LYTHAM HALL, LYTHAM, LANCASHIRE DENDROCHRONOLOGICAL ANALYSIS OF OAK AND PINE TIMBERS, AND LIVING OAK TREES

 SCIENTIFIC DATING REPORTlan Tyers

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

LYTHAM HALL LYTHAM
LANCASHIRE

DENDROCHRONOLOGICAL ANALYSIS OF OAK AND PINE TIMBERS, AND LIVING OAK TREES

lan Tyers

NGR: SD 35682790
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation and Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 GLD
Please note that a charge will be made to cover printing and postage.

SUMMARY

A tree-ring dating programme was commissioned on oak and softwood timbers from Lytham Hall. This building is an eighteenth-century manor house on the site of an earlier manor house and Benedictine Priory. The Hall is set in 30 hectares of mature parkland within which a further programme of sampling was undertaken on living oaks. The results identified that oak and pine timbers from the roof of the eighteenth-century building were datable by tree-ring dating techniques, with the earlier ranges to the west containing some oak timbers from the sixteenth century, and further oaks and pines from the mid-eighteenth century. Oaks that were two centuries old were identified from the park. This report archives the dendrochronological results.

CONTRIBUTORS
lan Tyers

ACKNOWLEDGEMENTS

The sampling and analysis of timbers at Lytham Hall was funded by English Heritage (EH). Practical help and valuable discussions were provided by Cathy Tuck, Heritage at Risk Projects Officer (EH), Adam Menuge, Senior Investigator, Assessment Team North (EH), Lucy Jessop, Investigator, Assessment Team North (EH), Isabelle Parsons and Allison Borden. Cathy Tyers, Scientific Dating Team (EH) discussed the softwood results.

ARCHIVE LOCATION

Lancashire HER

LCC Environment Directorate
PO Box 100
County Hall
Pitt Street
Preston
Lancashire PR1 OLD

DATE OF INVESTIGATION

2009-10

CONTACT DETAILS

lan Tyers
Dendrochronological Consultancy Ltd
65 Crimicar Drive
Sheffield S10 4EF
ian@dendro.co.uk

CONTENTS

Introduction
Methodology 1
Results 4
Discussion 5
Lytham Hall, the main roof 5
South-west range 7
Long gallery 8
Bibliography 9
Figures II
Tables 18
Appendix 23

INTRODUCTION

This document is a technical archive report on the tree-ring analysis of oak and pine timbers from Lytham Hall, Ballam Road, Lytham, and living oaks from the parkland to the north-east of the Hall. It is beyond the dendrochronological brief to describe the building in detail or to undertake the production of detailed drawings. Elements of this report may be combined with detailed descriptions, drawings, and other technical reports at some point in the future to form either a comprehensive publication or an archive deposition on the building.

Lytham Hall stands about 1km north of the Ribble estuary coast between Preston and Blackpool (NGR SD 3568 2790). It was formerly the centre of a 6000 hectare estate, with some 30 hectares of mature parkland still extant (Fig 1). The park is low lying, at around 10 m OD throughout. At the east of the main range of buildings is the Hall (Fig 2). This was built for Thomas Clifton by John Carr between c 1752 and 1764 on the site of both an earlier manor house and a Benedictine Priory. To the west is a courtyard surrounded by buildings with some apparently earlier timber framing in stairways, under the floors, and in loft spaces. To the south-west is a long range (Fig 2), with exposed roof trusses. The building was formerly occupied as a large company head office and has lots of relatively recent modifications; the Long Gallery was formerly a typists pool, and the south-west range was modernised as a meeting room, conference centre, or reception area. The building is Grade I listed and is on the Heritage at Risk register and is subject to on-going Heritage Lottery Project proposals.

METHODOLOGY

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

The building was visited in April and November 2008 in company with Cathy Tuck, Adam Menuge, and Isabelle Parsons. An assessment of the dendrochronological potential of timbers in several areas of the structure had been requested by Cathy Tuck. This assessment aimed to identify whether oak or softwood timbers with sufficient numbers of rings for analysis existed in any part of the complex. This assessment concluded that timbers in the Hall roof (Figs 3-7), along with various timbers of the floor of the south range and the exposed roof of the south-west range, contained suitable oak and softwood material (Fig 8). In situ panelling and plasterwork severely restricted access to the structural elements lower down the Hall, whilst most of the exposed timbers, and those timbers accessible by lifting floors or entering roof spaces throughout the kitchen
range, the current offices and cottage, and the basement of the hall were unsuitable for sampling and analysis.

Sampling was subsequently commissioned in order to inform advice and enhance understanding of this important building complex and its environs. The sampling took place during November 2009, and February through March of 2010. The selected timbers were sampled using a 15 mm diameter corer attached to an electric drill. A group of large oaks from the park were cored by 5.15 mm diameter hand turned increment corers. The cores were taken as closely as possible along the radius of the timbers so that the maximum number of rings could be obtained for subsequent analysis. The ring sequences in the cores were revealed by sanding.

This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant anatomical features, such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (see eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in suitable samples was measured to an accuracy of 0.01 mm using a micro-computer based travelling stage. The sequence of ring widths was then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, crosscorrelation algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated. Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any t-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A t-value of 3.5 or over is usually indicative of a good match, although this is with the proviso that high t values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions are supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; sitespecific issues (for example a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5$20 \%$ of all oak trees cannot be reliably cross-matched, even when enough rings are obtained.

Converting the date obtained for a tree-ring sequence into a useful date requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling
date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a terminus post quem for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by region. This report uses a minimum of 10 rings and a maximum of 46 rings as a sapwood estimate (eg English Heritage 1998, 10-11).

Where bark-edge or bark survives, the season of felling can be determined by examining the completeness or otherwise of the terminal ring lying directly under the bark. Complete material can be divided into three major categories:

- 'early spring', where only the initial cells of the new growth have begun - this is equivalent to a period in March/April, when the oaks begin leaf-bud formation;
- 'later spring/summer' where the early wood is evidently complete but the late wood is evidently incomplete, which is equivalent to May-through-September of a normal year, and
- 'winter' where the latewood is evidently complete and this is roughly equivalent to September-to-March (of the following year) since the tree is dormant throughout this period and there is no additional growth put on the trunk.

These categories can overlap as, for example, not all oaks simultaneously initiate leaf-bud formation. It should also be noted that slow growing or compressed material cannot always be safely categorised.

Timber technology studies demonstrate that many of the tool marks recorded on ancient timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in the medieval period (eg English Heritage 1998, 11-12).

Reused timbers can only provide tree-ring dates for the original usage date, not their reuse. Identifying reused timbers requires careful timber recording which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of earlier usage, and are thus 'hidden reused' timbers. The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or sometimes more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several timbers date but only one has any sapwood or where same-tree identifications yield linkages between different areas.

RESULTS

In 2009 and 201050 timbers from across the building were cored, these cores were labelled 1-50 inclusive. Figures 5 and 8 show the distribution of the samples through Lytham Hall. In total 21 samples were obtained from nine oak timbers and 12 softwood timbers from the roof of the eighteenth-century Hall. Fifteen samples were obtained from floor joists in the long gallery of the south range, 14 of these were oak and one was a softwood. Fourteen samples were obtained from the roof of the south-west range, nine were softwood purlins, and five were oak elements of the roof trusses. Thirteen oak trees selected from within a c $450 \times c 250 \mathrm{~m}$ area north-east of the Hall were cored, these cores were labelled 51-63 inclusive.

Each building sample was assessed for the wood type, the number of rings it contained, and whether the sequence of ring widths could be reliably resolved. This assessment confirmed that all the sampled softwood timbers were pine (Pinus sy/vestris type) and that 18 of the 28 oaks, and 17 of the 22 softwoods were suitable for dendrochronological analysis. The exceptions either had too few rings for analysis or had fragmented badly during sampling. The unsuitable oaks comprised ten samples, two from the Hall roof, six from the long gallery joists, and two from the south-west range roof trusses. There was good survival of oak sapwood in the Hall roof and the south-west range roof, but very poor survival in the long gallery joists. Oak bark-edge survival was good in the Hall roof. The five unsuitable softwoods comprised three from the Hall roof, the only softwood joist sampled in the long gallery, and one of the south-west range purlins. There was poor survival of pine sapwood in all of the targeted areas, with no bark-edges surviving the sampling process. The 13 living-tree cores were recovered successfully, and each was suitable for analysis. All were complete to bark-edge. The sampled park oaks are mostly Quercus petraea type. Details of the oak, softwood, and living tree samples are provided in Tables 1-3 respectively.

