Ancient Monuments Laboratory
Report 56/1999
TREE-RING ANALYSIS OF TIMBERS FROM EXETER, GUILDHALL, HIGH STREET, EXETER, DEVON

C D Litton
R E Howard
R R Laxton

Opinions expressed in AML reports are those of the author and are not necessarily those of English Heritage (Historic Buildings and Monuments Commission for England).

Ancient Monuments Laboratory Report 56/1999

TREE-RING ANALYSIS OF TIMBERS FROM EXETER, GUILDHALL, HIGH STREET, EXETER, DEVON

R E Howard
R R Laxton
C D Litton

Summary
Twenty-six samples from the roof of Exeter Guildhall were analysed by tree-ring dating. This analysis produced three site chronologies. The first, consisting of eight samples, has 143 rings spanning the period AD 1314-1456. Interpretation of the sapwood on the dated samples would indicate a felling date for the timbers represented in the range Ad 1463 to AD 1498.

Authors' addresses :-

R E Howard
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr R R Laxton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr C D Litton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Introduction

Exeter Guildhall is set in a prominent position in the High Street of the City (SX 919924; Figs 1 and 2). It was the main administrative and ceremonial centre of the town in the Middle Ages, probably from as early as the twelfth century. There is little or nothing of this date surviving. Most of the visible fabric is mainly of the late-fifteenth century, probably of the AD 1480 s , and of the late-sixteenth century. This latter phase is well documented to AD 1592-4 and has also been dated by dendrochronology (Bridge 1988). Repairs and alteration to the Guildhall took place in the eighteenth and nineteenth centuries, with later repairs being undertaken in AD 1900 and AD 1970. The most recent work was completed in AD 1986. The building now comprises an open hall with a two storied porticoed front and cells of Elizabethan date, with Magistrates rooms to rear. A plan of the building is provided in Figure 3.

On documentary evidence the masonry shell of the hall is believed to date to the late $A D 1460 \mathrm{~s}$. The stylistic evidence of the stonework and other architectural details are quite consistent with this date. The evidence for the roof, however, is equivocal, and it is believed that it could be later.

The roof is of seven bays with main trusses of principal rafters, collars, and curved arch-braces on corbels with bosses. Between the main trusses are intermediate frames with pendant bosses, but without collars. These frames carry double purlins and wind braces. An illustrative example of a main and an intermediate truss is given in Figure 4. All timbers are highly decorated, being deeply moulded and carved.

Sampling and analysis by tree-ring dating was commissioned by English Heritage. The purpose of this was to establish an absolute date for the roof and to place it for comparative purposes within a group of similar roofs in Exeter. These include other buildings that the Nottingham Laboratory has analysed by dendrochronology, the Archdeacon of Exeter's House, the Deanery, and the Law Library (Howard et al forthcoming). The research into the group of roofs in Exeter is being undertaken in connection with a major programme of recording and repair at Bowhill in Devon (Blaylock forthcoming), which is being funded by English Heritage (Groves forthcoming).

A further purpose of sampling was to obtain additional tree-ring data for this region. Exeter, and the southwest in general, have relatively few dated reference chronologies. This is in part due to the slightly short growth-ring sequences found on samples in this area caused by the wide rings found on many trees and timber, and in part due to the complacency of the growth-ring patterns. It was believed that Exeter Guildhall would provide a substantial amount of timber with longer growth-ring sequences capable of providing a well-replicated site chronology with a distinctive regional climatic signature.

The Laboratory would like to take this opportunity to thank all those who assisted with the sampling of the timbers. In particular thanks are due to the Mr William Olive, Mace Sergeant of the Guildhall and the Guildhall cleaners who cooperated wholeheartedly with the sampling and uncomplainingly put up with the disruption caused. The Laboratory would also like to thank Stuart Blaylock. Not only did Stuart Blaylock assist with the sampling, the interpretation of the building, provide assistance with the site description given above and in liasing with the various bodies concerned, but also most usefully assisted with the erection and disassembly of the scaffolding tower. The Laboratory would finally like to thank John Allan of the Royal Albert Museum, Exeter, for his valuable help in this matter.

