CHURCH OF ST JAMES, WHITSON STREET, BRISTOL TREE-RING ANALYSIS OF TIMBERS OF THE NAVE AND CHANCEL ROOFS

SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

CHURCH OF ST JAMES, W HITSO N STREET BRISTO L

TREE-RING ANALYSIS OF TIMBERS OFTHENAVEAND CHANCELROOFS

Alison Arnold and Robert Howard

NGR: ST 58897347
© English Heritage
ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; A rchaeological Survey and Investigation; A rchitectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. O pinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO 4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY
A nalysis undertaken on samples from the timbers of the nave and chancel roofs at this church, resulted in the dating of three site sequences. A site sequence containing seven samples from the chancel and three from the nave was found to span the period AD 1209-1396. A second contains four samples from the nave and spans the period AD 1331-1406. The final dated site sequence contains three samples from the chancel and spans the period AD 1421-71. Interpretation of the sapwood on these dated samples suggests felling of the timbers used in the initial construction of the chancel roof occurred over a period of several years in the second quarter of the fourteenth century. The inserted false 'purlins', which strengthen the chancel roof, were felled in AD 1487-1502. The nave roof is thought likely to have been constructed shortly after the felling of the timbers in AD 1411-36.
Two further site sequences are undated.

CONTRIBUTO RS

Alison A rnold and Robert Howard

ACKNO W LEDGEMENTS

The Laboratory would like to thank Kevin Lloyd of C S W illiams, the building contractors, for kindly facilitating access and for all his assistance during sampling. John Thorp of Keystone was on site to offer advice, provided the drawings used to locate the samples, and allowed us to see his draft document discussing the roofs. Thanks are also given to the Scientific Dating Team at English Heritage and Cathy Tyers of the Sheffield University Dendrochronology Laboratory for their advice and assistance throughout the production of this report.

ARCHIVE LOCATIO N

Bristol City Council HER
Urban Design and Conservation
Brunel House
St George's Road
Bristol BS1 5UY
DATE OF IN VESTIGATIO N
2010-11

CONTACT DETAILS
Alison A rnold and Robert Howard
N ottingham Tree-ring D ating Laboratory
20 Hillcrest Grove
Sherwood
N ottingham N G5 1FT
01159603833
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Chancel. 1
N ave 1
Sampling 1
A nalysis and Results 2
Interpretation 2
Chancel roof 2
N ave roof 3
Discussion 3
Bibliography 5
Tables 7
Figures 11
D ata of Measured Samples 33
A ppendix: Tree-Ring D ating 40
The Principles of Tree-Ring Dating 40
The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory 40

1. Inspecting the Building and Sampling the Timbers. 40
2. Measuring Ring W idths 45
3. Cross-Matching and Dating the Samples 45
4. Estimating the Felling D ate 46
5. Estimating the Date of Construction 47
6. Master Chronological Sequences. 48
7. Ring-W idth Indices 48
References 52

INTRO DUCTION

The grade I listed Church of St James (ST 5889 7347; Figs 1-3) represents the remains of a former priory founded in AD 1129 as a Benedictine cell. In plan the church consists of an aisled nave and chancel; the south aisle was widened and rebuilt in AD 1698, and the north aisle rebuilt in AD 1864. At the south-east corner is a four-stage, unbuttressed tower dating to about AD 1374.

Chancel

The wagon roof over this part of the church is of common rafter type, with curving arch braces providing a barrel vault (Fig 4). D ocumentary sources suggest that this roof is dated to the fourteenth century after the failure of the original twelfth-century one. This type of roof is susceptible to racking and at some later date false 'purlins' (or chocks) were inserted between the trusses to strengthen the roof longitudinally (Fig 5).
N ave

The five bay nave is thought to date to the late-twelfth century although the roof is obviously a later replacement. Stylistically later than the roof over the chancel, the nave wagon roof is of a type common in the fifteenth century and continuing in popularity until the early-seventeenth century. It consists of main trusses, intermediate trusses, and common rafter trusses, all with arch braces. There are side purlins and a moulded crown purlin (Fig 6).

SAMPLIN G

Sampling of the nave and chancel roof timbers was requested by Rob Harding, English Heritage South-W est region as part of the building recording being undertaken in conjunction with a major repair programme in receipt of grant aid. It was hoped that successful tree-ring dating of the primary timbers would provide clear evidence for the construction dates of the nave and chancel roofs. In addition it was hoped that the dating of the inserted false 'purlins' of the chancel roof would allow a greater understanding of the development of this roof.

A total of 43 timbers was sampled. Each sample was given the code JMS-P (for St James' Church) and numbered 01-43. Twenty of these samples are taken from timbers of the nave roof (JMS-P01-13 and JMS-P27-33) and 23 from the chancel roof (JMS-P14-26 and JMS-P34-43). The suitability of some of the timbers sampled, such as those of the collar purlins (JMS-P13 and JMS-P26) and the false 'purlins' (JMS-P34-43) could be seen to be marginal but were considered of such importance that sampling was deemed appropriate. Trusses and frames have been numbered from east to west. The location of all samples was noted at the time of sampling and has been marked on figures 7-28. The only
exception to this is sample JMS-P33 which was taken from an ex-situ wallplate. Further details relating to these samples can be found in Table 1.