The 18 suitable oak samples from the building were prepared for analysis, measured, and the resultant ring series were initially compared with other material from the same area of the building. Further comparisons were then made between areas, various interim composite groupings were made of sequences during this process. Finally the interim composites and the individual sample series were individually compared with reference series of medieval and later oak tree-ring data from throughout Britain. These results were reviewed and a single final composite series was constructed from four samples from the Hall roof and two samples from the south-west range roof. This group is formed by cross-matched tree-ring data (Table 4), supported by good external cross-matching. Sequence LythamOak1 constructed from these, a 178-year composite, matches with reference data (Table 5) at AD 1578 to AD1755 inclusive. In addition one individual sample from a long gallery joist timber (sample 28) was found to exhibit good external cross-matching with reference data at an earlier date (Table 6). A summary of the results for the component and individual samples are provided in Table 1 and Figure 9.

The 17 suitable softwood samples from the building were prepared for analysis, measured, and the resultant ring series were initially compared with other material from the same area of the building. Further comparisons were then made between areas; various interim composite groupings were made of sequences during this process. Finally the interim composites and the individual sample series were individually compared with reference to a series of softwood tree-ring data from northern and central Europe, and with other softwood data from buildings from Britain. These results were reviewed and a single final composite series was constructed from five samples from the Hall roof and two samples from the south-west range roof. This group is formed by cross-matched tree-ring data (Table 7), supported by individual external cross-matching (Table 8). Sequence LythamPine constructed from these, a 211-year composite, matches with reference data (Table 9) at AD 1522 to 1732 inclusive. A summary of the results for the component and individual samples are provided in Table 2 and Figure 9.

The 13 living oak samples from the park were taken along 3 separate transect lines (Figure 10). These cores were prepared for analysis, measured, and the resultant ring series were initially compared with each other. This material is characterised by unusually rapid growth, some trees contain some aberrant growth sequences, and the assemblage as a whole exhibits relatively poor internal cross-matching (Table 10). Sequence LythamOak2 constructed from these, a 193-year composite, matches with other modern reference data (Table 11) at AD 1817 to AD 2009 inclusive. A summary of these results is given in Figure 11. This material was cored on 26 March 2010 and no visible signs of the onset of growth for 2010 were observed at the bark edges of the cores. The trees were not in leaf.

The measurement data for all the measured samples are listed in the Appendix.

DISCUSSION

The dated samples are derived from three different areas of the building. These areas are discussed firstly from the roof of the eighteenth-century Lytham Hall range, then those from the roof of the south-west range, and finally the single datable sample from the Long Gallery, south range. The datable oak material matches with other local and regional reference data and it is likely that all the oak timbers were derived from the general vicinity of Lytham. The datable softwoods appear to represent a reasonably coherent group from a single source, probably from Latvia or the river systems east into Belarus.

Lytham Hall, the main roof

This two and a half storey high double-pile building (Fig 3) is known to have been built for Thomas Clifton between c 1752 and 1764, by architect John Carr. The 23 timber trusses of the roof (Fig 4) run as a series around a central masonry block (Fig 5), with east-west aligned trusses along both long sides, and north-south aligned trusses along the short sides. These overlap in a rather complicated arrangement such that the tiebeams of some
trusses then form the crossing beams through other trusses. There are a number of distinct truss forms, 16 being full trusses, and seven being half trusses. The trusses fairly consistently use oak for the vertical elements (king posts and various struts) and softwood, pine where identified, for the main tiebeams, cross-beams, and the principal and common rafters (one exception being oaks used for the raised ties that lie over the central block).

The 21 samples obtained from timbers within the roof yielded nine datable tree-ring sequences. These are of two types, four are oak, and five are pine. The tree-ring analysis dates the rings present in the cores. The correct interpretation of these relies upon the characteristics of the final rings in them. Bark-edge survived on two of the oak timbers, some sapwood survived on another oak, and one of the pines. No sapwood was present on the remaining datable timbers. Making allowances for minimum and maximum likely amounts of missing oak sapwood provides individual felling dates, or felling date ranges, or terminus post quem dates for each of the datable oak timbers. Making the assumption that pine sapwood can be difficult to identify with certainty provides the datable pine timbers with terminus post quem dates. Figure 9 and Tables 1 and 2 include the felling date or interpreted felling date ranges for each of the datable samples.

The interpretation of two of these dated samples is straightforward. Samples 5 and 7 are complete to bark edge. These both retain a complete ring for AD 1755, and the onset of growth for the following year. These timbers were therefore felled in the spring of AD 1756. The calculated felling date ranges for the other oak samples indicates this group of timbers were either precisely or broadly contemporaneous. The pine samples are less complete, and pine typically has large quantities of sapwood. Significant lengths of these cores disintegrated, probably indicating sapwood was present. These samples have sequences ending in the late-seventeenth century and it is likely that they are broadly contemporaneous with the oaks (Fig 9).

One unique feature of this roof is the presence of a softwood timber bearing both a distinctive hauling or rafting hole and ownership stamps in the form of 'PR' repeated several times (Figs 5 and 7). Rafting holes are relatively widely seen in continental softwood buildings, particularly of log-cabin type and are apparently derived from the habit of forming rafts of timbers for their downstream delivery from the forests to the ports (Thomas Eising pers comm). Presumably such features are rare in British buildings as they were typically cut off when constructing roof tiebeams of specific lengths, or perhaps they are common but well hidden along the outside edges of the roofs. Lytham Hall's double pile-plan form and rather anomalous overlapping tiebeams may have made either their removal unnecessary, or simply provides opportunities for seeing them that are rarely presented elsewhere. A further timber that forms both the T3 tiebeam and the T4T6 centre-beam was also noted bearing 'PR' stamps although these were not photographed. Neither of these timbers proved datable, indeed the former could not even be sampled due to its location and alignment. However there is no reason to suppose that the results obtained from the other softwoods in this roof are not indicative
of the source and origin of these marked timbers. The 'PR' stamp may indicate the exporter, the importer, or some other stage in their travels.

The dated softwood beams match strongly to material used in the AD 1760's Danson House, and to a building in Latvia. Both these potentially utilise material derived from present day Belarus, as discussed by Groves (2000). The strong cross-matching between these three groups suggests that the Lytham Hall main roof, and the south-west roof softwood timbers, are further timbers derived from this area.

South-west range

This long building contains five roof trusses and three rows of purlins. The roof is mixed softwood and oak, but at least three trusses have been extensively modified, possibly after a fire in the twentieth century. The eastern truss is a complete modern metal replacement, the next has a metal tiebeam, and the next has been converted to a rather curious arch-vaulted form by clamping oak beams around the original truss timbers, and then sawing off the kingpost and tiebeam.

The 14 samples obtained from timbers within this roof yielded four datable tree-ring sequences. These are of two types, two are oak, and two are pine. The tree-ring analysis dates the rings present in the cores. The correct interpretation of those dates relies upon the characteristics of the final rings in them. Bark-edge survived on none of the oak timbers, but some sapwood survived on one oak. No sapwood was identifiable on the datable pine timbers. Making allowances for minimum and maximum likely amounts of missing oak sapwood provides a felling date range for one oak, and a terminus post quem date for the other datable oak. Making the assumption that pine sapwood can be difficult to identify with certainty provides both the datable pine timbers with terminus post quem dates. Figure 9 and Tables 1 and 2 includes the felling date or interpreted felling-date ranges for each of the datable samples.

