Ancient Monuments Laboratory
Report 30/96
TREE-RING ANALYSIS OF TIMBERS
FROM THE MASTER'S HOUSE, SALTISFORD, WARWICK
R E Howard
R R Laxton
C D Litton

AML reports are interim reports which make available the results of specialist investigations in advance of full publication. They are not subjected to external refereeing and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore asked to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England.

TREE-RING ANALYSIS OF TIMBERS FROM

 THE MASTER'S HOUSE, SALTISFORD, WARWICKR E Howard
R Laxton
C Litton

Summary
Dendrochronological analysis of timbers from The Master's House, Saltisford, Warwick, resulted in the production of two site chronologies. The first of these could not be securely dated. The second gives a felling date in the range AD 1503-1528. This site chronology of 88 rings spans the period AD 1412-1499.

Authors' addresses :-

R E Howard
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr R Laxton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

Dr C Litton
UNIVERSITY OF NOTTINGHAM
University Park
Nottingham
NG7 2RD

[^0]
TREE-RING ANALYSIS OF TMBERS FROM THE MASTER'S HOUSE, SALTISFORD. WARWICK

Introduction

The Master's House, Warwick, (SP 277654) is the traditional name for a timber-framed house close to, and in the same curtilage as, the small medieval chapel of St Michael's. Both house and chapel are considered to be associated with the medieval leper hospital of St Michael's, known to have been in the suburb of Saltisford. The foundation was governed by a Warden or Master, who had to be a priest and live on the site. The present building, thought to be his accommodation, is traditionally dated to the late fifteenth- or early sixteenth-century. The site is a Grade II* Listed Building and a Scheduled Ancient Monument

The building has three separate components, labelled A-B-C (Morriss 1996). Component A is the oldest surviving pan of the complex. It is a close-studded timber-framed two-storey two-bay structure, occupying the eastern two-thirds of the main range. It is just over 10 m long and 4.5 m wide Each bay is of the same length and each is, therefore, a little under 5 m square. The form of the frames of this range are all different, each having their own individual pattern.

It is evident that component B was added to the west end of component A, as it lacks its own integral east frame. It is a close-studded timber-framed single-bay two-storey structure. The framing sits on a stone plinth 0.8 m high. Component B is the same width and height as the earlier structure and just over 3.5 m long.

Component C , the latest addition, is a long single-storey lean-to structure against the south side of the main range. Although it has undergone considerable alteration it too was originally a timberframed structure.

The individual frames of the building have been assigned numbers, prefixed by the relevant component identification (Fig 3). The buildings are aligned roughly north-west to south-east, but in this report, for the sake of convenience, they are deemed to align west-east, following R K Morriss' report.

Tree-ring analysis was commissioned by English Heritage to establish the construction dates of components A and B to help determine whether they are correctly associated with the medieval leper hospital.

The Nottingham Tree-ring Dating Laboratory would like to thank the owner, Mr Ivor Jones, for allowing free and unlimited access to the site for sampling. We would also like to thank Frank Haywood and Associates who most helpfully arranged access and power.

Site analvsis and results

A total of fourteen samples was obtained from this site. Each sample was given the code WAR-A (Warwick, site "A"). Nine samples (WAR-A01-09) were taken from component A, the easternmost part of the site. None of the main structural timbers of component A had sufficient rings to be worth sampling. However, following discussions on site, it was decided to sample the joists and rafters, these being original and having acceptable ring-width sequences.

Five samples (WAR-A10-14) were obtained from component B. Full details of the samples are given in Table 1. The location of each sample was also recorded at the time of sampling on drawings provided (Figure 4a/b)

All fourteen samples were measured and compared with each other by the Litton/Zainodin grouping procedure (Appendix). At a level of $t=4.5$ two groups of samples formed. The four samples of the first group cross-matched with each other at the offsets shown in Figure 1. These samples all come from component A. At these offsets the positions of the last measured complete sapwood rings and the relative positions of the heartwood/sapwood transitions are all indicative of timbers with the same felling date. Because of this and the satisfactory cross-matching, the ring-widths from these four samples were averaged at these positions to form WARASQ01, a site chronology of 87 rings. Site chronology WARASQO1 was compared with a wide series of reference chronologies for oak, but there was no cross-matching and thus no date obtained

The five samples of the second group cross-matched with each other at the offsets shown in Figure 2. Two of these samples come from component A and three from component B . At these offsets the relative positions of the heartwood/sapwood transitions are again indicative of timbers with the same felling date. Because of this and the satisfactory cross-matching, the ring-widths from these five samples were averaged at these positions to form WARASQ02, a site chronology of 88 rings. Site chronology WARASQ02 was successfully cross-matched with a wide series of reference chronologies for oak, indicating a first ring date of AD 1412 and a last ring date of AD 1499. Evidence for this date is given by the t-values of Table 2. Site chronology WARASQ02 has an average last heartwood ring date of AD 1488 . This gives an estimated felling date in the range AD 1503 - 1528 .

