CHURCH OF ST NICHOLAS, CHURCH ROAD, POTTER HEIGHAM, NORFOLK TREE-RING ANALYSIS OFTIMBERS

SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

CHURCH OF ST NICHOLAS, CHURCH ROAD, POTTER HEIGHAM, NORFOLK

TREE-RING ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: TG 4194819930
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the arganisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make avaNable the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not avallable at the time of the investigation. Where no final project report is avallable, readers must consuit the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emaling:
Res.reports@english-heritage.org.uk
or by witing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Fourteen samples taken from the timbers of the nave roof were analysed along with the re-analysis of 12 samples previously taken from the north aisle roof. This resulted in the construction of five site sequences, of which four were dated. Thus, eight of the north aisle samples have been dated, with interpretation of the sapwood suggesting felling of these timbers in AD 1533-58, and eleven nave samples have been dated indicating that these timbers were felled in AD 1485-1509.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank Richard Bannister, lead contractor on site, for facilitating access and for all his assistance during sampling. Thanks are also given to Cathy Tyers and Shahina Farid of the English Heritage Scientific Dating Team for their advice and assistance throughout the production of this report. Figures were provided by Nicholas Warns Architect Limited.

ARCHIVE LOCATION
Norfolk Historic Environment Record
Union House
Gressenhall
Dereham
Norfolk NR20 4DR
DATE OF INVESTIGATION
2012/13

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 1FT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
North aisle 1
Nave 1
Sampling 1
Analysis and Results 2
Interpretation 3
North aisle 3
Nave 3
Discussion 3
Bibliography 5
Tables 7
Figures 11
Data of Measured Samples 29
Appendix: Tree-Ring Dating 35
The Principles of Tree-Ring Dating 35
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 35

1. Inspecting the Building and Sampling the Timbers 35
2. Measuring Ring Widths 40
3. Cross-Matching and Dating the Samples 40
4. Estimating the Felling Date 41
5. Estimating the Date of Construction. 42
6. Master Chronological Sequences 43
7. Ring-Width Indices 43
References 47

INTRODUCTION

The Grade I listed parish church of St Nicholas, located in Potter Heigham, Norfolk (Figs $1-3$), is believed to have its origins in the twelfth century. Remnants of this early church are thought to be the west tower and chancel, although both were re-modelled in the fifteenth century. The nave and aisles are believed to date to the thirteenth century but bequests dating from AD 1479 to AD 1535 had suggested modifications to these areas, including re-roofing, in c AD 1500. Previous dendrochronological analysis of the timbers of the north aisle had demonstrated the use of timber felled in AD 1533-58, slightly later than expected (Arnold and Howard 2007).

North aisle

The roof over the north (and south) aisle consists of nine principal-rafter trusses, with alternating trusses having arch braces, springing from posts. The principal rafters have roll moulding decoration, as do the braces, wall posts, and plates. There is a single tier of purlins running between the trusses (Fig 4).

Nave

The roof over the nave is of hammer-beam type with wooden wall posts rising from stone corbels. The hammer beams and principal rafters are supported by arch braces. All timbers are moulded and decorated and the spandrels between the braces filled with tracery. There are two tiers of butt purlins and a ridge piece with bosses (Fig 5).

SAMPLING

Following on from the grant-aided repair work undertaken on the north-aisle roof in 2006, further grant-aid was forthcoming for repairs to the nave roof. Ian Harper (English Heritage, Heritage at Risk Architect/Surveyor) requested dendrochronological sampling to be undertaken to ascertain whether the nave roof is of a similar date to the north aisle roof and also determine whether the provision of additional data from the site allowed any of the undated samples from the north aisle to be dated.

A total of 17 timbers from the nave roof was sampled by coring. Each sample was given the code PTH-A and numbered 13-29, following on from the north aisle samples (PTH-A01-12). The location of samples from both the north aisle and nave roofs was noted at the time of sampling and has been marked on Figures 6-18. Further details relating to the samples can be found in Table 1.

ANALYSIS AND RESULTS

Three of the nave-roof samples had too few rings for secure dating and so were discarded prior to measurement. The remaining 14 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements from these, and the north aisle roof sample, are given at the end of the report. These newly measured samples and those taken from the north aisle were then compared with each other by the Litton/Zainodin grouping programme (see Appendix), resulting in 21 samples matching to form five groups.