AN ALYSIS AND RESULTS

At this stage 12 of the samples (five from the nave roof and seven from the chancel roof) were seen to have too few rings to make secure dating a possibility and were discarded prior to measurement. The remaining 31 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. These samples were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), resulting in 21 samples grouping to form five site sequences.

Firstly, ten samples (three from the nave and seven from the chancel) grouped to form JMSPSQ 01, a site sequence of 188 rings (Fig 29). This sequence was found to match the reference chronologies at a first-ring date of AD 1209 and a last-measured ring date of AD 1396. The evidence for this dating is given by the t-values in Table 2.

Four further nave samples grouped and were combined at the relevant offset positions to form JMSPSQ 02, a site sequence of 76 rings (Fig 30). This site sequence was compared against a series of relevant reference chronologies where it was found to span the period AD 1331-1406. The evidence for this dating is given by the t -values in Table 3.

Three samples taken from the inserted false 'purlins' of the chancel roof matched each other and were combined to form JMSPSQ 03, a site sequence of 51 rings (Fig 31). This site sequence was found to match securely and consistently against the reference chronologies at a first-ring date of AD 1421 and a last-measured ring date of AD 1471. The evidence for this dating is given by the t-values in Table 4.

Two further site sequences, each containing two samples from the nave roof, were also constructed (Figs 32 and 33). Attempts to date these and the remaining ungrouped samples were unsuccessful and all remain undated.

IN TERPRETATIO N

Chancel roof

Ten of the chancel roof samples have been successfully dated (Fig 34), seven within JMSPSQ 01 and three in JMSPSQ 03. All ten samples have the heartwood/sapwood boundary ring. Seven of these, representing collars, struts, rafters and an archbrace, have heartwood/sapwood boundary ring dates in the early decades of the fourteenth century, the average of which is AD 1312. This allows an estimated felling date range to be calculated for the seven timbers represented of AD 1327-52. The variation between the earliest and latest heartwood/sapwood boundary ring of these seven samples is 24 years
which suggests the possibility that these timbers may have been felled over a period of several years in the second quarter of the fourteenth century.

The other three dated chancel samples are all taken from false 'purlins', not thought to be part of the primary roof structure. These three samples all have similar heartwood/sapwood boundary ring dates, suggestive of a single felling. The average of these is AD 1462, allowing an estimated felling date to be calculated for the three timbers represented to within the range AD 1487-1502.
N ave roof
All of the seven dated samples from the nave, included in site sequences JMSPSQ 01 and JMSPSQ 02, represent wallplates. Four of these have the heartwood/sapwood boundary ring (Fig 34), which is, in all cases, broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1396, allowing an estimated felling date to be calculated for the four timbers represented to within the range AD 1411-36. The remaining three dated nave samples do not have the heartwood/sapwood boundary so an estimated felling date cannot be calculated for them; however, their lastmeasured ring dates make it possible that these were also felled in AD 1411-36.

The two undated site sequences, JMSPSQ 04 and JMSPSQ 05, represent a pair of collars and a pair of archbraces respectively. The samples in each site sequence are clearly broadly coeval.

All felling date ranges have been calculated using the estimate that 95\% of mature oak trees in this region have between 15 and 40 sapwood rings.

DISC USSIO N

Prior to tree-ring analysis being undertaken the nave roof had been identified as being of a type common from the fifteenth to early-seventeenth centuries, with the chancel being stylistically earlier and potentially fourteen century. It is now known that the chancel roof is constructed from timber felled in AD 1327-52 with felling possibly occurring over a period of several years. Construction in the second quarter of the fourteenth century makes this roof the earliest dated wagon roof in the south-west (Thorp pers comm). Subsequently it must have become clear that additional longitudinal strengthening was required to maintain the integrity of this roof and the false 'purlins' were inserted. This is now thought to have occurred soon after the felling of these timbers in AD 1487-1502.

The nave roof had already been identified on stylistic grounds to be later than that of the chancel and this appears to have been confirmed by the dendrochronology. Several of the wallplates of this roof have now been dated to a felling of AD 1411-36. It is unfortunate that, despite several archbraces and collars being sampled from this roof, none of these elements could be dated, making it a possibility that the rest of the roof
structure is of a different date. However, structural analysis of the roof has not identified any evidence to suggest that the roof is not integral to the wallplates; the AD fifteenthcentury date is as expected from a wagon roof of this type and is consistent with other dated examples (Thorp pers comm).