If site chronologies WARASQ01 and WARASQ02 are compared with each other, there is a crossmatch between them with a low, but maximum, value of $t=3.9$. This is found when the first ring of site chronology WARASQ01 is at minus 19 years relative to the first ring of WARASQ02. A crossmatch at this relative position, if correct, would give site chronology WARASQO1 a last measured complete sapwood ring date, and thus a felling date, of AD 1479. Although such a date would be in agreement with the accepted construction sequence for the building, WARASQ01 has no crossmatch with any national or local reference chronology at this date and so this sequence remains undated.

The remaining ungrouped samples with 55 or more rings, WAR-A12 and 14, were each compared separately with the full series of reference chronologies, but there was no satisfactory cross-matching. There appears to be no problem with these samples in that they do not have narrow or stressed growth-rings, nor are they particularly wide ringed. They do, however, appear to have complacent growth patterns which would tend to make them difficult to date.

Conclusion

Analysis of the timbers from the Master's House, Warwick, resulted in the production of a single dated site chronology, WARASQ02, spanning the period AD 1412-1499. The timber, mostly from component B , but including two samples (rafters) from component A , has a felling date in the range AD 1503-1528. However, if this is the case, it is perhaps surprising that John Leland, writing in the early 1540s, describes the house as "sore decayed" (Smith 1964).

The cross-match between site chronologies WARASQ01 and WARASQ02 is weak, but if correct would show that the floor joists of component A were felled earlier than the timbers of component B. Further sampling of timbers from component A would be worthwhile in order to create a stronger site chronology, with greater prospects for cross-matching and dating against the reference chronologies.

Table 1: Details of tree-ring samples from The Master's House, Saltisford, Warwick

Sample no	Sample location	Total rings	Sapwood rings*	First measured ring date	Last heartwood ring date	Last measured ring date
WAR-A01	East bay first floor joist 1 component A	87	35 C	-------	-------	------
WAR-A02	East bay first floor joist 3 (E part) component A	47	h/s	------	-------	-------
WAR-A03	East bay first floor joist 3 (W part) component A	49	23C	------	------	-------
WAR-A04	East bay first floor joist 6 component A	69	30 C	~-----	--7.-*	---..-
WAR-A05	East bay first floor joist 5 component A	57	02	--.----	-------	------
WAR-A06	East bay first floor joist 7 component A	74	17+12-15UM	------	------	------
WAR-A07	North rafter A30	56	h / s	AD 1420	1475	1475
WAR-A08	North rafter A28	48	03 c	---...-		
WAR-A09	North rafter A24	59	h/sc	AD 1422	1480	1480
WAR-A10	Central post frame B3	81	W/s	AD 1419	1499	1499
WAR-All	Brace from north post to tie beam frame B2	75	h / s	AD 1412	1486	1486
WAR-A12	Central stud post, above tiebeam, frame B2	55	h / s	-------	---.--	-------
WAR-A13	Central post frame B1	77	W/s	AD 1423	1499	1499
WAR-A14	South-west corner post frames B1/B2	70	h/s	-..-----	--..--	-------
*h/s = heartwood/sapwood boundary on sample $U M=$ unmeasurable rings (due to compaction, decay etc) $\mathrm{c}=$ complete sapwood on timber but all or part lost from						

Figure 1: Bar diagram of samples in site chronology WARASQ01

Figure 2: Bar diagram of samples in site chronology WARASQ02

Off-
set

08

White bars = heartwood rings, shaded area = sapwood rings
h/s = heartwood/sapwood boundary on sample
C -- complete sapwood on sample; last measured ring date is felling date of timber

Table 2: Results of the cross-matching of site chronology WARASQ02 against relevant reference chronologies when first ring date is AD 1412 and last ring date is AD 1499

