AUCKLAND CASTLE, BISHOP AUCKLAND, COUNTY DURHAM TREE-RING ANALYSIS OF TIMBERS

SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

AUCKLAND CASTLE BISHOP AUCKLAND COUNTY DURHAM

TREE-RING ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: NZ 2 I 363020
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

Analysis undertaken on 64 of the 67 samples taken from various parts of this building resulted in the construction and dating of two site sequences. AUKBSQO I contains II samples and spans the period AD I370-1520 and AUKBSQ02 contains 40 samples and dates to AD 1425-1698.

Timbers were identified in the roof over the Long Dining Room as being felled in $A D$ 1520, whilst the timbers from King Charles' Room roof were felled in AD 15।7-42. Two other potentially early timbers, with a terminus post quem for felling of AD 1482 and $A D$ 15 I8 respectively, represent the extant remnants of a roof.

The Stairway roof contains timbers with signs of reuse which represent several different felling periods, timbers having been felled in AD I5I5-40, AD 1642-67, and AD I6821707. Similarly the ceiling of the Castle Lodge cellar has timbers dated to AD I587-1612, AD I637-62, and AD 1658-83.

The ceiling beams in the Throne Room Undercroft were felled in AD I65I-72. The Scotland Wing roof contains timbers felled in AD 1670-95 and AD 1709-34, with the earlier of these potentially representing reused timber.

None of the samples from the Chapel could be dated.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank Richard Pollard of Alan Baxter for his invaluable onsite advice and for providing illustrations used in this report. Further drawings were provided by Peter Ryder. John Bell (Chaplin) and his staff were helpful and patient whilst sampling was being undertaken. Thanks are also given to Peter Marshall and Cathy Tyers, English Heritage Scientific Dating Team, for their advice and assistance throughout the production of this report.

ARCHIVE LOCATION

Durham Historic Environment Record
Regeneration \& Economic Development
Durham County Council
The Rivergreen Centre
Aykley Heads
Durham
County Durham
DHI 5TS

DATE OF INVESTIGATION

2011

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
01159603833
roberthoward@tree-ringdating.co.uk alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Roof over the Long Dining Room
Roof over the King Charles' Room 1
Remnants of roof. 1
Roof and floor above the Stairway
Throne Room Undercroft ceiling 2
Castle Lodge cellar ceiling 2
Scotland Wing 2
Chapel 3
Sampling 3
Analysis and Results4
Interpretation4
Roof over the Long Dining Room 4
Roof over the King Charles' Room 5
Remnants of roof. 5
Roof and floor above the Stairway 5
Throne Room Undercroft ceiling 6
Castle Lodge cellar ceiling 6
Scotland Wing. 6
Discussion 7
Bibliography 10
Tables II
Figures 13
Data of Measured Samples 40
Appendix: Tree-Ring Dating 56
The Principles of Tree-Ring Dating 56
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 56
I. Inspecting the Building and Sampling the Timbers 56
2. Measuring Ring Widths 61
3. Cross-Matching and Dating the Samples. 61
4. Estimating the Felling Date. 62
5. Estimating the Date of Construction. 63
6. Master Chronological Sequences 64
7. Ring-Width Indices 64
References 68

INTRODUCTION

Auckland Castle, also known as Auckland Palace or the Bishop's Castle or Palace is located in the town of Bishop Auckland (Figs I-3). It has been the official residence of the Bishop of Durham since AD 1832, although it has been owned by the diocese for more than 800 years. It was originally established as a hunting lodge for the Prince Bishops of Durham. Around the castle are 800 acres of parkland, once used by the Bishops for hunting and today open to the public.

The areas described below are those pertinent to this analysis.

Roof over the Long Dining Room

The Long Dining Room located on the first floor between the Throne Room and the King Charles Room (Fig 4) is part of the sixteenth-century additions attributed to Bishops Ruthall and Tunstall and is thought to date to c AD 1530. The roof above this part of the building has a very shallow pitch and consists of at least six trusses forming a single-pitch lean-to structure (Fig 5).

Roof over the King Charles' Room

Also thought to belong to this period is King Charles' Room, located immediately to the south of the Long Dining Room (Fig 4). The roof above this room contains pine trusses, thought to be eighteenth century, which sit on the remnants of an earlier oak roof. These remains consist of tiebeams and main ceiling joists (Fig 6).

Remnants of roof

A small number of redundant timbers can be seen in the north wall which separates the roofs above the Long Dining Room and the Throne Room, which are believed to be the remains of an earlier roof. From the Long Dining Room side a beam or plate aligned eastwest and some other north-south beams below it can be seen (Fig 7). From the Throne Room side another east-west beam can be seen (it is unclear whether this is in fact the same beam), with north-south beams above it (Fig 8).

Roof and floor above the Stairway

The roof above the Stairway, located to the west of the Throne Room (Fig 4) is thought to be late-eighteenth century in date. It consists of principal rafter trusses with collars and purlins and can be seen to contain a number of reused oak timbers which may date to the medieval period. Additionally, the floor structure to the roof space contains a number of oak beams which also show signs of reuse (Figs 9 and I0).

Throne Room Undercroft ceiling

Beneath the Throne Room is the Undercroft, the ceiling of which contains several oak ceiling beams, some of which have redundant mortices (Fig I I). The room is thought to date to the fourteenth century.

Castle Lodge cellar ceiling

The Castle Lodge is located to the south-west of the castle itself. The ceiling of the cellar consists of a main south-north beam with east-west common joists (Fig 12). This house is thought to predate the Gatehouse which is believed to date to pre AD 1660.

Scotland Wing

The following is taken from an unpublished description written by Peter Ryder.
A narrow two-storeyed wing, long known simply as 'Scotland', extends west from the main group of buildings at Auckland Castle. It is generally thought to be of sixteenthcentury date, although its north wall is exceptionally thick at ground-level and may be a remnant of something earlier. The roof structure is of 15 irregular bays; the trusses are all of basic overall form - of principal rafter construction with a single collar - but show a considerable variety in scantling and quality of timbers, reuse of members, and later modification (Fig I 3). The trusses referred to are numbered from west to east (Fig 30), and the only evidence of an original carpenters' numbering scheme was the figure ' $I V$ ' on the west face of truss 6 .

Trusses I-3 all have collars halved in from the west, and carry two levels of purlins, and a diagonally-set ridge set between the overlapped ends of the principals. Truss 4 is similar but appears to have its principals lapped across the east face of the tiebeam. Truss 5 is more substantial, with its collar morticed in, and the ridge carried by the north principal, which over-rides the south. In contrast truss 6 is a cruder piece of work with slight reverse curves to its principals and a collar halved onto the west face, and the ridge carried between the overlapped ends of the blades. Truss 7 is another more substantial piece, with its collar morticed into the principals, the deep northern one of which (perhaps reused) has empty through-mortices for former butt purlins. The collar has a series of small sockets for light ceiling laths. Truss 8 is similar, except that its principals are of similar size (without the evidence for butt purlins); the collar has faint chalk writing 'Bless inn of the Lord'. Truss 9 is another crude one, very like truss 6 , with in-curved principals and a collar halved in from the west, whereas Truss 10 reverts to the neater form with morticed-in collar and a ridge carried on the over-riding end of the north principal. Truss II returns to the form of trusses 6 and 9 (although with straight blades), and a collar with a long row of sockets for ceiling joists, with below it light studding carrying a lath partition on its east face. Truss 12 , set very close to truss 11 , is of the
neater type, and has evidence for butt purlins again, and a unique thick collar (with joist sockets) which laps round both sides of the principals. Truss 13 is similar but with a conventional collar halved in from the west, and without earlier purlin evidence, although this is seen once more on the last truss, I4, which uniquely has its collar halved in from the east.