Sampling

A total of twenty-six different oak timbers was sampled by coring. Each sample was given the code EXT-E (for Exeter, site "E") and numbered $01-26$. The positions of the samples were recorded on plans adapted from those provided by Stuart Blaylock, reproduced here as Figurcs $5 \mathrm{a} / \mathrm{b}$. For the sake of clarity in
identifying sample locations the trusses have been numbered from west to east, that is from the rear of the building to the street frontage. In reality this is north-west to south-east.. Details of the samples are given in Table 1. Sampling of the timbers was undertaken after discussion with Stuart Blaylock of Exeter Archaeology. The carpentry within the roof strongly suggests that it is a single-phase construction and sampling was conducted under this interpretation.

Sampling was made difficult by the height of the roof, the lowest available timbers being some seven metres from the floor, and many of the others being nine to ten metres above floor level. Access to these timbers was gained from a mobile scaffolding tower, although the curved nature of the arch-braces and the height of the upper protective rails of the tower caused difficulties in safely reaching some members.

It will be seen from Table 1 that relatively few of the samples have sapwood or the heartwood/sapwood boundary. This is due to the highly moulded, carved, and curved nature of many of the timbers, in that there were few places where sapwood, or the heartwood/sapwood boundary, was present. Given that one of the purposes of sampling was to obtain tree-rings with local data, many of the timbers were sampled to obtain maximum number of rings, even if they had no sapwood or the heartwood/sapwood boundary.

Analysis

Each sample was prepared by sanding and polishing and the growth-ring widths of all samples measured. The data of these measurements are given at the end of the report. The growth-ring widths of all twenty-six samples were compared with each other by the Litton/Zainodin grouping procedure (see appendix). At a minimum t-value of 4.5 three groups of samples formed.

The eight samples of the first group cross-matched with each other at relative positions as shown in the bar diagram Figure 6. The growth-ring widths of the nine samples were combined at these relative off-set positions to form EXTESQ01, a site chronology of 143 rings. Site chronology EXTESQ01 was compared with a series of relevant reference chronologies for oak, giving it a first ring date of AD 1314 and a last measured ring date of AD 1456 . Evidence for this dating is given in the t-values of Table 2.

The average last heartwood ring date on site chronology EXTESQ01 is AD 1448 . The usual 95% confidence limits for the amount of sapwood on mature oaks from this part of England is taken to be in the range $15-50$ rings. This would give the timbers represented by these samples an estimated felling date in the range AD 1463-1498.

The two samples of the second group to be formed at $\mathrm{t}=4.5$ by the Litton/Zainodin grouping procedure, cross-matched with each other at relative positions as shown in the bar diagram Figure 7. The growth-ring widths of these two samples were combined at these relative off-set positions to form EXTESQ02, a site chronology of 77 rings. Site chronology EXTESQ02 was compared with a series of relevant reference chronologies for oak, but there was no satisfactory cross-matching.

The two samples of the third and final group cross-matched with each other at relative positions as shown in the bar diagram Figure 8. The growth-ring widths of these two samples were combined at these relative off-set positions to form EXTESQ03, a site chronology of 77 rings. Site chronology EXTESQ03 was also compared with a series of relevant reference chronologies for oak, but again there was no satisfactory crossmatching.

The three site chronologies thus created, EXTESQ01, EXTESQ02, and EXTESQ03 were compared with each other, but there was, however, no further cross-matching. Each of the three site chronologies was then compared with all the remaining ungrouped samples. Again, there was no satisfactory cross-matching

Each of the fourteen remaining ungrouped samples was compared with a full series of relevant reference chronologies. While this indicated some tentative cross-matches for some individual samples the t-values were rather low and tended to be with non-relevant chronologies, those in Staffordshire, Nottinghamshire and Leicestershire, for example. There appeared to be no consistency to this individual tentative dating and as these samples cannot, therefore, be quoted with confidence, they must remain undated.

Conclusion

It would appear that, as expected, the roof of Exeter Guildhall is of a single phase of construction with the majority of the timbers have an estimated felling date in the range $A D$ 1463-1498. Thus dating by dendrochronology supports the date expected on stylistic grounds.