Firstly, three of the north-aisle samples, all from braces, matched each other and were combined at the relevant offset positions to form PTHASQ01, a site sequence of 124 rings (Fig 19). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to span the period AD 1356-1479. The evidence for this dating is given by the t-values in Table 2.

Three other north-aisle samples, from an aisle plate and two common rafters, grouped to form PTHASQ02, a site sequence of 65 rings (Fig 20). This was dated to spanning the period AD 1456-1520 (Table 3).

Two north-aisle samples, representing an aisle plate and a wall post, matched each other and were combined to form PTHASQ03, a site sequence of 92 rings (Fig 21). This was found to match consistently and securely at a first-ring date of AD 1425 and a lastmeasured ring date of AD 1516 (Table 4).

A fourth site sequence of 66 rings, PTHASQ04 (Fig 22), contains two samples representing a principal rafter and a common rafter, but attempts to date this site sequence were unsuccessful and it remains undated.

Finally, 11 of the samples from the nave matched each other and were combined at the relevant offset positions to form PTHASQ05, a site sequence of 132 rings (Fig 23). This site sequence was compared against the reference chronologies where it was found to match securely and consistently at a first-ring date of AD 1353 and a last-measured ring date of AD 1484. The evidence for this dating is given by the t-values in Table 5.

The remaining five ungrouped samples were then compared individually against the reference chronologies but no secure matches were found and all remain undated.

INTERPRETATION

Felling date ranges have been calculated using the estimate that mature oak trees in this region have 15-40 sapwood rings.

North aisle

Tree-ring dating has resulted in the successful dating of eight of the north-aisle samples, four of which have similar heartwood/sapwood boundary ring dates (Fig 24). The average of these is AD 1518, allowing an estimated felling date to be calculated for the four timbers represented to within the range AD 1533-58. Four of the dated samples do not have the heartwood/sapwood boundary, however it is thought likely that these were also felled in AD 1533-58. This is despite the fact that three of them, PTH-A03, PTH-A04, and PTH-A08, all taken from curved braces, have first and last-measured ring dates somewhat earlier than those of the other five dated samples (Table 1; Fig 24). This may be due to the way in which these three braces were cut from the original timber, with all three probably being cut from near the middle of the same tree (t-values as high as 12.0 and 10.6 being found between these samples), whilst the other beams have been cut from the outer portions of their respective trees.

Abstract

Nave

Eleven of these samples have been dated, nine of which have the heartwood/sapwood boundary ring. Although there is some variation in these heartwood/sapwood boundary ring dates (from AD 1459 to AD 1481) these are broadly contemporary and likely to indicate a single-felling programme. The average heartwood/sapwood boundary ring date is AD 1469, allowing an estimated felling date to be calculated for the timbers represented within the range AD 1485-1509, taking into account the date of the outermost measured ring of sample PTH-A26. The other two nave samples without the heartwood/sapwood boundary ring have last-measured heartwood dates in the first half of the fifteenth century making it possible they were also felled in AD 1485-1509 which, from the overall level of cross-matching within this group of timbers, seems likely.

DISCUSSION

Prior to tree-ring dating being undertaken, the documentary evidence relating to a series of bequests received between AD 1479 and AD 1535 had been taken to relate to works including re-roofing of the nave and the aisles.

The timbers of the nave are now known to have been felled in AD 1485-1509, with construction likely to have occurred soon after, and thus the re-roofing of the nave does appear to relate to the bequests made. The timbers from the north aisle roof, however,
were felled, and utilised sometime later, in AD 1533-58, perhaps having to await sufficient funding to become available.

It had been hoped that analysing samples from the two areas would aid the dating of the four undated north-aisle samples and that there might be some matching between timbers used in the two areas. However, this has not occurred, with timbers from each area only matching with others of the same area, despite there being some overlap in date. It may be that a different source for the timber was used for the nave and the north aisle, which might account for the lack of matching. However, this is not obvious when looking at which reference chronologies match each site sequence most highly, with all seemingly to be relatively close (Tables 2-5).