Chapel

This was built in the twelfth century by Bishop Hugh de le Puiset as a Banqueting Hall. It was converted to a chapel by Bishop John Cosin who arrived at Auckland in AD I660, replacing the original chapel which had been demolished by Sir Arthur Hazlerigg after he acquired the site in AD 1646. The interior walls were raised to form the clerestory and a highly decorated panelled ceiling constructed (Fig I4). The side aisles (Fig I5) were also raised in the nineteenth century by Bishop van Mildert. The Chapel underwent a major restoration about 25 years ago which included the replacement of some of the ceiling beams.

SAMPLING

Sampling was requested by Jacqui Huntley, English Heritage, to help inform advice relating to the statement of significance being produced for the building.

Following a detailed assessment of dendrochronological potential by the authors it was agreed that sampling should be undertaken in a number of areas of the building. Thus a total of 67 timbers was sampled by coring. Each sample was given the code AUK-B (for Auckland, site ' B ') and numbered $01-67$. Seven of these samples are from the King Charles Room roof (AUK-BOI-07), I I from the roof above the Stairway (AUK-B08-I8), I I from the Long Dining Room roof (AUK-BI9-29), four from the remains of a roof at the junction between the Long Dining Room roof and the Throne Room roof (AUK-B30-3), five from the Undercroft ceiling beams (AUK-B34-8), six from the Castle Lodge cellar ceiling (AUK-B39-44), I3 from the Scotland Wing roof (AUK-B45-57), and ten from the aisle roofs in the Chapel (AUK-B58-67). It was not possible to undertake sampling in the nave of the Chapel due to the extreme height of the timbers which made it too unsafe from a tower scaffold. Unfortunately, the position of fixed pews along the outer walls of both aisles also hindered access, thereby greatly reducing the number of timbers which could be reached. The location of samples was noted at the time of sampling and has been marked on Figures 16-39. Further details relating to the samples can be found in Table I.

A number of other roofs were assessed for their potential suitability for tree-ring dating. These were constructed of pine but discussions led to the decision to concentrate on the oak timbers at this time. Additionally, the oak timbers of the Mural tower were found to be wide ringed with insufficient growth rings for secure dating to be viable. Access to the timbers of the 'In-fill' roof, between the Chapel and Throne Room (Fig 4) was extremely
limited (Fig 40) and although one or two timbers could be reached it was felt that due to the limited number of accessible timbers and their sporadic nature sampling would not have provided a coherent interpretation of the roof, even if dates had been gained.

ANALYSIS AND RESULTS

Three samples, two from the Remnants of roof (AUK-B32 and AUK-B33) and one from the Scotland Wing roof (AUK-B50) were found to have too few rings for secure dating and so were discarded prior to analysis. The remaining 64 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. These samples were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), resulting in 5 I samples matching to form two groups.

Firstly, I I samples matched each other and were combined at the relevant offset positions to form AUKBSQ0 I, a site sequence of I5I rings (Fig 4I). This site sequence was compared with a series of relevant oak chronologies where it was found to match consistently and securely at a first-ring date of AD 1370 and a last-measured ring date of AD 1520. The evidence for this dating is given in Table 2.

Another forty samples grouped to form a second site sequence, AUKBSQ02 (Fig 42). This site sequence is of 274 rings and when compared against the reference chronologies was found to span the period AD 1425-1698. The evidence for this dating is given in Table 3.

Attempts were then made to date the remaining 13 ungrouped samples by comparing them individually against the reference chronologies but these were unsuccessful and all remain undated.

INTERPRETATION

Tree-ring analysis has resulted in the successful dating of two site sequences which together contain 51 samples. To aid interpretation samples from each area have been illustrated and discussed separately (Fig 43).

Roof over the Long Dining Room

Ten samples from this part of the building were successfully dated (three cross beams and three chocks within AUKBSQ0I and four purlins within AUKBSQ02) and appear to form a coeval group. One of these (AUK-B29) has complete sapwood and the last ring date of AD 1520, the felling date of the timber represented. A further seven of these samples have the heartwood/sapwood boundary, which in all cases are broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1499, allowing an estimated felling date to be calculated for the seven timbers
represented to within the range AD 15I7-39 (allowing for sample AUK-B24 to have a last-measured ring date of $A D 1516$ with incomplete sapwood), consistent with these samples also having been felled in AD I520. The remaining two dated samples (AUK-B20 and AUK-B22) have last-measured heartwood ring dates in the mid-fifteenth century making it possible that these were also felled in AD I520.

Roof over the King Charles' Room

Seven of the timbers here have been dated (three within AUKBSQ0I and four within AUKBSQ02), again appearing to form a coeval group. Six of these have the heartwood/sapwood boundary, which in all cases is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring is AD 1502 which allows an estimated felling date to be calculated for the six timbers represented to within the range $A D|5| 7-42$. The single dated sample without the heartwood/sapwood boundary (AUK-BOI) has a last measured heartwood ring date which makes it possible that it was also felled in AD I5I7-42.

Remnants of roof

Only two of the timbers taken from the remains of an earlier roof at the junction between the Long Dining Room and the Throne Room were dated (one within AUKBSQ0I and one in AUKBSQ02), neither of which have the heartwood/sapwood boundary ring. Sample AUK-B30 was dated to a last measured heartwood ring date of AD 1467 and AUK-B3I to a last measured heartwood ring date of AD I503. This allows a terminus post quem for felling to be calculated for the timbers represented of AD I482 and AD 1518 respectively.

Roof and floor above the Stairway

Eight of the timbers from this roof and two from the floor were successfully dated (one in AUKBSQ0 I and nine in AUKBSQ02), only four of which have the heartwood/sapwood boundary ring. AUK-B08 and AUK-BI5 (a collar and a floor beam) have similar heartwood/sapwood boundary ring dates, the average of which is AD I500, giving an estimated felling date for the two timbers represented within the range AD I5I5-40. Sample AUK-BI 8 (a collar) has the heartwood/sapwood boundary ring date of AD 1627, allowing an estimated felling date range to be calculated for the timber represented within the range AD 1642-67. Sample AUK-BIO (a collar) has the latest heartwood/sapwood boundary ring date of AD 1667, giving an estimated felling date for the timber represented within the range AD 1682-1707. Two (AUK-BI2 and AUK-BI4), a common rafter and a floor beam, of the remaining six dated samples have last measured heartwood ring dates in the later fifteenth century making it possible that they were felled in any of the three felling date ranges given above. The other four dated samples (three
common rafters and a collar) have last measured heartwood ring dates in the sixteenth century or early seventeenth century and so could have been felled in either of the two later felling date ranges. Alternatively, given that the timbers used in this part of the building show obvious signs of reuse it is possible that completely different felling/s are represented by these timbers.