Judging by the high t-value cross-matching between some samples it appears likely that a number of timbers are taken from the same tree. This is seen with samples EXT-E21 and E22, cross-matching with a t value of 20.4 , and samples EXT-E24 and E25, cross-matching with a t-value of 17.2, for example. The undated samples EXT-E18 and E19 probably also represent timbers taken from the same tree

Eighteen samples remain undated, E01-E04, E06, E07, E09, E11, E12, E13-19, E23, and E26. Most of these have less than 60 rings and show slightly complacent growth-ring patterns. The longest of the other undated samples has 77 rings. It is probably the lack of growth-rings on these undated samples, their complacency and the continuing lack of relevant reference data for the Southwest that makes these samples difficult to date.

Bibliography

Baillie, M G L, and Pilcher, J R, 1982 unpubl A Master Tree-Ring chronology for England, unpubl computer file $M G B-E O I$, Queens Univ, Belfast

Bridge, M, 1988 The Dendrochronological Dating of Buildings in Southern England, Medieval Archaeol, 32, 166-74

Blaylock, S R, forthcoming Bowhill, Exeter English Heritage Archaeological Monograph
Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 33 no 11c - Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architect, 21, 37-40

Groves, C, Hillam, J, and Pelling-Fulford, F, 1997 Dendrochronology in Excavations on Reading Waterfront sites 1979-1988 (eds J W Hawkes and P J Fasham), Wessex Archaeol Rep, 5, 64-70

Groves, C, forthcoming Dendrochronological analysis of Bowhill, Exeter, Devon, Anc Mon Lab Rep
Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1995 List 60 no 2a - Nottingham University Tree-Ring Dating Laboratory Results, Vernacular Architect, 26, 47-53

Howard, R E, Laxton, R R, and Litton, C D, 1999 The Archdeacon of Exeter's House, Anc Mon Lab Rep 41/99

Howard, R E, Laxton, R R, and Litton, C D, forthcoming (a) Exeter Deanary, Anc Mon Lab Rep
Howard, R E, Laxton, R R, and Litton, C D, forthcoming (b) Exeter Law Library, Anc Mon Lab Rep
Laxton, R R, and Litton, C D, 1988 An East Midlands Master Tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical \& Archaeol Studies, Monograph Series, III

Table 1: Details of samples from Exeter Guildhall, High Street, Exeter

Sample no.	Sample location	Total rings	*Sapwood rings	First measured ring date	Last heartwood ring date	Last measured ring date
EXT-E01	South lower purlin, bay 1	54	20 C	-----	--n---	-----
EXT-E02	South lower purlin, bay 2	75	no h / s	------	\cdots	------
EXT-E03	East upper windbrace, south side, bay 2	75	no h / s	------	------	------
EXT-E04	South principal rafter, truss 2	55	no h/s	------	--.---	.-.---
EXT-E05	South lower purlin, bay 3	106	no h / s	AD 1314	-----	1419
EXT-E06	West upper windbrace, south bay 3	54	no h / s	------	------	------
EXT-E07	South upper arch-brace, truss 3	66	no h / s	------	--->-	------
EXT-E08	South intermediate rafter, bay 3	94	no h / s	AD 1343	------	1436
EXT-E09	South principal rafter, truss 5	77	no h / s	-------	------	----
EXT-E10	South lower arch-brace, truss 5	87	no h/s	AD 1339	------	1425
EXT-E11	North lower purlin, bay 4	65	h / s	-..----	-...---	------
EXT-E12	East lower windbrace, south bay 4	54	no h / s	------	--7---	------
EXT-E13	West lower windbrace, south bay 4	54	no h/s	----*	------	--n-
EXT-E14	East upper windbrace, north bay 5	71	h / s	-----	-...--	- --.--
EXT-E15	Collar, truss 6	52	no h/s	----**	-----	------
EXT-E16	Collar truss 5	72	no h / s	------	------	------
EXT-E17	North upper arch-brace, truss 5	54	no h/s	---**	---m-	------
EXT-E18	North intermediate rafter, bay 5	59	10	------	-..----	------
EXT-E19	South principal rafter, truss 7	77	no h/s	-----	--.....	-------
EXT-E20	North principal rafter, truss 6	72	12	AD 1385	1444	1456
EXT-E21	North principal rafter, truss 7	102	h/s	AD 1348	1449	1449
EXT-E22	South principal rafter, truss 4	106	h/s	AD 1344	1449	1449
EXT-E23	West upper windbrace, north bay 6	58	no h/s	---	-----	-----
EXT-E24	South principal rafter, truss 6	125	no h/s	AD 1315	------	1439
EXT-E25	North principal rafter, truss 4	101	no h / s	AD 1339	------	1439
EXT-E26	North upper arch-brace, truss 6	56	no h / s	--	---**********	----*