The intra-site matching of samples from the nave is very good, pointing to all timber utilised being taken from a single source whereas the samples taken from the north aisle have grouped into four distinct site sequences suggesting a somewhat more disparate source of timber being used. However, it should be noted that the overlap in date between site sequence PTHASQ01, thought to represent timbers cut from the middle of a tree, and site sequence PTHASQ02 is only 20 years which would not be long enough to cross-match. There is some evidence for a tree being utilised to produce more than one timber within the north-aisle roof. The three braces represented by samples PTHA03, PTH-A04, and PTH-A08 mentioned above and also samples PTH-A06 and PTHA07, both taken from aisle plates, match each other at the extremely high value of $t=17$.

BIBLIOGRAPHY

Arnold, A, and Howard, R, 2007 St Nicholas' Church, Potter Heigham, near Norwich, Norfolk, Tree-Ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 2/2007

Arnold, A J, Howard, R E, and Litton, C D, 2008 Nottingham Tree-ring Dating Laboratory: additional dendrochronology dates, no 21, Vernacular Architect, 39, 107-11

Arnold, A J, and Litton, C D, 2003 Tree-Ring Analysis of Timbers from Chiddingly Place, Chiddingly, East Sussex, Centre for Archaeol Rep, 14/2003

Bridge, M C, 1998 Tree-ring analysis of timbers from the Bellframe and Bell Chamber Floor, Church of St Peter and St Paul, Cranfield, Bedfordshire, Anc Mon Lab Rep, 35/98

Bridge, M C, 2000 Tree-ring analysis of timbers from Abbas Hall, Great Cornard, Sudbury, Suffolk, Anc Mon Lab Rep, 35/2000

Bridge, M C, 2001a Tree-ring analysis of timbers from the Post Mill, Drinkstone, Suffok, Centre for Archaeol Rep, 60/2001

Bridge, M C, 2001b Tree-ring analysis of timbers from Priory Barn, Little Wymondley, Hertfordshire, Centre for Archaeol Rep, 18/2001

Bridge, M C, 2003 Tree-Ring Analysis of Timbers from Fiddleford Manor, Calf Close Lane, Sturminster Newton, Dorset, Centre for Archaeol Rep, 13/2003

Bridge, M C, 2004 Tree-Ring Analysis of Timbers from the Church of St Mary the Virgin, Strethall, Essex, Centre for Archaeol Rep, 60/2004

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 List 33 no 11b Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 21, 3740

Hillam, J, 1997 Tree-ring analysis of oak timbers from the Thames Foreshore Project, Greater London, Anc Mon Lab Rep, 73/1997

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1988 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 19, 46-7

Howard, R E, Laxton, R R, and Litton, C D, 1990 unpubl Ashpools, Chapel Lane, Northall, Buckinghamshire, unpubl computer file NORBSQ01, NTRDL

Howard, R E, Laxton, R R, and Litton, C D, 1998 Tree-ring analysis of timbers from
Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, 30/1998

Howard, R E, Laxton, R R, and Litton, C D, 2000a Tree-ring analysis of timbers from Church House, Edenbridge, Kent, Anc Mon Lab Rep, 34/2000

Howard, R E, Laxton, R R, and Litton, C D, 2000b Tree-ring analysis of timbers from the Barn and Cottage, Abbey Farm, Thetford, Norfolk, Anc Mon Lab Rep, 48/2000

Howard, R E, 2004 unpubl Ayscoffee Hall, Spalding, Lincolnshire, unpubl computer file SPLASQ01, NTRDL

Miles, D H, Worthington, M J, and Bridge, M C, 2004 Tree-ring dates, Vernacular Architect, 35, 95-113

Tyers, I, 1990 Tree-ring dates from Museum of London: List 37, Vernacular Architect, 21, 45-6

Tyers, I, 1991 Dendrochronology report on building timbers and wooden panelling from Sutton House, Hackney, MoL EAS Dendro Rep, 02/91

Tyers, I, 1996 The tree-ring analysis of five bellframes from the County of Essex, Anc Mon Lab Rep, 12/1996

Tyers, I, 1999 Tree-ring analysis of timbers from Marriot's Warehouse, King's Lynn, Norfolk, Anc Mon Lab Rep, 11/99

Tyers, I, 2000 Tree-ring analysis of panelling from Otley Hall, Otley, Suffolk, ARCUS Rep, 550

TABLES

Table 1: Details of samples from the Church of St Nicholas, Potter Heigham, Norfolk