Reference chronology

East Midlands

England
Wales \& West Midlands
MClo
26 Manor Rd, Didcot, Oxon Folly House, Steventon, Oxon Dell Cottage, Harwell, Oxon Thatched Cottage, Radley, Oxon
span of
chronology \quad t-value

AD	$882-1981$	50
$\mathrm{AD} \mathrm{401-1981}$	4.6	(Laxton and Litton 1988)
$\mathrm{AD} \mathrm{1341-1636}$	5.0	(Sillie and Pilcher unpubl)
$\mathrm{AD} \mathrm{1386-1585}$	7.4	(Fletcher pers comm)
$\mathrm{AD} \mathrm{1415-1509}$	5.5	(Alcock et al 1989)
$\mathrm{AD} \mathrm{1437-1542}$	4.8	(Alcock et al 1989)
$\mathrm{AD} \mathrm{1420-1509}$	5.3	(Alcock et al 1991)
$\mathrm{AD} \mathrm{1436-1522}$	46	(Alcock et al 1991)

Bibliography

Alcock, N W, Howard, R E, Laxton, R R, Litton, C D, and Miles, D H, 1989 List 31 nos 1, 6. Leverhulme Cruck Project (Warwick University and Nottingham University Tree-Ring Dating Laboratory) results: 1988, Vernacular Architect, 20, 43-5

Alcock, N W, Howard, R E, Laxton, R R, Litton, C D, and Miles, D H, 1991 List 41 nos. 5,7 Leverhulme Cruck Project (Warwick University and Nottingham University Tree-Ring Dating Laboratory) results: 1990, Vernacular Architect, 22, 45-6

Baillie, M G L, and Pilcher, J R, unpubl A Master Tree-Ring chronology for England, unpubl computer file MGB-E01, Queens Univ, Belfast

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical \& Archaeological Studies, Monograph Series III

Morris, R K, 1996 The Master's House Warwick, An Outine Analysis \& Survey, Mercian Heritage Series, 16

Siebenlist-Kerner, V, 1978 Chronology, 1341-1636, for hillside oaks from Westem England and Wales, in Dendrochronology in Europe (ed J.M.Fletcher) BAR Int. Ser 51, 156-60

Smith, L T, (ed), 1906, The Itinerary of John Lelond, George Bell and Sons, London
Figure 3: Frame identification

Figure 4a: Plan of sample !ocations (component A)

First Floor

Figure 4b. Plan of sample locations (component B)

Wers Frame (Frame B:)

Figure 5:
The -ucation re the Master's House

Table 3: Data of fourteen measured samples (Samples measured in 0.0001 cm units)

```
\therefore二厶-\therefore01A 87
    \therefore234 25j 184 206 208 241 261 275 334 380 270 214 269 285 225 205 118 \01 %81
```



```
            <:
\therefore\therefore-0.0113 8:7
    \because2]*273 193 210 229 251 257 297 362 352 249 194 260 259 240 231 119 186 <75
    :22.1 4% 51 40
```



```
    :[\begin{array}{llllllllllllllllllllllllll}{90}&{80}&{58}&{41}&{25}&{23}&{25}&{27}&{29}&{34}&{39}&{50}&{58}&{28}&{32}&{28}&{17}&{29}&{33}\end{array})
    \therefore2-.002^47
    \:\263 260 290 292 237 202 379 291 342 289 291 306 299 210 239 144 279 267 184
```



```
    {i3
\therefore\therefore-5021347
```



```
    \because:}\begin{array}{lllll}{73}&{66}&{66}&{66}&{36}\\{\hline}
    &2..08^19
```



```
\therefore\therefore%031349
    &,4549567 438 279 310 397 360 402 303 216 151 149 193 222 205 163 188 183 221
```



```
    36 111. 104 109 39 32 37 37 33 55
WAR-FO4A 69
```



```
WF二人-1041369
```



```
    9946
WAR-AOSA 57
    15\therefore208 167 329 379 233 287 304 273 431 387 368 487 354 55 7% 73 79 132 254 262
```



```
WAZ-AOSB57
```



```
    161 119 128 372 327 357 272 321 309 130 67 67 60 65 65 67 51 8, 83 110 102 4, 4, 65
    7% }3
WAR-AOGA 74
    22: 150 251 226 275 260 233 301 271 400 406 356 399 463 410 362 335 174 195 219
```



```
    17. 223 137 129 140 141 67 110 94 84 % 77 113 279 248 260 187 113 152 86 89
            u:. 88 8, 79 100 68 45 45 31 41
WAR-AOEB 74
    131142 248 231 250 290 244 307 278 418 387 358 406 429 398 356 345 167 201 21.3
```



```
    18:217 140 129 153 137 60 97 115 1% 76 80 110
            #0)
WAR-M07A 56
```



```
    #
```