The interpretation of these dated samples is straightforward. Sample 44 has sapwood out to AD 1749, whilst sample 42 has its heartwood/sapwood edge at AD 1715. These samples combine to provide a calculated felling date range of AD 1749 to AD 1761. The pine samples are less complete, and pine typically has large quantities of sapwood. Significant lengths of these cores disintegrated, probably indicating sapwood was present. These samples have sequences ending in the late-seventeenth century and it is likely they are broadly contemporaneous with the oaks (Fig 9). These results indicate that the southwest range roof is therefore likely to date from the Carr period and that it utilises oaks and softwoods of similar origins to those used in the main roof of the Hall.

Long gallery

The southern side of the floor of the long gallery could be lifted along almost its entire length. This exposed a set of 36 north-south aligned joists of varying size. One of these was a softwood timber, the rest were oak. The western end of the floor was entirely replaced by softwood east-west aligned joists. A small area of the underside of these joists was visible in the ceiling of a lavatory on the ground floor.

The 15 samples obtained from timbers within this set of joists yielded a single datable tree-ring sequence. This was an oak joist. The tree-ring analysis dates the rings present in the cores. The correct interpretation of those dates relies upon the characteristics of the final rings in them. The datable sample was complete to the onset of sapwood. Making allowance for minimum and maximum likely amounts of missing oak sapwood provides an individual felling date range for the datable timber. Figure 9 and Table 1 includes the interpreted felling date range for this datable sample.

The interpretation of this dated sample is straightforward. Sample 28 has heartwood out to AD 1483. This sample has a calculated felling date range of AD 1493 to AD 1529 (Fig 9). This result indicates that the joists in this area include some pre-dissolution period timber, perhaps from the Priory phase of the site.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-Ring Analysis of Timbers from Hulme Hall, Allostock, near Northwich, Cheshire, Centre for Archaeol Rep, 84/2003

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-Ring Analysis of Timbers from Ordsall Hall, Taylorson Street, Salford, Greater Manchester, Centre for Archaeol Rep, 49/2004

Arnold, A J, Howard, R E, and Litton, C D, 2005 Tree-Ring Analysis of Timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep, 40/2005

Arnold, A J, Howard, R E, and Litton, C D, 2006 Middridge Grange, Shildon Road, Heighington, Durham: Scientific Dating Report, Tree-Ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 9/2006

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree Ring Bulletin, 33, 7-14

Bridge, M C, 1998 Tree-ring dates from University College London: List 86, Vernacular Architect, 29, 104-5

Groves, C, 2000 Belarus to Bexley and beyond: dendrochronology and dendroprovenancing of conifer timbers, Vernacular Architect, 31, 59-66

Groves, C, 2002 Dendrochronological Analysis of Conifer Timbers from Danson House and Danson Stables, Bexley, Kent, Centre for Archaeol Rep, 69/2002

Groves, C, and Hillam, J, 1990 Tree-ring dates from Sheffield University: List 36, Vernacular Architect, 21, 44

Howard, R E, Laxton, R R, and Litton, C D, 2003 Tree-Ring Analysis of Oak Timbers from Combermere Abbey, Whitchurch, Cheshire, Centre for Archaeol Rep, 83/2003

Howard, R E, Litton, C D, Arnold, A J, and Tyers, C, 2006 Tree-Ring Analysis of Timbers from Warleigh House, Tamerton Foliot, Bickleigh, South Hams, near Plymouth, Devon, English Heritage Res Dept Rep Ser, 38/2006

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeological Studies, Monograph Series, III

Leggett, P A, 1980 The use of tree-ring analyses in the absolute dating of historical sites and their use in the interpretation of past climatic trends, unpubl PhD Thesis CNAA, Liverpool Polytechnic

Pilcher, \downharpoonleft R, and Baillie, M G L, 1980 Eight Modern Oak Chronologies from England and Scotland, Tree Ring Bulletin, 40, 45-58

Tyers, I, 1997 Tree-ring analysis of timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

Tyers, I, 1999 Tree-ring analysis of the bell tower of the Church of St Mary, Pembridge, Herefordshire, Anc Mon Lab Rep, 1/99

Tyers, I, 2003a Tree-Ring Analysis of Oak Timbers from a Building on the Lea Road Foundry Site, Church Street, Dronfield, Derbyshire, Centre for Archaeol Rep, 75/2003

Tyers, I, 2003b The tree-ring analysis of the Saracens Head, 81 The Green, Kings Norton, Birmingham, ARCUS Rep, 717f

Tyers, I, 2004a The tree-ring analysis of timbers from Oxburgh Hall, Oxborough, Norfolk, ARCUS Rep, 717L

Tyers, I, 2004b The tree-ring analysis of timbers from two buildings at Ash House Farm, Myrtle Road, Sheffield, ARCUS Rep, 853a

Tyers, I, 2006 Tree-ring analysis of timbers from a building: Moseley Farm Barn, Cookridge, West Yorkshire, ARCUS Rep, 853u

FIGURES

Figure I: Location of Lytham Hall. © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: First Floor plan, showing areas mentioned in the text, based on Foster Survey 2007 drawing, with permission Lytham Hall Heritage Trust. NB the South-west range not to scale

……

Figure 3: Lytham Hall north-south cross section, Foster survey drawing, with permission Lytham Hall Heritage Trust. The shown roof trusses are probably T2 and TI3

Figure 4: Lytham Hall typical full roof truss, EH survey drawing. This roof truss is typical of TI T3, T6-T9 and TI2-TI4, and some of the trusses in TI 7-T22

Figure 5: Lytham Hall roof truss numbering scheme TI-T23, with TI at the centre of the north side and each truss or half-truss numbered in a sequence running anti-clockwise. The approximate locations of the sampled timbers are marked as arrows. Based on an EH survey drawing. Note trusses TI 7-T23 are relatively inaccessible. The T2I tiebeam end (marked x) is the location of Figures 6 and 7

Figure 6: The T2I tiebeam end with a rafting or hauling hole. Photo Ian Tyers

Figure 7: The T2I tiebeam end with multiple PR stamps. Photo Ian Tyers

Figure 8: Joist and Truss numbering schemes for Long Gallery first floor and south-west range roof, sample locations given in Tables I and 2. South-west range not to scale

KEY. White bars are oak heartwood, black and white hatched bars are oak sapwood. Yellow bars are pine heartwood, black and yellow hatched bars are pine sapwood.

Figure 9: Bar diagram showing the absolute dating positions of the 14 dated tree-ring sequences for samples from Lytham Hall. The interpreted felling dates are also shown for each sample

Figure I0: Transect lines used to select oak trees for coring, samples 5I-63

KEY. White bars are oak heartwood, black and white hatched bars are oak sapwood.

Figure I I: Bar diagram showing the sequences from the I3 living oaks sampled from Lytham Hall park. This trees were sampled on 26 March 2010

TABLES

Table I: Details of the 28 oak samples from timbers from Lytham Hall

Sample	Location	Rings	Sap	Date of measured sequence	Interpreted result
1	Hall roof T4 raised tie	139	20	not dated	-
2	Hall roof T2 king post	62	15	not dated	-
3	Hall roof T6 raised tie	103	-	AD 1625-AD 1727	after AD 1737
4	Hall roof T10 king post	-	-	not measured	-
5	Hall roof T12 king post	145	$40+$ Bs	AD 1611-AD 1755	AD 1756 spring
6	Hall roof T12 queen strut	-	-	not measured	-
7	Hall roof T13 raised tie	106	$31+$ Bs	AD 1650-AD 1755	AD 1756 spring
8	Hall roof T14 raised tie	90	2	AD 1627-AD 1716	AD 1724-60
9	Hall roof T15 raised tie	74	-	not dated	-
22	Long gallery joist 6	90	H/S	not dated	-
23	Long gallery joist 7	97	H/S	not dated	-
24	Long gallery joist 11	77	H/S	not dated	-
25	Long gallery joist 12	-	-	not measured	-
27	Long gallery joist 14	-	-	not measured	-
28	Long gallery joist 17	100	H/S	AD 1384-AD 1483	AD 1493-1529
29	Long gallery joist 23	-	-	not measured	-
30	Long gallery joist 25	76	-	not dated	-
31	Long gallery joist 26	93	-	not dated	-
32	Long gallery joist 28	-	-	not measured	-
33	Long gallery joist 29	-	-	not measured	-
34	Long gallery joist 30	76	-	not dated	-
35	Long gallery joist 31	63	H/S	not dated	-
36	Long gallery joist 32	-	-	not measured	-
42	SW T5 N principal	125	H/S	AD 1591-AD 1715	AD 1725-61
43	SW T5 king post	-	-	not measured	-
44	SW T5 tiebeam	172	18	AD 1578-AD 1749	AD 1749-77
45	SW T3 S principal	-	-	not measured	-
46	SW T3 vaulted tiebeam	71	18	not dated	-

KEY

For locations see Figures 5 and 8
Hall Truss numbers T1-T17 see Figure 5
Long gallery joist numbers see Figure 8
SW roof Truss numbers T1-T5 see Figure 8
N north, S south, E east, W west, C central
H / S is heartwood/sapwood edge, Bs bark after incomplete additional annual ring Interpretations based on 10-46 sapwood rings.