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
North aisle roof						
PTH-A01	North aisle plate bay A	64	h/s	1456	1519	1519
PTH-A02	Common rafter 5, bay A	54	h/s	1467	1520	1520
PTH-A03	South brace, truss 3	120	--	1360	------	1479
PTH-A04	South brace, truss 5	119	--	1356	------	1474
PTH-A05	Common rafter 4, bay D	56	--	1459	------	1514
PTH-A06	North aisle plate, bay F	90	h/s	1426	1515	1515
PTH-A07	North wall post, truss 7	92	h/s	1425	1516	1516
PTH-A08	North brace, truss 7	92	--	1372	------	1463
PTH-A09	South brace, truss 7	55	--	------	------	------
PTH-A10	North aisle plate, bay G	56	--	------	------	------
PTH-A11	Principal rafter, truss 8	62	h/s	------	------	------
PTH-A12	Common rafter 3, bay H	63	--	----	------	-----
Nave roof						
PTH-A13	North lower archbrace, truss A	NM	--	----	----	----
PTH-A14	North principal rafter, truss AB	NM	--	----	----	----
PTH-A15	North hammerbeam, truss AB	73	--	1362	----	1434
PTH-A16	North common rafter 3, bay B	78	h/s	1400	1477	1477
PTH-A17	South principal rafter, truss BC	86	h/s	1389	1474	1474
PTH-A18	North principal rafter, truss BC	102	h/s	1360	1461	1461
PTH-A19	South lower archbrace, truss BC	98	h/s	1374	1471	1471
PTH-A20	North lower archbrace, truss CD	79	h/s	1403	1481	1481
PTH-A21	Ridge, bay D	72	h/s	1402	1473	1473
PTH-A22	North lower archbrace, truss DE	61	--	----	----	----
PTH-A23	South principal rafter, truss DE	107	h/s	1364	1470	1470
PTH-A24	South upper purlin, bay E	NM	--	----	----	----

Table 1: (cont)

PTH-A25	Ridge, bay E	107	h/s	1353	1459	1459
PTH-A26	South hammerbeam, truss EF	121	25	1364	1459	1484
PTH-A27	North hammerbeam, truss EF	84	h/s	$-\cdots$	$-\cdots$	$-\cdots$
PTH-A28	South lower archbrace, truss FG	66	-	1368	\cdots	1433
PTH-A29	South hammerbeam, truss FG	59	h/s	$-\cdots$	-	-

*NM = not measured
**h/s = heartwood/sapwood boundary is the last-measured ring

Table 2：Results of the cross－matching of site sequence PTHASQO1 and relevant reference chronologies when the first－ring date is $A D 1356$ and the last－measured ring date is AD 1479

Reference chronology	t－value	Span of chronology	Reference
East Anglia	7.7	AD 406－2001	Tyers pers comm 2004
Church House，Edenbridge，Kent	6.6	AD 1377－1538	Howard et a／2000a
Lawns Farm，Great Leighs，Essex	6.3	AD 1377－1536	Miles et a／2004
Chicksands Priory，Bedfordshire	6.1	AD 1175－1541	Howard et a／1998
Sutton House，Hackney，London	5.6	AD 1319－1534	Tyers 1991
Thaxted Church，Essex	5.2	AD1345－1526	Tyers 1990
Ashpools，Chapel Lane，Northall，Buckinghamshire	5.1	AD 1260－1466	Howard et a／1990 unpubl

Table 3：Results of the cross－matching of site sequence PTHASQO2 and relevant reference chronologies when the first－ring date is AD 1456 and the last－measured ring date is AD 1520

Reference chronology	t－value	Span of chronology	Reference
East Anglia	5.8	AD 406－2001	Tyers pers comm 2004
Post Mill，Drinkstone，Suffolk	8.4	AD 1464－1586	Bridge 2001a
Chiddingly Place，East Sussex	6.1	AD 1324－1576	Arnold and Litton 2003
Otley Hall，Suffolk	6.0	AD 1380－1555	Tyers 2000
Lacock Abbey，Wiltshire	5.6	AD 1395－1546	Esling et a／1990
Priory Barn，Little Wymondley，Hertfordshire	5.3	AD 1450－1540	Bridge 2001b
Fiddleford Manor，Sturminster Newton，Dorset	5.3	AD 1433－1553	Bridge 2003

Table 4: Results of the cross-matching of site sequence PTHASQO3 and relevant reference chronologies when the first-ring date is AD 1425 and the last-measured ring date is AD 1516