WAR-A07B	56																	
116245	66	149	141	228	185	288	288	110	177	127	188	88	134	106	86	75	$6 ?$	59
3. 120	75	94	83	50	62	52	56	59	51	90	42	63	63	85	72	73	83	50
7\% 36	75	81	38	65	46	53	56	38	28	30	30	36	45	69				
WAR-AO8A 48																		
21:, 11.3	101	166	226	159	201	157	103	114	99	109	83	104	97	71	90	121	101	118
83100	85	93	65	67	95	63	65	66	69	92	90	57	55	43	59	79	102	42
33 3\%	54	100	91	79	60	86												
WAR - A08B 48																		
186117	$13 ?$	188	223	142	212	161	108	113	102	113	82	104	104	68	103	90	109	114
30108	83	97	63	68	92	53	67	61	73	94	95	55	59	42	58	64	10.3	45
?: 40	61	95	95	70	62	84												
WAR-h09A 59																		
100210	180	341	120	2.00	258	169	172	160	186	73	116	107	135	11.1	59	55	84	148
84141	128	105	104	85	91	82	93	119	66	108	80	121	134	117	126	98	130	73
3297	56	6.2	65	83	104	112	77	57	48	56	82	110	64	67	54	96	103	
WAR-AO9B3 59																		
98216	196	319	134	195	282	174	161	155	198	8.1	11.1	122	$12 ?$	105	71	55	85	153
83142	138	100	110	87	86	85	88	122	69	105	86	125	119	122	119	93	139	75
9197	50	62	69	8.2	96	103	79	62	42	64	76	114	66	$6 ?$	5.1	10?	103	
WAR-A10A 81																		
323291	154	18.1	165	143	173	172	183	166	191	212	231	364	255	362	393	300	278	190
316 287	333	285	314	476	318	253	311	242	239	244	288	228	169	184	228	235	246	$22 ?$
17.1245	241	204	235	163	237	275	230	215	178	124	180	217	301	24.3	349	242	278	185
203611	289	241	257	252	289	264	248	208	218	243	188	201	202	198	191	229	203	163
197																		
WAR - A 101382																		
* 193	156	188	162	148	188	170	199	15 A	223	202	227	379	268	36.3	396	287	266	180
20' 23\%	331	260	323	480	307	268	297	246	236	247	276	218	201	182	230	236	220	247
171252	233	204	225	162	240	275	219	220	168	128	188	213	306	233	360	249	27.3	201
21.220	280	245	251	260	284	248	259	196	218	242	201	182	209	191	197	223	20.3	182
21%																		


```
    16: 129 14? 109 77 58 62 57 76 114 129 180 186 137 128 127 143 134 142 165
    13, 141 142 132 161 164 139}118182162 143 132 137 113 128 150 151 183 109 124 101
    \34 130 125 199 134 114 108 132 116 135 104 112 100 122 103
&N!-\]113:5
    10.012?}1115 45 45 77 103 101 127 107 109 176 134 185 215 169 169 155 160 200
```



```
    1?"130}12
WAス-A12A 55
    41"308 250 320 332 223 242 281 288 228 267 189 227 223 212 200 146 158 221 192
    25% 190 141 114 170 206 162 247 178 188 160 174 152 171 168 168 234 185 233 301
    21:190195}2226138141 179 175 151 155 158 126 171 141 141
642-1.1213 55
```



```
    203 188 144 110 163 215 160 250 184 180 177 186 168 182 180 181 231 183 242 294
    214196207 217 147 121 200 149 170 163 150118 177 1411 141
WAR-A13A 77
```



```
    30% 374 289 248 267 251 223 249 307 240 239 167 177 216 235 245 193 309 238 246
    258}19
    184 182 236 217 198 178 181 209 180 134 154 144 162 202 176 156 235
WAR-A13B 77
```



```
    304 384 282 247 245 232 210 250 308 253 224 166 183 214 228 249 192 319 2338}23
    <:%192 %34 237 226 278 218 212 196 196 2111 256 306 209 161 161 201 178 303 209
    :3 14: %30 210 204 185 182 214 169 138 150 148 157 215 186 163 234
Wr-m164 10
```



```
    248 261 157 205 200 199 243 250 336 249 305 215}2669 300 166 315 263 345 300 260
    154 146 186 157 246 267 217 227 157 285 192 195 229 201 208 205 253 261 247 230
    26:23?141 232 195 206 295 254 219 181
WR2-T14B70
```