[^0]$\mathrm{C}=$ complete sapwood is retained on sample

Table 2: Results of the cross-matching of site chronology EXTESQ01 and relevant reference chronologies when first ring date is AD 1314 and last ring date is AD 1456

Reference chronology

East Midlands
 England
 Southern England
 Reading Waterfront, Berks
 Lodge Park, Aldsworth, Glos
 Lacock Abbey, Wilts

Span of chronology t-value

AD $882-1981$	7.0
AD $401-1981$	6.4
AD 1083-1589	6.3
AD 1160-1407	4.4
AD 1324-1587	4.6
AD 1314-1448	5.1

(Laxton and Litton 1988)
(Baillie and Pilcher 1982 unpubl)
(Bridge 1988)
(Groves et al 1997)
(Howard et al 1995)
(Esling et al 1990)

Figure 1: Map to show general location of Exeter

(based upon the Ordnance Survey 1:50000 map with permission of The Controller of Her Majesty's Stationery Office, (CCrown Copyright).
© Crown Copyright and
database right 2013. All
rights reserved. Ordnance
Survey Licence number
100024900

Figure 2: Map to show location of Exeter Guildhall in the High Street

Figure 3: General plan of ground and first floors of Exeter Guildhall

Figure 4: Illustrative examples of a main and an intermediate truss

Figure 5a: Section Iooking north to show position of samples

Figure 5b: Section looking south to show position of samples

Figure 6: Bar diagram of samples in site chronology EXTESQ01

Figure 7: Bar diagram of samples in site chronology EXTESQ02

White bars $=$ heartwood rings, shaded area $=$ sapwood rings
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Figure 8: Bar diagram of samples in site chronology EXTESQ03

White bars = heartwood rings, shaded area = sapwood rings $\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is last ring on sample

Data of measured samples - measurements in 0.01 mm units

EXT-E01A 54
286321366274311315395242339426320340279179259188172244276172 1722521872181691721671301401387714112015814511813114810060 94997982979281649490919671119
EXT-E01B 54
325304374286281315395243332389305336285198257173154229296174 1862321992041541661561301421389412613315315112012414910158 931007780959291628496809891100
EXT-E02A 75
4521551611291372922072482211802361812061461107281159132143 1391621051568312583122911461011221441471341101271327796 747623519623613614619615084989913214821613910399239199 16222819020736146240633212210067161145163265
EXT-E02B 75
4441581531331332952042572351842361742091461137573164143139 1371678815192107889711616410410915112414010612010876101 77762181932271281432031479010895139145213130104109252196 1532481902083854473973151209371159148155266
EXT-E03A 75
256302355329207278173256279229210255299350225125174118153226
2161341269298115126146194266300323370259202221129183163138
203132142104106105125204215250354349171183129124135219199213
150172207191228318363299330322262159139189232
EXT-E03B 75
261281348325223283167264302258210241283321204144155132181224
22814712210393114128169208282296325349269208255127191138150
208139138106105951222072122533503531881651221351371209201206
157175206192220317344317342302257162141182189
EXT-E04A 55
7010911815011583839911698158201168196254228146162100117 136178189158162164175262219215214187226140244255220246249260 241167187143167177188275212218203254245270190 EXT-E04B 55
129110121150120749195119100160199168197256233147147113107 142176195161152173165254229213204178228146247249226258239287 264162207149160171196270249209197261264274193
EXT-E05A 106
336393421316202241249216194182177192120169208305190172161148 114127147151140183184236303206207215160166156152172212139214 183203174209223205171165167208222184201221235204196175209226 2762592632072502432572242431771852051922282231561349087117 13312114211811415014914511014878113211212238292230258213211 251216121151118131