Throne Room Undercroft ceiling

Five of these timbers were dated, all within site sequence $A \cup K B S Q 02$. All five samples have the heartwood/sapwood boundary ring date, which in all cases is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring is AD 1632, allowing an estimated felling date to be calculated for the five timbers represented to within the range AD $1651-72$, allowing for the presence of a last measured ring dating to AD 1650 on AUK-B38.

Castle Lodge cellar ceiling

All six samples taken from this ceiling were successfully dated, all within AUKBSQ02. The main beam (AUK-B39) has the heartwood/sapwood boundary ring date of AD I572, allowing an estimated felling date to be calculated for the timber represented to within the range AD 1587-1612. One of the common joists (AUK-B44) has the heartwood/sapwood boundary ring date of AD 1622, giving an estimated felling date for the timber represented of AD 1637-62. Three other common joists also have the heartwood/sapwood boundary which in all cases is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date for these three samples is AD 1643, allowing an estimated felling date to be calculated for the three timbers represented to AD 1658-83. The final dated sample does not have the heartwood/sapwood boundary but with a last-measured heartwood ring date of AD 1600 it is possible it was felled in either AD 1637-62 or AD I658-83.

Scotland Wing

Eleven of the samples from this roof were successfully dated, all within AUKBSQ02. Five of these have the heartwood/sapwood boundary ring date, one of which is substantially earlier than the other four. Sample AUK-B53 has the heartwood/sapwood boundary ring date of AD 1655, allowing an estimated felling date to be calculated for the timber represented to within the range AD 1670-95. The other four samples have similar heartwood/sapwood boundary ring dates which are suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1694, allowing an estimated felling date range to be calculated for the four timbers represented of AD 1709-34. The other six dated samples do not have the heartwood/sapwood boundary ring date but with lastmeasured heartwood ring dates ranging from AD 1589 (AUK-B55) to AD 1653 (AUK-

B56) these timbers could have been felled either in AD 1670-95 or AD 1709-34, or indeed in a separate felling/s altogether. It can be said though that one of these samples (AUK-B56) does match AUK-B53 at the value of $t=7.4$ which might lend further support to this sample also having a felling date of AD 1670-95.

All felling date ranges have been calculated using the estimate that mature oak trees in this area have between 15 and 40 sapwood rings.

DISCUSSION

Prior to tree-ring analysis being undertaken the Long Dining Room (and presumably the roof above it) was thought to date to c AD 1530. The King Charles Room was believed to date to the same period, and although much of the roof above this room had obviously been replaced in pine in the eighteenth century, these new trusses sit on oak beams, thought to be the remains of an earlier roof. Remains of another redundant roof are seen in the wall between the Long Dining Room and Throne Room roofs but it was unclear exactly when these timbers might date to. Although the Chapel building itself is thought to date to the twelfth century, the roofs were believed to be seventeenth century, although they were also known to have undergone further work in the nineteenth and twentieth centuries. The Castle Lodge was thought to be pre AD 1660 whilst the roof above the Stairway is believed to be eighteenth century but clearly contains reused timber, as does the floor there. Also thought to be eighteenth century is the roof of the Scotland Wing, although the wing itself is thought to be sixteenth century.

The earliest dates obtained are from the roofs above the Long Dining Room and the King Charles Room. Timbers from the Long Dining Room roof are now known to have been felled in AD I520, with construction believed to have followed shortly after. The oak beams upon which the pine trusses of the roof above the King Charles Room sit, thought to be the remains of an earlier roof have been dated to AD 15 I7-42, a date which suggests survival of historic beams associated with the construction of the room beneath. These dates support and strengthen those attributed to these parts of the castle from documentary sources.

Also potentially early, are the redundant timbers in the wall between the roofs above the Long Dining Room and the Throne Room. Two of these have been dated, one to a terminus post quem for felling of AD 1482 and one to a terminus post quem for felling of AD 1518 .

The roof and attic floor above the Stairway can be seen to contain a large number of reused timbers. At least two of these timbers are now known to have been felled in AD 15 I5-40, one in AD 1642-67, and one in AD 1682-1707. Of the remaining dated timbers from this roof, two could have been felled in any of these date ranges with the other four possibly being felled in either of the later two ranges. Alternatively, given that the roof and floor are obviously constructed from timber of various dates it is possible that additional felling/s are represented within the timbers.

The Castle Lodge cellar ceiling also contains timbers representing several different phases of felling. The main beam was felled in AD 1587-16|2, whereas one of the common joists dates to AD 1637-62, and a further three timbers to AD 1658-83. This may mean that the main beam was salvaged from a previous structure when the ceiling was constructed in the mid-seventeenth century or that the ceiling was constructed in AD 1587-1612 and renewed or repaired later in the seventeenth century in the form of replacement joists. Given that this building is believed to be pre AD 1660 it seems most likely that the latter explanation is the correct one.

Timber belonging to the third quarter of the seventeenth century was found within the Throne Room Undercroft ceiling. Here a number of beams were dated to AD I65I-72. It is not clear whether these beams are reused, something further study may clarify, and so whether this dates the construction of the ceiling or simply of the timbers. It is possible that these timbers relate to the substantial renovation works undertaken by Bishop Cosin (AD I660-72)

The latest material identified was within the roof of the Scotland Wing. Here one beam was dated to AD 1670-95 and a further four to AD 1709-34. The earlier date was gained for the north principal of truss 7 which Peter Ryder had suggested might be reused. The dates gained do seem to support this, suggesting construction occurred in the first half of the eighteenth century and incorporated at least one earlier timber.

It is unfortunate that no timber was dated from the Chapel. However, given the limited number of accessible timbers and the fact that from a visual inspection it could be seen that the timber appeared to be of various different phases it is perhaps not surprising that no sample matching occurred. With the longest Chapel sample being only 68 rings, it is also unsurprising that it was not possible to successfully date any individual samples either.

Amongst the samples we have at least one, and a few possible 'same tree' matches. In all cases these high matches are between samples from the same areas. Samples AUK-B06 and AUK-B07, both from the roof above the King Charles Room, match each other at a value of $t=24.2$ with the next 'best' match being between AUK-B36 and AUK-B37 (both Undercroft ceiling samples) matching at $\mathrm{t}=13.3$.

It can be seen that both AUKBSQ0I and AUKBSQ02 match most highly against reference chronologies from the north-east (Tables 2 and 3) and yet they do not match against each other, despite having overlapping date spans. This suggests the use of at least two separate woodland sources for the timber, perhaps not unexpected given the size of the building. Furthermore, it can be seen that the Long Dining Room, the King Charles' Room, the roof Remnants, and above the Stairway contain some timbers in AUKBSQ0I and some in AUKBSQ02, suggesting individual phases contain timbers of separate sources. It may be that the timber element (or even who was undertaking that task) determined which source was used. Amongst the King Charles' Room samples those taken from cross-beams are in AUKBSQ0I and those from tiebeams and wall plates are in

AUKBSQ02 and the amongst the dated Long Dining Room samples, cross beams and chocks are in AUKBSQ0I and purlins in AUKBSQ02.

