondly on the timbers of the ceiling of the ground floor. The purpose of the latter was to determine which of the timbers might be later replacements and which, if any, may be of medieval date and possibly belong to the original medieval structure.

It was hoped that sampling of timbers from the chapel undercroft would determine whether or not they dated from its foundation in AD 1505 , or whether they belonged to some earlier, pre-chapel, structure.

Thus, after on-site discussions and in conjunction with the English Heritage brief, a total of twenty-seven core samples was obtained from the rigging loft. Each of these samples from the rigging loft was given the code NWCA (for Newcastle, site "A"), and numbered $01-27$. A further twelve samples were obtained from the chapel
undercroft. To help distinguish these from the first batch these were given the code NWC-B (for Newcastle, site " B "), and numbered $01-12$. This sampling information can be summarised thus:

Sample numbers Sample location

NWC-A01-17	Rigging loft roof
NWC-A18-20	Rigging loft, principal transverse beams, ground-floor ceiling Rigging loft, common joists, ground-floor ceiling
NWC-A21-27	
NWC-B01-12	Chapel undercroft

Although the common joists of the ground-floor ceiling of the rigging loft show evidence of possible reuse, they appeared to contain a large number of rings and, particularly important, they retained complete sapwood. It was hoped that if these were sampled and be dated, and could be reliably cross-matched with samples from known original in-situ timbers from the site then they might provide precise dating for the felling of the timber. At the very least it was felt that they might provide local tree-ring data from the Newcastle area.

The positions of these samples are marked on plans drawn for the occasion by Peter Ryder, or made by him earlier and provided by English Heritage. These are reproduced here as Figures 3-5. Details of the samples are given in Table 1. In this report the bays and trusses have been numbered and described from east to west, or from north to south as appropriate.

The Laboratory would like to take this opportunity to thank Captain Shipley, Master of Trinity House, for his help in accessing the site during sampling. We would also like to thank Martin Roberts of the English Heritage Northeast Regional Office in Newcastle for arranging site access. In particular we would like to thank Peter Ryder, recording archaeologist, who helped assess the possible phasing of the timbers, quickly provided drawings used in this report, and kindly provided his notes and information used in the introduction above.

Analysis

All thirty-nine samples from the three areas of Trinity House were prepared by sanding and polishing and their annual growth-ring widths measured. Analysis then proceeded in stages. In the first stage the samples were analysed in separate groups according to their sampling location, the rigging loft roof, the ground-floor ceiling beams, and the chapel undercroft. However, in this first stage only groups of samples were compared with the reference chronologies, no attempt was yet made to date any remaining ungrouped individuals. In the second stage the samples from all three areas were brought together and compared with each other as a single group of thirtynine. Any further site chronologies thus created were then dated by comparison with the reference chronologies for oak, compared with each other, and then compared with any remaining ungrouped samples. Only once this was completed was each remaining ungrouped sample compared individually with the reference chronologies.

As a result of this process, at a minimum t-value of 4.5 , three groups of samples could be formed. The ten samples of the first group, all from the rigging loft roof, cross-matched with each other, as shown in the bar diagram Figure 6 , to form a single site chronology, NWCASQ01, of length 128 rings. Site chronology NWCASQ01 was compared with a series of relevant reference chronologies for oak, giving it a first ring date of AD 1397 and a last measured ring date of AD 1524. Evidence for the dating of site chronology NWCASQ01 is given in the t-values of Table 2.

Eight of the ten samples in the site chronology retain complete sapwood, that is, they have the last growth ring that the tree from which they were taken produced before it was felled. In each case the last complete sapwood ring date is the same, AD 1524.

The second group of five samples to form cross-matched with each other as shown in the bar diagram of Figure 7. These samples were combined at these relative positions to form site chronology NWCASQ02 of length 234 rings. When compared with the reference chronologies this site chronology has a first ring date of AD 950 and a last measured ring date of AD 1183. Evidence for this dating is given in the t-values of Table 3. One sample in this site chronology, NWC-B04, retains complete sapwood, this last ring being dated to AD 1183. However, it is not certain whether this represents the felling date of all the other timbers represented by this site chronology.

As will be seen from the bar diagram of Figure 7 the site chronology NWCASQ02 is made up of five samples. Four of them, NWC-B03, B04, B05, and B06, are from sections of the central spine-beam and bolster of the chapel undercroft, with the fifth, NWC-A25, being from a joist from the ground-floor ceiling of the rigging loft. The t-values of the cross-matching between the individual samples are shown in Table 4. It will be seen from this that the highest t-value is between samples from the two different areas, NWC-A25, from the ground-floor ceiling of the rigging loft and sample NWC-B03, from the chapel undercroft.

It may be seen from the cross-matching of site chronology NWCASQ02, that the reference chronologies used in Table 3, apart from HARTLEPOOL, are not particularly local to north-east England; only those from Carlisle and Scotland might be considered so. The others are from different parts of the country especially the Midlands and eastern England. A chronology from Wales is also represented. The need to use wider-ranging reference material may be due to the early date of the material represented by NWCASQ02, there being virtually no early reference chronologies available for north-east England.

The third site chronology to be formed consists of two samples, NWC-A03 and A14 from the rigging loft roof, plus one, NWC-A20, from the ground-floor ceiling. The relative positions of these are shown in the bar diagram of Figure 8. The three samples were combined at these positions to form site chronology NWCASQ03 with eightytwo rings and compared with a full range of reference material. It could not, however, be dated.

The three site chronologies were compared with each other, and with the remaining ungrouped samples. There was, however, no further satisfactory cross-matching. Each individual ungrouped sample was then compared with the reference chronologies. This indicated a date for one sample only, NWC-A18, from a principal beam in the ground-floor ceiling of the rigging loft. This has a first ring date of AD 1381 and a last, complete sapwood, ring date of AD 1449 . Evidence for this date is given in the t-values of Table 5.

Each of the samples in the undated site chronology NWCASQ03 was also compared individually with a full range of reference chronologies. Again, however, there was no satisfactory dating

Interpretation

Analysis by dendrochronology has produced three site chronologies. The first, NWCASQ01, consisting of ten samples from the roof of the rigging loft, is 128 rings long and spans the period AD $1397-\mathrm{AD} 1524$. Interpretation of the sapwood suggests that the majority of the timbers in the roof were cut as a single felling in AD 1524.

