Ancient Monuments Laboratory
Report 47/2000
TREE-RING ANALYSIS OF TIMBERS FROM THE LAW LIBRARY, AND 8 -9, THE CLOSE, EXETER, DEVON

C D Litton
R E Howard
R R Laxton

Opinions expressed in AML reports are those of the author and are not necessarily those of English Heritage (Historic Buildings and Monuments Commission for England).

Ancient Monuments Laboratory Report 47/2000
TREE-RING ANALYSIS OF TIMBERS FROM THE
LAW LIBRARY, AND 8-9, THE CLOSE, EXETER, DEVON

R E Howard
R R Laxton
C D Litton

Summary

Fourteen samples from the roof of the front range of $8-9$, the Close, Exeter, were analysed by tree-ring dating. This analysis produced two site chronologies. The first, consisting of two samples, has 183 rings, the second site chronology, composed of three samples, has 123 rings. Although a tentative date was produced for the first site chronology the t-values are rather low. No great confidence should be placed in this dating, it is given here simply for future reference. The second site chronology failed to date. This site must remain undated for the moment.

Authors' addresses :-

R E Howard
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr R R Laxton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr C D Litton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD
© Historic Buildings and Monuments Commission for England

TREE-RING ANALYSIS OF TTMBERS FROM THE LAW LIBRARY AND 8-9, THE CLOSE, EXETER, DEVON

Introduction

The building at 8-9, The Close, Exeter, (SX 921926; Figs 1 and 2) forms a single range facing onto the Cathedral Green. To the rear of this front range runs a further range at right angles which contains an open hall. It is believed that the front range and the open hall are of the same date. Access to the hall is via an ally-way on the northwest side of the building plot. A second entrance from the Close further to the east leads via a shorter arched passage to an enclosed rear courtyard. The courtyard gives access to the Notaries House. The archway is decorated with carved spandrels and the passageway itself has two blocked stone door openings. It is believed that these buildings were at one time the Canon's House. A plan of the ground floor of the building is provided in Figure 3.

The front range is of two storeys, coursed in Heavitree stone masonry below, with half timbering above. The upper floor oversails the lower and is supported on curved oak brackets resting on stone corbels. The roof of the front range is of principal rafter trusses with collars and arch-braces with double purlins. An illustrative example of a truss type is given in Figure 4.

The open hall to the rear contains a hammer-beam roof of three bays with five trusses. Between the main trusses are intermediate frames. This roof is exceptionally decorative, even by the standards of the Exeter group, of which there are four or so other examples (the Guildhall, the Deanery, the Archdeacons house etc, Howard et al forthcoming). The hammer-beams, arch-braces, coved rafters, and purlins, etc, are all highly moulded and carved, as is the open-work tracery. The ends of the hammerbeams are decorated with angels, and ornately carved bosses hide the joints between timbers. An illustrative example of a truss and elevation of a bay are given in Figure 5 .

While there is currently no internal access between the front range and the rear open hall, at one time however, there was. This was through an ornately carved multi-cusped and foiled doorway in a partition wall, which is now blocked up (Fig 6).

Sampling and analysis by tree-ring dating of timbers from 8-9, The Close was commissioned by English Heritage. Sampling was to include the roofs of the front range and the open hall, and the now blocked doorway between the two. The purpose of analysis was to establish the absolute and relative date of each element of the building and to more accurately place the roofs, for comparative purposes, within a group of similar roofs in Exeter. These include other buildings that the Nottingham Laboratory has analysed by dendrochronology, the Deanery, Exeter Guildhall, and the Archdeacon of Exeter's House (Howard et al forthcoming). The research into the group of roofs in Exeter is being undertaken in connection with a major programme of recording and repair at Bowhill in Devon, which is being funded by English Heritage (Groves forthcoming).

A further purpose of sampling was to obtain additional tree-ring data for this region. Exeter, and the southwest in general, have relatively few dated reference chronologies. This is in part due to the fact that samples in this area have relatively few rings, caused by the wide rings found on many trees and timber, and in part due to the complacency of the growth-ring patterns. It was believed that Exeter Law Library would provide a substantial amount of timber with more rings on them and with a distinctive regional climatic signature.

The Laboratory would like to take this opportunity to thank all those who assisted with the sampling of the timbers. In particular thanks are due to the Dean and Chapter of Exeter Cathedral, and to Colonel Woodcock, the Chapter Clerk. Thanks are also due to the partners and staff of the prestigious West Country firm Ford Simey Daw Roberts, Solicitors who, rather aptly, are the current tenants of the hall range. In particular Mr Simon Sanger-Anderson, managing partner, and Mrs Maureen Greenaway, head of administration, were extremely helpful in facilitating viewing of the Hall timbers.