Reference chronology	t-value	Span of chronology	Reference
East Anglia	5.9	AD 406-2001	Tyers pers comm 2004
Abbas Hall, Great Cornard, Suffolk	6.6	AD 1421-1548	Bridge 2000
Thames foreshore, Richmond, London	5.3	AD 1358-1584	Hillam 1997
St Mary's Church, Strethall, Essex	5.1	AD 1347-1511	Bridge 2004
All Saints Church, Little Totham, Essex	5.0	AD 1380-1517	Tyers 1996
Manningtree, Essex	5.0	AD 1384-1534	Loader pers comm 1996
White Colne, Essex	5.0	AD 1439-1516	Tyers pers comm 2002

Table 5: Results of the cross-matching of site sequence PTHASQO5 and relevant reference chronologies when the first-ring date is AD 1353 and the last-measured ring date is AD 1484

Reference chronology	t-value	Span of chronology	Reference
East Anglia	5.3	AD 406-2001	Tyers pers comm 2004
Marriots warehouse, Kings Lynn, Norfolk	7.8	AD 1310-1583	Tyers 1999
Ayscoffee Hall, Spalding, Lincolnshire	6.7	AD 1343-1452	Howard 2004 unpubl
Abbey Farm Barns, Thetford, Norfolk	6.4	AD 1332-1536	Howard et a/ 2000b
Gainsborough Old Hall, Lincolnshire	5.8	AD 1264-1462	Howard et a/ 1988
Bellframe, Cranfield, Bedfordshire	5.5	AD 1342-1469	Bridge 1998
9-11 East Street, Crowland, Lincolnshire	5.5	AD 1345-1444	Arnold et a/ 2008

FIGURES

Figure 1: Map to show the location of Potter Heigham, circled. © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 2: Map to show the general location of St Nicholas Church, arrowed. © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: Map to show the location of the Church of St Nicholas, hashed. © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 4: North aisle roof, photograph taken looking east (Robert Howard)

Figure 5: Nave roof, photograph taken looking west (Robert Howard)

Figure 6：North aisle，section（internal elevation looking north），showing the location of samples PTH－A01－02，PTH－A05－06，PTH－A10 and PTH－A12 （Nicholas Warns Architects Limited）

Figure 7: North aisle, truss 3, showing the location of sample PTH-A03 (Nicholas Warns Architects Limited)

Figure 8: North aisle, truss 5, showing the location of sample PTH-AO4 (Nicholas Warns Architects Limited)

Figure 9: North aisle, truss 7, showing the location of samples PTH-A07-09 (Nicholas Warns Architects Limited)

Figure 10: North aisle, truss 8, showing the location of sample PTH-A11 (Nicholas Warns Architects Limited)

Figure 11：Nave，plan，showing the location of samples PTH－A16，PTH－A21，and PTH－A24－5（Nicholas Warns Architects Limited）

Figure 12: Nave, truss A, showing the location of sample PTH-A13 (Nicholas Warns Architects Limited)

Figure 13: Nave roof, truss AB, showing the location of samples PTH-A14 and PTH-A15 (Nicholas Warns Architects Limited)

Figure 14: Nave roof, truss BC, showing the location of samples PTH-A17-19 (Nicholas Warns Architects Limited)

Figure 15: Nave roof, truss CD, showing the location of sample PTH-A20 (Nicholas Warns Architects Limited)

Figure 16: Nave roof, truss DE, showing the location of samples PTH-A22 and PTH-A23 (Nicholas Warns Architects Limited)

Figure 17: Nave roof, truss EF, showing the location of samples PTH-A26 and PTH-A27 (Nicholas Warns Architects Limited)

Figure 18: Nave, truss FG, showing the location of samples PTH-A28 and PTH-A29 (Nicholas Warns Architects Limited)

Figure 19: Bar diagram of samples in site sequence PTHASQ01

\square Heartwood rings
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary is the last-measured ring on the sample