A second site chronology, NWCASQ02, has 234 rings and is dated as spanning the period $\mathrm{AD} 950-\mathrm{AD} 1183$. It consists of four samples from the chapel undercroft, one of which (NWC-B04), has complete sapwood with a last measured ring date of AD 1183, and one sample from a joist in the ground-floor ceiling of the rigging loft. If it is accepted that the timbers represent trees cut in a single operation, then their felling date would be AD 1183.

However, such an interpretation is not certain because three of the samples, NWC-B03, B05, and B06, do not have the heartwood/sapwood boundary, and one sample, NWC-A25, which does, is from a different location. It is possible that we have here timbers from a similar, or indeed the same, source with slightly different felling dates. If we were to estimate the felling date of sample NWC-A25 alone, with its heartwood/sapwood boundary date of AD 1159, this would be in the range AD 1174 - AD 1209. Such an estimated felling date range is based on a 95% confidence limit for the amount of sapwood on mature oaks from this part of England as being in the range 15 -

50 rings. It will be noted that the felling date of the tree represented by sample NWC-B04, AD 1183, lies well within this range.

Having thus addressed the possibility of multi-phase timbers, it is more probable that the timbers are of one phase of felling, given the use of most of the timbers as part of a single feature, the central spine-beam, and their degree of internal cross-matching

A third site chronology, consisting of three samples from the rigging loft roof and 82 rings long, could not be dated, nor could, individually, its component samples.

Of the remaining individual samples only one, NWC-A18, from a principal beam of the ground-floor ceiling of the rigging loft could be dated. Retaining the last complete sapwood ring it represents a tree felled in AD 1449.

A number of samples remain ungrouped and undated.

Conclusion

From the analysis it would appear that the majority of the timbers of the rigging loft roof are made up of trees with a single felling date, AD 1524 , and that, as believed, the roof is a later replacement of the original. These trees must represent the work described in the document of AD 1524 , referring to the addition of lofts above the cellars belonging to Trinity House and on the north side of the curtilage. It is now obvious that these were directly above the cellars and not higher up the hill.

The ceiling of the ground floor of the rigging loft has at least two timbers with different felling dates. One timber, a main principal beam and represented by sample NWC-A18, is from a tree felled in AD 1449. The second timber, a joist and represented by sample NWC-A25, is from a tree possibly felled in AD 1183, and almost certainly felled between AD 1174 and AD 1209. The relationship of the very early date for this timber with the building is difficult to interpret apart from the probability that it is a timber reused from some other, much earlier building; likewise the timber with the AD 1449 felling date. It is possible that this may be a timber belonging to the medieval building on the site, possibly that once known as Dalton's place, but, being a single sample this is impossible to prove and no such conclusion should by inferred from it.

The chapel undercroft contains a small number of timbers that were probably felled in AD 1183 at least one timber, represented by sample NWC-B04, certainly was. If the archaeological interpretation that this area was part of the river in the twelfth century, when at least some of the timbers used in the undercroft were felled, is correct it would be very unlikely that a building could have stood here and the spine-beam represents reused timbers. However, if the archaeological interpretation is not correct it is possible that the spine beam represents part of a very early, pre-chapel, structure on this site.

An unusual feature of this site is the number of samples that not only fail to date, but fail to cross-match with each other. This is particularly a feature of the samples from the ground-floor ceiling of the rigging loft, which were especially sampled for this, and the chapel undercroft. In the former there are three ungrouped and undated samples with over 100 rings. Although the ungrouped and undated samples from the undercroft are shorter, they are still long enough for satisfactory tree-ring dating.

There is no particular reason why there might be any difficulty with these. The ring-widths of some of the samples are slightly narrow, but not unusually so. One wonders whether many of the timbers represented, apparently being reused here, are from multiple sources and of multiple dates. The proximity of the site to the late medieval quayside may make the import of timbers a greater possibility. There is no positive evidence of this on dendrochronological grounds, but it might lead to the use of timber from disparate sources. In any case, these samples will be assessed again as part of a forthcoming collective analysis of all material from north-east England.

Bibliography

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-EOI, Queens Univ, Belfast

Baillie, M G L, 1977 An oak chronology for South Central Scotland, Tree-ring Bulletin, 37, 33 - 44
Hillam, J 1983, Tree-ring analysis, Hartlepool Southgate 1982, Anc Mon Lab Rep, 4132
Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1985 List 15 no 1a/b - Nottingham University TreeRing Dating Laboratory: general list, Vernacular Architect, 16, 40

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1988 unpubl (Seaton Holme, Easington, Co Durham), unpubl computer file EASASQ10, Nottingham Univ Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 unpubl (Beamish Museum, Co Durham), unpubl computer file BEAMSQ01, Nottingham Univ Tree-Ring Dating Laboratory

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1991 List 39 nos 2a, 10 - Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 22, 40 - 3

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Thornes, R and Hook, R, Royal Commission on the Historical Monuments of England, 1992a List 47 nos 3, 4c - Nottingham University Tree-Ring Dating Laboratory: truncated principal trusses project, Vernacular Architect, 23, 59-61

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992b List 44 no 22 - Nottingham University TreeRing Dating Laboratory results, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook, R, Royal Commission on the Historical Monuments of England, 1993 List 50 no 4 - Nottingham University Tree-Ring Dating Laboratory: RCHME joint northern project, Vernacular Architect, 24, 45-6

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook, R, Royal Commission on the Historical Monuments of England, 1994a List 59 no la - Nottingham University Tree-Ring Dating Laboratory: RCHME joint northern project, Vernacular Architect, 25, 43 - 4

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994b List 57 no 13 - Nottingham University TreeRing Dating Laboratory results, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Roberts, H M, North East Vernacular Architecture Group, 1995 List 62 no 1 - Nottingham University Tree-Ring Dating Laboratory: buildings of the religious estates in medieval Durham; dendrochronological survey 1994-5, Vernacular Architect, 26, 55-6