Table 2: Details of the 22 softwood samples from timbers from Lytham Hall.

Sample	Location	Rings	Sap	Date of measured sequence	Interpreted result
10	Hall roof T1-E wall	-	-	not measured	-
11	Hall roof T1 tiebeam	103	-	AD 1585-AD 1687	after AD 1687
12	Hall roof T2 tiebeam	86	-	not dated	-
13	Hall roof T3 tie/T4-T6	101	-	not dated	-
14	Hall roof T5 1/2 tiebeam	-	-	not measured	-
15	Hall roof W T6-T9	162	-	AD 1532-AD 1693	after AD 1693
16	Hall roof E T6-T9	166	22	AD 1532-AD 1697	after AD 1697
17	Hall roof E T9-wall	187	-	not dated	-
18	Hall roof W T9-wall	113	-	AD 1590-AD 1702	after AD 1702
19	Hall roof T14 tiebeam	185	-	AD 1548-AD 1732	after AD 1732
20	Hall roof T17 tiebeam	-	-	not measured	-
21	Hall roof T17 W principal	114	-	not dated	-
26	Long gallery joist 13	-	-	not measured	-
37	SW T5-W low N purlin	107	-	not dated	-
38	SW T5-W mid N purlin	77	-	not dated	-
39	SW T5-wall low S purlin	-	-	not measured	-
40	SW T3-4 low S purlin	85	-	not dated	-
41	SW T3-4 mid S purlin	89	-	not dated	-
47	SW T2-W low S purlin	133	-	AD 1522-AD 1654	after AD 1654
48	SW T2-E low N purlin	100	-	not dated	-
49	SW T2-W low N purlin	122	-	not dated	-
50	SW T2-E low S purlin	101	-	AD 1555-AD 1655	after AD 1655

KEY
For locations see Figures 5 and 8
Hall Truss numbers T1-T17 see Figure 5
Long gallery joist numbers see Figure 8
SW roof Truss numbers T1-T5 see Figure 8
N north, S south, E east, W west
Due to the difficulty in identifying pine sapwood no minimum sapwood estimate has been used in the interpretations

Table 3: Details of the 13 samples from living oaks from Lytham Hall park.

Sample	Description	Rings	Sap	Date of measured sequence
51	3.43 m circumference	193	$18+\mathrm{Bw}$	AD 1817-AD 2009
52	2.18 m circumference	153	$15+\mathrm{Bw}$	AD 1857-AD 2009
53	2.06 m circumference	159	$24+\mathrm{Bw}$	AD 1851-AD 2009
54	2.24 m circumference	156	$26+\mathrm{Bw}$	AD 1854-AD 2009
55	2.20 m circumference	169	$39+\mathrm{Bw}$	AD 1841-AD 2009
56	3.90 m circumference	152	$26+\mathrm{Bw}$	AD 1858-AD 2009
57	2.32 m circumference	159	$21+\mathrm{Bw}$	AD 1851-AD 2009
58	2.92 m circumference	157	$17+$ Bw	AD 1853-AD 2009
59	2.46 m circumference	167	$20+\mathrm{Bw}$	AD 1843-AD 2009
60	3.00 m circumference	169	$20+\mathrm{Bw}$	AD 1841-AD 2009
61	2.75 m circumference	167	$23+\mathrm{Bw}$	AD 1843-AD 2009
62	4.31 m circumference	161	$32+\mathrm{Bw}$	AD 1849-AD 2009
63	3.12 m circumference	155	$20+\mathrm{Bw}$	AD 1855-AD 2009

KEY For approximate locations see Figure 10
Bw bark after complete ring.

Table 4: The t-values (Baillie and Pilcher 1973) between 6 sampled oak timbers from Lytham
Hall. - t-value less than 3.0. These series were combined to form the composite sequence LythamOakI used in Table 5

	5	7	8	42	44
3	6.13	8.18	4.29	4.74	3.89
5		7.62	10.42	6.85	6.50
7			4.63	5.85	4.42
8				4.27	4.68
42					6.97

Table 5: Showing example t-values (Baillie and Pilcher 1973) between the composite sequence LythamOak I constructed from oak timbers in Lytham Hall and oak reference data

Reference chronology	LythamOak1 AD1578-1755
Cheshire, Combermere Abbey (Howard et a/ 2003)	7.41
Cheshire, Hulme Hall Allostock (Arnold et a/ 2003)	6.61
Derbyshire, Riding School Bolsover Castle (Arnold et a/ 2005)	8.82
Herefordshire, Pembridge bell tower C (Tyers 1999)	7.20
Kent, Chatham Dockyard Wheelwrights Shop (Bridge 1998) not from Kent	7.30
Nottinghamshire etc, regional sequence (Laxton and Litton 1988)	7.68
Staffordshire, Sinai Park nr Burton (Tyers 1997)	7.21
Yorkshire, Cookridge Moseley Wood Farm barn (Tyers 2006)	7.47

Table 6: Showing example t-values (Baillie and Pilcher 1973) between the sequence from sample 28 in Lytham Hall and oak reference data

	Lytham \#28 AD1384-1483
Derbyshire, Dronfield Church Street Derbyshire (Tyers 2003a)	6.10
Manchester, Manchester Peel Hall (Leggett 1980)	5.78
Manchester, Salford Ordsall Hall (Arnold et al 2004)	6.55
Nottinghamshire etc, regional sequence (Laxton and Litton 1988)	5.74
West-Midlands, Kings Norton Saracens Head (Tyers 2003b)	5.87
Yorkshire, Sheffield Myrtle Road Ash House Farm Barn (Tyers 2004b)	6.07
Yorkshire,-Barnsley Houndhill (Groves and Hillam 1990)	5.63
Yorkshire,-Calderdale Shibden Hall nr Halifax (unpubl. data)	7.31

Table 7: The t-values (Baillie and Pilcher 1973) between 7 sampled pine timbers from Lytham Hall. See also Table 8. - t-value less than 3.0. These series were combined to form the composite sequence LythamPine used in Table 9

	15	16	18	19	47	50
11	4.67	4.21	3.34	-	-	-
15		5.41	-	3.65	-	-
16			3.26	4.51	3.04	-
18				3.05	-	4.19
19					3.56	-
47						7.23

Table 8: Showing example t-values (Baillie and Pilcher 1973) between 7 sampled pine timbers from Lytham Hall and pine reference data. See also Tables 7 and 9. $-t$-value less than 3.0. These series were combined to form the composite sequence LythamPine used in Table 9

	11	15	16	18	19	47	50
Middridge	-	-	-	-	-	4.37	4.11
Warleigh	-	-	5.01	3.69	7.16	-	-
Danson1	6.20	4.69	6.01	4.36	6.94	6.47	5.43
Dannensterna	4.30	4.20	6.42	5.70	5.46	6.12	4.26
Oxburgh 1	4.81	3.54	3.71	3.96	4.44	-	-
Stockholm	-	-	3.26	4.56	-	3.13	4.00

Chronology references
CoDurham, Middridge Grange Heighington (Arnold et al 2006)
Devon, Warleigh House Tamerton Foliot (Howard et al 2006)
Kent, Danson House Bexley Kent 1 (Groves 2002)
Latvia, Dannensterna House Riga (Zunde pers comm)
Norfolk, Oxburgh Hall 1 (Tyers 2004a)
Sweden, Stockholm/Uppland (Bartolin pers comm)

