Ancient Monuments Laboratory
Report 1/2000
TREE-RING ANALYSIS OF TIMBERS FROM THE FLOOR AND ROOF OF THE GREAT CHAMBER, THE DEANERY, CATHEDRAL CLOSE, EXETER, DEVON
C D Litton
R E Howard
R R Laxton

Opinions expressed in AML reports are those of the author and are not necessarily those of English Heritage (Historic Buildings and Monuments Commission for England).

TREE-RING ÅNALYSIS OF TIMBERS FROM THE FLOOR AND ROOF OF THE GREAT CHAMBER, THE DEANERY, CATHEDRAL CLOSE, EXETER, DEVON

R E Howard
R R Laxton
C D Litton

Summary
Thirty samples from the floor and roof of the Great Chamber of the Deanery, in the Cathedral Close, at Exeter were analysed by tree-ring dating. This analysis produced four site chronologies. The first, consisting of six samples, has 171 rings spanning the period AD 1233-AD 1403. The second site chronology, composed of eight samples, has 120 rings but failed to cross-match with any reference chronologies and is thus undated. The third site chronology, consisting of three samples and having 121 rings, also failed to date. The fourth site chronology, consisting of two samples and having 85 rings, indicated a match with a first ring date of AD 1322 and a last measured ring date of AD 1406. A further single sample was dated as spanning the years AD 1314-99. Interpretation of the sapwood on all the dated samples suggest that there may be two phases of felling represented. It is estimated that the timbers of the Great Chamber floor have a felling date in the range AD 1400-35 whilst those of the Great Chamber roof have an estimated felling date in the range AD 1418-53. However, it is possible that all timbers were felled at the same time in the period $A D$ 1413-48.

Authors' addresses :-

R E Howard
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD
Dr R R Laxton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Ancient Monuments Laboratory Report 1/2000

Dr C D Litton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

TREE-RING ANALYSIS OF TIMBERS FROM THE FLOOR AND ROOF OF THE GREAT CHAMBER, THE DEANERY, CATHEDRAL CLOSE, EXETER, DEVON

Introduction

The Deanery is a multi-phase building on a large plot between the west front of the Cathedral and South Street, Exeter (SX 920925; Figs 1 and 2). The building has a complex structural history, possibly dating from the early-thirteenth century, or at least from AD 1301 when it was described as "much improved", to the present day. Little of the earliest construction is now recognisable. It currently consists of four blocks laid out in an irregular line running north-east to south-west, with a westward projecting block. These comprise the Great Hall, believed to contain remnants from the thirteenth century as well as later material and now divided up, the Parlour with Great Chamber over believed to be of early sixteenth-century date, and two domestic wings beyond.

A plan of the building, made by Stuart Blaylock of Exeter Archaeology and provided by English Heritage, is given in Figure 3. For ease of description a "site north" was imposed on the plan, although the building is actually orientated north-east to south-west; north-east becomes "north" and south-west becomes "south".

The roof of the Great Chamber is made up of five bays with seven trusses. The trusses are made up of principal rafters and collars, with arch-braces composed of an upper and a lower segment. Between the main trusses are intermediate trusses composed of common backing rafters faced with ribs, each of which carries a pendant boss close to the ashlars. The ribs rise from the ashlars to short hammer beams. Above the hammer beams short cove rafters rise to short collars close to the apices of the common rafters. Ilustrative examples of these trusses are given in Figure 4.

The floor of the Great Chamber is carried on four main beams running north to south forming five bays (Fig 6). Beams 1,2 , and 3 are of a similar scantling and bear on offsets in the north and south walls. Beam 4 is scarf jointed in the centre, is of smaller scantling, and is entirely supported by a stone wall that marks the west end of the parlour on the ground floor below. There are two layers of joists, the lower layer of which supports the parlour ceiling and is therefore absent in bay 5 . Whether the lower layer of joists is present in bay 1 is not known. Most of these lower layer joists are reused and are thought likely have been derived from an earlier roof structure. The upper layer of joists consists of two types of which those in bays 2-4 are less substantial than in bay 5. The only exceptions being the northern and southernmost joists in bays 2-4 which are also of larger scantling. The less substantial joists in bays 2-4 are secured to the beams using open mortises and projecting spurs. Those in bay 2 have survived in position whereas those in bays 3 and 4 have been reset at some stage. In bay 5 the larger scantling joists bear on the stone wall and are not jointed to beam 4.

Sampling and analysis by tree-ring dating of timbers from the floor and roof of the Great Chamber were commissioned by English Heritage. It is believed that this two-storey block was added to the west of the Great Hall in the early-sixteenth century, possibly under John Veysey, Dean from AD 1509-19 and Bishop thereafter. The purpose of analysis was to confirm the dating of the Great Chamber and to more accurately place its roof, for comparative purposes, within a group of similar type in Exeter. These include other buildings which the Nottingham Laboratory has analysed by dendrochronology, such as Exeter Guildhall, the Law Library, the Archdeacon of Exeter's House (Howard et al forthcoming). The research into the group of roofs in Exeter is being undertaken in connection with a major programme of recording and repair at Bowhill in Devon (Blaylock forthcoming), which is being funded by English Heritage (Groves forthcoming).