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Roberts, H M, North East Vernacular Architecture Group, 1996 List 67 nos 1, 2, 3 - Nottingham University Tree-Ring Dating Laboratory: buildings of the religious estates in medieval Durham; dendrochronological survey 1994-5, Vernacular Architect, 27, 85-6

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, IIII

McCombie, G, 1985 The Buildings of Trinity House, Newcastle upon Tyne, Archaeologia Aeliana, 5, XII, 16385

Ryder, P, 2001 unpubl, Trinity House, Broad Chare, Newcastle upon Tyne. The Structural Inventory, unpubl report for Tyne and Wear Museums Archaeology Department

Table 1: Details of samples from Trinity House, Broad Chare, Newcastle upon Tyne
Sample
number

Sample location	Total rings
Rigging lof rof	

$\begin{aligned} & \text { *Sapwood } \\ & \text { rings } \end{aligned}$	First measured ring date
18C	AD 1455
19C	------
no h/s	----
18C	-----
no h/s	AD 1419
6	AD 1451
no h/s	---
27 C	AD 1418
no h / s	------
17 C	AD 1450
16 C	AD 1470
23 C	------
17 C	AD 1461
h/s	------
19C	AD 1424
19 C	AD 1397
18 C	AD 1440

Last heartwood ring date	Last measure ring date
AD 1506	AD 1524
---	----
------	------
------	AD 1489
------	AD 1489
AD 1509	AD 1515
------	------
AD 1497	AD 1524
------	----
AD 1507	AD 1524
AD 1508	AD 1524
------	------
AD 1507	AD 1524
------	---
AD 1505	AD 1524
AD 1505	AD 1524
AD 1506	AD 1524

Table 1: continued

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
	Rigging loft ground-floor ceiling her					
NWC-A18	Principal transverse beam 2	69	13 C	AD 1381	AD 1436	AD 1449
NWC-A19	Principal transverse beam 3	41	15 C	------	------	------
NWC-A20	Principal transverse beam 5	82	23 C	-------	------	------
NWC-A21	Common joist 5, bay 2	143	23 C	------	------	-------
NWC-A22	Common joist 9, bay 2	78	h/s	-------	------	------
NWC-A23	Common joist 8, bay 2	63	16C	------	------	------
NWC-A24	Common joist 5, bay 3	49	19C	------	------	------
NWC-A25	Common joist 3, bay 4	152	h/s	AD 1008	AD 1159	AD 1159
NWC-A26	Common joist 5, bay 5	107	26 C	------	------	------
NWC-A27	Common joist 10 , bay 5	109	23 C	------	------	------

NWC-B01	East bracket	73	h / s	------	------	------
NWC-B02	Central Samson post	106	h / s	-------	------	-------
NWC-B03	Central spine-beam, east section	100	no h / s	AD 1007	------	AD 1106
NWC-B04	Central spine-beam, west section	181	30C	AD 1003	AD 1153	AD 1183
NWC-B05	Central spine-beam, middle section	112	no h/s	AD 950	-------	AD 1061
NWC-B06	"Bolster" beam at Samson post	130	no h / s	AD 976	------	AD 1105
NWC-B07	West brace to Samson post	101	44 C	------	------	-----
NWC-B08	East brace to Samson post	45	no h/s	------	------	------
NWC-B09	Outer lintel, window 1	58	h / s	------	------	------
NWC-B10	Middle lintel, window 1	51	no h / s	------	------	------
NWC-B11	Inner lintel, window 2	71	h/s	------	------	------
NWC-B12	Inner lintel, window 3	55	h / s	-------	---	------

*h/s = the heartwood/sapwood boundary is the last ring on the sample
$\mathrm{C}=$ complete sapwood retained on sample, last measured ring date is felling date of tree

Table 2: Results of the cross-matching of site chronology NWCASQ01 and relevant reference chronologies when first ring date is AD 1397 and last ring date is AD 1524
Reference chronology Span of chronology t-value

Ingleby Greenhow, N Yorks
The College, Cathedral Precinct, Durham Old Queen's Head, Sheffield, S Yorks
Kepier Hospital, Durham
Nether Levens Hall, Cumbria
East Midlands
England
Witton Hall, Witton Gilbert, Co Durham

$\mathrm{AD} \mathrm{1429-1563}$	8.5	(Howard et al 1993)
$\mathrm{AD} \mathrm{1364-1531}$	7.8	(Howard et al 1992a)
$\mathrm{AD} \mathrm{1370-1498}$	6.6	(Howard et al 1992b)
$\mathrm{AD} \mathrm{1304-1522}$	6.5	(Howard et al 1996)
$\mathrm{AD} \mathrm{1395-1541}$	6.5	(Howard et al 1991)
$\mathrm{AD} 882-1981$	6.0	(Laxton and Litton 1988)
$\mathrm{AD} \mathrm{401-1981}$	5.8	(Baillie and Pilcher 1982 unpubl)
$\mathrm{AD} \mathrm{1395-1475}$	5.5	(Howard et al 1996)

Table 3: Results of the cross-matching of site chronology NWCASQ02 and relevant reference chronologies when first ring date is AD 950 and last ring date is AD 1183

Reference chronology
HARTLEPOOL
Scotland
East range, Carlisle Guildhall, Cumbria
Brecon Cathedral
East Midlands
England
St Hugh's Choir, Lincoln Cathedral
Angel Choir, Lincoln Cathedral

Span of chronology t-value

AD 851-1212	11.0	(Hillam 1983)
$\mathrm{AD} \mathrm{946-1975}$	3.8	(Baillie 1977)
$\mathrm{AD} \mathrm{976-1382}$	5.1	(Howard et al 1994a)
$\mathrm{AD} \mathrm{996-1227}$	4.7	(Howard et al 1994b)
$\mathrm{AD} \mathrm{882-1981}$	7.5	(Laxton and Litton 1988)
$\mathrm{AD} \mathrm{401-1981}$	4.2	(Baillie and Pilcher 1982 unpubl)
$\mathrm{AD} \mathrm{882-1191}$	7.0	(Laxton and Litton 1988)
$\mathrm{AD} \mathrm{912-1248}$	6.7	(Howard et al 1985)