BIBLIO GRAPHY

Arnold, A J and Howard, R E, 2007 Tree-ring analysis of timbers from All Hallows Church, Kirkburton, W est Yorkshire, EH Res Dep Rep Ser, 49/2007

Arnold, A, J and Howard, R E, 2008 Halesowen Abbey, Dudley, W est Midlands, Treering A nalysis of Timbers, EH Res Dep Rep Ser, 90/2008

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring analysis of timbers from the Abbey Gatehouse, Bristol Cathedral, Bristol, Centre for A rchaeol Rep, 100/2003

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-Ring Analysis of Timbers from New Inn House, 7 W otton Road, Kingswood, Gloucestershire, Centre for Archaeol Rep, 62/2004

Arnold, A J, Howard, R E, and Litton, C D, 2008 N ottingham Tree-ring D ating Laboratory: additional dendrochronology dates, no. 30, Vernacular Architect, 39, 107-11

Bridge, M C, 1981 Tree-ring dates from Portsmouth Polytechnic: List 5, Vernacular Architect, 12, 39

Groves, C, and Hillam, J 1997 Tree-ring analysis and dating of timbers in A multi-period salt production site at Droitwich: Excavations at Upwich, (ed J D Hurst), CBA Res Rep, 107, 121-6

Howard, R E, Laxton, R R, and Litton, C D, 1996 Tree-ring analysis of timbers from Mercer's Hall, Mercer's Lane, Gloucester, Anc Mon Lab Rep, 13/96

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from the buildings and living trees at Stoneleigh Abbey, Stoneleigh, W arwickshire, Anc Mon Lab Rep, 80/2000

Howard, R E, Laxton, R R, and Litton, C D, 2001 Tree-Ring A nalysis of Timbers from the Solar and Chapel, St. Briavel's Castle, Tintern, Gloucestershire, Centre for A rchaeol Rep, 31/2001

Morgan, R, 1982 Tree-ring dates for buildings: List 9, Vernacular Architect, 13, 49
N ayling, N, 2005 Tree-Ring A nalysis of Timbers from 66 Church Street, Tewkesbury, Gloucestershire, Centre for Archaeol Rep, 11/2005

Siebenlist-Kerner, V, 1978 The chronology, 1341-1636, for certain hillside oaks from W estern England and W ales in Dendrochronology in Europe (ed J M Fletcher), BAR Int Ser, 51, 157-61

Tyers, I, 1996 Tree-ring analysis of the bellframe at the church of St M ary M agdalene, Twyning, Gloucestershire, Anc Mon Lab Rep, 29/96

Tyers, I, 1997 D endrochronological analysis of timbers from Lower House Farm, Tupsley, near Hereford, A RCUS Rep, 296

Tyers, I, 1998 Tree-ring analysis of oak timbers from St Nicholas' Church, W arndon, W orcestershire, Anc Mon Lab Rep, 34/98

Tyers, I, 2002 Tree-Ring Analysis of O ak Timbers from The Abbot's Hall and Parlour at W igmore Abbey, near A dforton, Herefordshire, C entre for A rchaeol Rep, 112/2002

Tyers, I, 2004 The tree-ring analysis of Upper Limebrook Farm, nr W igmore, Herefordshire, A RCUS Rep, 717m

Tyers, I, and Groves, C, 2003 Tree-ring dates from Sheffield University: List 136, Vernacular A rchitect, 34, 98-101

Tyers, I, and W ilson, R, 2000 Tree-ring analysis of oak timbers from 66 and 68 W estgate Street, Gloucester, Anc Mon Lab Rep, 19/2000

TABLES

Table 1：Details of tree ring samples from the nave and chancel roofs of the Church of St James，Bristol

Sample number	Sample location	Total rings＊	Sapwood rings＊＊	First measured ring date（AD）	Last heartwood ring date（AD）	Last measured ring date（AD）
Nave						
JMS－PO1	South archbrace，CR27	86	13	－－－－	－－－－	－－－－
JMS－P02	South archbrace，CR23	76	h／s	－－－－	－－－－	－－－－
JMS－P03	N orth archbrace，CR22	NM	－－	－－	－－－－	－－－－
JMS－P04	South archbrace，CR18	NM	－－	－－－－	－－－－	－－－－
JMS－P05	Collar，CR16	55	h／s	－－－－	－－－－	－－－－
JMS－P06	Collar，CR13	57	－－	－－－－	－－－－	－－－－
JMS－P07	Collar，CR10	73	h／s	－－－－	－－－－	－－－－
JMS－P08	South archbrace，CR8	49	h／s	－－－－	－－－－	－－－－
JMS－P09	Collar，CR8	51	01	－－－－	－－－	－－－－
JMS－P10	North archbrace，CR6	NM	－－	－－	－－－－	－－－－
JMS－P11	Collar，CR6	85	h／s	－－－－	－－－－	－－－－
JMS－P12	Collar，CR5	NM	－－	－－	－－－－	－－－
JMS－P13	Collar purlin，CR12－CR13	NM	－－	－－－－	－－－－	－－
JMS－P27	South wallplate，TT1－CR4	110	－－	1255	－－－－	1364
JMS－P28	South wallplate，CR4－CR14	117	－－	1270	－－－	1386
JMS－P29	South wallplate，CR14－ET	123	h／s	1274	1396	1396
JMS－P30	North wallplate，T1－MT1	68	11	1339	1395	1406
JMS－P31	North wallplate，CR11－CR14	68	h／s	1331	1398	1398
JMS－P32	N orth wallplate，IT3－CR15	56	－－	1335	－－－－	1390
JMS－P33	Ex－situ wallplate，north side	67	02	1331	1395	1397
Chancel						
JMS－P14	Collar，T15	75	h / s	1252	1326	1326
JMS－P15	North strut，T13	84	h／s	1221	1304	1304
JMS－P16	North rafter，T12	77	h／s	1235	1311	1311
JMS－P17	N orth archbrace，T10	105	03	－－－－	－－－－	－－－－
JMS－P18	South strut，T10	69	h／s	1235	1303	1303