Table 9: Showing example t-values (Baillie and Pilcher 1973) between the composite sequence LythamPine constructed from pine timbers in Lytham Hall and pine reference data

	LythamPine AD 1522-1732
County Durham, Middridge Grange Heighington (Arnold et al 2006)	4.82
Devon, Warleigh House Tamerton Foliot (Howard et al 2006)	5.65
Kent, Danson House Bexley Kent 1 (Groves 2002)	9.77
Latvia, Dannensterna House Riga (Zunde pers comm)	10.26
Norfolk, Oxburgh Hall 1 (Tyers 2004a)	6.67
Sweden, Stockholm/Uppland (Bartolin pers comm)	4.93

Table 10: The t-values (Baillie and Pilcher 1973) between 13 sampled oak trees from Lytham Hall park. - t-value less than 3.0. These series were combined to form the composite sequence LythamOak2 used in Table II

	52	53	54	55	56	57	58	59	60	61	62	63
51	4.08	-	-	6.02	-	5.65	-	4.95	4.22	-	3.39	4.28
52		7.20	4.23	-	-	-	5.14	5.00	-	-	5.85	4.21
53			5.04	-	-	-	6.20	5.37	-	-	4.70	-
54				5.72	-	5.18	7.37	4.27	-	-	3.39	-
55					-	7.31	5.60	5.88	-	5.45	3.05	-
56						-	5.03	4.02	-	-	4.52	3.10
57							6.28	8.41	-	-	-	-
58								7.65	3.74	5.11	3.66	3.26
59									4.64	4.21	4.68	4.65
60										-	3.22	8.19
61											-	-
62												4.04

Table II: Showing example t-values (Baillie and Pilcher 1973) between the composite sequence LythamOak2 constructed from trees in Lytham Park and oak reference data

	LythamOak2 AD 1817-2009
Cheshire, Combermere Abbey (Howard et al 2003)	5.57
Cumbria, Levens Park (Carter pers comm)	5.51
Lancashire, Scorton (Pilcher and Baillie 1980)	6.11
Northumberland, Helesyside Hall (Briffa pers comm)	5.56
Northumberland, Monk Wood (Briffa pers comm)	6.06
Nottinghamshire, Sherwood (Baille, Pilcher, Brown, Briffa pers comm)	5.65
Yorkshire, Castle Howard (Morgan pers comm)	7.88
Northern Ireland, Antrim Breen Oak Wood (Pilcher pers comm)	6.63

APPENDIX

lh01

134	122	273	199	122	99	92	125	74	72
121	140	191	134	134	126	143	170	103	72
63	73	91	121	90	122	178	173	162	149
169	279	266	347	287	233	211	141	187	314
308	318	288	395	331	332	301	416	219	255
227	168	195	268	250	218	302	203	240	193
167	249	166	193	167	169	131	240	175	122
166	171	167	164	147	100	155	75	85	122
97	132	106	78	95	50	53	59	82	98
64	85	100	105	86	85	79	152	119	69
115	104	154	199	148	132	143	114	115	156
132	98	166	141	140	145	137	148	136	189
116	141	174	197	154	130	177	148	160	176
139	101	112	118	112	118	156	168	108	

lh02

230	295	247	285	290	265	240	227	327	220
276	237	172	246	233	284	290	204	253	210
267	182	333	263	272	268	271	230	249	285
192	264	252	253	252	168	171	184	172	300
160	229	188	179	160	255	209	141	146	149
189	169	200	177	143	123	142	116	101	112
82	114								

lh03

319	491	606	581	569	511	318	347	291	231
205	130	132	102	81	110	142	101	138	156
181	214	211	199	194	163	150	122	124	114
131	170	174	294	219	185	150	209	307	370
335	200	220	274	428	341	304	310	305	261
231	302	291	251	199	191	139	288	170	218
164	168	226	188	182	128	134	98	134	96
107	66	82	93	75	68	96	113	80	116
79	64	113	178	148	106	97	119	136	116
105	154	174	141	159	111	162	139	119	127
129	132	137							

lh05

180	159	201	195	200	114	132	158	180	244
234	255	258	217	141	158	218	166	213	167
142	178	134	108	119	80	97	125	122	132
180	93	87	96	113	217	157	130	158	110
71	73	89	100	166	147	118	135	119	107
98	84	106	126	118	97	100	77	122	122
123	126	97	79	68	112	109	98	92	91
75	95	86	94	52	115	124	80	98	64

100	66	66	71	66	61	63	64	55	44
69	82	88	90	72	54	87	82	88	58
54	37	57	48	44	52	40	35	32	27
35	31	33	34	45	50	55	56	53	47
76	97	112	111	112	93	78	101	84	83
68	53	99	69	80	90	85	80	93	75
118	122	89	114	126					

lh07

197	209	161	173	188	337	437	329	336	298
357	254	292	330	370	293	236	186	192	275
255	294	245	273	252	212	308	286	223	159
160	115	215	170	171	121	170	194	171	150
102	88	77	118	87	100	69	89	85	56
64	74	84	80	89	70	59	90	112	114
83	59	71	86	84	74	73	75	61	97
63	80	63	61	68	66	95	80	80	85
62	82	94	100	71	55	64	70	69	69
61	63	66	110	91	68	110	91	103	99
78	104	98	96	102	141				

lh08

219	190	283	188	176	174	183	138	152	133
173	196	173	147	216	118	119	127	153	220
179	168	165	158	113	125	137	190	193	186
195	190	160	147	180	135	176	181	164	167
134	129	149	142	167	158	165	124	145	188
217	179	137	195	115	142	126	106	77	153
139	116	124	115	126	81	99	97	122	102
110	109	86	66	91	75	86	96	71	70
81	88	107	73	69	70	80	77	80	97

lh09

216	277	143	191	111	165	135	105	132	115
98	74	219	205	175	213	108	120	119	126
128	89	119	76	84	97	115	123	185	117
149	94	111	92	143	143	154	104	88	73
69	88	109	78	70	133	81	80	94	60
84	103	92	73	64	77	65	75	58	65
58	58	67	68	66	83	56	73	46	51
65	69	67	65						

Ihs11

163	210	279	328	304	308	301	274	248	258
204	190	157	167	171	187	141	201	142	177
117	123	83	99	156	167	204	159	135	184
153	151	190	142	119	183	148	124	121	140
96	114	118	140	95	147	125	133	118	90
140	123	129	127	156	156	107	74	62	88

77	74	70	91	89	99	111	93	86	103
98	115	94	76	74	104	144	114	107	126
110	81	85	83	88	82	82	84	80	80
96	119	83	90	85	90	144	114	118	158
91	131	99							

Ihs12

381	383	339	361	237	313	394	423	343	291
263	229	278	348	358	339	325	320	304	289
338	333	296	307	273	342	345	263	263	263
246	212	218	213	284	257	196	164	118	155
156	152	184	240	205	166	124	123	168	129
137	156	132	145	110	112	130	123	151	158
143	123	117	66	47	63	82	99	97	137
99	72	112	118	123	85	71	67	85	76
81	81	69	93	112	95				

Ihs13

569	558	523	648	499	585	664	652	383	459
325	388	364	463	406	347	236	205	322	229
159	88	158	218	290	253	213	234	237	129
143	200	183	171	172	130	106	68	58	68
73	83	82	93	109	124	109	95	109	123
140	205	110	111	93	111	120	99	66	65
45	71	78	64	29	59	117	130	91	44
43	24	32	31	36	33	46	53	84	86
70	63	72	80	102	96	85	88	93	74
70	64	76	71	60	57	53	68	71	44

Ihs15

229	271	331	315	248	282	282	296	279	341
245	163	336	264	314	308	274	287	255	195
203	170	120	174	146	118	85	98	74	79
93	90	104	74	119	152	152	120	140	162
143	132	144	117	150	149	175	195	174	119
91	118	73	37	43	51	45	67	50	45
41	42	61	71	53	45	56	52	63	58
58	57	53	51	62	59	60	67	59	56
62	46	53	72	92	120	118	102	103	84
82	114	125	87	60	77	99	59	79	67
70	93	75	71	68	87	82	123	138	72
45	45	79	61	63	46	49	49	46	59
49	65	60	58	63	66	51	66	59	54
46	54	60	49	61	48	61	64	64	60
55	47	56	71	71	65	47	55	54	57
45	47	64	51	79	77	48	55	60	53
43	42								
lhs16									