Table 4: t-value off-set matrix to show cross-matching between individual component samples of site chronology NWCASQ03

Off-sets above diagonal, t-values below diagonal

Table 5: Results of the cross-matching of sample NWC-A18 and relevant reference chronologies when first ring date is AD 1381 and last ring date is AD 1449

Reference chronology

Beamish, Co Durham

Seaton Holme, Easington, Co Durham
Choir roof, Durham Cathedral
Byers Garth, Sherburn, Durham
Witton barn, Witton Gilbert, Co Durham
The Close, Newcastle upon Tyne
England
East Midlands

Span of chronology t-value

$\mathrm{AD} \mathrm{1342-1441}$	8.0	(Howard et al 1990 unpubl)
$\mathrm{AD} \mathrm{1375-1489}$	6.3	(Howard et al 1988 unpubl)
$\mathrm{AD} \mathrm{1346-1458}$	6.1	(Howard et al 1992a)
$\mathrm{AD} \mathrm{1330-1448}$	5.8	(Howard et al 1995)
$\mathrm{AD} \mathrm{1342-1441}$	5.6	(Howard et al 1996)
$\mathrm{AD} \mathrm{1365-1513}$	5.1	(Howard et al 1991)
$\mathrm{AD} \mathrm{401-1981}$	4.9	(Baillie and Pilcher 1982 unpubl)
$\mathrm{AD} \mathrm{882-1981}$	4.4	(Laxton and Litton 1988)

Figure 1: Map to show general location of Trinity House

© Crown Copyright and database right 2013. All rights

Figure 2: Map to show specific location of the rigging loft (128) and the chapel undercroft (131) at Trinity House

Figure 3: Plan to show sampled timbers from the rigging loft roof (based on shetch drawing made at time of sampling by Peter Ryder)

Figure 4: Sketch diagram to show sampled timbers from the rigging loft ground-floor ceiling (based on architectural drawing)

Figure 5: Drawing to show sampled timbers from the chapel undercroft. Samples B09-B12 from window lintels not shown (based on survey drawing by Peter Ryder)

Figure 6: Bar diagrams of the samples in site chronology NWCASQ01

White bars = heartwood rings, shaded area = sapwood rings $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample

Figure 7: Bar diagrams of the samples in site chronology NWCASQ02

Figure 8: Bar diagrams of the samples in site chronology NWCASQ03

White bars = heartwood rings, shaded area = sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample
$\mathrm{C}=$ complete sapwood retained on sample

Data of measured samples measurements in 0.01 mm units

NWC-A01A 70
258367419304310304303338268286223230293275284340284270189103 10916123420622318320112611119119028742426425220492120119182 2202682241951801217172116240222178151181292195182261251169 155141160194147132768667126
NWC-A01B 70
239364441312305313316330274266222216280282270357306265204121
10716520320020320220812311620913728942426024621192122119172
2232642371881791147372115238218181140192300191167267256169 153139162195137149718762122
NWC-A02A 46
257140114772432441903073771681301106565128164157213164196
21717211216016222720017414220815114512385101139152143119146
1129811616564108
NWC-A02B 46
263142117782332511973103631611301166670127168153209166197
22914610714615421917715314621114614112788100135135164104149
1119611815369101
NWC-A03A 75
206205267275266232286169291224217218184272279221148184197178 16414919917518918012912597145137162180154130131159139131179 1461561751011051451401239589107168134151191232209187136155 144139141143173147147185112161130159158146168
NWC-A03B 75
197201273272258236270200299226203220184277262238149183195170 164154199175186178122111102161144142192163121141153133143181 149166162981091451431129887101164137158193244205188133151
145145132138180143161194106146124156165153169
NWC-A04A 66
42834442235523229423232933730837235633111879121150221219195 143133185184203317218226164188256293226269194163130104131108 12114722514913719216912510612819219618098136176128162116104 10613712665124192
NWC-A04B 66
4283434403542502652843233383183923593269012496161238241196
149131198176222289227241164185258291268268183153136104118119
139135237134131196187104107115190181181110128164129151117105
11013413373122181
NWC-A05A 71
169250259258301250248139196287304238228265183241213193189196 154171172144161185205107160155128107143154160202137183186149 141150158137157122135149173189164165146151125108133139171140 151105150133146147136148179133159
NWC-A05B 71
181267245250312247236154192297292237217283187239207211166199 147169163146164177194102164138138107143151157213138174194146 149133152127151131133149167196158161147149127114134137166146

158121140134142154124143181139157
NWC-A06A 65
1151151131451251291569410280121102118120148127185152120140 13111011196124128135134145139141152164243212267233184166153 102864450739998146189197168150176257203181168231201198 163179166195169
NWC-A06B 65
114109119144123135152939688127102124112146137187154128126 142119110101116124134132150136144142168244208267243174164156 93915046689496157193195159148174251203176164233208203 165163194172164
NWC-A07A 54
139113153234157134208250292214226401386418657443392504275469 403400300267189237254268234226292283177233182159101222537 $\begin{array}{lllllllllllllllllll}45 & 56 & 63 & 58 & 51 & 20 & 30 & 76 & 72 & 77 & 161 & 135 & 116 & 119\end{array}$
NWC-A07B 54
102114149232137127228246254208236400375414643457382507277484 395402306253185247245273236220283284170236178158104312636 $\begin{array}{lllllllllllllllll}43 & 53 & 63 & 58 & 56 & 19 & 29 & 76 & 73 & 83 & 157 & 133 & 116 & 129\end{array}$
NWC-A08A 107
324240361279305392263275272242381420274333354256236234183164 170121185181112161154170127128128131111116205246214189234139 11010812612415812912594646498751051086666526211694 116999512658571128810514281116776557527082100106 1321469064721041111149466102132127114821199812097100 114878394104162210
NWC-A08B 105
385253372287299404248286256240373424268336344262232226189160
172121183181116151155178122134125128106117212254211192232153
10510911912416412512892666892789811371595467110102
$\begin{array}{lllllllllllllllllllllllllllll}115 & 108 & 98 & 126 & 54 & 59 & 109 & 98 & 93 & 131 & 74 & 115 & 73 & 65 & 52 & 55 & 65 & 70 & 100 & 94\end{array}$