EXT-E05B 106
334399316307192268274226204194167198121170215292193166167143 122119160151142174169210276206216206167168153160171210144212 164206188219236211161163172204212198199225225196206181210229 2832792202012472542472052451891892141742212091621279488125 11813414211011612615014512114773116209210243281247253221223 240224141134102123

EXT-E06A 54

317525359421399308481311345399617360339326286265316350356339 565511542276336298213218277394334225277274397329190277214211 190181293500343440309499379404630351333287

EXT-E06B 54

291531344454419310478289348415615364341327298235322304352323 486514502320334298217215260408331224279287376313182255215222 177174299529343439294486336409631347333285

EXT-E07A 66

372190150148125351214204177141125107193189184137102244179254 30825114123914824118825216319112012621014319113814817290107 37830923020815489739944367010217015099179326193124184 148132181277275205

EXT-E07B 66

334196141152132360215210158132131112213208182138102249177262 28525713623516123618125217620111412222714519013615016293108 3613002452131398481100294164113171156106172329192129176 159117183278292191

EXT-E08A 94

200195167145114938275948079876546514650625543 3956514749545846466652705954545872576055
4857526560594442364143394045324148465654
55515110194889089709097991158510213383112118123
149147120116132162110141158285191246306294
EXT-E08B 94
189190177143114898879967477816349554556605542
$\begin{array}{lllllllllllllll}39 & 56 & 54 & 45 & 42 & 49 & 53 & 57 & 50 & 63 & 61 & 65 & 61 & 47 & 58 \\ 58 & 70 & 59 & 60 & 55\end{array}$
6459485860614839433743334741324448454956
6245501101058994767298931021158210512971116128107
148138119121130171112140164264186246292296
EXT-E09A 77
462491437416373368360406311303326250214300304233183138172216 162204213200207192191189233194227229179134147150139965380 7912218425428227517520819627029523934240044022021212114284 11311913393731085050453536626266496995

EXT-E09B 77

400503468440359372364404314279324236210286305270181133179217 175208206201186200191195255194228230183139137159140916069 8211818825228625718421122627931421234138436921822212414290 11811310988701065745444541606266456287

EXT-E10A 87

245363354465308388316273317266293237292214276345246264287280 290169189140115100879585991411089910999119149118104108 $\begin{array}{llllllllllllll}107 & 82 & 93 & 91 & 109 & 98 & 86 & 85 & 105 & 111 & 83 & 78 & 64 & 78 \\ 73 & 83 & 72 & 82 & 64 & 62\end{array}$ 72845858645281118115101124110102115127138125120112142 89105138101125141134
EXT-E10B 87
236352356460299366329272287285295236307215286329229280282268
286169185154109108841038810613910610011499122142118100110
110949310110392848910011681826770838077816164
68786561635569119107117138115100118134125128123109121
91107130113128141130
EXT-E11A 65
307345290277252307255267293196110146147268243190205169276268 24127318916922828733722522714521214320017012910611689159119 981331851081511301111611031381268510453969453488091 106598810497
EXT-E11B 65
305340290286249307267273275188115150162256247180198180264279 24524719618322228733322421915722114322017113311011391150120 9913017999151138112166106132122979259929653508296 887790102104
EXT-EI2A 54
585512413415381305230246175276348225286373295373294239191272
224270238252250255350416293194187170234238178157180219134154
174179207197194182207234387390594491449419
EXT-E12B 54
568491434392353273218268209259363266299364289364314237183270 224265261244254250361405288229178180209246166161158213155163
144177239179204170210256363389594480424388
EXT-E13A 54
180139136129186202310270259330188235151126100101114121157130 961008711790998010310393658410281919913213188120 119109114126131130105120144100116178133118
EXT-E13B 54
187146140134189184315271259329193246137120116119110115132135 8410192121898980100100110699910081879012912297132 124106114124125143101123131137116151148129
EXT-E14A 71
37642435330025323430724231822532831824922519015415411685112
1001391471008695160130121104122113108167126109115886089
130120102866666456081566649505854705561119105
129118896955493955518198
EXT-E14B 71
37842134028925323028428329521232433122922518018215612087103
102135154111801041511361189911411997170123108111925689
137105111807252534679687545535750685864114100
141125867548474761597789