Figure 20: Bar diagram of samples in undated site sequence PTHASQO2

Figure 21：Bar diagram of samples in undated site sequence PTHASQ03

Figure 22：Bar diagram of samples in undated site sequence PTHASQO4

Figure 23：Bar diagram of samples in site sequence PTHASQ05

Figure 24: Bar diagram of all dated north aisle samples

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

Abstract

PTH-A01A 64 19618219922617498246297263350436366267359418284384333322327 210198215267244270286279221165279316241299248206242231287305 362242160161170179303204173168161123234215300219276226172207 235188263273 PTH-A01B 64 237196204223169105243294263352405365272352419303386320347332 207221213267276260341259214183272325237296246200233248289318 358227158151177188305212161167152118235197275230272237180186 243191245311 PTH-A02A 54 213363272247279283317249389166150248314320281273244261178236 1206070706675153144305271167179171158139211108111107132 97134137169146165131134143158159134199195 PTH-A02B 54 263359223234290253271267336190142244305322288306247247177236 130706282636111212327420819416915614812117510011092137 99129166165161153135147141157153128200199 PTH-A03A 120 296209363323230291150217265272371262338157244220244236294231 217265254304136114203182193146118102112167191137249302307343 421403306413468214165176159179235249321255159255357389265345 330372393277344304295315322262310238342157173226274171215231 199259278271212166152140138150162178145163222242194263105133 115232250196225183260192257330230228437279369500333218222391 PTH-A03B 120 302209348370215268142222252270380264337156251217250231302226 21326625030714511819018820017112892125174176163222301329349 395395336400443221165158146204199241287297165267369310301347 325370387279343315300308330260284242345156174222289172213248 19424626026922617414114513313818217115116921820319626593145 118226244210228196304194223358230233432280357488329187222353 PTH-A04A 119 14216113122522693170212133196167154177258239141233129264276 263266322202285326359369184200294320286219266161136234231239 421331390446454375346342381283211152143198198202215170135162 202275206310321320311311295216217190239306336290404176135209 171134169165189187199194209168201149126204224197167192258275 309311144156201291308213215187302263427408304278429341380 PTH-A04B 119 11715013021123095169222129206154162192258218157229134269280 258266332206263324370381166194296327274233265155156232241230 431344397448431418325333385277223151149193191219194169138150 212264220295318312282335292234221191232290329335357179144170 168150180168170170180190190156195171133199181212161198217273 333320142161187279326198211189276249425399309258436340377 PTH-A05A 56 244205258211348221248288322381493456330342312405436376263374

40760240830123423116125331414323424598116130169206208169147 178133205269189170169192194211238289264216228268 PTH-A05B 56
241316251255311239247289290435503490316358295419443380277384
44260545229123021115424930516521423799126127186237219157140
154153213229178181184180193242234302285223214258
PTH-A06A 90
1681701751811281591501641181611181491308313413722020611380 13517260745476691081011131391599910310012714013311091 1631061621491561539991961098264100100129118108115113149 1431671281531701081161321791582381248096117126153165151126 11596131190177171155154134129

PTH-A06B 90
151115121121811031461541161691251551198413615622221311470
144180598154706810510811113516210496103128133132112102
15810515815515315210093871059764100100120119117130120136
1461571331571631081151261831532341298194118123157164142124 9389125198171169157174129126
PTH-A07A 92
94162146197166133150144149112185123163138106130150225202121 771651507067548472104135119126167111101114163142128122 991591221711701391529395871199083101101134129112113110 1301381521431741561121111231711392391199494112124152153148 12111973128216216172153239183148192
PTH-A07B 92
116193117182160132159133146126180119173135128135147225208116 75161187705079728512512713413016311210695147135130131 921601231681661441579099851179776100104138120116110118 13014215413415717310411411917713723711010099111127141159144 12511373138208200176161241191136188
PTH-A08A 92
212143231280363370407328468529526777216269316383353303316256 251423396338520587669737829546548486633442311177119147111131

16113488181320307350361399371335367354282366273284451305297 31318615722213113622020625125929824120113318515092137170153 129138178167299398102105114286448382
PTH-A08B 92
247126243273387364400329403541539754207268306370355313327256 248445417306569600660748837544546481625451312182123147110121 164127105170314303327362389372363360363278367265297446320274 376183160210115150197204257240271249196139185139105141167165 12813318716631243311494118287464388
PTH-A09A 55
15921719081879513512912413111912289153136145179190219238
362294253170261261316348266379224251379372292254286264240378
526415382145305261358181157120106121166151200
PTH-A09B 55
182199198959588132133122133115114103151138145171178216237 350286240192259278297335270392244261369321318232322237287369
501406377205318268339175156117104117163150210
PTH-A10A 56
11014918717913913718117420019317013613015789105134144120131 951921351051261101371187597236239202218251234272202120121