BIBLIOGRAPHY

Alcock, N W, Howard, R E, Laxton, R R, Litton, C D, and Miles, D H, 1989 Leverhulme Cruck Project Results: 1988, Vernacular Architect, 20, 43-5

Arnold, A J, Laxton, R R, and Litton, C D, 2002 Tree-ring analysis of timbers from Bull Hole Byre, Bearpark, Durham, Centre for Archaeol Rep, I I I/2002

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring analysis of timbers from Dilston Hall, Corbridge, Northumberland, Centre for Archaeol Rep, 88/2003

Arnold, A J, Howard, R E, and Litton, C D, 2004a Tree-ring analysis of timbers from Hunwick Hall Farm, Hunwick, near Bishop Auckland, County Durham, Centre for Archaeol Rep, 47/2004

Arnold, A J, Howard, R E, and Litton, C D, 2004b Tree-ring analysis of timbers from the Moot Hall, Hexham, Centre for Archaeol Rep, 4I/2004

Arnold, A J, Howard, R E, and Litton, C D, 2006a Tree-Ring Analysis of Timbers from Low Harperley Farmhouse, Wolsingham, County Durham, EH Res Dept Rep Ser, 6/2006

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2006b Further Tree-ring analysis from Midridge Grange, Shildon Roadm, Heighington, Durham, EH Res Dept Rep Ser, 9/2006

Arnold, A J, Howard, R E, and Tyers, C, 2007 Durham Cathedral, County Durham, Tree-ring Analysis of Timbers from the Refectory and Librarian's Loft, EH Res Dept Rep Ser, 39/2007

Arnold, A J, Howard, R E, and Litton, C D, 2008 Additional dendrochronology dates from Nottingham Tree-ring Dating Laboratory, No 6, Vernacular Architect, 39, I07-I I

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 199| Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 22, 40-3

Howard, R E, Laxton, R R, Litton, C D, and Roberts, H M, I 996 Buildings of the religious estates in medieval Durham; dendrochronological survey 1994-5, Vernacular Architect, 27, 85-6

Howard, R E, Laxton, R R, and Litton, C D, 2002 Tree-ring analysis of timbers from Hallgarth Pittington Cottages, Hallgarth, Pittington, County Durham, Centre for Archaeol Rep, 86/200

Tyers, I, 200 I Dendrochronological analysis of timbers from Headlands Hall, Liversedge, Yorkshire, ARCUS Rep, 574c

Table I: Details of tree-ring samples from Auckland Castle

Sample Number	Sample location	Total rings	Sapwood rings*	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Roof over the King Charles' Room						
AUK-BOI	Mid cross beam	83	--	1370	----	1452
AUK-B02	North cross beam	110	h/s	1389	1498	1498
AUK-B03	South cross beam	98	h/s	1407	1504	1504
AUK-B04	South tiebeam	64	h/s	1437	1500	1500
AUK-B05	North tiebeam	64	h/s	1441	1504	1504
AUK-B06	North wall plate	67	h/s	1438	1504	1504
AUK-B07	South wallplate	68	h/s	1437	1504	1504
Roof and floor above the Stairway - reused						
AUK-B08	Collar, truss 2	65	h/s	1434	1498	1498
AUK-B09	South common rafter 3, bay 2	90	--	1447	----	1536
AUK-BIO	Collar, truss I	113	h/s	1555	1667	1667
AUK-BII	South common rafter I, bay 3	136	--	1480	----	1615
AUK-BI2	South common rafter 4, bay 3	54	--	1441	----	1494
AUK-BI3	South common rafter 3, bay 3	95	--	1454	----	1548
AUK-BI4	Attic floor beam (south), bay 3	51	--	1425	----	1475
AUK-BI5	Attic floor beam (north), bay 3	69	h/s	1434	1502	1502
AUK-BI6	Collar, truss 3	83	--	1470	----	1552
AUK-BI7	Attic floor beam (north), bay 4	108	--	----	----	----
AUK-BI8	Collar, truss 4	141	h/s	1487	1627	1627
Roof over the Long Dining Room						
AUK-B19	Cross beam, 2-3	107	h/s	1399	1505	1505
AUK-B20	Cross beam, 3-4	94	--	1376	----	1469
AUK-B2I	Purlin, truss 3-4	78	h/s	1428	1505	1505
AUK-B22	Chock 2	84	--	1375	----	1458
AUK-B23	Mid chock 4	99	h/s	1402	1500	1500
AUK-B24	Chock 8	130	22	1387	1494	1516
AUK-B25	Lower purlin, 3-4	63	05	1444	\| 501	1506
AUK-B26	Upper purlin, 4-5	71	h/s	1430	1500	1500
AUK-B27	Cross beam, 5-6	67	--	----	----	----
AUK-B28	Upper purlin, 6-7	64	07	1431	1487	1494
AUK-B29	Cross beam, 8-9	124	36 C	1397	1484	1520
Remnants of roof						
(accessed from Long Dining Room roof)						
AUK-B30	East-west plate	78	--	1390	----	1467
(accessed from Throne Room roof)						
AUK-B31	North-south beam (west)	58	--	1446	---	1503
AUK-B32	North-south beam (east)	NM	--	----	----	----
AUK-B33	East-west plate plate	NM	--	----	----	----
Throne Room Undercroft ceiling						
AUK-B34	East-west beam	134	h/s	1495	1628	1628
AUK-B35	N-S beam I (from east)	202	02	1435	1634	1636
AUK-B36	N-S beam 2 (from east)	134	h/s	1496	1629	1629
AUK-B37	N-S beam 4 (from east)	140	h/s	1494	1633	1633
AUK-B38	N -S beam 2 (north of E-W beam)	118	12	1533	1638	1650
Castle Lodge, cellar ceiling						
AUK-B39	Main beam	144	h/s	1429	1572	1572
AUK-B40	Joist 3 (west)	155	h/s	1484	1638	1638
AUK-B4I	Joist I (west)	182	15	1475	1641	1656
AUK-B42	Joist 6 (west)	117	04	1537	1649	1653
AUK-B43	Joist 5 (east)	126	--	1475	----	1600
AUK-B44	Joist 6 (east)	146	02	1479	1622	1624
Scotland Wing roof						
AUK-B45	South principal rafter, truss 6	100	h/s	1599	1698	1698
AUK-B46	North principal rafter, truss 6	96	h/s	1600	1695	1695
AUK-B47	North principal rafter, truss 7	90	--	1544	----	1633
AUK-B48	Collar, truss II	86	h/s	----	----	----
AUK-B49	North principal rafter, truss 11	102	h/s	1588	1689	1689
AUK-B50	Collar, truss 10	NM	--	----	----	----
AUK-B5I	Collar, truss 2	113	--	1500	--	1612
AUK-B52	North principal rafter, truss 3	164	--	1448	----	1611
AUK-B53	Collar, truss 5	80	01	1577	1655	1656
AUK-B54	South principal rafter, truss 7	81	--	1543	----	1623
AUK-B55	North principal rafter, truss 8	151	--	1439	----	1589
AUK-B56	Collar, truss 8	105	--	1549	----	1653
AUK-B57	South principal rafter, truss II	70	h/s	1624	1693	1693
Chapel						
South aisle						
AUK-B58	South common rafter 2, bay 2	65	h/s	----	----	----
AUK-B59	Tiebeam, truss 3	57	01	---	----	----
AUK-B60	Ridge beam, bay 3	58	--	----	----	----
AUK-B61	Tiebeam, truss 4	58	--	---	----	--
AUK-B62	Tiebeam, truss 6	57	05	----	----	----
AUK-B63	South common rafter 4, bay 5	65	03	----	----	----
North aisle						
AUK-B64	North common rafter 4, bay 2	68	h/s	----	----	----
AUK-B65	Tiebeam, truss 5	61	h/s	----	---	----
AUK-B66	North common rafter 2, bay 8	57	04	----	----	----
AUK-B67	Tiebeam, truss 9	59	h/s	---	----	----