EXT-E15A 52
405373474398447365316357295214151163207177212216151148165150 126191207209189189177231183151981321261151271028214493179 210157280288282247176227205246286376

EXT-E15B 52

390381458410438364304348284208160165192190208234154138151161 136180237238190175184232178136103145130123100998613197182 186158279290259250188262190223277389
EXT-E16A 72
179314321287380276268323304262226253179141156206239164210174 12719423731717520726723499167132168183207116167387794155 86159170217155192183168284277198142187198180236228172161140 272241250233379235276415285309303186
EXT-E16B 72
190310319292376297250348293229263253185165161181189163178175 12818622734918222324823999166144177180198119157509399146 83143161218169177179169214261183117188186157211207162155163 255241279250350237284432265297310217
EXT-E17A 54
228209385327207321328327255257116305124871407918996119175
24513878751248218881147126137116229225134998015294151
184185153189172171320244206149182189186191
EXT-E17B 54
2852154003542453213263482692601223171438215573224102120176
235137747511880179931281331451242142351351349716293146
179219140187183176287263190123184175153214
EXT-E18A 59
120190192143174219284320325266282258156196255168286250249101 151143257289256140204153227392364288363403252183212217217296 326258447292438377355440252354554611545460260350366108106 EXT-E18B 59
134187192166181214276300289256274254176197264167274242260137 158142267281241151204154217395381297383389244182208232244234 350309416310369383358413245405552597599414256384350121106 EXT-E19A 77
312168129103193215258125191189163162203256279330270285263141 203253163291251280130131130256287245156216153215393389321334 401259153218242243291335303358306403373360419250402546624572 423243379376100113193236250483410423433396297356290

EXT-E19B 77

354166117121186212241139191195146181208254289314265292262165 201255173282244272127157160266292243150196159220384387275367
401242188206237267285316260432335423433338455257364579598547
446249383366110117174283229494418433429427283357348
EXT-E20A 72
3536566758615467848869838012480122978010077
108371274281282264305310272274260190155215168286285229340313 285191168186155206190267202205236176183209202155209186186186 129166210190192147175145100150144181

EXT-E20B 72

119362273280276258305314279279258184161220166284270224329314
270189152180154206176275198201237180186205197148209150203177
137167193190186178157145107165144213
EXT-E21A 102
29433324037725129829617625124031122116914250121167109173155
188250215167194236350233232227174275332221312302200171283350
246199191140114158157190170118129139167266126132143181351255
337262241239341256231212126129243105264206174374317212102146
100134216204347197137291207236148153123164152175181129192191 224258
EXT-E21B 102
28432623936425229629320724824826523315714961110157122161183 189259221163179215351222215211179282333214311309184181285321 246174194143106171150196156120127152160273129132141168335258 339275230254345276221211118127231103266213174362325220119141 195134219199348199123292219241139146134156137184195134179200 229256
EXT-E22A 105
276253271288282352270367214269283165237280308249186153146153
106142166193306252222186217333236246234164272283194222273152
12220222217314617111779134133173147108103127125216104128119
18137522331727027828434325621521089116200106225197152356288
189115129151125194194358220168266215253157125123164167202175
144208215255319
EXT-E22B 105
260255276294280359263376198259284169232290296235185152141144 110146151197296266206189257351228270230178265280167243255134 12020321718915317311673142139163154110106104134219103119137 1624052123102732782823542452131931169618595234206136333280 176116130155123190192369246144277225255154127120162169194189 138202218237306