Thanks are also due to Stuart Blaylock of Exeter Archaeology who undertook considerable liaison duties between all the parties concerned, and assisted with viewing, interpretation, and sampling. Thanks are also due to John Allan Curator of the Royal Albert Memorial Museum, Exeter.

Sampling

The roofs and other timbers of the front range, that is $8-9$ the Close, and open hall, that is the Law Library, were viewed and initially assessed for their accessibility and their suitability for tree-ring dating. While the timbers of the front range were both relatively easily accessible and suitable, those of the Law Library were not. Access to the timbers was made difficult by the presence of computers, photocopiers, desks, shelves, and other office equipment, and by the great height of the roof timbers.

The timbers of the Law Library were viewed from an extension ladder. They were assessed as not being especially suitable for tree-ring analysis, appearing to have wide rings and being so highly moulded and carved that they are unlikely to retain any sapwood or the heartwood/sapwood boundary, except possibly at the apex or on the hidden upper faces of the timbers.

The timber of the doorway between the two ranges was also assessed. While it was felt that the tree from which the doorway was carved possibly did have a sufficient number of rings, access to the optimum coring position to gain the maximum number of rings available was made impossible by the partition wall. Furthermore, the highly decorated nature of the doorway makes coring a slightly unsuitable method of sampling at the moment. This might better be done if and when the door is unblocked and a more discreet site for coring is revealed.

Following the initial viewing assessment of the Law Library roof, core samples were obtained from six timbers of the two northern-most trusses in an attempt to more accurately verify their growth-ring count. Given the difficulty of access, the awkwardness of operating from an extention ladder and a precarious roof of an upper-floor store, it is not surprising that satisfactory samples could not be obtained, the cores having too few rings. This was despite the best efforts of all who assisted, particularly Stuart Blaylock and the staff of Ford Simey Daw Roberts.

It should be stressed, however, that the poor quality of the samples from a dendrochronological point of view is due to the difficulty of attaining the correct coring angle. It is likely that towards the apex of the roof the timbers are cut from whole trees rather than made up of thin applied moulded pieces, and may contain a greater number of rings. Should the floor-space of the office in the hall ever be cleared and highlevel scaffolding and secure flooring be installed, perhaps as part of some future decoration or renovation, it is strongly advised that the timbers be cored again.

Thus, successful sampling was restricted to the roof of the front range, $8-9$ the Close. From here a total of fourteen different oak timbers was sampled by coring. Each sample was given the code EXT-D (for Exeter, site " D ") and numbered 01-14. The positions of these cores were recorded at the time of sampling on plans provided by English Heritage. The are reproduced here as Figure 7. On these plans the trusses have been numbered from east to west. Details of the samples are given in Table 1.

Analysis

Each sample was prepared by sanding and polishing and the growth-ring widths of all fourteen samples measured. The data of these measurements are given at the end of the report. The growth-ring widths of the samples were compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum t-value of 4.5 two groups of samples formed.

The two samples of the first group cross-matched with each other at relative positions as shown in the bar diagram Figure 8. The growth-ring widths of the two samples were combined at these relative off-set positions to form EXTDSQ01, a site chronology of 143 rings. Site chronology EXTDSQ01 was compared
with a series of relevant reference chronologies for oak, suggesting a first ring date of AD 1324 and a last measured ring date of AD 1466. Evidence for this possible dating is given in the t-values of Table 2. It will be seen from this table that the t-values are rather low, and, given that there are only two samples in this site chronology, caution must be expressed as to its reliability. Also, even if correct, it might not represent the felling date of the rest of the timber used in the building as a whole as it represents only two timbers.

The three samples of the second group cross-matched with each other at relative positions as shown in the bar diagram Figure 9. The growth-ring widths of these three samples were combined at these relative offset positions to form EXTDSQ02, a site chronology of 83 rings. Site chronology EXTDSQ02 was compared with a series of relevant reference chronologies for oak but there was no satisfactory crossmatching.

The two site chronologies were compared with each other, and with the remaining ungrouped samples. In neither case was there any satisfactory cross-matching. Each of the nine remaining ungrouped samples was compared individually with a full range of reference chronologies, but again there was no satisfactory cross-matching.

Conclusion

Due to the lack of cross-matching, this site must remain undated for the moment. Encouragingly there are a number of timbers with over 100 rings and so it is possible that it might date against the other material from Exeter in due course.