A further purpose of sampling was to obtain additional tree-ring data for this region. Exeter, and the southwest in general, have relatively few dated reference chronologies. This is in part due to the slightly short growth-ring sequences found on samples in this area caused by the wide rings found on many trees and
timber, and in part due to the complacency of the growth-ring patterns. It was believed that the Deanery would provide a substantial amount of timber with longer growth-ring sequences capable of providing a well replicated site chronology with a distinctive regional climatic signature.

The Laboratory would like to take this opportunity to thank all those who assisted with the sampling of the timbers. In particular thanks are due to the Dean, the Very Reverend and Mrs K Jones, for allowing sampling, for putting up with the disruption caused, for their interest in the project, and their hospitality. We would also like to thank Colonel Woodcock of the Cathedral Office and John Allen of the Royal Albert Memorial Museum, Exeter, for their assistance in facilitating sampling. The Laboratory would also like to take this opportunity to thank Stuart Blaylock of Exeter Archaeology for his help in assessing the phasing of the building, his assistance during sampling, and for his help with the introductory paragraphs describing the site.

The Laboratory would also like to thank Cathy Groves of the Dendrochronology Laboratory in the Research School of Archaeology and Archaeological Science at the University of Sheffield. Samples obtained by Cathy Groves but not yet analysed were made available to the Nottingham University Laboratory. Additional cross-matching and dating of site chronologies was also undertaken at the Sheffield Laboratory with much assistance in the interpretation being provided too.

Sampling

A total of thirty different oak timbers was sampled by coring, or in one case, by slicing. Each sample was given the code EXT-B (for Exeter, site "B") and numbered 01-30. Thirteen samples, EXT-B01-13, were obtained from timbers of the roof, with the remaining seventeen samples, EXT-B14-30, being provided by Cathy Groves of the Sheffield Dendrochronology Laboratory.

In the case of the thirteen samples from the roof timbers, the positions of these were recorded at the time of sampling on plans made by Stuart Blaylock, see Figure $5 a / b$. On these plans the trusses have been numbered from east to west. Only a small portion of the roof, between trusses 1-2 (bay 1), was uncovered and accessible from an inserted floor without the use of a scaffolding tower. However, from this inserted floor a substantial number of timbers were available. The height of the roof timbers elsewhere in the Hall would have required access from a scaffolding tower for fully accessible sampling, but this could not be arranged at the time of coring due to area being in use for meetings etc. Furthermore, the underside of the roof elsewhere in the Great Chamber had been boarded and plastered so that only the timbers of the main trusses were visible. A close inspection of these timbers from a ladder showed most of them to have very wide rings making them less suitable for analysis by dendrochronology, and only two of these were sampled.

The position of the sixteen samples cored by Cathy Groves, EXT-BI4-29, were marked at the time of sampling on draft plans provided by Richard Parker, see Figure 6. In these the floor space has been divided up into bays formed by the main north-south crossbeams. The bays have been numbered $1-5$ from east to west. Bay 1 is taken up with the modern stairs and lobbies and was not exposed. The individual joists, including the larger east-west timbers at the southern edge of the floor which may be part of the frame, have been numbered from south to north. Access for sampling at this time was made difficult by floorboards being re-laid as coring was in progress. Access to the northern end of bay 5 and all but the southern edge of bay 2 was therefore not possible. Nor was it possible to sample the lower layer of reused joists beneath those in bays 2-4 as the upper layer of joists prevented suitable access angles being achieved.

A sliced sample, EXT-B30, was also provided by John Allen of the Royal Albert memorial Museum, Exeter. This slice was obtained at an earlier instance by contractors working on site. Its position was not recorded and the exact location of the timber from which it came is unknown. Details of all the samples are given in Table 1 .

Analysis

Each sample was prepared by sanding and polishing. One sample, EXT-B29, was found to have too few rings for satisfactory analysis, and it was not measured. The growth-ring widths of all remaining twenty nine samples were measured and their growth-ring widths compared with each other by the Litton/Zainodin grouping procedure (see appendix). The data of these measurements are given at the end of the report. At a minimum t-value of 4.5 four groups of samples formed

The six samples of the first group cross-matched with each other at relative positions as shown in the bar diagram Figure 7. The growth-ring widths of the six samples were combined at these relative off-set positions to form EXTBSQ01, a site chronology of 171 rings. Site chronology EXTBSQ01 was compared with a series of relevant reference chronologies for oak, giving it a first ring date of AD 1233 and a last measured ring date of $A D$ 1403. Evidence for this dating is given in the t-values of Table 2.

The eight samples of the second group to form cross-matched with each other at relative positions as shown in the bar diagram Figure 8. The growth-ring widths of these eight samples were combined at these relative off-set positions to form EXTBSQ02, a site chronology of 120 rings. Site chronology EXTBSQ02 was compared with a series of relevant reference chronologies for oak, but there was no satisfactory crossmatching

The three samples of the third group to form cross-matched with each other at relative positions as shown in the bar diagram Figure 9. The growth-ring widths of these three samples were combined at these relative off-set positions to form EXTBSQ03, a site chronology of 121 rings. Site chronology EXTBSQ03 was compared with a series of relevant reference chronologies for oak, but again there was no satisfactory crossmatching.