*NM = not measured

**h/s = the heartwood/sapwood boundary is the last ring on the sample
$C=$ complete sapwood retained on sample, last measured ring is the felling date

Table 2：Results of the cross－matching of site sequence $A \cup K B S Q O$ I and relevant reference chronologies when the first ring date is $A D / 370$ and the last－ring date is AD 1520

Reference chronology	t－value	Span of chronology	Reference
Witton Hall Farm，Witton Gilbert，County Durham	8.6	AD｜342－｜44｜	Howard et al 1996
Hunwick Hall Farm，Hunwick，County Durham	8.0	AD 1402－1497	Arnold et al 2004a
Headlands Hall，Liversedge，West Yorkshire	7.9	AD 1388－1487	Tyers 2001
Low Harperley Farmhouse，Wolsingham，County Durham	7.7	AD 1356－1604	Arnold et al 2006a
35 The Close，Newcastle upon Tyne，Tyne and Wear	7.4	AD 1365－1513	Howard et al 1991
Thatched Cottage，Hill Wootton，Warwicks	7.3	AD 1392－1469	Alcock et al 1989
Easington，County Durham	7.1	AD 1375－1489	Arnold et al 2008

Table 3：Results of the cross－matching of site sequence AUKBSQO2 and relevant reference chronologies when the first－ring date is AD 1425 and the last－measured ring date is AD 1698

Reference chronology	t－value	Span of chronology	Reference
Low Harperley Farmhouse，Wolsingham，County Durham	15.0	AD I356－1604	Arnold et al 2006a
Dilston Castle，Corbridge，Northumberland	14.1	AD I402－16II	Arnold et al 2003
Hallgarth Pittington，County Durham	13.3	AD I336－1624	Howard et al 2002
Durham Cathedral（refectory roof），County Durham	12.5	AD I43I－1683	Arnold et al 2007
Moot Hall，Hexham，Northumberland	11.7	AD I34I－1539	Arnold et al 2004b
Midridge Grange，Heighington，Durham	11.4	AD I427－1516	Arnold et al 2006b
Bull Hole Byre，Bearpark，Durham	11.2	AD I452－1620	Arnold et al 2002

FIGURES

Figure I: Map to show the general location of Bishop Auckland, circled © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the location of Bishop Auckland, circled © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: Map to show the location of Auckland Castle and Castle Lodge, arrowed © Crown Copyright and database right 2013. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4: Plan of Auckland Castle, with those areas under investigation outlined in blue (Smithsgore Architects)

Figure 5: Roof over Long Dining Room, looking west (Alison Arnold)

Figure 6: Roof over the King Charles Room, looking east (Alison Arnold)

Figure 7: Photograph showing the east-west beam in the wall between this roof (above the Long Dining Room) and the one over the Throne Room, looking north (Alison Arnold)

Figure 8: Photograph showing the beams in the wall between this roof (above the Throne Room) and the Long Dining Room, looking south (Alison Arnold)

Figure 9: Principal rafter roof over the Stairway; the floor structure contains a number of reused oak timbers, looking west (Alison Arnold)

Figure IO: The roof above the Stairway, one of the reused timbers (Alison Arnold)

Figure II: Throne Room Undercroft ceiling, looking north (Alison Arnold)

Figure 12: Gate Lodge cellar ceiling, looking south-west (Alison Arnold)

Figure 13: Scotland wing roof, looking west (Alison Arnold)

Figure I4: Chapel; nave ceiling (Alison Arnold)

Figure I5: Chapel; north aisle, looking east (Alison Arnold)

Figure 16: Sketch plan of the roof above the King Charles Room to show the location of samples AUK-BO I-07

Figure 17: Sketch plan of the roof above the Stairway, showing the location of samples AUK-B08-18

0

2

Figure 18: Roof over Long Dining room, truss 2 (east face), showing the location of sample AUK-B22 (Peter Ryder)

Figure 19: Roof over Long Dining room, truss 3 (east face), showing the location of sample AUK-BI 9 (Peter Ryder)

Figure 20: Roof over Long Dining room, truss 4 (east face), showing the location of samples AUK-B20-I, AUK-B23, and AUK-B25 (Peter Ryder)

$0 \quad 1 \quad 2$ metres

Figure 21: Roof over Long Dining room, truss 5 (east face), showing the location of sample AUK-B26 (Peter Ryder)

Figure 22: Roof over Long Dining room, truss 6 (east face), showing the location of sample AUK-B27 (Peter Ryder)

$0 \quad 1 \quad 2$ metres

Figure 23: Roof over Long Dining room, truss 7 (east face), showing the location of sample AUK-B28 (Peter Ryder)

0

Figure 24: Roof over Long Dining room, truss 8 (east face), showing the location of sample AUK-B24 (Peter Ryder)

Figure 25: Roof over Long Dining room, truss 9 (east face), showing the location of sample AUK-B29 (Peter Ryder)

Figure 26: Photograph taken from the roof above the Long Dining Room, showing the location of sample AUK-B30

Figure 27: Photograph taken from the roof above the Throne Room, showing the location of samples AUK-B3I-3

Figure 28: Sketch plan of the Throne Room Undercroft ceiling, showing the location of samples AUK-B34-8

Figure 29: Castle Lodge, basement plan, showing the location of samples AUK-B39-44 (after Alan Baxter \& Associates)

ω
Figure 30: Plan of the Scotland Wing, showing location of trusses (Peter Ryder)

Figure 3I: Scotland Wing, truss 2 (west face), showing the location of sample AUK-B5I (Peter Ryder)

Figure 32: Scotland Wing, truss 3 (west face), showing the location of sample AUK-B52 (Peter Ryder)

Figure 33: Scotland Wing, truss 5 (west face), showing the location of sample AUK-B53 (Peter Ryder)

Figure 34: Scotland Wing, truss 6, showing the location of samples AUK-B45 and AUK-B46 (Peter Ryder)

Figure 35: Scotland wing, truss 7 (west face), showing the location of samples AUK-B47 and AUK-B54 (Peter Ryder)

Figure 36: Scotland Wing, truss 8 (west face), showing the location of samples AUK-B55 and AUK-B56 (Peter Ryder)