None of the undated samples shows any sign of stress or complacency that might make cross-matching and dating difficult. It is possible that the timbers represented are from a small climatic niche which is unrepresented in any of the available reference chronologies.

Should the roof of the hall in the Law Library become more easily accessible it is strongly advised that the timbers there be re-sampled.

Bibliography

Bridge, M, 1988 The dendrochronological dating of buildings in Southern England, Medieval Archaeol, 32, 166-74

Groves, C, forthcoming Dendrochronological analysis of Bowhill, Exeter, Devon, Anc Mon Lab Rep
Howard, R E, Laxton, R R, Litton, C D, and Pearson, S, 1988 List 28 no 6 - Nottingham University TreeRing Dating Laboratory results: Kent, Vernacular Architect, 19, 48-9

Howard, R E, Laxton, R R, and Litton, C D, forthcoming Nottingham University Tree-Ring Dating Laboratory results: dendrochronological dating for English Heritage, Vernacular Architect

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master chronological sequence for Oak, 11581540, Medieval Archaeol, 33, $90-8$

Tyers, I, and Groves, C, 1999 unpubl England London, unpubl computer file LOND1175, Sheffield Univ

Table 1: Details of samples from 8-9, The Close, Exeter,

Sample no.	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
EXT-D01	South principal rafter, truss IV	54	no h/s	----	---	----
EXT-D02	Collar, truss IV	54	no h / s	-------	------	-----
EXT-D03	South principal rafter, truss V	103	h / s	-------	\cdots	------
EXT-D04	North principal rafter, truss V	99	no h / s	------	------	-------
EXT-D05	South principal rafter, truss VI	146	h / s	------	-----	------
EXT-D06	North principal rafter, truss VI	122	no h / s	-------	\cdots	-----
EXT-D07	Collar, truss VI	54	h/s	\cdots	\cdots	------
EXT-D08	South purlin, truss V-VI	54	h/s	------	----	------
EXT-D09	North purlin, truss V-VI	80	h / s	------	\cdots	------
EXT-D10	South common rafter 1, truss V-VI	56	no h/s	----	-----"	------
EXT-D11	North common rafter 3 , truss V-VI	80	h / s	--.-...	------	-------
EXT-D12	South purlin, truss VIII-IX	118	h / s	------	------	------
EXT-D13	South purlin, truss IX-X	98	h / s	------	-----	------
EXT-D14	North purlin, truss IX-X	54	no h / s	-	\cdots	\cdots

[^0]Table 2: Results of the cross-matching of site chronology EXTDSQ01 and relevant reference chronologies when first ring date is AD 1324 and last ring date is AD 1466

Reference chronology	Span of chronology	t -value	
East Midlands	$\mathrm{AD} \mathrm{882-1981}$	3.2	(Laxton and Litton 1988)
Southern England	$\mathrm{AD} \mathrm{1083-1589}$	3.5	(Bridge 1988)
Kent-88	$\mathrm{AD} \mathrm{1158-1540}$	3.9	(Laxton and Litton 1989)
England London	$\mathrm{AD} \mathrm{413-1728}$	3.3	(Tyers and Groves 1999 unpubl)
Rectory Park, Horsmonden, Kent	$\mathrm{AD} \mathrm{1313-1442}$	3.5	(Howard et al 1998)
Ware Priory, Herts	$\mathrm{AD} \mathrm{1223-1416}$	4.3	(Howard et al forthcoming)

Figure 1: Map to show general location of Exeter

(based upon the Ordnance Survey 1:50000 map with permission of The Controller of Her Majesty's Stationery Office, ©Crown Copyright).

Figure 2: Map to show location of the Law Library in Exeter

Figure 3: Ground-floor plan of $8-9$, the Close, Exeter

Figure 4: Example of a truss from 8-9, the Close, Exeter

Figure 5: Example of a truss and a bay elevation from the Law Library roof

Figure 6: Illustration of the doorway (now blocked) between The front and rear range of $8-9$ the Close