The two samples of the fourth and final grouped to form cross-matched with each other at relative positions as shown in the bar diagram Figure 10. The growth-ring widths of these two samples were combined at these relative off-set positions to form EXTBSQ04, a site chronology of 85 rings. Site chronology EXTBSQ04 was compared with a series of relevant reference chronologies for oak, giving it a first ring date of AD 1322 and a last measured ring date of AD 1406 . Evidence for this dating is given in the t-values of Table 3.

The four site chronologies thus created, EXTBSQ01-04, were then compared with each other. There was, however, no further truly satisfactory cross-matching between them. Each of the four site chronologies was then compared with the remaining eleven ungrouped samples. Again there was no satisfactory crossmatching.

Each of the eleven ungrouped samples was then compared individually with a full range of reference chronologies. This indicated a cross-match for sample EXT-B20 only with a first ring date of AD 1314 and a last measured ring date of AD 1399 . Evidence for this date is given in the t -values of Table 4.

Interpretation

It will be seen from the bar diagram of Figure 7 that the relative positions of the heartwood/sapwood boundaries on the six samples in site chronology EXTBSQ01 are not particularly consistent with a group of timbers having a single felling date. Rather, the relative positions of the heartwood/sapwood boundaries are more indicative of timbers with two distinct felling phases, it being much earlier on samples EXT-B23 and B24, from the Great Chamber floor, than it is on samples EXT-B01, B04, B10, and B13, all from the Great Chamber roof.

The average last heartwood ring date of only those samples from the Great Chamber floor is AD 1385 , whilst the average on those only from the roof is AD 1402 . This variation in the average is slightly larger
than might be found in a group of timbers with a single felling date, though it is not an impossibility. Using 15 - 50 rings as the 95% confidence limit for the amount of sapwood would give the timbers of the floor an estimated felling date in the range $\mathrm{AD} \mathrm{1400-35}$, and those of the roof an estimated felling date in the range AD 1417-52.

Taking the other dated samples from the roof into account (EXT-B11 and B12 in site chronology EXTBSQ04 with heartwood/sapwood trarsition dates of AD 1405 and AD 1406 respectively) would push the average last heartwood ring date of the timbers from the roof up to AD 1403. The estimated felling date would then be in the range $\mathrm{AD} 1418-53$. It is probable that these two samples represent timbers from the same tree, cross-matching with each other as they do, with a t-value of 16.7 .

The relative position of the heartwood/sapwood boundaries on the samples in site chronology EXTBSQ02 appears to be consistent with a group of timbers having a single felling date. The exception to this is possibly sample EXT-B18, although the relative position of the heartwood/sapwood boundary on this sample is not unduly at odds with the others. It would appear from the cross-matching between the individual samples of this group, that the timbers they represent are from trees which were all growing close to each other, with some timbers possibly being from the same tree, samples EXT-B14, B17, and B18 for example. This observation might strengthen the supposition that the timbers used were all felled at the same time.

Because none of the three samples in site chronology EXTBSQ03 have a heartwood/sapwood boundary it is not possible to say whether or not they are of the same felling date as each other, each one could have been felled at quite different times.

Sample EXT-B20, from crossbeam 4 of the Great Chamber floor, has a heartwood/sapwood transition date of AD 1399 . Using the same sapwood estimate of $15-50$ rings would give this timber an estimated felling date in the range AD 1414-49.

Conclusion

In conclusion it would appear possible that two of the more substantial joists from bays 3 and 4 are of one felling phase (samples EXT-B23 and B24), while those of the Great Chamber roof and beam 4 (samples EXT-B01, B04, B10, B11, B12, B13, and B20) are slightly later. Beam 4 is the smaller scantling crossbeam. Both fellings took place in the early-fifteenth century and as their felling date ranges overlap it remains a possibility that they could be the product of a single felling phase.

Thus, tree-ring analysis has shown that the construction date of the Great Chamber is somewhat earlier than expected, being early- to mid-fifteenth century rather than early- to mid-sixteenth century. Its construction can no longer be associated with John Veysey, Dean from AD 1509-19 and Bishop thereafter.

Many joists from the Great Chamber floor cannot be dated, though those of larger scantling in bay 5 have been shown to be contemporary with those of smaller scantling in bays 3 and 4 that have clearly been reset at some point. Those joists in bay 2, also of small scantling but thought to be in situ, could not be sampled due to access difficulties so it has not been possible to demonstrate that they are part of the same group of joists used in bays 3-5.

Only nine of the twenty-nine samples measured have been dated. Twenty remain undated, although twelve of these are in one of three groups. Many of the undated samples are of suitable length for analysis by dendrochronology, and none of them show stresses or complacent rings that might make dating difficult. It appears possible that many of the undated longer samples, particularly those in site chronology EXTBSQ02, are of a different date or from a different source, or both, to those found in site chronology EXTBSQ01. It is possible that this period or source is not represented in any of the current reference material, but that they could be dated if suitable temporal or geographic material, or both, were available. This is only likely to be the case with further sampling from Exeter and the surrounding area.