92151139151135112130133150189226221172217178220
PTH-A10B 56
12115917218313614117017420721017313412415783115143136127118
961631609613711113611775111207242187212240226274206123110
100163132146136115132129150184227220177214182218
PTH-A11A 62
432290420373386481354280397389214239320329262142268327297341 514463360356383381349352430312322178148149110155134163159204 206171219218154178297222154139151135112130133150189226246168 139198
PTH-A11B 62
409284329397387456401261404400212252315329271129269333309352
52744336938137037435735241834931417812613992174138168169181
215177222214142192302218152136146141115132127153194227250180
144194
PTH-A12A 63
336416281149316287359428481471508261418612266240274377235155 14923420822741230422324320027129921533127023794687264127 1061291041331279811712110310618117013813913713193108132156 161162222
PTH-A12B 63
344375286156339283370440474460506252417612274252260384261142 13325220121740630222423221825430122032528323997647764125 9713410713113684119120105107197162140155120131102103117167 157163209
PTH-A15A 73
260310265308133227430709572345295184190361507223172125260380 461271193270361547586355312165109167193308402249205377534296 19920420118622319017838918498487985777295156153126172 23427126616920617726231912212416596131
PTH-A15B 73
258317277291127227386672562343294190194356450241185126282390 449263207285361526542390307169102171193298392242198358513310 204212207185222189184372183974785837968102149146121167 23827726817320317424931713012116993135
PTH-A16A 78
496454356301148133112221228278138133113124105105119205246123 131130172198294126212131186289172195195161298282147135182196 217190167177160131243254209211998211317920714217115812783 6510770153187134176190107173207180163146125201215171 PTH-A16B 78
536466387325166131114233230296141133115129105111121212220128 135129173195287138227123196286181192187162296284155133184200 220185171171164134256266211214897610617321012217415712781 7210470156185130176195108173201195161149131199224155 PTH-A17A 86
25019412470124161272219130136212253204161173132113124139114 18920112485101110123125184259235351212244320304197266200254 299142135217193163162106146135123116205181197140112209201158 16614188137193187225311161133891531599288132115163109139 223226230135191120
PTH-A17B 86
24919212272113166259219129129214266202165165135105124135112

20419812082103112125125189259241349212246315306198246204249
300147134219185168159110147136117117207176206132125199195161 16513098126200174232318156134881511609789135119158107141 224231218140185118
PTH-A18A 102
88738311011073766210178102118101849914414511699103 1731471241351101171111151351048410267708376113949673

1067596859681103137129140100611261111251131351228774 7466
PTH-A18B 102
807089111104797465100771021151008610114913711294104 17314011913810410911411713210379111657980771051098071

 1017510083928410613413513496721291081261151291258775 7760
PTH-A19A 98
236296234162132159213475535402123177180338356199230118169253 226267260222238209220226285248327160264223231214234164158161 12485135178197250243148220280286193195163205266172207158102 122198146127139137172160156149121141208163161172147142159200 2051942211119911917610895124166196152134180159178199 PTH-A19B 98
214312287176138174225496556409126181188337363206233116171272 230279263221242213225235291241330167269218228219244172165170 14393137170205256246158243273285185179157200268168206155105 126190145128132139152169153135113136213173153167150142155204 2001972041129311918210794125139178151138185150190208 PTH-A20A 79
19826514424624123624120815914014214682124145151179148178172 2492411297914213918011099139129183184170157169111138140109 123135133143166137165115119134169148168200129102981428675 83971239296144108131131771027911312810296596097 PTH-A20B 79
20626716524523723724221113514614014685126149157178146184186 24624911791139127184105118138128185183166148160119138128115 131126139144167140161109116134170144167188123105951459668 87921249696141104133124891047410114610493656180 PTH-A21A 72
108109123821411527921418311110113210610619015613614988106 317377340167152177269357191206216138227206180163131165199147 206256137123140194151156140122141135168118187118951149494 10013412911811596134159133167120120
PTH-A21B 72
100113123761411598421018811010113210310819815514114882113 310381338167150170252357192198238135225206200153142174200123 188277143119140189158150127110143131187137224125971069796 9714313112611395139157137167123116
PTH-A22A 61
6278701271601057351699215612113014093648055133154 20216815617183141146146144138102749511315319711511381145