110918490102144168
NWC-A09A 103
$\begin{array}{llllllllllllllll}123 & 112 & 74 & 96 & 101 & 75 & 153 & 177 & 92 & 71 & 78 & 45 & 47 & 68 & 81 & 78 \\ 53 & 89 & 70 & 67\end{array}$
$\begin{array}{llllllllllllllllll}60 & 75 & 85 & 72 & 90 & 52 & 48 & 54 & 34 & 59 & 50 & 60 & 66 & 48 & 38 & 31 & 39 & 33 \\ 41 & 48\end{array}$

69105149152104151132101228139246183115124117119146143110148 1601361539678901469915518311010288143124157238203176175 175157224
NWC-A09B 103
$\begin{array}{llllllllllllll}119 & 114 & 77 & 92 & 101 & 74 & 152 & 165 & 97 & 74 & 83 & 54 & 49 & 66 \\ 79 & 74 & 59 & 89 & 66 & 61\end{array}$
$\begin{array}{llllllllllllllllll}61 & 77 & 87 & 78 & 84 & 51 & 48 & 54 & 34 & 63 & 48 & 55 & 65 & 48 & 35 & 31 & 34 & 42 \\ 41 & 52\end{array}$
$\begin{array}{llllllllllllllllll}53 & 48 & 61 & 62 & 74 & 53 & 99 & 77 & 79 & 50 & 61 & 57 & 70 & 44 & 75 & 77 & 78 & 60\end{array} 6546$
7289142111103137119105232131262183112126113121148140110148
15613615595867315510014718912097104147106163232199187190 155163203
NWC-A10A 75
163209317301248191269244149157143150163212241255302374359265 23722119923717122524820620019012413311386797174656358 $\begin{array}{llllllllllllllll}54 & 52 & 47 & 43 & 42 & 46 & 46 & 44 & 36 & 42 & 48 & 54 & 59 & 61 & 76 & 83 \\ 51 & 54 & 70 & 91\end{array}$
$\begin{array}{llllllllllllllll}85 & 93 & 88 & 95 & 83 & 106 & 85 & 98 & 88 & 90 & 90 & 83 & 110 & 76 & 99\end{array}$
NWC-A10B 75
175196313296255212240234152160149162166217230273282377354264 22921820523916923224019820319012614010594687466686660

$\begin{array}{lllllllllllllllllllll}82 & 93 & 94 & 83 & 81 & 104 & 84 & 99 & 98 & 98 & 74 & 84 & 110 & 84 & 89\end{array}$
NWC-A11A 51
346305293329166102170240235297256190226162229171222291230201 24512210311117019918518716921021611381146204137175137176220 164184194157165171201163221219257
NWC-A11B 43
250189250192269277232219286164100141200212199209196248224109 109128204178182133195226169183190165173211190155218216230160 162165144