185	171	203	203	207	226	228	228	206	236
207	196	212	190	182	182	182	144	207	120
190	155	136	172	187	138	135	181	161	103
137	115	109	86	125	122	135	123	157	130
142	138	134	130	147	173	141	195	183	94
120	138	136	93	109	87	107	109	110	97
135	102	109	114	128	101	93	99	106	104
119	100	104	81	85	95	99	93	88	123
93	86	80	86	95	79	109	83	94	66
66	62	53	45	49	56	50	44	55	46
58	69	55	70	62	69	72	86	90	92
76	61	80	88	77	67	89	88	96	98
67	80	73	84	96	76	54	40	48	57
51	45	64	61	74	62	64	61	65	52
63	37	56	70	80	62	41	29	35	44
44	47	37	43	63	55	58	64	55	67
59	76	63	63	46	60				

lhs17

118	99	116	148	131	133	126	121	119	108
82	77	79	80	92	120	147	115	124	128
140	109	117	114	155	160	156	172	166	142
158	147	125	116	116	81	116	124	123	83
93	85	76	80	80	73	131	126	105	83
90	88	80	95	100	122	89	104	75	101
98	91	103	90	84	77	79	67	48	70
54	79	59	74	65	65	62	61	45	41
69	89	95	60	42	25	34	58	73	63
58	58	57	81	60	51	47	52	42	53
69	59	70	66	54	73	80	70	62	54
58	39	35	37	42	48	46	37	38	30
36	45	36	27	46	53	49	50	37	52
51	50	52	48	38	55	38	58	57	70
49	57	44	69	71	68	53	62	68	92
59	64	72	80	83	71	78	62	68	59
52	73	88	76	56	50	48	55	38	41
33	44	44	34	31	38	37	45	40	28
23	39	32	31	37	40	26			

Ihs18

105	107	139	115	143	115	129	102	143	151
138	99	126	113	115	88	100	136	109	81
73	92	100	98	107	115	143	150	128	90
97	103	70	61	59	93	82	69	70	66
73	78	76	89	77	94	96	103	118	107
138	89	95	74	117	113	93	81	79	107
113	103	97	67	74	82	125	95	53	49
51	77	80	92	91	76	75	26	69	66
63	60	47	49	40	76	83	51	65	78
77	73	92	72	93	57	98	90	75	82

76	95	95	92	89	76	86	65	74	58
36	42	53							

Ihs19

107	91	92	80	112	106	102	102	88	77
57	74	97	136	140	117	96	76	96	124
102	69	76	95	65	71	74	68	87	71
93	86	66	62	53	61	76	74	65	48
45	41	49	46	54	66	64	57	61	51
68	61	72	51	65	78	77	49	63	68
53	52	60	81	66	45	48	66	82	83
71	62	64	46	54	52	35	33	42	52
41	34	51	26	31	44	37	41	33	52
50	43	60	60	53	31	54	47	48	34
34	44	42	39	37	34	36	27	33	25
29	26	30	35	27	32	25	31	30	26
22	23	26	21	25	18	27	28	30	25
29	33	42	67	49	48	45	44	57	50
27	20	19	45	45	32	31	29	23	22
25	30	23	24	40	36	36	37	27	44
36	33	38	38	29	35	45	34	40	27
36	32	41	37	35	45	38	30	22	21
17	15	14	19	19					

Ihs21

305	254	239	184	182	242	221	290	279	199
158	202	203	185	158	133	124	136	82	51
70	80	108	130	152	190	103	110	103	100
110	81	74	81	72	93	88	129	114	146
153	118	125	165	214	319	178	131	157	156
130	139	119	140	91	82	75	113	161	179
125	98	96	75	108	123	132	99	101	73
93	104	52	65	82	122	163	143	138	106
111	81	55	78	77	59	50	58	46	55
81	84	101	79	74	56	55	86	126	121
118	100	76	64	73	60	69	80	84	93
91	87	78	87						

lh22

360	206	178	101	88	76	67	65	39	46
50	79	81	85	64	98	97	107	132	183
187	267	225	219	290	241	262	251	179	153
187	169	136	144	179	146	144	167	129	116
117	108	110	95	66	59	92	79	104	107
115	107	88	107	86	111	124	69	104	102
93	96	102	117	152	128	168	106	130	91
95	96	108	108	109	104	153	87	97	99
92	84	66	69	63	102	86	104	92	102

lh23

213	213	270	312	235	142	113	79	62	69
67	222	319	305	232	347	199	205	302	174
101	115	95	231	274	180	162	172	98	87
56	69	63	59	110	69	169	135	115	207
149	141	160	144	166	85	69	72	61	141
206	114	63	48	41	85	68	92	92	179
126	80	78	153	196	218	106	128	94	72
67	84	149	185	146	108	82	91	122	104
61	63	65	76	80	69	63	65	62	117
74	127	104	67	61	50	72			

lh24

85	92	150	151	135	168	171	180	192	158
156	221	205	260	259	234	183	196	225	168
205	181	170	175	224	170	144	174	146	138
110	114	105	116	112	140	107	111	98	115
107	110	118	142	121	142	143	129	180	152
161	177	163	237	143	257	129	136	133	122
135	126	147	160	132	135	125	101	86	72
70	60	96	78	87	96	101			

lh28

230	262	256	247	206	189	164	225	179	194
182	156	141	88	113	97	138	118	136	179
180	184	169	151	158	173	181	162	181	172
136	179	143	140	153	108	153	150	137	139
181	144	125	121	101	111	121	109	146	114
134	103	119	137	146	106	126	162	102	109
135	104	94	95	121	107	91	108	143	97
83	94	107	123	101	132	153	145	120	145
135	123	188	154	141	118	109	103	90	130
132	159	144	135	129	131	110	99	79	127

lh30

100	157	110	100	133	125	119	138	214	129
173	155	150	131	60	94	148	182	188	133
160	143	161	151	225	244	127	142	116	102
122	172	298	348	223	274	178	246	258	305
225	417	429	243	283	250	208	120	63	132
142	98	81	68	89	128	97	91	120	81
82	63	112	100	96	95	176	261	206	201
180	236	227	220	145	197				

lh31

180	142	157	221	153	109	108	108	103	107
60	97	115	82	85	64	81	93	87	62
105	109	114	107	115	73	62	83	153	88

92	125	104	156	158	100	89	106	169	173
134	106	182	117	109	106	142	147	155	184
182	154	212	189	184	181	132	110	110	107
129	141	119	130	149	163	135	139	148	119
136	170	128	138	162	133	124	94	77	74
71	84	89	126	75	77	78	77	58	85
69	68	81							

lh34

122	191	97	196	142	130	161	182	205	198
133	141	264	191	213	183	178	144	126	89
96	78	69	54	76	79	55	61	59	66
49	67	61	54	81	54	36	38	47	75
89	86	88	101	78	95	89	134	150	132
133	112	95	151	151	291	263	225	190	248
244	274	162	243	306	283	244	298	205	221
209	158	158	148	181	156				

lh35

177	217	209	191	198	164	188	148	147	128
104	149	161	123	145	182	193	200	160	191
180	186	165	197	134	209	271	210	223	167
156	138	151	169	191	186	185	199	164	191
194	215	166	157	146	157	132	169	182	242
166	137	164	178	206	185	136	214	175	178
200	173	138							

Ihs37

253	224	194	243	305	235	250	182	178	180
158	170	112	152	137	130	142	149	161	125
129	129	133	135	103	93	136	141	99	106
94	133	99	96	85	109	118	125	137	181
146	137	176	125	163	124	104	92	88	85
96	105	87	87	84	87	76	91	97	92
103	104	84	56	68	62	72	59	90	86
112	67	106	85	77	65	64	65	71	65
79	94	89	79	79	84	72	65	69	49
63	61	55	68	70	56	66	69	67	45
37	55	54	49	44	52	53			