Bibliography

Baillie, M G L, and Pilcher, J R, 1982 unpubl A Master Tree-Ring chronology for England, unpubl computer file $M G B-E O I$, Queens Univ, Belfast

Blaylock, S R, forthcoming Bowhill, Exeter English Heritage Archaeol Monograph
Bridge, M, 1987 List 21 no 3 - City of London Polytechnic Tree-ring Dates, Vernacular Architect, 18, 54
Bridge, M, 1988 The Dendrochronological Dating of Buildings in Southern England, Medieval Archaeol, 32, 166 - 74

Groves, C, Hillam, J, and Pelling-Fulford, F, 1997 Dendrochronology in Excavations on Reading Waterfront sites 1979-1988 (eds J W Hawkes and P J Fasham), Wessex Archaeol Rep, 5, 64 - 70

Groves, C, forthcoming Dendrochronological Research in Devon. Phase 1-the pilot study, Anc Mon Lab Rep

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 19a/b - Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1995 List 60 no 3 - Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architect, 26, 47-53

Howard, R E, Laxton, R R, and Litton, C D, 1997 List 77 no lb - Nottingham University Tree-Ring Dating Laboratory Results: Dendrochronological Dating for English Heritage, Vernacular Architect, 28, 130-2

Howard, R E, Laxton, R R, and Litton, C D, forthcoming - Nottingham University Tree-Ring Dating Laboratory Results: Dendrochronological Dating for English Heritage, Vernacular Architect

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical \& Archaeol Studies, Monograph Series, III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for Oak, 1158 1540, Medieval Archaeol, 33, $90-8$

Tyers, I, 1995 Tree-ring analysis of oak timbers from St Mary's Guildhall, Coventry, West Midlands, Anc Mon Lab Rep, $12 / 95$

Tyers, I, 1996a The tree-ring analysis of six secular buildings from the City of Hereford, Anc Mon Lab Rep, 17/96

Tyers, I, 1996b Tree-ring analysis of timbers from St Aylotts, Near Saffron Walden, Essex, Anc Mon Lab Rep, 16/96

Tyers, I, 1997a Tree-ring analysis of the Hall and Barn at Great Tomkyns, Upminster, Greater London, Anc Mon Lab Rep, 11/97

Tyers, I, 1997b Tree-ring analysis of seven buildings from Essex, ARCUS Rep, 292
Tyers, I, and Groves C, 1999a unpubl England Mid-west, unpubl computer file enmw-33, Sheffield Univ
Tyers, I, and Groves C, 1999b unpubl England South-east, unpubl computer file ense-6, Sheffield Univ

Tyers, I, and Groves C, 1999c unpubl England South-west, unpubl computer file ensw-35, Sheffield Univ Tyers, L, and Groves C, 1999d unpubl England East Anglia, unpubl computer file enan-104, Sheffield Univ Tyers, I, and Groves C, 1999e unpubl England London, unpubl computer file LON1175, Sheffield Univ

Tyers, I, and Hibberd, H, 1993 Tree-ring dates from Museum of London Arcahaeology Service: list 53 no 9, Vernacular Architect 24, 50-4

Table 1: Details of samples from floor and roof of the Great Chamber, The Deanery, Exeter

Sample no.	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
Great Chamber roof						
EXT-B01	South principal rafter, truss 2	144	h / s	AD 1260	1403	1403
EXT-B02	South arch-brace, truss 2	100	no h / s	-------	------	------
EXT-B03	South cove rafter, frame 5, bay 1	54	no h/s	--->--	-.-----	------
EXT-B04	South intermediate rib, bay 1 (midrib)	104	no h / s.	AD 1279	------	1382
EXT-B05	South common rafter 1 , bay 1	75	no h / s	-----	------	-------
EXT-B06	North common rafter 1, bay 1	75	no h / s	------	------	------
EXT-B07	North midrib frame 3	57	no h / s	-------	------	-----
EXT-B08	North common rafter, frame 3, bay 1	62	no h / s	------	------	------
EXT-B09	Collar, frame 2	71	no h / s	--	---.---	------
EXT-B10	North arch-brace, truss 2	85	h/s	AD 1316	1400	1400
EXT-B11	South principal rafter, truss 6	84	h / s	AD 1322	1405	1405
EXT-B12	South principal rafter, truss 4	83	h / s	AD 1324	1406	1406
EXT-B13	North post, truss 2	55	h / s	AD 1348	1402	1402

Great Chamber floor

EXT-B14	Joist 5, bay 5	95	h/s	-------	----	---
EXT-B15	Joist 6, bay 5	77	h / s	------	------	----
EXT-B16	Joist 4, bay 5	72	6	------	------	------
EXT-B17	Joist 3, bay 5	76	2	------	------	------
EXT-B18	Joist 2, bay 5	70	h/s	------	------	------
EXT-B19	Joist 1, bay 5	65	h / s ?	-----	------	------
EXT-B20	Crossbeam 4	86	h / s ?	AD 1314	1399	1399