NWC-A12A 70
204173199172198226182274286211236246310247211227196184202226 17312216513511288103811091229610412611613014813597142169 11617311114313114091100111141156119157125175138128141135139 13111294132139113101122101140 NWC-A12B 70
172204210176201227183276283221249247311251210228188190205237 175129161133118881078610412110410711512512714312686135155 11917511014513013887106108150156116152136173128138136133138 1331209712413211011913778152
NWC-A13A 64
238247299214240238334416319309311248211146268292226218165135 104101155188201238281196167159102896813710613498123114121 11591159127162136115152195251210213252234302250224252250176 198224216232
NWC-A13B 64
270235310234228241390438308290340206208152262299226223165131 13098151198219232293193165153109998011710712799117102127 108101146129159126120165202252216204250243296257207241242210 182214184247
NWC-A14A 58
240220123176191151175214235251146136118121120165155125154151 180150162129117120126991321351101261328812210214814110395 125153113117102164157145159134172160172135159130176216 NWC-A14B 58
231218121177226113161168237243155148114109124160172125149146 17913918513110812214210112913810611113210011311814213012183 125166109118101166186143169138164162177138160127150218 NWC-A15A 101
29725690176274373228215255228236198199267327158238194196188 290249149222149154179146215226259192236230142166184167175207 188185186252256173160178159163118153228217181164116141103144 $\begin{array}{llllllllllllllllllllll}132 & 149 & 185 & 183 & 155 & 103 & 100 & 86 & 79 & 76 & 93 & 83 & 80 & 90 & 71 & 85 & 94 & 99 & 75 & 96\end{array}$ 861116085117148154119138191200188145123170140106137165144 210

```
NWC-A15B 101
    30625796176282376229211258215242191218246287166217204212187
    296244150218150159171152218228262186235228141164192170158211
    185180181259259173154191149152128171227213182175124137103150
    147164179 196 137 112 102 87 72 70 93 83 90 74 96 87 96 90 87 92
    93107 65 88112145166125138187197185167126157126108121171162
    188
NWC-A16A 128
    137 97 80 83 87 111133178222237158 97 199229201243252198238180
    272268209354252259253 342253 83 193219295201172 204201217 182 171
    169206140185196179188266249132233146183199178 233251233185 255
    255140142152155150177163 234 237282 259183181192 186210155 206 255
    200 179 185 134137 110118108 95 78 75 75 62 68 63 47 58 69 60 63
    54 56 72 75 79 86 87 83 77 72 56 97 103 91 94 99 132 115 110 134
    12110213410092116113129
NWC-A16B }12
    170101 83 83 86 107 137180218230166103187232202242250196240179
    282292207346257249257344243107167223283196159202193222188190
    166222147212201188181256252145 215 155180197189244250221 195 221
    271142142144161152182171 227 229277 257 199165194177 220149210257
    199 178 183 126 146 118 107 117 84 79 83 66 72 73 55 48 55 67 63 67
    53 55 77 81 84 86 85 85 77 73 59 96 102 87 99 99 132 116 104 129
    125111113210191118107134
NWC-A17A }8
    183181116161154171127128126131111116206246214190235139110109
    381352358352344324368341271 359319270330270154 90113163167243
    214232215171 2031952312942082002471329294143184222193191232
    204 122123158231235180161192212160146 247159 149159150135149153
    181131127123134
NWC-A17B }8
    185181113151155178123134125128106116212254212192232153106109
    318338363352344319377355301342315274 334256142 79 108 173180 250
    223239222167199183247299215202248127 91 91 139196 223194193 235
    212114145136210219174169198193164151222184147168150135158162
    177136113122137
    NWC-A18A }6
    339365381416241358320372350282309240326246276330254316252319
    319262436389350295267305303 328295241243233262238230 202 159252
    223264353280252239227236278143128243168198232261246227177 172
    222177191223165137144153194
NWC-A18B }6
    329369417432347311324382375285350244335241292307241322257326
    301266425386345287268305310316297248233218277233218203170253
    244259336268249242233242280125132239169196234253251227186172
222182183 218158145154153194
NWC-A19A }4
461634748641585606678575527663 844637742561629722562492446 382
330507401443379335347437372355404315414301322334382365314355
372
```

```
NWC-A19B 41
    550684754637573603669564579622838576727544630729555509443373
    341506385442381327362415383 354394325410293323333393372312346
367
NWC-A20A 82
    689989138110179219197273247202254320292339368371330492521
    535442398410409395323255307406365462334344405397310347397472
    295 353269228187163173250230122118150145161 83 62 136215180 181
    196168138167139134156159179193151 91 76 60 49 45 89102 118 90
    130132
NWC-A20B }8
    789892134117179216196278256196242325287361367377 338488517
    526445400416415 379330255303408347458319349397395307339403477
    277 358270223199164181227252104118144145154 88 66 135 222 197 168
    201162154159140139164163165195166 78 60 63 45 42 66 114104 87
    115179
NWC-A21A 143
338173 323187167177180252242240212204318135215177152171232253
443180177 204 94123130201175 186 265 231 246 235 240 126 78 80 89 87
    74113100142115 89104101 93 98 107 119118103 89 116 102 83 78 88
    109102108 121 128101 119102 88 95 102 85 111 99107 91 125 202 130 66
    53 47 54 52 45 66 92 74 108 75 61 50 61 75 131 116 88 94 108 142
    147186162132128171178138108114131 93 87 104130127 89 97 123 147
    110106 66 104 106 95 116 98 69 56 65 90 75 76 82 81 69 83 82 61
    536482
NWC-A21B 143
291183 337205171185180282237253212190322148213172155174 234246
439179168192111103152182177 201 285 236227248238117 86 74 86 85
    76122 93 137 99 102 106 89104 90 109105119 95 92 127 99 81 75 104
    103106 99144106114127949494109 87 109103115 96 132 203127 63
    51 55 63 46 47 65 88 75 119 85 63 52 58 73 129 116 91 98 104 145
    156175176122138167187139109108123 98 94101136120 98 94 122 148
    107106 68 102 102 87 127 108 67 59 65 82 82 77 86 73 70 80 87 67
    5 7 6 2 8 1
NWC-A22A 78
    719615313084126114188190244300335257312328278275 289357259
    251310279287252239239158215184170132107120127146167197166176
    144186138139117132123103100 81 97117 128138117 158125121137114
    108128135127132131117109113106116 91 121 99 110 109124135
NWC-A22B 78
    73 8712914287137106177193243289330264316333271280284348271
240318274302251249226163218188157138105110119147169199160169
157183137138116131134103104 89 98114135136111154135114129126
121127131119144129112119107110109 98120 97 104 108 120 135
NWC-A23A }6
332309271180286292318406400448351288268269150304278361275 262
220 108 87 89 84128198 350445 286 334 310119 97 141 118122 94 84 78
12093115156143211287315297159234185125164210203229260241236
187192157
NWC-A23B }6
421305278174283295305401398451349280276268154303291355253224
```