Figure 37: Scotland Wing, truss 10 (west face), showing the location of sample AUK-B50 (Peter Ryder)

Figure 38: Scotland wing, truss I I (west face), showing the location of samples AUK-B48, AUK-B49, and AUK-B57 (Peter Ryder)

Figure 39: Sketch plans of north and south aisles of the Chapel, showing the location of samples AUK-B58-67

Figure 40: Infill roof, photograph taken by putting camera through entry hatch (Alison Arnold)

Relative

Figure 4I: Bar diagram of samples in site sequence AUKBSQOI

Figure 42: Bar diagram of samples in site sequence AUKBSQ02

Figure 43: Bar diagram of all dated samples, sorted by area

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
AUK-BOIA 83
    |79 |52 200 |89 |9| | 87 23| |76 245 242 2|4 239 335 345 24| |58 242 266 269 275
    268279293 374273268375260 33| 273 292 293232 219 219 222 245 2| 8 327 24|
    234 228 | 57 |97 | 84 2|6 | 46 | 50 |7| | 3 256 |95 |77 |52 | 52 | 80 | | | | 47 254 227
    |47 |92 237 |54 2|4 2|5 245 197 200 | 60 | 59 | 74 |27 |99 |63 204 | 83 226| | | 208
    19| 213 |58
AUK-BOIB }8
    |76 |50 207 | 89 | 87 | 84 225 | 80 252 25| 2| | 234 340 348 232 |69 253 253 282 269
    257270293365252284363263 335273280315 23| 220216219229208340242
    237 22| |52 |95 | 88 23| |42 |6| |63 |23 25| 202 |74 |56 |49 |72 |27 |43 242 225
    | 56 | |0 232 |70 206 |94 263 |95 |96 |6| | 59 |7| |24 204 | 56 2|| | 82 23| |82 |96
    201 218185
AUK-B02A IIO
    363346 328324377335272375248307277 29| 229 |99 |9| | 66 | 88 | 84 | 85 207
    |97 |73 | || | | | | | | 50 | 67 |07 |4| | 82 ||6 | |5 |42 | 50 | 65 |07 | 36 ||0 |40 204
    | 83 ||2 |64 |6| ||2 |42 |43 ||5 |34 ||8 84 74 84 73 |0| 88 82 84 92 97
```



```
    |30 96 |42 | 35 | 84 |09 | 58 | 85 | 67 |78 97 ||4 |66 | 36 | |5 |20 |05 ||5 |22 |09
    98 7| 93 87 9| 78 65 65 70 62
AUK-B02B IIO
```



```
    209 |64 |55 |57 |59 |45 |6| ||6 |34 |72 98 |79 | 56 |57 |73 |07 |40 ||| |28 2|0
    | 80 |22 |65 |56 |00 |33 |47 ||8 ||9 ||8 82 80 75 76 97 86 84 88 84 |07
    |03 |00 |27 ||9 |26 |33 |03 |06 |24 |3| ||8 |43 79 ||0 ||7 96 |40 |3| |39 ||8
    | 32 |05 | 35 |28 |92 ||0 | 57 |74 |70 | 78 |00 |08 | 76 | 38 ||6 |27 |02 ||4 |29 |06
    92}75594 83 90 83 57 72 66 63
AUK-B03A 98
258327 3|7239206248 2| 242 248 | 64 |77 204 | 27 25| 22| 225 | 86 | 50 | 78 | 30
| 58 25| 22| 205 | || 248|42 225 259 260 259 245 | 56 ||5 | 59 ||2 | 86 |5| | 65 | 30
```



```
| 55 98 | 37 | 35 | 29 | 38 2|4 |49 234 269 |90 | |3 | | | | 47 236 | || |98 | 52 | |9 | 39
|O| 56 64 65 79 65 84 89 75 78 87 73 ||5 |38 92 l06 90 83
AUK-B03B 98
300323 3|0250205245 229232 256 |68 | 83 206 | || 26| 234 23| | 89 | 62 |9| | 34
|63 25| 22| 203 |68 275 |50 2|| 255 258 273 243 |56 ||5 |47 |23 |92 |54 |69 | 30
|60 |72 |93 |95 263 |90 |97 |79 |40 |72 | 60 | 69 | 54 | 63 |02 |23 ||| ||5 |43 |70
|42 ||0 | 35 | 32 |27 |49 207 | 55 24| 277 |97 | 85 | 52 | 50 240 | 80 |99 | || | || |4|
    89 7| 7| 55 80 65 80 9| 85 75 75 70 ||5 |38 9| ||9 80 97
AUK-B04A 64
|3| |58 | 80 263 28| 29| 296 3|2 233 2|4 254 273 3|6 280 324 274 303 347 285 3|9
34| 26। 201 2|2 255 309297 302 293 369 367478435473463233 |37 |36 248 3|9
249290292233 308274234215 279 270406295 328295 24| 232 |59 230 |90 247
248269315 249
AUK-B04B }6
    |42 |57 |7| 27| 284 28| 280 3|| 264 |7| 256 277 277 280 3|0 254 285 369 275 3|3
325 27| |97 |9| 252 3|5 297 302 289 379 376484 43| 467 456 245 |42 | 46 246 339
226288 28| 23| 307 285 229 22| 266 267404293 324 302 250232 |70 233 205 242
247272309257
```

```
AUK-B05A 64
    3।4 302 262 246 255 199 280 256 266 290 299 308256 33| 236 280 229 |67 |68 2।0
    202 2| | | 58 | 63 | 63 245 253 249 |99 2|3 20| | 47 |04 | 37 |90 | 66 | || | |9 |97 | 80
    |92 |76 |56 | 48 |94 |6| |77 |26 |3| |43 | 30 |6| 78 |28 |77 |7| |50 |25 |84 |67
    80 105 117 174
AUK-B05B 64
    304304270236256195 242262235314296 304 266 329243287 223172167 204
```



```
    92 IO| | 39 |54
AUK-B06A 67
    33| 47| 472 560 353 326472365 355 46| 426 37| 336 360 373 29| 372 308 330 325
    2882452282372232322372393534634|7 328285 3|4 278|92 I84 237 267 223
    |94 2|| 234 24| 225 247 2IO 2|8 |93 230 |28 |73 2|6 202 208 |5| |65 200 204 2|4
    202272 189 |49 ||8 92 106
AUK-B06B67
    33047649256। 356 316480 37। 3494834|8 382326 354377 297388 322348332
    295245225236209243238240364477 399330 30। 293278।87183 255 272 212
    |92 198224 225 230 238220 2|5 |98 224 |32 |78 203 202 2|5 |52 |65 |98 2|7 208
    204 267 235 |36 ||8 86 I09
AUK-B07A 68
    |95237 30। 473 62। 396 340 5|3 368 323438428 363 346 38| 384 3|0406 325 334
    358289248249256 2|4 235 249269 355462 36329927| 279 303 2|7 | 87 248 277
    233 |92 195 204 22| 247 242 2|7 23| 207 225 |45 |76 22| 223 232 |65 |76 2|5 23|
    209 |98 233 | 86 |25 ||0 87 |3|
AUK-B07B 68
    217239294473622404340520367326443422369342386389306410325 331
    339 29| 24025024822। 223 24| 250 350454 37| 306 269286 295 206 200 24| 238
```