Ihs38

175	286	234	178	142	195	193	213	196	179
237	196	204	167	142	156	153	190	179	134
158	142	145	149	178	161	194	143	121	154
139	143	163	218	166	134	138	124	104	182
141	105	124	112	129	140	131	112	113	111
92	102	143	127	104	94	95	122	100	108
134	144	158	89	71	59	68	85	72	59
85	85	71	89	70	56	56			

Ihs40

277	251	187	178	150	161	156	154	133	164
201	176	153	123	109	135	163	159	171	160
140	129	152	101	111	114	102	109	98	108
89	121	109	112	130	145	120	181	135	119
84	127	152	120	88	102	73	52	55	62
79	76	78	100	111	124	115	113	84	101
85	95	98	104	106	100	110	75	57	86
103	86	122	96	72	84	78	65	79	116
93	70	68	89	90					

lhs41

178	207	256	209	199	194	248	197	207	252
248	279	206	182	115	142	165	121	178	177
120	132	124	146	152	112	98	95	82	75
85	75	72	110	115	140	111	124	154	123
120	139	134	127	125	164	149	134	161	128
123	135	130	126	150	131	117	134	104	89
80	82	74	102	41	82	68	75	71	56
63	58	79	65	79	66	65	66	68	55
34	49	45	65	63	64	67	55	55	

lh42

304	305	367	409	438	326	246	184	162	191
229	135	287	281	227	161	220	163	160	143
251	187	191	154	193	142	158	194	210	195
183	274	166	145	89	92	113	122	125	137
141	159	161	105	87	68	88	87	117	102
167	76	84	100	142	169	141	125	118	85
86	59	63	83	129	158	92	106	111	94
50	83	100	90	89	67	66	48	98	144
111	115	61	72	78	132	116	100	87	94
84	110	43	86	38	81	105	95	89	80
91	58	131	90	85	79	88	67	42	47
57	65	83	103	62	75	89	77	100	73
72	68	82	52	55					

Ih44

342	399	498	333	420	370	346	418	466	314
318	328	233	176	200	186	275	263	198	189
204	199	168	152	91	232	248	207	159	240
127	164	146	218	120	150	108	159	75	155
115	146	166	131	175	183	165	98	145	152
174	257	150	127	136	155	96	128	69	100
97	84	92	80	41	58	60	79	82	58
70	97	36	83	49	69	117	142	99	71
74	106	132	130	170	152	153	136	140	148
202	216	190	192	126	87	126	172	183	123
112	87	108	85	165	136	131	55	148	144

116	102	59	104	42	135	98	114	133	114
119	90	50	122	113	97	137	75	85	122
128	99	108	132	80	83	65	58	87	84
91	91	65	74	61	63	53	52	67	67
83	86	86	71	112	108	126	93	78	84
54	67	62	49	46	65	66	52	64	53
46	68								

Ih46

222	194	317	290	263	175	147	161	269	265
230	221	115	166	102	256	209	185	183	167
126	98	125	167	198	220	106	114	160	180
149	180	107	142	195	191	111	78	187	188
149	146	104	118	172	150	87	78	143	196
167	139	108	155	133	136	119	157	153	103
110	126	79	68	59	82	93	91	134	138

Ihs47

139	142	130	125	177	158	136	162	105	104
143	108	167	138	167	125	92	76	73	138
145	134	98	108	117	116	100	107	119	97
103	69	65	95	130	94	87	116	113	110
149	106	108	93	99	105	103	86	98	119
106	113	123	99	103	103	86	101	88	101
83	106	127	78	97	63	75	79	53	51
53	69	80	54	73	55	68	51	46	51
75	62	51	38	37	37	43	49	41	57
51	52	64	69	78	74	59	39	63	48
38	52	59	62	52	51	44	61	58	61
46	68	106	72	45	46	57	49	88	89
91	34	29	47	62	36	41	50	44	46
42	41	52							

Ihs48

147	169	134	144	159	176	160	172	152	175
187	133	173	130	135	145	153	115	109	138
159	105	78	70	92	102	87	88	93	107
94	88	66	89	92	75	88	81	106	114
115	118	110	86	88	89	74	114	141	115
102	126	77	65	82	102	100	92	78	75
80	93	89	77	78	80	68	75	83	101
100	128	108	94	62	63	55	61	56	57
64	72	61	30	32	42	47	53	50	47
45	41	56	47	36	45	58	81	79	83

Ihs49

165	193	172	163	141	119	120	138	154	114
153	144	120	130	130	110	120	166	162	139

146	146	171	67	62	120	162	110	131	137
143	96	101	94	118	133	152	152	124	113
80	96	53	33	53	66	105	98	81	90
128	81	91	101	91	67	86	75	44	54
76	72	68	70	59	83	160	106	84	82
63	62	59	68	95	88	58	63	71	76
48	55	36	37	55	54	46	39	43	43
46	46	48	54	52	60	63	57	75	62
51	40	46	32	40	49	61	46	50	56
48	52	50	57	80	68	56	59	46	41
42	47								

Ihs50

127	157	135	113	162	197	219	190	190	300
182	159	188	152	137	136	179	151	120	113
95	139	132	154	131	107	167	83	110	127
91	134	92	124	119	93	85	120	78	101
113	130	72	182	79	82	70	121	93	80
53	46	79	84	88	74	73	88	100	87
119	111	122	79	75	113	80	51	70	73
128	92	70	91	106	111	104	64	89	125
79	123	78	93	94	162	105	116	46	55
70	91	57	63	70	68	60	54	46	56
79									

Ipo51

302	366	404	287	225	214	197	152	99	82
72	118	237	214	273	122	165	315	364	350
346	290	182	148	145	286	320	263	265	348
363	417	419	399	393	409	330	308	286	347
395	343	417	301	194	170	86	209	281	228
237	206	284	275	153	106	193	157	179	247
182	169	168	94	132	160	145	153	215	240
193	239	220	317	222	163	180	183	229	310
249	262	213	174	224	140	166	261	192	165
166	158	145	224	205	173	195	201	211	158
144	193	175	99	234	232	258	247	226	206
266	232	171	133	157	152	202	230	250	246
336	307	378	170	257	294	244	399	322	353
304	138	195	275	279	216	286	240	236	191
312	267	279	283	218	212	207	191	197	296
231	219	221	222	240	227	192	242	314	292
194	262	265	316	316	276	368	307	210	213
208	253	393	330	294	335	327	220	246	259
339	341	373	305	314	250	268	300	213	200
280	291	198							
Ipo52									
345	449	460	312	360	449	311	357	356	352
434	353	231	222	180	117	206	195	157	339

281	232	213	229	169	240	160	173	224	416
247	155	213	356	286	267	255	152	216	238
183	204	210	201	249	244	233	218	213	208
209	230	167	206	179	131	191	193	156	140
141	120	94	95	179	153	115	148	147	177
181	165	158	138	166	161	179	123	149	159
164	126	237	138	158	145	163	222	180	168
253	140	194	257	220	189	209	205	237	160
179	174	294	230	135	185	227	308	262	302
263	321	273	207	246	237	298	266	258	214
227	244	250	341	331	386	234	205	132	169
198	94	112	128	106	96	103	140	128	95
123	127	131	112	118	128	119	117	99	92
80	102	98							

|po53

132	219	322	217	290	294	295	283	391	324
339	293	241	246	299	254	294	204	248	293
276	224	247	242	372	254	191	163	161	169
104	88	97	42	83	116	95	66	126	151
142	164	120	57	114	98	118	95	154	125
111	133	115	127	130	157	91	155	110	118
109	72	88	151	144	112	163	60	37	54
85	137	37	168	89	173	86	95	97	86
102	92	97	59	94	134	114	52	170	113
104	153	145	181	159	151	199	95	85	100
178	231	159	158	204	103	102	144	142	176
62	105	60	101	101	87	75	160	153	91
91	90	146	145	135	102	81	161	220	246
321	273	116	115	152	184	161	156	137	140
119	189	127	172	144	144	288	259	251	219
244	165	146	144	94	106	115	173	137	

|po54

351	466	605	525	395	421	384	361	397	229
195	236	212	252	257	209	195	132	117	126
169	236	248	209	104	183	139	134	115	139
208	240	249	209	192	179	264	272	236	182
160	191	246	224	165	188	262	297	230	206
190	173	174	192	147	147	161	149	173	184
183	172	197	228	168	144	170	209	202	150
208	201	155	179	188	133	174	192	164	186
172	198	178	179	148	195	159	217	260	236
222	197	225	229	92	123	148	178	228	244
162	233	238	136	189	214	227	124	144	124
103	119	110	100	101	158	112	106	91	112
100	107	120	159	132	211	181	247	231	154
97	108	118	107	133	128	113	112	111	112
104	71	119	118	129	140	88	143	96	125
94	90	86	100	136	127				