Table 1：Details of tree ring samoles from the nave and chancel roofs of the Church of St James，Bristol

Sample number	Sample location	Total rings＊	Sapwood rings＊＊	First measured ring date（AD）	Last heartwood ring date（AD）	Last measured ring date（AD）
JMS－P19	South rafter，T9	64	h／s	－－	－－	－－－－
JMS－P20	South archbrace，T7	94	h / s	1209	1302	1302
JMS－P21	Collar，T7	93	h／s	1221	1313	1313
JMS－P22	Collar， 76	76	h／s	－－－－	－－－－	－－
JMS－P23	South rafter，T4	77	h／s	1250	1326	1326
JMS－P24	North strut，T3	91	h／s	－－－－	－－－－	－－－－
JMS－P25	South archbrace，T2	81	16	－－－－	－－－－	－－
JMS－P26	Collar purlin，west end	NM	－－	－－	－－－－	－－－－
JMS－P34	South purlin，T 9－T10	46	01	1421	1465	1466
JMS－P35	South purlin，T3－T4	41	10	1431	1461	1471
JMS－P36	South purlin，T12－T13	47	h／s	－－－－	－－－－	－－－－
JMS－P37	North purlin，T7－T8	51	11	1421	1460	1471
JMS－P38	North purlin，T12－T13	NM	－－	－－－－	－－－－	－－－
JMS－P39	North purlin，T11－T12	NM	－－	－－－－	－－－－	－－－－
JMS－P40	North purlin，T6－T7	NM	－－	－－－－	－－－－	－－－－
JMS－P41	North purlin，T3－T4	NM	－－	－－－－	－－－－	－－
JMS－P42	South purlin，T7－T8	NM	－－	－－－－	－－－－	－－－－
JMS－P43	South purlin，T5－T6	NM	－－	－－－－	－－－－	－－－－

＊NM＝not measured．＊＊h／s＝the heartwood／sapwood boundary is the last measured ring on the sample

Table 2: Results of cross-matching of site sequence JMSPSQO1 and relevant reference chronologies when the first ring date is AD 1209 and the last measured ring date is AD 1396

Reference chronology	t-value	Span of chronology	Reference
Upwich, Droitwich, W orcestershire	8.1	AD 946-1415	Groves and Hillam 1997
W igmore Abbey, Herefordshire	8.1	AD 1055-1729	Tyers 2002
Twyning Church bellframe, Gloucestershire	7.8	AD 1251-1452	Tyers 1996
St Cuthberts, W ick, W orcestershire	7.7	AD 1255-1496	Bridge 1981
Upper Limebrook, W igmore, Herefordshire	7.5	AD 1220-1447	Tyers 2004
New Inn House, Kingswood, Gloucestershire	7.3	AD 1191-1519	Arnold et a/2004
Stoneleigh Abbey, Warwickshire	6.9	AD 1124-1346	Howard et al2000

Table 3: Results of cross-matching of site sequence /MSPSQ02 and relevant reference chronologies when the first ring date is AD 1331 and the last measured ring date is AD 1406

Reference chronology	t-value	Span of chronology	Reference
Mercer's Hall, Gloucester	7.8	AD 1289-1541	Howard et a/ 1996
66/68 W estgate Street, Gloucester	7.1	AD 1209-1518	Tyers and W ilson 2000
Sinai Farm, Burton-on-Trent, Staffordshire	6.6	AD 1336-1499	Arnold et a/2008
Manor Farm Barn, Halesowen Abbey, W est Midlands	6.3	AD 1310-1535	Arnold and Howard 2008
Wardon Church (roof), W orcestershire	6.0	AD 1348-1424	Tyers 1998
All Hallow's Church, Kirkburton, West Yorkshire	5.9	AD 1306-1633	Arnold and Howard 2007
Abbey Gatehouse, Bristol Cathedral, Bristol	5.7	AD 1306-1494	Arnold et a/2003

Table 4：Results of cross－matching of site sequence JMSPSQ 03 and relevant reference chronologies when the first ring date is $A D 1421$ and the last measured ring date is AD 1471

Reference chronology	t－value	Span of chronology	Reference
Warndon Church（tower），Worcestershire	7.4	AD 1391－1498	Tyers 1998
Townsend Farmhouse，Stockland，Devon	6.8	AD 1422－1484	Tyers and Groves 2003
66 Church Street，Tewkesbury，Gloucestershire	6.5	AD 1371－1474	Nayling 2005
Whites Farm，South Leverton，Nottinghamshire	6.5	AD 1359－1503	Morgan 1982
St Briavels Castle，Gloucestershire	6.5	AD 1362－1592	Howard et a／2001
Lower House Farm，Tupsley，Herefordshire	6.4	AD 1425－1613	Tyers 1997
Welsh Borders	6.3	AD 1341－1636	Siebenlist－Kerner 1978

FIGURES

Figure 1: Map to show the general location of Bristol (based on the O rdnance Survey Map, with the Permission of The Controller of Her Majesty's Stationery O ffice, ©Crown Copyright)