EXT-E23A 58

377326231203150275276251237245299400276226200232193206199192 196182162141155197141187232174193145132151102107113120113102 100165201210262191186190213172199192232274273179215245

EXT-E23B 58

393321289182159268270254221250301406254209202253211203203200 205192154138138189172179227166212140133146109110118127117101 100159207215269201189186207174202208233276267191232247 EXT-E24A 125
111192173126182191198245197133126104165217147185119155131148 247206231199212173245222198146163137106947199273117156315 26125721831724220717214133730220617626317416897139174160261 1861281431832211782323252931861401732061831921619978114116 144166150173129153107104118112155251154211143185169154182157 174127143175109234113123163188149907610287105148223142150 15713611810997

EXT-E24B 125

138183167111192185201231194133123102178214192140114163147152
259177213193206166229228208163176138108916892262114144284
24525022231225520016912731931320716023917318996124179129226
16514615019226020021929429318613318219117421716610071107115
141161151156116157124107122102161250157209136187167147189158
17512915417111721512312116118814488679993112139231156142 158116120116113
EXT-E25A 101
14411716711413912111176645559136299140227334278283194213 205145152123230304206179284205235155187215171291171184160205 33421022828125315313520221820121212310295160102144130100119 102161153137136110145225182211148196193169173150156138137122 891851411391992371829578109107122139258156156175117118122 100
EXT-E25B 101
163108160153136809789755650128319156227318295298196211
181147149152230322211191297232240152179227148310176194158225
34922025130623815812821723317219811710710513810614113994121
104158154133142112166226161224149192183177180141181138135132
931671581341932261681148611491125142257162154162130115112 124
EXT-E26A 56
163147204156188220186222261254227231208252287196148180239314 276152210206249240214209181168174231319226248260319319210194 160205205286231233179211219229205220189216204200
EXT-E26B 56
174130195169181236191221271253222233214245276196150207218288 304167207199256228222218198155186215307230248272315313225204 186210195302222222166226223232223219165214191228

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Baillie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976.

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the comers; the arrow is pointing to the heartwood/sapwood boundary (H / S). Also a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil.

Fig 3. Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a,b; Howard et al 1984-1995)

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C45 best when it is at a position starting 20 rings after the first ring of 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the $t-$ value between C 45 and C 08 is 56 and is the maximum between these two whatever the position of one sequence relative to the other

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately
average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and C 05 . They are the most similar pair with a t -value of 10.4 . Therefore, these two are first averaged with the first ring of C 05 at +17 rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences C 08 and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper comers of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made for the average number of sapwood rings in a mature oak. One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date. Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981; see also Hillam et al 1987)

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings. We would use these estimates, for example, in calculating the range for the common felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood/sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings were only lost in coring, because of their softness. By measuring in the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 40 years later we would have estimated without this observation

T-value/Offset Matrix

	C45	C08	C05	C04
C45		$+20$	+37	+47
C08	5.6		+17	+27
C 05	5.2	10.4		$+10$
C 04	5.9	3.7	5.1	

Bar Diagram

	1	1	1	1	1	1	1		1	
0	10	20	30	40	50	60	70	80	90	100
110										

C45

C08

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values.
The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it.
Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6

The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Even if all the sapwood rings are missing on all the timbers sampled, an estimate of the felling date is still possible in certain cases. For provided the original last hearwood ring of the tree, called the heartwood/sapwood boundary $(\mathrm{H} / \mathrm{S})$, is still on some of the samples, an estimate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates.

If none of the timbers have their heartwood/sapwood boundaries, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken in situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ulimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988a). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7 Here ringwidths are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence starting in 1835 . In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Baillie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87.

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely

REFERENCES

Baillie, M G L, 1982 Tree-Ring Dating and Archaeology, London.
Baillie, M G L, 1995 A Slice Through Time, London
Baillie, M G L, and Pilcher, J R, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A, and Tyers, I, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, \mathbf{2 2}, 25-35$

Laxton, R R, and Litton, C D, 1988b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A.D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sci, 18, 429-40

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

[^0]: * $\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last ring on the sample