Table 1: continued

Sample no

Sample location

Total
rings

rings
First measured ring date
Last heartwood
ring date
Last measured
ring date

Great Chamber floor

EXT-B21	Joist 4, bay 4	110
EXT-B22	Joist 2, bay 4	97
EXT-B23	Joist 1, bay 4	152
EXT-B24	Joist 1, bay 3	106
EXT-B25	Joist 2, bay 3	85
EXT-B26	Joist 9, bay 3	95
EXT-B27	Joist 12, bay 3	60
EXT-B28	Crossbeam 3	74
EXT-B29	Joist 1, bay 4	nm
EXT-B30	Not known	76

no h/s	------	---	-
no h/s	------	------	------
6 c	AD 1233	1378	1384
h / sc	AD 1287	1392	1392
no h/s	------	-----	-----
4	------	--	--
h/s	----	------	--->,
3	------	------	---
---	------	------	----
h/s	------	------	-----

*h/s = the heartwood/sapwood boundary is the last ring on the sample
$c=$ complete sapwood on timber, all or part lost on sampling

Table 2: Results of the cross-matching of site chronology EXTBSQ01 and relevant reference chronologies when first ring date is AD 1233 and last ring date is AD 1403

Reference chronology	Span of chronology	t -value	
East Midlands	$\mathrm{AD} 882-1981$	5.6	(Laxton and Litton 1988)
England	$\mathrm{AD} \mathrm{401-1981}$	5.1	(Baillie and Pilcher 1982 unpubl)
Southern England	$\mathrm{AD} 1083-1589$	7.2	(Bridge 1988)
Kent-88	$\mathrm{AD} 1158-1540$	3.8	(Laxton and Litton 1989)
Reading Waterfront, Berks	$\mathrm{AD} \mathrm{1160-1407}$	5.6	(Groves et al 1997)
Chichester Cathedral, Hants	$\mathrm{AD} \mathrm{1173-1295}$	5.2	(Howard et al 1992)
Ware Priory, Ware, Herts	$\mathrm{AD} \mathrm{1223-1416}$	5.6	(Howard et al forthcoming)
Chicksands Priory, Beds	$\mathrm{AD} \mathrm{1200-1541}$	4.3	(Howard et al forthcoming)
Daneway House, Sapperton, Glos	$\mathrm{AD} \mathrm{1201-1315}$	5.1	(Howard et al 1995).

Table 3: Results of the cross-matching of site chronology EXTBSQ04 and relevant reference chronologies when first ring date is AD 1322 and last ring date is AD 1406

Reference chronology Span of chronology t-value
England Mid-west
England South-east
England South-west
Harmondsworth, Middx
St Mary's Guildhall, Coventry, W Mids
Hereford City
St Cuthberts, Wick, Worcs
Mercers Hall, Gloucester
Lower Chilverton, Devon
Archdeacon's House, Exeter

AD	860-1753	5.4	(Tyers and Groves 1999a unpubl)
AD	435-1790	4.6	(Tyers and Groves 1999b unpubl)
AD	770-1798	5.3	(Tyers and Groves 1999c unpubl)
AD	1262-1425	4.5	(Tyers and Hibberd 1993)
AD	1316-1422	4.6	(Tyers 1995)
AD	915-1617	5.9	(Tyers 1996a)
AD	1257-1496	5.0	(Bridge 1988)
AD	1289-1541	4.8	(Howard et al 1997)
AD	1315-1488	5.3	(Groves forthcoming)
AD	1186-1404	5.8	(Howard et al forthcoming)

Table 4: Results of the cross-matching of sample EXT-B20 and relevant reference chronologies when first ring date is AD 1314 and last ring date is AD 1399

Reference chronology
England South east
England South west
England East Anglia
England London
Upminster, Greater London
Netteswellbury, Essex
St Aylotts, Essesx
High Halden, Kent
Reading Waterfront, Berks

Span of chronology t-value

AD	$435-1790$	7.1
AD	(Tyers and Groves 1999b unpubl)	
$\mathrm{AD} \mathrm{781-1798}$	6.9	(Tyers and Groves 1999c unpubl)
$\mathrm{AD} \mathrm{413-1728}$	6.4	(Tyers and Groves 1999d unpubl)
$\mathrm{AD} \mathrm{1276-1414}$	5.1	(Tyers and Groves 1999e unpubl)
$\mathrm{AD} \mathrm{1245-1439}$	7.2	(Tyers 1997a)
$\mathrm{AD} \mathrm{1281-1500}$	5.0	(Tyers 1997b)
$\mathrm{AD} \mathrm{1299-1462}$	6.2	(Bridge 1987)
$\mathrm{AD} \mathrm{1168-1407}$	5.9	(Groves et al 1997)

Figure 1: Map to show general location of Exeter

© Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show location of the Deanery, Exeter

Figure 3: Plan of the Deanery, Exeter

Figure 4: Illustrative example of a main truss (above) and - an intermediate truss (below)

Figure 5a: Section of the Great Cliamber roof looking north to show sample locations

Figure 5b: Section of the Great Chamber roof looking south to show sample locations

Figure 6: Plan to show location of samples from the Parlour floor

Figure 7: Bar diagram of samples in site chronology EXTBSQ01

White bars = heartwood rings, shaded area = sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood $/$ sapwood boundary is last ring on sample
$\mathrm{c}=$ complete sapwood on timber, all or part is lost from sample in coring

Figure 8: Bar diagram of samples in site clironology EXTBSQ02

White bars = heartwood rings, shaded area = sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring

Figure 9: Bar diagram of samples in site chronology EXTBSQ03

Figure 10: Bar diagram of samples in site chronology EXTBSQ04

White bars = heartwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

EXT-B01A 144
543407492323208322280268361192162302231267205188226229200265
322334198184217251221174120159170187302222192214197174179148 15612729010783111125129163166212162143115112142125251138114 11013310214613894118133130119928693111839384120111150 989811510089102928396126731041081261107510092131125 8196651421441411341279612810474102796171534963151 949181829192151134172142949187103778458586055 55858892
EXT-B01B 144
552483494318213315294270414282287323225276225244271235200264 330334201179216254218174127158163189296227196203204174190149 1511242789884106129127159166212174146124116131126259136113 1051431021511249111413612811797819692809687114117146 99961141028810287879711574107108124108789592132124 8495681421411381311309912710373101787064554861153 848881849489153138168140979386105778760536255 578484115
EXT-B02A 100
262251202214180203225235130154167254221267358235258328233269 177192138203144112217211198198185194188156221184193226234216 126180243204199605550523617232124302938374068 78851098088104102956084639899173119169121125133157 1381421091241422682712242471811008310114015986689585119 EXT-B02B 100
252242200223181177217239151174189259244281368214258343240243
171185121209147122214218202184188198191151233191192236214212
150186237215200625642494018222322283432374564
74891107889961029962777194100176121174120123141156
141148114125140278269238249189966912612818790738289119 EXT-B03A 54
243303187298302292261217289299234362184280197240261274374359 252227318294236196288240277256246223232247206240253206268233 201274183308230268247256311222279243263216
EXT-B03B 54
250280196295284314256182288308233370204285202230274272372362 253232289313255167282257270256257210214253213236256211270235 203281177307228268254258341234281251253216
EXT-B04A 104
224254168193160139149221115125139177159200211176152185154188 126149122142122111162147146162154151124110151154137173153124 101110145135120174149841131461181081279311812795101192134 1461841481171351461281221031071201262171371151229413699162 1398998861441901081351201251761401221161281209512399157 2039497118

EXT-B04B 104

196252173196151148161201120112139184168208210176166181147188 114140123139126114151151152160140155124116135149129180154125 10110714213312918714789109149120951311011161478494203135
15317413713512814712711510711312412222613311311796143110144 135105100761341841371081231221681361361091281089012298161 2138994138
EXT-B05A 75
8197110118119159158124124117165161106103131130126124178105
55647111492119100107921021031159681906210297111110
181136170170206168235214177173161137194188198144196184150151
168199164200162147138164142156141165203223214

EXT-B05B 75

1268212111197157151132118111174154122114125130130124177108
 159152178195192156212223187172164145194192180145204184147156 172200171193176165146157144150142160202242208 EXT-B06A 75
138101124122102867211811591899210511011512574536055
8584116669479897893798088718697105104159118128
1331561211541561451251261421001411111301371181009899133144
16612011484129129107121146135134147128137155

EXT-B06B 75

124111135128989577116112102809310710511512475485266
8877110829174868210092757783819111097138126124
132148123154158149122118124109134112129138122989695142137
17715410691126147109128118148118167104136162
EXT-B07A 57
648784101648488917195140694844403740303656
2645485666606456574661454542606098737682
11611611714514610011988117115107114263162311377402
EXT-B07B 57

285455576757646566506350464969491078410192
100114100177134103118829611085135335275244363400
EXT-B08A 62
206150147135163137198223218197164176177177177183200186192165 11512094122187147163155157129196117130126120110114108113113 1191321241661121291271291077810914392109112116118146170149 144118
EXT-B08B 62
193152138141154146203223219198171169178176177188205195207158
9211510112616915315514816013919811413096128105115110107121
1211181331691301101311281028410613996111108121101157167135
126145
EXT-B09A 71
26827741921715383899911812914718767738678116719195
11586127149145168127127136136655565142101169151103111159
92110107125103951011411351552121612161331108579130163170
194154144157210185161182125132170

EXT-B09B 71
$27227541616617283 \times 91101120144156214785576721107867102$ 988212915013816312511015013367426613910415415492108149 1119911811698901061341331542181722111291148583122167171 193157144145210200154177129128167
EXT-B10A 85
2662171751041301841722101531469312715713311712212910913777
15618327119419322021517313619098132135180148201146206231206
170199229171134120139296239199215172192154162139148135194175
168119161152151142124132156136152153172117127128152135120181
142108159154167
EXT-B10B 85
2722201771131271821732101811349613115713011512612011412770
150179273188192209220187131189104120115174142191138220236204
173199222167131127150324277194220164182153155137155144188186
155131159167149144132138144139158173177106123116181135124175
138114160152147
EXT-BllA 84
202170203112143190190173102118174143126206183199216222172159 171130163201196204158240170275194231273230275280288289172205 264293335211168204196207286222231168218202291200258291295243 229199216170263210265305205215197264184170200135108137179158 162174182194

EXT-Bl1B 84

228179189124147185186151121123164143129194171188244217188150 159140160202198211165231190237184235280235288268307284173190 262301340205167212206204292228227179213204287201279279302232 212220202170257235253297203218198250182168194132112139167166 165177184189