```
    22| |87 236 | 86 |24 || 98||08
AUK-B08A 65
    249226 280 234 2|| | 84 20| 2| | | 80 23| 222 2|4 |66 |9| 203 |95 |76 230 225 |45
    | 80 |47 |67 | 80 | 30 ||| |05 |3| |25 86 93 90 |26 |40 |58 ||6 |44 |7| ||8 ||7
    94 |34 | 80 | 69 | 65 |53 |59 | 50 | 36 |0| | 04 | 40 | 67 2|0 | 82 | |0 2|9 |7| |26 73
    |43|67 194 |65 |74
AUK-B08B }6
247223 28| 246 206 |79 |94 227 | 89 226 224 208|67 |78 202 |92 | 80 228 224 |58
|68 |54 |77 |77 | 33 | 30 |02 |40 ||3 86 95 95 |2| | || |44 |26 |56 | 64 ||9 ||0
```



```
140 I64 194 I72 I59
AUK-B09A 90
    |68 |46 203 |79 |79 209 | || 200 |50 | 86 |49 97 99 |03 |36 |35 | 36 92 ||2 ||6
    ||| |79|44 204 279 |22 |03 |22 | 64 226 |92 | 84 209 |94 |92 | 68|49 | 68|35 |47
    287 |84 | 85 |79 |3| 78 7| 96 |08 94 83 |03 |35 67 66 49 60 7| ||3 |02
    98 98 73 87 82 64 |04 8| 66 93 63 92 58 62 70 94 88||3 74 96
    76 78 94 48 92 52 67 72 61 72
AUK-B09B 90
```



```
    25| |87 | 82 179 |26 8| 67 9| 106 98 77 |00 |4| 84 66 48 59 7| ||| |06
    96||| 68 86 85 63|0| 87 62 93 65 9| 59 53 75 |08 92||2 74 94
    82 77 88 48 99 53 67 72 58 77
AUK-BIOA |I3
```

325214215263285314266300374340315237253184304247265229270270 $2|7| 5|||5| 6|| 70|98| 237788105791009566726767779176$ 959210010976716746518360756277648484749784

 |58 15। |।|।|8 $957662577 \mid 47506357$
AUK-BIOB 113
330217206265279333263302366333321230259192304246257227272269
$2171571141571702041177 \mid 891078210310862757257768384$

763754706667801051076366436075 |। $812310|12| 9073$
$774|66| 25|40| 5||79| 52| 49|45| 49|63| 34||7| 23| 47|47| 22|23| 207$
169 | 43 I20 I09 937367586745536658
AUK-BIIA 136
$2101988910714617220437521923026|1376| 6091|4918415| 169168$
$7352576573|19| 10|20168123| 5812093|4915292| 19609554$

4451415455364644363066879868587564547549
$664489|4| 174|17| 63|962| 4|30| 759680685075$
AUK-BIIB I36
|88 |9| 100 9| |43|64 205372227225255 |38 725785 |44 | $87|6| 170|6|$
$5972347273|28| 03|13| 69|23| 48||5106| 68| 4393 \mid 20569354$

$7 \mid 4584$ | 36 | 75 |।| | 70 | 90212 | $21 \mid 809975695761$
AUK-BI2A 54
257194231270189158249320253234313281292295236242257192178179 |662|3 | 88 | 80239196243289255243203 | 72 | 47 | 24 | $8 \mid 234240250204$ | 67
|72 | 39 | 50 | 62 | 65 | 66 20| | 98 | 88 | 38 | 40 | 28 | 74 | 208
AUK-BI2B 54
264186236264190165239329247235334267288315225238252 190 I72 । 78
$176217|8918224918824828| 26024321516|15213316625523625| 202169$
$167|34147| 60|67| 602|6| 94194126|29135173| 79$
AUK-BI3A 95
$184173232228167129124163|46| 54|29104| 46|633||2422473|||42| 19$

$102|3| 176|8| 2|92087368657776| 64|56| 05|5692| 2|9|||3| 8|$
|4| ||। 15465109666775116791239593948092701206976

AUK-BI3B 95
 || 15 | 72258 |77 |69 | $44|60| 287|8590| 05|35239| 7||63| 87| \mid 26369$
$9|1331641882142097265696384152136| 26|489911| 192104176$
$143|12| 7|57104607| 82|0386| 2693|029| 839|66| 226775$

AUK-BI4A 5I
364285295340355283263250260344336296293216178262274292199262
 6664 ||6 22620523530717396 | 29 | 88

```
AUK-BI4B 5I
    353 26| 293 326 350 282264254 25| 342 34| 292 284 2|9|76 260 275 29| 2|7 264
    238232 230 |44 |74 |77 |4| | 60 | 47 | 35 |34 |50 |29 83 69 66 95 76 82 62
    65 6| ||8 2|8 2|| 234 304 |74 |0| | 33 | 88
AUK-BI5A }6
35| 297 358 287 |9| |62 |92 | |7 |58 227 205 |88 |49 | 35 | |5 | 75 |56 |5 |9| |43
||8 |37 |55 |32 95 95 l09 |08 |38 78 |03 ||5 |7| 2|0 233 |79 209 |92 |08 ||8
|05 |3| | 45 ||9 |48 |62 |68 |58|46 78 |04 |96 |74 2|6 |49 200 |8| |47 95 67
|26 |54 |58 |49 |57 |62 |54 9| 67
AUK-BI5B 69
349294 365 272 |98 |6| |9| | 89 |59 233 2|0 |77 |47 |29 |9| |75 |59 200 |90 |53
|2| |43 |56 |32 85 99 |0| ||7 |38 78 |05 || | |2 196 239 |76 2|3 |89 |06 ||6
|00 |34 |52 ||9 |43 |6| |70 |47 |50 77 99 |86 |74 236 |56 2|9 |83 |36 99 60
|30 |57 |57 |62 |56 |42 |58 90 7|
AUK-BI6A 83
233 20| 239247 324 285 23| 327 |60 235 242 |9| 208 295 |63 2|6 230 228||| 80
78 82 ||2 87 | 40 | 88 |92 230 177 200 |6899 99 |00 |58 |55 |58 |97 209 238
|7| |52 ||6 |22 || | | | | ||| ||6 |0| 93 |40 |42 |28 |36 97 |47 |28 |03 ||5
84 9| |04 99||4 93 90 86 93||| |27 84 92 8| 80 80 85 72 90 68
97 I26 76
AUK-BI6B }8
2372022342483|6 283 223 336 160240244193200 3|0162 209 235 236 ||4 76
    73 80 ||0 80 | 40 I95 |92 2|7 | 87 204 | 70 |04 97 |00 |52 | 69 |47 | 82 | 85 23|
    |70 |42 |27 |20 |27 |24 |08 |08 |22 |02 93 |36 |42 |23 |36 |04 |40 |29 |07 |08
    9| 92 99 |05 ||0 99 85 84 84|09 |62 78 95 77 85 83 85 68 93 74
    99 I26 82
AUK-BI7A 108
    99 86 8| 69 73 64 69 84 98 76 |0| 59 86 94 82 89 |09 88 9| l03
    |22 |38||4||5 |2| |00 106 93 86 9| 84 60 84 94 85 82 |00 |06 I06 80
    9| |33 6| 72 89 78 |07 97 ||9 |02 99 |09 ||4 |07 |23 |74 |46 |43 |65 ||7
    |20 |40 | 65 | 34 |4| |44 | 30 |55 |25 |57 |9| | 52 | 86 202 | 54 || | | | | | |2| ||5
    |08 ||0 |09 |09 |02 |24 |32 ||8 |04 |4| | 35 ||8 95 || |03 |5 |43 |37 |20 |04
    ||5 |28 |33 |3| 92 96 ||9 ||5
AUK-BI7B I08
|02 8| 83 72 62 74 57 89 86 75 96 59 92 88 89 82 IO| 89 90 I05
||7|32||4||6|2| 99||| 83 79 96 87 88 82 9| 68 84 89 |04 |08 86
94 |27 63 75 80 84 |00 103 122 96 95 106 ||0 |05 | 34 | 66 | 34|45 |69 |20
```