Ipo55

88	323	511	366	390	254	224	487	516	353
287	309	239	289	208	146	208	165	207	72
140	87	39	114	123	163	112	123	93	101
70	48	60	56	172	173	122	90	186	99
83	115	170	158	165	120	94	130	109	219
132	132	101	84	81	112	90	57	45	62
66	23	21	27	30	27	28	39	32	58
67	78	92	103	66	92	214	176	137	86
166	91	84	76	94	63	123	114	90	166
162	162	152	176	280	151	68	93	136	64
90	153	136	137	177	229	135	66	109	167
152	147	157	108	108	73	112	52	58	187
112	145	127	189	117	89	47	27	36	30
60	50	57	43	42	44	57	73	63	73
104	94	58	68	79	121	90	87	190	98
99	80	103	70	85	77	118	117	131	102
176	140	133	114	83	90	148	244	123	

Ipo56

399	775	425	420	425	545	527	460	404	502
362	424	360	419	526	333	329	414	356	227
316	262	357	239	452	215	291	186	536	224
334	443	460	303	405	307	289	396	246	339
303	367	364	432	321	396	276	302	350	351
277	281	309	324	273	308	368	273	334	453
504	353	304	379	190	240	245	316	399	262
467	209	212	228	161	232	220	253	478	431
572	476	425	462	564	408	345	427	375	309
244	264	325	324	276	250	203	196	191	218
197	234	197	255	241	214	186	99	142	195
149	145	130	158	123	138	155	200	161	174
177	309	260	312	441	428	418	592	402	583
662	600	499	411	373	338	247	235	181	284
330	301	233	223	264	281	253	313	187	441
336	422								

Ipo57

314	298	357	345	353	402	444	372	477	261
206	265	122	262	256	231	172	153	179	226
267	159	188	145	185	250	217	153	166	99
96	112	129	233	168	174	148	136	137	232
161	177	130	135	163	180	187	124	137	183
185	100	152	141	126	107	93	114	101	130
134	125	111	112	82	131	179	164	140	81
126	129	102	145	72	83	93	105	70	81
70	57	78	95	176	154	86	79	102	115
124	180	158	157	191	151	112	66	84	104
113	92	110	104	118	152	105	85	183	226
139	214	190	207	135	164	151	87	95	116

119	128	95	135	242	181	179	163	198	221
174	221	171	140	197	173	139	135	160	147
148	166	114	64	95	229	209	151	160	148
166	101	99	154	104	125	148	154	117	

|po58

315	266	320	339	436	287	418	338	374	381
329	365	358	301	340	270	286	322	375	260
287	249	325	298	218	151	248	193	156	219
207	208	201	355	249	172	229	307	274	381
275	199	242	265	261	195	211	281	252	258
329	263	176	191	215	236	234	287	250	218
251	264	192	217	311	226	210	255	270	248
187	237	164	151	182	183	125	96	133	140
135	106	146	142	123	86	100	101	135	202
219	202	205	209	189	89	105	124	153	177
165	180	216	178	179	154	259	329	304	314
250	295	284	336	375	368	365	278	401	288
284	248	369	213	351	380	369	429	408	452
331	228	257	188	199	185	187	127	156	165
215	145	133	173	243	235	217	169	230	216
237	215	220	211	261	329	233			

|po59

350	220	236	286	334	537	435	444	491	506
471	441	507	394	469	338	566	314	350	263
170	208	327	246	254	172	190	261	271	173
223	165	222	307	221	224	247	269	189	240
182	188	141	218	157	120	197	277	256	255
277	152	249	255	231	166	155	211	169	131
141	148	218	134	127	183	108	203	221	145
139	139	151	144	226	175	119	88	158	147
102	117	103	128	133	214	210	119	139	119
238	130	148	173	150	118	188	181	290	271
195	123	208	226	268	157	117	165	151	238
233	242	286	244	174	128	218	325	163	254
259	295	159	205	136	93	97	110	182	150
101	84	107	83	72	132	140	119	106	149
134	131	179	206	249	256	265	183	185	200
138	84	104	106	144	152	178	181	343	276
281	303	277	232	368	349	215			

Ipo60

279	385	311	204	206	318	342	502	401	441
387	281	420	441	361	293	373	211	288	172
109	97	71	113	126	92	137	141	128	150
131	136	106	89	146	224	135	180	217	133
119	113	145	300	252	283	256	245	296	375
251	198	188	161	265	380	351	262	356	293
285	265	356	366	411	292	234	193	189	234

223	169	236	196	208	310	474	564	407	242
329	225	255	274	346	251	221	279	258	205
332	407	508	286	215	190	375	144	181	213
234	197	197	201	208	182	268	175	140	190
221	205	254	232	262	143	168	172	206	247
278	285	265	315	338	417	318	230	288	150
214	177	176	180	220	133	174	132	162	184
187	224	206	184	128	170	162	218	250	170
144	153	138	150	170	129	145	141	288	225
210	177	266	153	116	191	159	203	143	

Ipo61

406	152	142	153	190	584	611	474	405	458
384	227	254	316	464	432	606	266	229	145
182	204	176	198	269	267	279	288	352	380
350	255	330	257	166	176	280	246	176	217
167	163	127	242	260	348	288	390	356	362
382	207	302	348	362	178	252	321	254	203
249	215	234	182	211	256	210	313	301	245
267	235	124	230	308	310	260	247	278	217
198	251	244	247	272	258	252	198	258	339
352	265	184	102	94	195	257	190	250	267
306	233	242	271	280	292	332	238	191	246
239	220	214	181	213	178	267	236	207	218
106	159	74	96	85	118	146	117	128	114
141	79	90	74	118	136	172	238	250	249
102	118	156	124	161	126	99	84	59	68
65	59	81	86	98	89	79	85	139	98
89	79	78	90	94	126	58			

|po62

558	594	443	671	623	495	714	609	591	669
753	332	420	337	428	320	456	523	472	392
446	449	377	351	286	364	444	460	317	408
343	326	404	369	349	455	373	495	413	287
394	551	387	259	252	199	271	398	294	316
383	400	346	359	376	238	250	305	212	236
229	217	177	191	195	221	208	194	233	234
171	147	260	242	171	223	265	293	235	341
234	238	243	202	372	303	282	312	351	216
275	172	140	193	172	171	197	189	307	154
248	427	243	160	165	175	160	140	192	248
283	273	264	331	288	357	199	292	172	129
147	141	175	204	342	298	303	266	306	332
344	363	423	684	426	416	358	361	439	385
380	291	262	368	282	251	174	119	224	301
207	243	264	260	245	320	261	226	193	211
153									

Ipo63									
509	516	606	392	492	312	213	317	307	376
289	267	251	263	186	280	313	377	384	359
432	480	378	394	391	286	194	160	137	210
271	297	280	297	295	350	258	330	336	286
422	391	329	246	270	253	412	343	360	380
442	313	257	255	159	210	260	241	268	319
257	328	329	419	271	181	230	231	335	371
435	289	312	325	268	202	297	248	335	293
251	292	297	269	332	352	339	275	223	213
206	186	293	196	191	272	214	197	227	180
193	158	165	206	212	211	201	181	150	150
158	200	169	153	220	137	167	148	178	142
233	145	144	157	189	206	208	230	273	168
149	245	351	245	289	175	175	181	224	194
221	179	311	260	296	292	292	264	265	288
263	268	297	276	209					

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