$\begin{array}{llllllllllllllllllllllll}30 & 177 & 121 & 128 & 162 & 67 & 57 & 49 & 71 & 89 & 166 & 244 & 174 & 294 & 211 & 199 & 128 & 164 & 195 & 190\end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllll}141 & 151 & 190 & 149 & 259 & 270 & 211 & 240 & 158 & 286 & 187 & 202 & 227 & 202 & 211 & 203 & 258 & 266 & 248 & 237\end{array}$
$244 \quad 241 \quad 146 \quad 233184 \quad 203 \quad 301 \quad 250 \quad 227 \quad 205$

APPENDIX

Tree-Ring Dating

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, 'An East Midlands Master Tree-Ring Chronology and its uses for daling Vernacular Buildings' (Laxton and Litton 1988b) and, for example, in Tree-Ring Dating and Archaeology (Ballie 1982) or A Slice Through Time (Baillie 1995). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figurel where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the University of Nottingham Tree-Ring dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian we inspect the timbers in a building to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in silu timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. Whth fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure 2 has about 120 rings; about 20 of which are sapwood rings. Similarly the core has just over 100 rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8 to 10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Fig 1. A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Fig 2. Cross-section of a rafter showing the presence of sapwood rings in the comers; the arrow is pointing to the heartwood/sapwood boundary (H / S). Also a core with sapwood, again the arrow is pointing to the H / S. The core is about the size of a pencil

Fig 3. Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis.

Fig 4. Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical.

Sampling is done by coring into the timber with a hollow corer attached to an electnc drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be An illustration of a core is shown in Figure 2; it is about 15 cm long and 1 cm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost. This can be difficult as these outer rings are often very sof (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which bullding it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspecton of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory is insured with the CBA.
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-gnit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure 2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig 3).
3. Cross-matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig 4) Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called crossmatching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is detemined by the i-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments camied out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton et al 1988a, b, Howard et al 1984-1995).

This is illustrated in Fig 5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar-diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg. C08 matches C45 best when it is at a position starting 20 rings after the first ring of 45 . and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t value between C45 and C08 is 5.6 and is the maximum between these two whatever the position of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Fig 5 . The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences from four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately
average scquence of ring widis with a master sequence than it is to date the individual component sample sequences separately.

This straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Liton-Zainodin Grouping Procedure'. This was developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988a). To illustrate the difference between the two approaches with the above example, consider sequences C 08 and $\operatorname{C05}$. They are the most similar pair with a t-value of 10.4 . Therefore, these two are first averaged with the first ring of COS at +17 rings relative to C 08 (the offset at which they match each other). This average sequence is then used in place of the individual sequences $\operatorname{C08}$ and C 05 . The cross-matching continues in this way gradually building up averages at each stage eventually to form the site sequence.
4. Estimating the Felling Date. If the bark is present on a sample, then the date of its last ring is the date of the felling of its tree. Actually it could be the year after if it had been felled in the first three months before any new growth had started, but this is not too important a consideration in most cases. The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite ofen some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner nings, the heartwood, and so are relatively easy to identify. For example, they can be seen in two upper comers of the rafter and at the outer end of the core in Figure 2. More importantly for dendrochronology, the sapwood is relatively sof and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely for these reasons. Nevertheless, if at least some of the sapwood nings are left on a sample, we will know that not too many rings have been lost since felling. Thus in these circumstances the date of the present last ring is at least close to the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made for the average number of sapwood rings in a mature oak One estimate is 30 rings, based on data from living oaks. So, in the case of the core in Figure 2 where 9 sapwood rings remain, this would give an estimate for the felling date of $21(=30-9)$ years later than of the date of the last ring on the core. Actually, it is better in these situations to give an estimated range for the felling date Another estimate is that in 95% of mature oaks there are between 15 and 50 sapwood rings. So in this example this would mean that the felling took place between $6(=15-9)$ and $41(=50-9)$ years after the date of the last ring on the core and is expected to be right in at least 95% of the cases (Hughes et al 1981, see also Hillam et al 1987).