Figure 2: Map to show the general location of the Church of St James, arrowed (based on the O rdnance Survey Map, with the Permission of The Controller of Her Majesty's Stationery O ffice, OCrown Copyright)

Figure 3: Map to show the location of the Church of St James, hashed (based on the O rdnance Survey Map, with the Permission of The Controller of Her Majesty's Stationery O ffice, OCrown Copyright)

Figure 4: Chancel roof

Figure 5: The false 'purlins' of the chancel roof

Figure 6: Nave roof (Keystone Historic Buildings Consultants)

Figure 7: Nave; common rafter frame CR27, showing the location of sample JMS-P01 (John Thorp)

Figure 8: Nave; common rafter frame CR23, showing the location of sample JMS-P02 (John Thorp)

Figure 9: Nave; common rafter frame CR22, showing the location of sample JMS-P03 (John Thorp)

Figure 10: Nave; common rafter frame CR18, showing the location of sample JMS-P04 (John Thorp)

Figure 11: N ave; common rafter frame CR16, showing the location of sample JMS-P05 (John Thorp)

Figure 12: Nave; common rafter frame CR13, showing the location of samples JMSP06 and JMS-P13 (John Thorp)

Figure 13: Nave; common rafter frame CR10, showing the location of sample JMS-P07 (John Thorp)

Figure 14: N ave; common rafter frame CR8, showing the location of samples JMS-P08 and JMS-P09 (John Thorp)

Figure15: Nave; common rafter frame CR6, showing the location of samples JMS-P10 and JMS-P11 (John Thorp)

Figure 16: Nave; common rafter frame CR5, showing the location of sample JMS-P12 (John Thorp)

Figure 17: Chancel; frame T15, showing the location of sample JMS-P14 and JMS-P26 (John Thorp)

Figure 18: Chancel; frame T13, showing the location of sample JMS-P15 (John Thorp)

Figure 19: Chancel; frame T12, showing the location of sample JMS-P16 (John Thorp)

Figure 20: Chancel; frame T10, showing the location of samples JMS-P17 and JMS-P18 (John Thorp)

Figure 21: Chancel; frame T9, showing the location of samples JMS-P19 (John Thorp)

Figure 22: Chancel; frame T7, showing the location of samples JMS-P20 and JMS-P21 (John Thorp)

Figure 23: Chancel; frame T6, showing the location of sample JMS-P22 (John Thorp)

Figure 24: Chancel; frame T4, showing the location of sample JMS-P23 (John Thorp)

Figure 25: Chancel; frame T3, showing the location of sample JMS-P24 (John Thorp)

Figure 26: Chancel; frame T2, showing the location of sample JMS-P25 (John Thorp)

\%

EAST

Chancel TI-I5 \qquad ITI MTI IT2

IT2 MT2
IT3
MT3
12 -

IT4 MT4

WEST

Fiqure 28：North section，showing the location of samples／MS－P30－32 and JMS－P37－41（John Thorp）

[^0]Figure 29：Bar diagram of samples in site sequence JMSPSQOI

Oift
set

Total heartwood/sapwood
rings

Years relative Calendar years (AD)

Fiqure 30: Bar diagram of samples in site sequence JMSPSQ02

Fiqure 31: Bar diagram of samples in site sequence JMSPSQ03

Fiqure 32：Bar diagram of samples in undated site sequence JMSPSQ O4

Relative

Total heartwood／sapwood

 rings boundary position\square
85
$86 \quad 73$

Years relative

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
JMS-P01A 86
    252186237265131168120116145154210185161184136157127122129119
    121157148100135153165164137129122174163143165154141142140163
    177196186179147142202225195 294168176208133196 151155180191 151
    123168225170217191245145203157148243235190210160168220180181
    263127137176120140
JMS-P01B 86
    236192220268131171 122 123148156208216157183142151126 125123128
    113158126112133166199149136112115176164147158156138143137173
    194202190182160132211 222196 294166187201132197157153177 184151
    116169225173217194251144205148149247237189209165167214181 172
    271131140179118131
JMS-P02A 76
    184224304145237152140161159206169200223224224150174176211 131
    151131121159150151146172170161187178189226195172166250218213
    188213208191239304418267481222249255199257291340332321 323 318
    296 313237320279294184200141171239275238277214243
JMS-P02B 76
    179233 310 131240143141167173193165204236225218167182176197134
    139142113155163151144176168166194179188214201180132232223211
    185205212194241 308414265472235263229211244307288320317 }22229
    292 316221300295252181207132166262263251260196 250
JMS-P05A 55
    599485460522442428414332348 363344393404410442380419364390 385
    402409472392526338303483408286227230211281237263408415228447
    415366229232249203320327254183193257214214293
JMS-P05B 55
    593472465520448434420346342367333 386407397440 371415372380373
    411413478 373530339311480396279210238206279247279399433227436
    422361237264227204316329241171199247236190 307
JMS-P06A 57
    292276 387553561589471606698653676590607404528732751606647715
    619690688615689507 397597143134291415 317 395 399 394 356 326420466
    425419454388462389460440401303 366277 219277 331 344 246
JMS-P06B 57
    313280 377 540563609475613671655675586 633 387524722752618662716
    626667698619691513 394586145131295418319399391 395 355 328416460
    431420450384461 392456450397 309 364282215277 333 348258
JMS-P07A 73
    162128 131 173208 95 103165 124265 228246294262289299404461430 312
    367191 375 281413486264224212414181304210276160274265 241 237 207
    26129319928216022523620619322029326828293111 166176 205 174 234
    15117922278115 124145239158157 255 79 114
JMS-P07B 73
    174127110160189 84 93174130270 244 240 311239277 301401462439317
    375192 387 279418509248225 212419177 301214294164 270 271 245 231208
    262293211287150235230222196229296265 283 84116169173199179233
    14817922676121119146239164151259 83 133
```