EXT-B12A 83

182131135178170116117126129130113176146165218216162141151143 183189186185138240173254188226230206250234268253183204255301 342217201233209216258226259197236208286173248242239191202181 200178274243253305223230207309239214227179156156235215191213 222197228
EXT-B12B 83
186124140167171124114114120149118171140174228218165128158138 163200185185145242169261187228239202244228250271173200237320 347222198231216211259227243208249194282182248250232210188181 199171280244271297233211209310231213226160145160245207202214 228207222
EXT-B13A 55
160164213212174169166156143163162144118120125207185161208166 137161155150146137224216170135162147160171170161161127167150 145124122114123134125171157129159164172234141 EXT-B13B 55
161167224217171179159160147162159138121115122199198158197177 140164163139152155221215168130175147143143170158161139171140 150122125110126135117180153126159182175136228

EXT-B14A 95
318217182168233262313188262256228209175196198181158203269231
242149282261286319170185282196212288125214233310190208172244
2071612293102982102713262012812812271509211816115518315980
76100137154127129928212810810094102110110112141144166121
1221631471099711917912112679101116135134124
EXT-B14B 95
294212171149239269306186271256193210186193194180155197260234 220143266258282329190191281189199290131227225309180199170235 2121662233123002162743191982902902311528412415914618214086 7010413615612813293821371099794101107121112133141166124 12816514611810011717312513270103121133140127
EXT-B15A 47
413389444610443300361322301285280276269337390367376262197251 264294225275244231267313256235226226274255322242323276250172 214224344276270249234

EXT-B15B 47

400383439616444286365323302280280289276341400372366264200251 266296233274260237259320254237232217274262319250316284246171 206230347273281250199
EXT-B16A 72
114279249311199205159281239200195244222174148197194283272243 13999142166157165129144117214272253206251152122206166120113 1231401701421451761168613912514013712214322414713389123122 15815412411916415012311490726281

EXT-B16B 72

129261226316207204168272245184194247220173145202231288267246 140101140177150167121154121218274253204248148119210164121115 1271441671401521791109013612313713812113721814313894124118 16815512511916715112611195696493

EXT-B17A 75

112245221251211143129164147180234154149184238138146132195165 1542502883101841531941852742412001371121591781261841227973
1691701651311367775104997710510310211011512115411694112 12912011494128224189167105133144116132123172
EXT-B17B 63
203127331264236324170209295242253238144199239334223269193314 296235357444407269253404227393368331265234283307261326253138 158316255236232243152123244163131143171167168141182235175121 144147162
EXT-B18A 70
258238375345237273447313206219262219367321286193135174239228 331199225136381401338297288151126302205162160148152176175196 213138110131141179162121147334246196100135114155179169137221 21616815712079100106103112143
EXT-B18B 70
266240344358265272438310259210274227350342246188137171248220 328201236138358378383311296146122297213148146145154172182202 207137109128149176159121157330247188106130114161178166141217 2191681541097898105101114128

EXT-B19A 65
$22424224215388100^{6} 18128246175184159205199204224250257594432$ 340228244278278298204232310315281272216343298289311329378339 198215323296225341291255314342267290256216277303352341396357 319218234291273
EXT-B19B 65
185161152197134112104134239189167155197198211223244252584429
337222252279272293199219315315273275215345298291314327387336
211217337286226346286253324347263290260214278305348337394360 319218239285300

EXT-B20A 86

3383954023161901942582534344601901961232284643811511056493
15016418010910727919611016111484655858575353795293
8759881008374488784179205127113131106132107857663
 1359218092124168
EXT-B20B 86
3394094103161561962862694364651821991182254703831581047386 14617218211010228518110517010985705955525450795391 83648798887151809316720965126143102128122867254 6910161747584839297898812412811613683675996125 123106179101128162
EXT-B21A 110
$\begin{array}{llllllllllllllll}120 & 91 & 81 & 110 & 39 & 46 & 37 & 37 & 59 & 59 & 71 & 70 & 72 & 58 & 84 & 75 \\ 45 & 45 & 47 & 80\end{array}$
4149898290818776836282150158131145234152111232138
88871066779927211013111914111313412313015116410182107
1681351741381119970140166134167121113141177158132128137116 92175112118126113107836981851059487108115101107146203 124899396207130184172217282
EXT-B21B 110
$\begin{array}{lllllllllllllll}103 & 101 & 81 & 108 & 44 & 43 & 41 & 33 & 55 & 62 & 66 & 77 & 89 & 57 & 90\end{array} 7854344475$
4547866993897591866684128176131142232150112228135
95791176290826810913612612711113312013016016610273110
167153190155879570139166140173126116144168154141133139127
8918311610614110410980777088118958910710395112155210
1238710090203135183191197319
EXT-B22A 97
203244234164131172204262272297391253228224243194235250178151 16520822017614212093156279220139184175184262223236192234308 282283360285269289266366331312250251152372411306297436492345 28040114996100142175301221171243160203190180197257194162160 1491521401328683106225268345278201167191276234336

EXT-B22B 97

182242219164141177188273256300367252234217244203232245200137 16521421618414512392157279214147178181183270232213202224326 283273337291274295269382331313252248159365412303305424492348 27240314195107140170301228160233158206184183194261182157159 1451561371318581109235271342286202159196268225375