218113849084117200348445283329309130941441261251018877 130103132144147217287314295163231188118170214212234257240247 182188154
NWC-A24A 49
253217192434392384270354424348308328406283144183317244335272 353373254280338286262236159238306312249221172164179186229188 325274252228318236245339222
NWC-A24B 49
260236188430384386276350411353315317406241143182305283330270 364367281276330286274230156248298307242226183164181198229182 330271252235306234239338218
NWC-A25A 152
15316317418021217714113211818514711511210811813299947481 12410115411810887905976119114102113148156112145108137136 14713315710485604275102116931011118955579194107131 1001041067777544763779786757110793107107919189 959411319012613210914310797107110864743866810111078 140899078928610212890135939071949099809991101 737848426791907264838882759590107100104108127 10612116413913616116411110584124158
NWC-A25B 152
10815817817621717212714711818813810611410910013593898585 1161051361111128385667911611096108141157107138120122158 13812815510586593573111115901119488616010388104116 12299103567445576971969173709897124988310675 781061181931271231121421079810211675464796799110886 138938281968510213297129104888096878681929493 $\begin{array}{lllllllllllllllllllll}75 & 67 & 43 & 54 & 63 & 88 & 89 & 77 & 65 & 76 & 76 & 86 & 99 & 92 & 94 & 102 & 99 & 129\end{array}$ 1021161731261521711681238792135150
NWC-A26A 107
290294323259267245347334251310269286211205253246237238173177 15819420626616813215816515921313314412911011811082115130130 14211911511610011895718482799211679767681103113114 90635480991058895100118100678477664746614969 881131149284478910911911881961101021008060545264 8710010916314211990
NWC-A26B 107
280290320261267251341342249310266278224212235263244224157179 17318721126317713715316414920515214113411011411380123124126 14711611711096124876579977510110883578678106112104 1055153811021148092101121105648676634539645468 10010710593845482911241179492110112868763465368 8410510616713713196

```
NWC-A27A 109
    136145168122177199195158163204177150139141132153145140130150
122154153178130150156157107122104143175154184118152124131131
119137110 12511310290 91 112100 98 81 113111 80 85 101 107 85 104
137 77 90 117 114106 78 97 97 99 108 98 86 93 82 103 109 105 89 89
88}974058079101 94 80 96 91 88 80 93 84 75 73 70 74 84 62
84}8688470\quad728899106 96
NWC-A27B }10
109152161109169207197169153210158139130135119130134142122148
123163155174127153162157112131118125183164161116144129144119
120 136113 126 111 102 101 83 108 96 97 87 114 100 79 91 100 112 88 104
134 80 105 115 111103 76 99 89 115 100 99 94 88 79 103 110 102 92 86
83 85 88 80 78 88 117 73 93 91 97 81 95 82 72 77 63 75 79 71
75 88 74 70 88 93 93 100 111
```

```
NWC-B01A 73
    65448253115716916930318121424416318317918713489142119128129
    13312916310410875115145167152109 95 142100109143 82 132 113 134
    1517862636812014118012177189132143172177119143279275 187
    129139150175148117104128134137207125116
NWC-B01B 73
637485522149167166 31718021423617417917618813793146111120140
1451291551001028311415116315211286150 97111139 94124119126
158676371 69124128185108 82 204133132169189116152265 273 193
145137149183145119105129143123205136122
NWC-B02A 106
    1911481922141381501331111131391236767901126764106 66 96
    81100106121131130157184146103 87 115 68 90 131 91 93 76 95 92
    111113123159210144123140126107112114817975 5979 80100 134
    102686980 89 90 72 82 84 95 94 115 88 74 65 68 72 46 48 38
    40 48 48 54 55 48 54 52 60 81 68 85 63 50 53 53 82 87 60 62
    7676 8273 70 76
NWC-B02B 106
175131186249151160125111112137120 77 67 97106 84 60113 55 101
77106110133125128155181153114 81 117 71 95124 90 95 96 84 88
1171131191532041681311251321101111228375 77 60 77 82 97 132
106 72 59 90 80 94 69 79 88 89 92 109 100 74 59 63 84 46 46 41
43 47 46 59 51 49 58 49 66 83 81 84 64 68 50 52 74 76 70 74
6176 81 6971 98
NWC-B03A 100
226242229155126186174142158177307213191 158175183266 173129 89
130147119175 181155 94 86 6891255181 173106 136 154112149 153194
21220721117716297109 76 143168185 193250193117113112 93 112222
160145199150 95 64 57 57 92 81 115116 91 145116114 90 89100 128
113 79 99 92 121 92 75 76 126 100 93 88 89 81 51 50 63 77 101 118
NWC-B03B 100
226246233147134176184140164169296241192136184171235154126 95
12714612118018215311386 76 87266171173110130164112148121 194
210212207186156 98104 64145 170171 189208199116117100 93 130219
191 136178151 99 71 53 52 86 76 105 122 96 147126 105 93 90 106 132
1028896 98 131 91 71 84117 97 93 88 78 90 46 56 72 78 104 112
NWC-B04A }18
255226189135126139110127129159152108137163156137145105130127
12612711211611012290118 9812065 8910873118139 90 70 75 120
90101 95 101 111119117113 98 89 87 49 56 57 74 83 65 98 82 56
53617188 86 80 68 84 69 61 58 6560 84 81 80 65 75 68 73
8564 90 70 72 76 84 71 68 71 61 59 63 67 55 45 58 53 36 41
38 35 54 45 45 49 40 43 56 33 40 39 46 40 42 39 40 28 34 45
33}405143423833 31 24 38 43 24 39 40 32 37 38 394242 37
35 37 33 24 34 40 41 57 45 43 72 57 70 60 69 77 59 58 52 65
6962 68 72 75 79 72 65 64 58 51 43 40 42 43 56 54 64 69 57
7 4
NWC-B04B 181
238222181139128127120136120163137112141115192145158111131124
134132107107106119 92 109 94 105 83 80106 74 119139 90 74 82114
95111979611111911910310292815451 54 74 80 69 90 82 60
```

$\begin{array}{lllllllllllllllllll}48 & 50 & 69 & 77 & 86 & 81 & 76 & 87 & 57 & 70 & 66 & 60 & 62 & 77 & 89 & 74 & 60 & 83 & 64\end{array} 72$ $\begin{array}{lllllllllllllllllll}73 & 67 & 85 & 75 & 68 & 80 & 82 & 74 & 75 & 59 & 65 & 56 & 63 & 68 & 59 & 45 & 60 & 51 & 39\end{array} 41$ $\begin{array}{llllllllllllllllll}42 & 41 & 50 & 44 & 44 & 50 & 42 & 42 & 53 & 33 & 36 & 46 & 50 & 42 & 42 & 40 & 46 & 40 \\ 40 & 41\end{array}$ $\begin{array}{lllllllllllllllll}44 & 41 & 41 & 49 & 38 & 38 & 39 & 36 & 26 & 40 & 36 & 32 & 40 & 35 & 34 & 39 & 42 \\ 41 & 37 & 40\end{array}$ $\begin{array}{llllllllllllllllll}41 & 31 & 30 & 43 & 36 & 43 & 44 & 57 & 49 & 55 & 63 & 50 & 63 & 62 & 72 & 77 & 54 & 58 \\ 51 & 54\end{array}$
 77
NWC-B05A 112
1451641087710119416719921721023218714313166122162140208151 1471131441291241341171339212214710210610911017514110912493 1171341081231191359187112130121116121136138138999711287
 $\begin{array}{lllllllllllllllll}110 & 119 & 99 & 70 & 79 & 64 & 71 & 99 & 89 & 97 & 78 & 84 & 109 & 77 & 68 & 59 & 73 \\ 82 & 112 & 106\end{array}$ $\begin{array}{lllllllllllllll}99 & 80 & 76 & 72 & 61 & 69 & 87 & 72 & 110 & 95 & 93 & 100\end{array}$
NWC-B05B 112
1391561077111819917119522220121118414412083127169151215155
1431251351301221351181428512414211110110911016113712311692 1141321171231201309288110136112125116131139139110979896 $\begin{array}{llllllllllllllllll}73 & 67 & 84 & 88 & 74 & 88 & 70 & 79 & 82 & 91 & 70 & 83 & 87 & 112 & 98 & 82 & 83 & 83 \\ 118 & 80\end{array}$
 $\begin{array}{llllllllllllllllll}90 & 86 & 80 & 72 & 57 & 71 & 73 & 87 & 95 & 93 & 95 & 117\end{array}$
NWC-B06A 130
1311047814117410816312012875151166143100115111150156138155 1289314717518421316015812010874951479811376131878389
 841391881281341531085846809212715313312610389657088 84907311617312213296981132072192152382941751141238690 150148220133117911171291341651941961761381811771116877172 136961061471055567146140166
NWC-B06B 130
118971081381641261431041168415214812298123117139168141160 1359814617218521515116212311476971341031198793898489
 82144193115122122102644780871351511391279596597699 82869511715312114283981222002071692413031731001278888 134161195124119801031191151432101961671501671811086681175 1331011011531095276125146163
NWC-B07A 101
6411011096949498118168160189221226332266225181175189131 192247208213172196161193190230176240273204150169203183146170