```
JMS-P08A 49
    579576567 256554 314 403 305 250 230 247 249174263 306 210 190 217 375409
    330207222245186176266 303 379258225 206 253195222 193150184189144
    99121116136118107102109163
JMS-P08B 49
    602569600 234523 327402 271 249238242 245192256 318196 190 218 340407
    342206221235183189267 307 379264221 198 256 203234187154197177 156
    9312011414611011710496 175
JMS-P09A 51
    338308433 340 383402370402462370409334339333 339300367410480363
    418306 364 389 301 370459480452356 319325 343283 313 309279329310323
    312261263251268239201258244218277
JMS-P09B 51
    322323432338385409372411469392414 328 338331337 316 363420480356
    409309351391296 368455482447 358317 321 348287 290 327284 331 331 316
    317259251244250237 211258235230275
JMS-P11A }8
    226250295 365 236 216 149106 99105142185127144205161254246 214 193
    223259239247 304 280 228 275 148 272 208 272 263208209191270 210268181
    254178254233266 277 252252 322 210 194 175167 210 229151252 227 311246
    214169177157 233140180181195175 90 97 263181 191 177 199160 112 173
    153 80 150141189
JMS-P11B }8
    241239 321 35323022915899112100143189135128202188 243 246 213197
    214259230258278259212232163274206 275 256 213215185 271 214 265 181
    256169258241259281255245 328208220179173219215155 250 235 308 251
    214165180153234140183179195176 98 92 269182191169175146 94166
    169 78162142168
JMS-P14A 75
    200 245 266 304 242 207 221582 396 290 208140203208177 159216 190 109 102
    98115 88 72 81 115 108 85 91 93 94 96 95 96 155 103 128 122 73 54
    75 87 79 89 68 64 87 66 99 121 114 77 46 85 102 96 129 88 112 113
    163259224425 340286233202203172224 207 172156 214
JMS-P14B 75
    179280 249 311254 210 194 641 340282207 144199213178167 210 188109 93
    106107 99 61 88115 113 76 93 88 96 99 90 98 153 99 128 125 71 52
    8277 88 83 76 62 87 71 103 125 119 67 54 84101 91 146 78 117 123
    151258244392 339273258210207183232197167157198
JMS-P15A 84
    136118135144196209192217 202 227 209132115175173 90 146 106 144 148
    15014819519118414516694 97 124146169208257271 222 192 131 175 147
    183248196207195184173226172118115 208 236 226181 196 168 113133172
    209215263229212232185177 208185203213236165174182165156120182
    192162138158
JMS-P15B 84
    124135142136191230219190 207 230198138122166188110150 95146 143
    159150173195182150164 88 98 126 152171 207 255 274 227 188 127 193 145
    182254193212191 188182224169109122204 236 215180 207 174113 138166
    205210259243209226184180 209184209206227162182185164163127177
    190163136142
JMS-P16A 77
    304130 276 283 378521286 321291237188 276 325 292 297 228 338 303247166
    309318318261269254228277148256233249286 357137 61 6368111136
```

10110711210479887695126114131158100948973627812266 759198109918610658416680127768080115108 JMS-P16B 77
310130280286376487279328292188187284323297302229332309259179 306311317269274249231273148271252253298364131726876130137 1001019911672947096119114134153941007882607610491 74929910687889270445889118859295121100 JMS-P17A 105
324297270207258258229222251312223282310271219248193209201189 213288125105685949608710410310363627892167164238165
2232812082202171896976778710811795113129178222206211254 3061061051021041208811695132899713693826992516167 938477876679594981671059310283784174906880 7787494968
JMS-P17B 105
325299272210261243231220267316240276309283223236189210204184
20729211910768724361811021108267628486161163224179
23526721521720518176608283104117104109130168209208194252
2941259790128108971081021368510013690876894534886 849173906188594486721029510082795263986281 7593543977
JMS-P18A 69
17612616298142169207213202237250176145113117134164213342361
476324264153156156161272239242176172162286203142135168222212
184182169119130141165157192201212220156146181167214193186145
12813218418297129157141124
JMS-P18B 69
16312516699140174210207210222259173137114118136166216339361
465321276154162145159272241256172173179265204143132173219218
180186171109140146163164177199207217155149191160199202185148 12913718318297125162141119
JMS-P19A 64
433286278219202205174182160206177182194122937299137210169
175201166217195212259289232240226200212143178164162142126113
691199486109128143133127807799858371901151109793
1068693192
JMS-P19B 64
4282792702232002041801761642061771861991338763105123225166
177203171219195214263295235240224204212144179165155152133110 751169496112136150135126867797948668861181139495
1068190200
JMS-P20A 94
573522582570518480484485453387362294345368397457429437353397
31219583869510515565157115150112686360706697121126
1692093171501861742452211941831722351667887116126225123170
944362109230177178151174153114136175181257134126176110124
1621036852369510212112913196145195140
JMS-P20B 94
586528570580524464495477450408362321320365397446438430354411
307184937311097147841521161401096980697078101121135
1762172961531821772742051961891682271688971122133219138180
77537299241177172151179149102152183174255138132170107117
1581116051468910111812513790148215128