Data from the Laboratory has shown that when sequences are considered together in groups, rather than separately, the estimates for the number of sapwood can be put at between 15 and 40 rings in 95% of the cases with the expected number being 25 rings We would use these estimates, for example in calculating the range for the common felling date of the four sequences from Lincoln Cathedral using the average position of the heartwood/sapwood boundary (Fig 5). These new estimates are now used by us in all our publications except for timbers from Kent and Nottinghamshire where 25 and between 15 to 35 sapwood rings, respectively, is used instead (Pearson 1995).

More precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure 2 was taken still had complete sapwood. Sapwood rings were only lost in coring, because of their sofness. By measuring in the timber the depth of sapwood lost, say 2 cm , a reasonable estimate can be made of the number of sapwood rings missing from the core, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 151040 years later we would have estimated without his observation

T-value/Offset Matrix

	C45	C08	C05	C04
				+20

Bar Diagram

1	1	1	1	1	1	1	1	1	1	1
0	10	20	30	40	50	60	70	80	90	100
110										

C45

C08

$+37$
C04

SITE SEQUENCE

Fig 5. Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them.
The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values.
The t-value'offser matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6.

The site sequence is composed of the average of the corresponding widths, as illustrated with one width

Even if all the sapwood rings are missing on all the timbers sampled, an estimate of the felling date is still possible in certain cases. For provided the original last heartwood ring of the tree, called the heartwood/sapwood boundary (H/S), is still on some of the samples, an estimate for the felling date of the group of trees can be obtained by adding on the full 25 years, or 15 to 40 for the range of felling dates.

If none of the timbers have their heartwood/sapwood boundaries, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence in the data collected by the Laboratory that the oak timbers used in vernacular buildings, at least, were used 'green' (see also Rackham (1976)). Hence provided the samples are taken ilt situ, and several dated with the same estimated common felling date, then this felling date will give an estimated date for the construction of the building, or for the phase of construction. If for some reason or other we are rather restricted in what samples we can take, then an estimated common felling date may not be such a precise estimate of the date of construction. More sampling may be needed for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Fig 6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Fig 6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton 1988b, but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton ct al 1988a). Other laboratonies and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988b) and is illustrated in the graphs in Fig 7. Here ringwidhs are plotted vertically, one for each year of growth. In the upper sequence (a), the generally large early growth after 1810 is very apparent as is the smaller generally later growth from about 1900 onwards. A similar difference can be observed in the lower sequence starting in 1835 . In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings, hopefully corresponding to good and poor growing seasons, respectively. The two corresponding sequences of Bailie-Pilcher indices are plotted in (b) where the differences in the early and late growths have been removed and only the rapidly changing peaks and troughs remain only associated with the common climatic signal and so make cross-matching easier

Fig 6. Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87

Fig 7. (a) The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known. Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences
(b) The Baillie-Pilcher indices of the above widths. The growth-trends have been removed completely.

REFERENCES

Baillie, M G L, 1982 Tree-Ring Dating and Archaeolugy, London
Baillie, M GL, 1995 A Slice Through Time. London

Bailie, M G L, and Picher, J R, 1973, A simple cross-dating program for tree-ring research, TreeRing Bulletin, 33, 7-14

Hillam, J, Morgan, R A, and Tyers, 1, 1987, Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95, Nottingham University TreeRing Dating Laboratory Results, Vernacular Architecture, 15-26

Hughes, M K, Milson, S y, and Legett, P A, 1981 Sapwood estimates in the interpretation of treering dates, J Archaeol Sci, 8, 381-90

Laxton, R R, Litton, R R, and Zainodin, H J, 1988a An objective method for forming a master ringwidth sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 b An East Midlands Master Chronology and its use for dating vernacular buildings, University of Notingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent Master Dendrochronological Sequence for Oak, A. D. 1158 to 1540, Medieval Archaeol, 33, 90-8

Litton, C D, and Zainodin, H J, 1991 Statistical models of Dendrochronology, J Archaeol Sct, 18, 429-40

Pearson, S, 1995 The Medieval Houses of Kent, An Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the Brifish Landscape, London

[^0]: © Historic Buildings and Monuments Commission for England