Figure 7: Plan to show sample locations

Figure 8: Bar diagram of samples in site chronology EXTDSQ01

Figure 9: Bar diagram of samples in site chronology EXTDSQ02

White bars = heartwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Data of measured samples - measurements in 0.001 mm units

```
EXT-D01A 54
274323386346228298366354383286282287266122130160269277 324268
181130130139 224293156 74 109122 145 82 93 42 47 74 112 223 144 180
207271263 343411 218157182190228283262321439
EXT-D01B 54
238343388343268281367351363 318305315245123138152285343335241
16416412615024430714968124116133 77 107 43 39 83109 229138169
230274272329421223171199202194 274258336402
EXT-D02A 54
251218232171105106143219369264305252183153210290220191188195
148178207168158292306258204152260165 229193 236242165193 231 249
286219321277233192185221296205159200213289
EXT-D02B 54
303216212178116107144246358276301218201166199276229203190189
155168208185157287284262176163240165239198270229170230236212
303228316 273237202219174153197181188226 314
EXT-D03A 103
    33 44 48 51 54 75 53 50 68 55 63 63 83 67 112104 136 158 180 170
152 112 81 78 96 85 65 46 67 62 83 63 46 67 84 94 85 97 113 115
136108 94 123 122 72 109 82 82 80 49 54 54 57 71 71 47 60 74 68
78 85 90 67 74 45 44 74 82 81 101 129 101 105 70 77 74 42 47 82
50}667437844 93 67 72 63 69 68 89 81 82 74 89 137 122 81 70,
606988
EXT-D03B 103
    38 36 50 49 51 73 61 46 67 53 62 70 87 57 109 108 135 153 176 167
155 113 79 71 103 86 58 54 64 58 98 65 43 69 100 80 87 106 104 120
144108 101 117 126 97 99 96 77 74 47 51 60 58 71 58 49 69 67 65
73106 81 65 66 54 46 72 91 82 104 124 97 94 77 83 68 37 59 73
49}706773 56 90 73 72 70 71 68 93 75 84 59 101 117 122 88 66
6 0 7 3 8 9
EXT-D04A 99
195 66 76 85 76 99 92 56 81 68 90 123 96 116 126 135 116 84 77 75
98119861038782107144130166190165207226310230236262278264
3111294126 70 50 63 78 67 103 71 96 1111124121127 97 40 62 70 65
96101 97 116129102137144136168155140127143123 98118114131133
132119133164186194157153157142 90 93102103122 99163159160
EXT-D04B 99
148 72 82 81 71 104 95 61 82 75 89 120 120 102 143 164 111 102 73 74
11810593 99 82 73113147139186212176194233312226199235 294 277
311290127 74 34 65 64 58 116 85 92 103 137 111120 90 43 55 70 71
100100 90 110136 120137145128167150138125 150121 96 108 118 140 127
130119151153181204166171160153101100109 98123104157156167
```

EXT-D05A 146
831301142021331029684434426314867119134146884982

38514463684144536460819811714115414015810910876
$\begin{array}{lllllllllllllllll}97 & 87 & 98 & 96 & 86 & 44 & 29 & 23 & 32 & 35 & 34 & 47 & 33 & 37 & 36 & 35 & 34 \\ 37 & 26 & 43\end{array}$
4843837165786910390499013687153171254259187180169
239377410293233255217279225157148125168151109106109224226219
253152193151109137
EXT-D05B 146
$8412012719813310611578463525414761129131142101 \quad 5985$ 16216122521216425221422716394687960811131441211166887 1147085991269613271636490876940253865794549
 $\begin{array}{lllllllllllllllll}91 & 93 & 101 & 98 & 79 & 51 & 21 & 28 & 31 & 36 & 39 & 43 & 33 & 37 & 36 & 29 & 40 \\ 33 & 32 & 42\end{array}$ 4053838456756611289498812896137183261239183173187 25136441728122626421626224317415013917415796104106216217221 251153194126120171
EXT-D06A 122
$\begin{array}{llllllllllllllllllllll}147 & 64 & 67 & 87 & 105 & 68 & 80 & 108 & 96 & 90 & 122 & 127 & 87 & 33 & 31 & 58 & 73 & 98 & 94 & 103\end{array}$

11217622621115822019721216114613413011469524051604892
128172155190144181182163166165207236170157164108105132130119 118122138141141124150132128157140120112128146146164151196160 249139143178152148174192203175142103167170134186169156230177 127190
EXT-D06B 122
162686895996092104859711711891342953739510193
891061211341059098849010710998797578119838011697
12217424720616923417921415514312513610665573944605693
123165140185148191195196139163207238178179164121108135126129
120138161133134122153109121142144122114126142138164150201157
235140145180144148173184218139162110154176127208172160237163 144192
EXT-D07A 54
239230206163210178165158194192218236183136110149163115120145 211225218417307318459370353208151174115211121169218103138141 1711931471862442111962469522011696110144 EXT-D07B 54
223239199198213184147163185216169216190174122136209122114149 204247241414324314422398363201135189101223127155238120130134 19521916518423121215021013922314612485178