141142159108931069711980102738884107108991049089127 108

PTH-A22B 61

6871811121611146358659415312513713892627769132154 19217616116588138141141140135102838711715420712010084136 144142165105879898117721337987811101021021058497134 104

PTH-A23A 107

291267256266278359321254307258289327252190128135257142273309 239213242206187171148134939015010913063527212512711499
636569607111189101649011282791069874110158143149 $1931191211392461951071281671141351091087952 \quad 2938748787$ 7166105107165114116164230226251277309254230181163176111143 109150128132165143134
PTH-A23B 107
278275253231277367380227302254283326254190126128257144265313
2362282292081831741461378792150109129655864126130112102
696768546610787102708811689711059787110150143138 203124116136234194113132171104134111113835034328578105 6778106115158110112167235235236276310255227182170173116143 112148129130163141138
PTH-A25A 107
152163136201147916761629514710763573738162187144182 11216417915912010798991331611467611791114111102837553 7658851299094911201141191131197315691163157147124100 14711813611817722719814112716725222413014777107134135114113 9411110395969912312513313013293839985109117867981 $\begin{array}{lllllllllll}97 & 83 & 83 & 96 & 104 & 78 & 70\end{array}$
PTH-A25B 107
131182136205146956664589514111267493937162172131180 10616718215711910999981381561487511498116105100787451 697078152939490121116116112115691539015616415012499 14511713311718522619314112617124622611714382108133135115111 94110958598981181271271311401028510588118124858081 9582831011007677

PTH-A26A 121

33629920725922228920517718410710321516215310773130189169163
1501581851641561321589111314321217120010310710512813395141
9999889897147112908077766876831221098295108109

$\begin{array}{llllllllllllllllll}59 & 50 & 51 & 59 & 64 & 73 & 57 & 44 & 42 & 49 & 46 & 41 & 51 & 50 & 48 & 56 & 41 & 52 \\ 44 & 47\end{array}$
$\begin{array}{lllllllllllllllll}41 & 56 & 53 & 53 & 55 & 48 & 42 & 48 & 51 & 40 & 44 & 39 & 47 & 58 & 54 & 41 & 33 \\ 52 & 49 & 41\end{array}$
61
PTH-A26B 121
34129920825423328020817818210211321416615210472135188176161
1451601831661511331609210914420917219711111210512513693145
96948993107142107917972807178801221157890105113

$\begin{array}{llllllllllllllllll}58 & 45 & 51 & 56 & 74 & 68 & 55 & 44 & 41 & 51 & 45 & 44 & 62 & 44 & 61 & 48 & 44 & 39\end{array} 4343$

64
PTH-A27A 84
398379148287405325221405400388440413288238233195203136125158

```
131103617680117147100150144124101138116100861141317592 8183748185105132131961017811495125172141128110144265 21426430518812411813617120020720520116312999201242244287252 428209226190 PTH-A27B 84 384384140296405325220405401388439395288266231193178143126144 126105577585112143122174140127111136107108871161387587 8392718084102131138100968211793119175134137102153263 21125929420012412013717819520719421115213997197247251269257 441211214165
PTH-A28A 66 8511310881666096128142817454961171321158473111144 12582896958621201311331499277143199144231169116178127 99991018283817880130144194166130163130178226118128156 184161123146177122
PTH-A28B 66
106100108796859107125131857151981141291278373110140 12777857362621331291331459477122201140227170111175120 94101998570877286126145185162130164123179222119118149 188148126145171137
PTH-A29A 59
495468300361320333387333432519621719556414334338259360281359 277372311315277280412353314329349353340135117146142133110183 183150831151139610999110147124162951399710698112120 PTH-A29B 59
505478301363316337385341431530605725556415339335253368285361 276368304320274278413349310330347349320138119145136131119183 186138811161089910710211414512915611411998106102104125
```


APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost randomlike, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring
on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the
sequences of widths look similar, they are not identical. This is typical

2. Measuring Ring Widths. Each core is sanded down with a belt sander using

 medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t -value (defined in almost any introductory book on statistics). That offset with the maximum t -value among the t -values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t -value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t -values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t -value between C 45 and C 08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t -value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95\% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Bar Diagram

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 110 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above It. Thus, the maximum t -value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure $A 7$ (a): The raw ring-widths of two samples, THO-A01 and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earller rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London

Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