```
JMS-P21A 93
    46851544833542844231346943132915915288179205122 202123128149
    109 76 12410579137155126137112115117 136159172159144118165145
    119117117123114106 97 1741696990 134 158164100114 119 90 95 156
    117101127138250260152145 219139134193 324278343 318 357 269195 210
    244179107145156161115118145150172 214222
JMS-P21B }9
    473509431 325433437 327470418324177153 83175201131203121124157
    106 70 114106 91 136 160 118139110 112128 132157172152 146 120 165144
    120107115125118102 94171175 73 88133168141 94117 119 94110 153
    108106125132234260155147 205 125145194 316264 333 308 355 268188 210
    236168112148162156108115148160167206 227
JMS-P22A 76
    325296292 293237 283 321211278 286 340 267 260253278222 243279180 196
    218240154 165 281 312 369218263251212 271 157 198269 250 233248189278
    264229168187269238208200233199186214167178189254213175144198
    160163188268162125179138161214261237190164171154
JMS-P22B 76
    315300284298228287 328210296 280 346 247 241257 280 217 250 275 177 208
    219239155174272316 389218254254213269160199271244228 246189274
    263236168184269245176238215 204188215161167179261216 174 141212
    149160209259175125185140161 211262 235193174165182
JMS-P23A 77
    223162196205 200 241 250 282 230 303288 218224175 253181208134229185
    61106121138137133164137102156144156142212182210221166168 221
    163222173182195 200 201 130 122117 137150131 87 114109117 133122 105
    133130135117108130111125 90149120132119117 82 118122
JMS-P23B 77
    218172193 208 200 243254280 235 294 300 204 216 161 248 180 211 165 205 174
    7288113151158124151146103154136154149211179207 224166170 216
    159219174181195216199130126115135152130 85 114115119132123109
    1271321351201091439613196 145121 127 125104102 97 132
JMS-P24A 91
    291234267177 154195190117 76 101 121 142 123169 95 150 86 101 95 162
    123120131 139109117 95102 75 9262 86 114 111 118128 90 106 116 140
    151164153158139121104 94109138175142141 151 118 85 124159152160
    167139143130110112114105169218149138159180119 93 93 127174149
    139112115115118111 99 80 93 94 95
JMS-P24B }9
    31723725816315018816411478 9912514411419010014589100102165
    131 122 14811394126 90 98 71 98 67 102108113128132 90 103120133
    1431711551591371259996 107 145187142137148105 75 126 158 146 163
    162132148140105113121118178218152136153181 141 81 90121 180 135
    1231081121141231199481 91 100 87
JMS-P25A }8
    473439253 340282197 206 278 309490347421266248288192142260208244
    209201 330192115121141 80 101 133141134139117136122108 71 112134
    75 82 59 91 125 75 95 55 48 54 81 95 83 108 114 70 133 72 93 78
    8981 97 80 136108 86 131 145107 131103 88 127158116130127136133
152
JMS-P25B }8
499328 305 295 311227173 334 315 508 363462267 267 300 203142 258226 243
194205 320190102119142 83100137140133140119150124110 69112136
```

84795510112179846840548585979611874127779084 8182929612010088127152110128101109131193120118129141151 155
JMS-P27A 110
475461374284339374381348334157155179171257181130161183209180
10912813696124190200182221183226245129166190312264260251222
1721661421159714220219699109157166149155139208103885999
156184141110157118142141170119831081491301311029567114135 181118100901631771551026351104128139160161106106105167157 6882124108948092173203154
JMS-P27B 110
455444365291335367402347319160144164172252180130161180210182
9813214696132200204171219185223247130163192308262263254214 17416414611594147196196100108158168148157133212103836293
164180143109152122136140169126911051471301311079068114136
1791231009116517515498645796125144162170108102104167159
7384117112998090170211161
JMS-P28A 117
282263376430299161192228148187275253256240240201276143192257
28719426922619215615515211398116110122698011612397116109
101924942678399919299769511111610281799683106
795346841041338376841581311109169739611210498121
80648912113267681169165666110514810174968165115
1008180961151209263851221321198710086134138
JMS-P28B 117
316315373467299157208236142193298251263245259197261145183264
282199262219200160150159113941231071197370132126103103101

824943851071348674821531211157371671069110696123
7979851251226769107995873681041589882837871102
105809298120129877073135148110948992128135
JMS-P29A 123
162107183170109118173208246268295253322144188193252187289319
3172492692691381271411341761018813312811314513714114594128
10822817019512321915514916519418410611615915716314295111108
1291881157578156117108788272134116111113114829494145
1646556114646672628310711372757065117132103117122
1121331078696126113969475887987701047161767292
7184101
JMS-P29B 123
224134164159110116174209255259294251317147185192256187285296 3212452592671401291401411671019112812611814812514115387127 1092171881821192131641521592011831041151571581601408387108 125192111768216311494827873135128106116125729696144 1606463109687069647811111078767067113133107109124 1111321088896120122888687837484671027269797682 759196
JMS-P30A 68
7089176143143193197210234334350321348272318301360344326288 363233248413277342283298272177233202193265254291204176190111 12794911018110384108106116117115105881011041148998108 1071151148710095102100