EXT-D08A 54

222249290349281229292282273199279240212390184338234265266209
294318413432340258286359394305342349346321244356343329268385
217250254229362202351208272273206247268259
EXT-D08B 54
284261276367276169299268266199268253214362241330264248270205 340327392433333248291411399280334353328294243342360321270382 189242265247349221332207286292202278258281

EXT-D09A 80
534422495416517441287332305304207187235207117218143111139131
1491101129811413484154947490294474778765616556
41.232421442829569310753695153606633323614

6753638586614167595985734743594427273646 EXT-D09B 80
50742547041750241929032931930120718624019511821413099143122
150108101112105131991501137683313369739952667548
$\begin{array}{lllllllllllll}40 & 29 & 26 & 20 & 38 & 38 & 27 & 56 & 84 & 119 & 47 & 67 & 42 \\ 70 & 69 & 58 & 28 & 28 & 29 & 20\end{array}$
$\begin{array}{lllllllllllllllllllllll}57 & 55 & 57 & 100 & 76 & 63 & 46 & 60 & 50 & 59 & 65 & 33 & 32 & 42 & 31 & 28 & 42\end{array}$
EXT-D10A 56
83110114121761469956802637698971624678474229 2525352526309396416133465243243127274447
56837966526657628279604162453328
EXT-D10B 56
$819912111381145105577526386489805856725338 \quad 26$
$\begin{array}{lllllllllllllllllllllll}24 & 28 & 35 & 21 & 27 & 38 & 88 & 96 & 41 & 54 & 33 & 53 & 42 & 49 & 22 & 24 & 23 & 16 & 43\end{array}$
621109064526553727774623860474641
EXT-D11A 80
421420376282299307306203185302181141911118612611212410879
10611611885138986779324162897064477651403123
$\begin{array}{llllllllllllllll}23 & 34 & 31 & 24 & 32 & 91 & 92 & 50 & 51 & 37 & 42 & 52 & 47 & 22 & 28 & 25 \\ 26 & 49 & 43 & 60\end{array}$

EXT-D11B 80
411435369289298300300211175241216119185118891221171159898 $941121228013310960863633698280565971504325 \quad 28$
$\begin{array}{llllllllllllllll}22 & 30 & 27 & 24 & 43 & 92 & 86 & 48 & 57 & 32 & 40 & 55 & 44 & 28 & 23 & 30 \\ 23 & 42 & 59 & 55\end{array}$
8081645165626572815638604530243141793666 EXT-D12A 118
235307256127246139144296389296329357259277161284176983335
6911710613811612911319511812281393452303766314649
$\begin{array}{llllllllllllllll}18 & 17 & 18 & 27 & 44 & 55 & 43 & 44 & 45 & 56 & 59 & 52 & 20 & 22 & 30 & 21 \\ 30 & 58 & 55 & 118\end{array}$
13414012816011274811361011631671371081021028651422851
301926252734444355474638424269598977120180
148113130122143131186991201576910615259756078119
EXT-D12B 118
2193002571322451451343003942963243592672671772761751053532

$\begin{array}{llllllllllllll}18 & 23 & 24 & 28 & 40 & 53 & 47 & 38 & 44 & 51 & 39 & 41 & 23 & 31 \\ 27 & 27 & 25 & 56 & 59 & 109\end{array}$
12713913216011372971201021691531481011051028950424047
252727202133454246483555415465677396111156
1381281171271431271811061141496410514762716454150 EXT-D13A 98
25530389654132541031016053791198110513716815518787
14217318411314615492130110103100116383555118182132150166
18819315812580724388506396697078594537394548
5133244164466134282420294136432428463122
425047867876869174807870747890333755

EXT-D13B 98
23225780503636689110767619010611712113216415518287
14117618111015315289132113109106115432660106175136154166
$\begin{array}{lllllllllllllllllllllllll}179 & 181 & 151 & 126 & 85 & 75 & 48 & 79 & 56 & 59 & 96 & 65 & 73 & 80 & 53 & 50 & 41 & 35 & 39 & 47\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}52 & 30 & 41 & 34 & 69 & 56 & 53 & 30 & 27 & 16 & 23 & 34 & 41 & 32 & 49 & 19 & 30 & 39 & 33 & 32\end{array}$

EXT-D14A 54
12313395981221179785120153120122114118144156117139105116 17611917115111113216817825519225327820820114112713173130135 11613910311213715113415297121186122164145
EXT-D14B 54
12112111498125116917214213712812699114132182118146111110
17911617215411213816815027019427325621021411513513570147134
12512810810813916312614497122188122145138

[^0]: *h/s = the heartwood/sapwood boundary is the last ring on the sample