$\begin{array}{lllllllllllllllll}92 & 89 & 96 & 86 & 120 & 72 & 93 & 58 & 83 & 75 & 76 & 69 & 65 & 63 & 51 & 60 & 52 \\ 71 & 73 & 59\end{array}$
 62
NWC-B07B 101 85107107104979498122175123174231237333266226181178194121 204237213217162198166194180224179235255203148172199189145166

 62

```
NWC-B08A 45
    79 155 191 149201 158 94 85 120 197 146 125 127 139167149156 95 123 148
    130121 120 126 88 104 122 156 127 115 126 96 85 85 188 160 132 92 87 209
    186192126133131
NWC-B08B }4
    77146190147208164 82 100114206144134128122156148155 98118144
    141114128124 93 11411515214410511910088 83190158127 92 93 218
    175184130156111
NWC-B09A }5
    258284263 326466415376440 378 128 106 78 77 64 52 49 62 55 105 142
    198168141185247155138152117 71 132 99103112173 275 270166163162
    126 166 167 156 223 155 150 77 47 64 58 48 50 52 62 46 48 62
NWC-B09B 58
    278277317324459416374433 375 112116 77 79 67 54 44 63 49 102 143
    189183139184249149137151117 77 129 93112115 167 280 282163151162
    116177 144 152 188 150 133 77 48 53 59 41 46 56 71 43 47 63
NWC-B10A 51
    389335316392430300312396324414440374418368284298186202154167
    261174143 85 101 88 96 86 113121136111 80 64 89 144179 180150153
    156167151111164140118147126135134
NWC-B10B 51
400315306409402313303403315423450372403380287289185192168139
251159152107 97 86 89 98 105 122 153 87 89 51 92 129 175 175 140 151
165166152119168134114151127148131
NWC-B11A 71
276157152260232161283 312318321310262306113 72 122 228306 326 161
300157190140118 98172 208 262290 316220194161203133214178 239125
139159256205194237248177167185156254245195 222200186173232207
254213235226235153204247195142169
NWC-B11B }7
276159159263229157281328316 326300267304113 61 122238296310188
303136199143114100145219259265320218186167199127222163 229130
136154254222197253227173172174171237243202222191192183 239195
258199222227239158210237198143172
NWC-B12A 55
216258232270240195223214253217200240207145145167193168209199
213246214300211170216215164234201243258223267186222228241181
184285260232230276227211155200190205252226226
NWC-B12B 55
172222254260254189220208248223194244196146160173191171227180
208245225269208165188203181216195231251230262213216230249172
212278276213258290232228167203180197268221194
```


APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Baillie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used aimost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date, how this is done is explained below.

The Practice of Tree-Ring Dating at the Universify of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building bistorian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insentions Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local clinate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Fig 2. Cross-section of a ratter showing the presence of sapwood rings in the comers, the arrow is pointing to the heartwood/sapwood boundary (H/S). Also a core with sapwood: again the arrow is pointing to the H/S The core is about the size of a pencil.

Fig 3 Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electic drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged 10 be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost This can be difficult as these outer rings are often very sof (see below on sapwood) Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widihs. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with nourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a,b, Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C 45 best when it is at a position starting 20 rings after the first ring of 45 . and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t value between C45 and C08 is 56 and is the maximum between these two whatever the position of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5 . The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately
average sequence of ring widihs with a master sequence than it is to date the individual component sample sequences separately

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal i-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and C 05 . They are the most similar pair with a t-value of 10.4 . Therefore, these two are first averaged with the first ring of $\mathrm{C} 05 \mathrm{at}+17$ rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences C 08 and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ning is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper comers of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively sof and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood nings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling

Various estimates have been made for the average number of sapwood rings in a mature oak. One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date. Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981; see also Hillam et al 1987).

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings. We would use these estimates, for example. in calculating the range for the conmon felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood/sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings were only lost in coring, because of their softness By measuring in the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is ofen better than the 15 to 40 years later we would have estimated without this observation.

T-value/Offset Matrix

	C45	C08	C 05	C 04
C45		$+20$	+37	+47
C 08	5.6		+17	+27
C 05	5.2	10.4		$+10$
C04	5.9	3.7	5.1	

Bar Diagram

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

C45

C08

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the 1 -values.
The t-value offset matrix contains the maximum t-values below the diagonal and the offsets above it.
Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t -value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Even if all the sapwood rings are nissing on all the timbers sampled, an estinate of the felling date is still possible in certain cases. For provided the original last heartwood ring of the tree, called the heartwood/sapwood boundary (H/S), is still on some of the samples, an estimate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates

If none of the timbers have their heartwood/sapwood boundanies, then only a post quem date for felling is possible.
5. Estinating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken in situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak uee whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from $A D 882$ to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989) The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988a). Other laboratonies and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widihs first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irespective of the climate, the widths are first standardized before any matching between them is attempted These standard widths are known as ning-width indices and were first used in dendrochronology by Baille and Picher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7. Here ringwidths are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence starting in 1835 . In both the widths are also changing rapidly from year 10 year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Baillie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier.

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midands Master Dendrochronological Sequence, EM08/87.

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each, on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, 1982 Tree-Ring Danng and Archaeology, London
Baille, M G L, 1995 A Slice Through Time, London
Baillie, MGL, and Picher, JR, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archacology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A.D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, $429-40$

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