```
JMS-P30B 68
    72100183146139202174199229345 352321 354267 323 302 357 341 332 285
    362228244420273 341290295266 181241 196 197 255257 284 206 181 184 114
    129101 91 95 85 107 80 113118132121 114106 83 102 108 106 92 89 106
    1021161208110993 99108
JMS-P31A 68
    142233254192370350576457 350259305259330322260 246 245 292310235
    238171228177 223 186235211287187189 392 249257224240215160 235199
    181212201 330199205183135178175131168109190123162157163191 137
    171120154979896 115153
JMS-P31B }6
    144227 258 207 360 349580454 351252308269337 331257 244248 288 314232
    242174223173233192238217295185189 397 249253218243215160234200
    178208207 330202212176136176178124164115189131161 154162189133
    1771231509896107115154
JMS-P32A 56
    241 317 315 255232226 302 294 222 199214167179247 312210249185 225 204
    188202202203193134151235225 204 210232239173198219182207182208
    213185200266292238236241189256169213198145235164
JMS-P32B 56
    245314 311253237233 301295207 200 202185187223 315 238237 185 218214
    188193205 203198135136230224200205 220 250179200208 199195175 203
    207 189198267 291232238241194258161216189158238159
JMS-P33A 67
    155397 362179320269325351272169241259424473452432421595672444
    552307457 342 314 313 314 393 340210222299248223203 202192140220177
    192271247 326231193218162202162131146124196164197180178178158
    172147164148154141132
JMS-P33B 67
    159411364164333262343342292174234 313437462458406 393540740475
    564 336469 364 313 301 315 357 343208220 299240223208207 194145 216 179
    188278238 335221201212163216151130148134195160201178177 183156
    171139168147152147129
JMS-P34A 46
    16617577 74 85 111 74 134137139154 218184 208 249258177 150149198
    224168216207180140171205217172236145173196172190141 118139192
    162185169 87166 117
JMS-P34B 46
    1461807276 85 120 72 144144131 157 228181205 251266 181 156 151 193
    222168209221181 133175198217158215145168204167186147114132194
    163181170 92 166 128
JMS-P35A 41
    254 311258261269248196184149149192168260329308171215 246 321243
    353 310239368272276226223190219188179187114181185184184170160
    154
JMS-P35B 41
    264291231266 268243197177 152143197166291326 302 206 212 241 322 251
    356298254 348260 275 219225193222185181187113182186183184168160
    153
JMS-P36A 47
    458559531506537 791435634446 384298258196206 254 363 355 396 326 245
    219345260 368 377 277 256 300 45 39 73 85 134164114 63 151 73 72 38
    75 84 80 60 71 50 37
```

```
JMS-P36B 47
573560687588574 767 448640445 383297 258197224253 365 349385 339246
228 345260 373 38128726528143 38 71 80 139164111 66 149 78 81 43
    6180 85 54 67 45 45
JMS-P37A 51
284240205159144110146119106118113211135195213208139126 96 78
12598112172172111121 121 203 193199152183 202153 214155178144 185
147156160 83156146154151194155132
JMS-P37B 51
277 229260 218 139113157127 99 115 112 214134192194 201 122 127 90 87
12299131 180 170 109 118127 200 197 203 150 181 208 151 213159159138186
14715316393149146157155196154128
```


APPENDIX:TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about A pril to 0 ctober, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. W e normally look for timbers with at least 70 rings, and preferably more. W ith fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. O ne reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A 06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. W here it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Fiqure A1. A wedge of oak from a tree felled in 1976. It shows the annud growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring which orew in 1976

Figure A 2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring W idths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln C athedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of $C 45$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between $C 45$ and $C 08$ is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other

 one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Q uite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A 06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO -A 06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/ 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A 06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. O ak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A 2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A 6 such a sequence is $\mathrm{SHE}-\mathrm{T}$, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for N ottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). O ther laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and W ales covering many short periods.
7. Ring-W idth Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

	1	1	1	1	1	1	1	1	1
0	10	20	30	40	50	60	70	80	90

Figure A 5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure $A 7$ (a): The raw ring-widths of two samples, THO -A 01 and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. N otice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A 7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, M organ, R A and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, A pplications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 N ottingham University Tree-Ring D ating Laboratory results, Vernacular Architect, 15-26

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J A rchaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D , 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, U niversity of N ottingham, Department of A rchaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D , 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, / A rchaeol Sci,18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular A rchitect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical A nalysis, London
Rackham, 0,1976 Trees and W oodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

[^0]: \square Heartwood rings $h / s=$ the heartwood／sapwood boundary is the last ring on the sample