EXT-B23A 152
318278287212343303271285179203199206175173184143214198169155
176121148118971191461241361579399889688181170148221129
9294100981107093917589665579111564866718688
113122107105100133741139989686262868110591995777
671029911997596153524134414337536968455866
59566758916575494446435063585352767612094
7483556070907078645982956351616170675570
7070706155666058505550.75

EXT-B23B 152
337277281200345301232271180212185201167190171151184197191156
188127155115100115137127136156103968610083180148123187129
10293104961057095877092555480103565361727187
1031029096102132909898100685772878610090995180
6810010511992595859513833304939586970475564
$\begin{array}{lllllllllllllllllllll}58 & 64 & 64 & 63 & 82 & 65 & 75 & 50 & 48 & 39 & 44 & 50 & 58 & 63 & 51 & 54 & 78 & 82 & 114 & 89\end{array}$
8868555978867581595982725953576873666271
647258625964585653545172
EXT-B24A 105
7253558396168257164203151167172111123113141957892102
10610810914313823315012419820424719317111914411292706977
1511501531019914214913069869513315897689553628463
726367595358105614749656990617743103916978
96888472798011111772737298134677891667267117
97102110128116

EXT-B24B 106

9052539091169260163202145162172104130106144947895106
9811610914313723116011620220923918716610713812875716678
1501521541038512313713078869313315592789556628553
67667161526198654551547588607448115916681
10393957175869811572767395128698084617663121
1029511911698131

EXT-B25A 84

211204168679912919115717022124527135719617713011593112154
160264285253266178247211168239392322210177170185342373229218
15622524014816413413524519123117911153611038957556253
363835757280851037659405410576945255675460
537395108
EXT-B25B 84
167133155999913519015516323722826233121817015813398111118 184259279272274186236206176261401298216176169193343364232230 1542352341521661321382601772031508147521168956586250 38433870817194928055435510477956055616656
566882119
EXT-B26A 95
29619517130628526017221926335416913712712815414514114311591 701191121431171031101451529410610375618377104148271245 259177239218164198227204113123160104198267254210154158159157 1738582677695132151181143115212156132168169105105136127 127119121123135107939798123118886482106

EXT-B26B 95
30320617634826926323625222127816215713612017015714114212087 79109112137119108107140149921138573748073116151269240
264171244221160200228200124119157109190273259217153191148156
17680836176100137150198136129199157118158171113108137125

EXT-B27A 60
172182230247308244275227251220182269303251179170190131226270
15310878117147177193104118122202185191184195847413812984
126136116116120168191183138144156133119134162198192170136148 EXT-B27B 60
171187229248303234271224256225179267315279208160209144213281 1871077912215218419296121143198189192182196916316112290 125133127112126161191186112135158142125130169195176183143195 EXT-B28A 62
443431290308302277384404334367285213197209179311236338312195 1492253084924264271518590801141121071169911712311185132 1151561251489213311512976127136112192160149126198249228190 218183
EXT-B28B 59
356238320245152180246334395260310133444862688784131116
169208240354258144165240314183255213233152338310271338259316 213193241204156175132127121143145141129957974181118184 EXT-B30A 76
432224361306305303289324201189274352301327215300375298182108 308432336377271232168285277216180173353308268291271491383329 406303368401353275297307339362343307337341327247308250300386 287306313280258333288273252224258198252267229246
EXT-B30B 76
428226349302327287294330202187276360292342221291371301182114 315432328377266238183290249198172161365328263287274463433314 398287355400348275298328340333353313343339310259309237295393 275297300259267321273270261207260203242266221239

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Baillie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring..

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insertions Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local clinate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the comers; the arrow is pointing to the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$. Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig 3. Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost. This can be difficult as these outer rings are often very sof (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a,b; Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C45 best when it is at a position starting 20 rings after the first ring of 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t value between C45 and C08 is 5.6 and is the maximum between these two whatever the position of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately:
average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and C05. They are the most similar pair with a t -value of 10.4 . Therefore, these two are first averaged with the first ring of $\mathrm{CO5}$ at +17 rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences C 08 and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper corners of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made for the average number of sapwood rings in a mature oak. One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date. Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981; see also Hillam et al 1987).

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings. We would use these estimates, for example. in calculating the range for the common felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood'sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings ivere only lost in coring, because of their sofiness. By measuring in the timber the depth of sapwood lost, say 2 cm ., a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 40 years later we would have estinlated without this observation.

T-value/Offset Matrix

Bar Diagram

| 0 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

C45

C08

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values.
The t-value'offset matrix contains the maximum t-values below the diagonal and the offsets above it.
Thus, the maximum t-value between C 08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Even if all the sapwood rings are missing on all the timbers sampled, an estimate of the felling date is still possible in certain cases. For provided the original last hearwood ring of the tree, called the heartwood/sapwood boundary (H / S), is still on some of the samples, an estinate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates.

If none of the timbers have their heartwood/sapwood boundaries, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken in situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988a). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many shor periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7. Here ringwidths are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence staring in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Baillie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier.

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87.

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, 1982 Tree-Ring Dating and Archaeology, London.
Baillie, M G L, 1995 A Slice Through Time, London
Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A.D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 429-40

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