```
98 |02 |02 ||3 || |25 |20 ||9 |06 |4| | 37 ||6 |03 || | | | | | | |3 | 35 |06 |09
||8 |38 |22 |39 87 |03 ||| ||8
AUK-BI8A 14|
204 ||5 ||| |05 I07 ||7 97 |38 |55 206 2|0 |47 |90 I55 79 8| 67 |02 99 79
93||4|38 97 95 |04 |06 |07 9| ||3 83||4 67 65 63 77 6| 63 56 69
6975 82 69 62 60 80 80 68 54 54 78 7| 102 72 65 75 78 IO0 73
67 93 79 97 |45 |02 |04 79 ||| |2| 85 92 |00 79 97 80 92 78 70 70
53 5| 59 72 6| 64 68 72 46 44 45 5| 60 82 69 64 52 52 57 8|
47 38 32 50 45 64 59 74 72 57 48 46 39 43 50 45 62 82 69 64
63 56 56 55 57 45 57 62 63 54 47 66 56 52 45 5। 59 53 39 37
4 7
AUK-BI8B I4I
20| ||7 I05 |08 I06 |28 89 |40 |55 206 2|9 |4| |82 |7| 78 75 65 97 86 8|
95 |08 |33 |05 98 98|IO |02 92 |07 86||5 64 58 63 79 7| 60 57 67
77 78 84 70 68 58 88 79 59 61 69 69 70 97 77 62 78 75 99 75
```


$4445 \quad 567065736769524647445289706152576175$ 493643434362607077574844414346 $687463595643605557534965 \quad 55 \quad 594248 \quad 62 \quad 5441 \quad 34$ 44
AUK-BI9A 107
$36735625023836731428926818620121|23322321923028823622921026|$ $21433034832031931531516329233333727|28238223825022524| 197$ |45
 194202 | 53 |9| |6| | 45 | 74 | 78 | $87|57| 2498|20||5||7| 80|8||93| 63 \mid 39$ 103 | 4 | | $296687||8| 52| 62|85200| 62|32| 32|32| 50||7| 32| 64||6| 58$ |68|28|20|29||9|69|82
AUK-B19B 107
366321287215353317276279190193209245221209239286241232210254 226329333312322312324169281332329276290373235248219230220135 130170167147237199207122167205180195193194252267210204207212
 |03|4| |32 $5987||||58| 59| 88| 99| 63|4||34| 28|43| 3||34| 5||32| 42$ |60|34||6|32|32|6| |74

AUK-B20A 94

6795 I56|47 $9696105849279120|40| 6316023 \mid 242270372342$ । 88
242329339347361260239379426402350222275254295229253250345278
300298375323510408382465324261133253267282292377355255276246 $3 \mid 2253$ | $5|127| 43|98| 9228|229| 6797|19| 33|4020| 2492|230428| 264$ 272280227216225184246261256237329383356303
AUK-B20B 94
$6586|6| 149|0| 85112829277|3| 13916316022023226637533 \mid 184$
252325336347361268251381431397346222271258295225254252346286 293287355325499407370469338275140258274284294376356253284244
 260285224222225 I75 25। 25726 I 244323390349304
AUK-B2IA 78
$5996805104484|537| 5075184903363|524740| 45036 \mid 407343263253276$ $239269288|5| 292226276225256|69| 0786|05| 8||58| 28| 74|29| 8927 \mid$ $300219256346|46| 12|5| 203228202243|58| 552||2| 2103||2| 371643 \mid 0$ $16929620|2023| 685|44| 4|169206236242| 296862104$ ||2 |26 AUK-B2IB 78
$57768751644 \mid 4303775$ I। 524480345305252389452343404342268241290 22927328 । $15027923926923325 \mid 16012678110173163123174123192279$ $28922225333215312 \mid 154198224217240164170202207$ |l| $12315620 \mid 309$ 16728420920230788 | 33 | 39 | 66209235242 | 337053 || 2 | 25 | 23 AUK-B22A 76
258365 | 86253300295 | $8 \mid$ | $8 \mid$ | 42 | $36|90| 8565$ | 25 | $20|28| 38|92| 33 \mid 05$ $244103|36106| 22|28| 99|43| 14|10|||103989289| 2| l 03|3283| 00$ $122132|1290| 19|28| 33|27| 54|10| 28|02879910785| 228910292$ $105867970|10| 3|123| 19|53||7| 46|08||7| 02 \mid 0697$ AUK-B22B 50
$38325839|4| 339239340|292250354| 8229532226|200| 83|22| 48|93| 8 \mid$
 124831051088812293109109146
AUK-B23A 99
33| $4263103574||38538| 3503252663503403893483763| 639 \mid 297640489$ $4244|93543| 9 \mid 45246$ 29| $29726927837|24| 2242893 \mid 8247$ |42|22|74|94
$2 \mid 5339324276$ |38 ||| $20722|2453493| \mid 302347248340275250200223$ |9| 27| $28030633 \mid 334427364295233245$ |9| $1742222562502692302 \mid 3$ |72 । 79 72 I04 I76 218244304334273221243212248229286257218233274203 AUK-B23B 99
329422305349415392380344325256353342397341400309392294630503 423421354316132263286307274265365249243286317236148 | 23 | 69 | 8 | 210324317278139112203208245370293318340253310310247196237205 265283310331338423358300226253205 । 81228275263287237227185 |78 7110417921924429532228020425619225822922125920225228720 । AUK-B24A 130
392283 |96 |95 | $8938|25| 34717527823|27| 282264|83| 36|29| 76|34| 60$ |32 |5| |5| |5| ||6|66|47||3 $8798||2| 3||24| 79|03| 29||8| 359069$
 $93130|49152150| 77|12| 16|04| 32|18| 3|95| 15|24| 07|49||4| 36 \mid 33$
 $1259712977565057868913577 \mid 28838168699313696120$ $691369|971077| 7 \mid 9487115$
AUK-B24B I 30
 $144|50| 5|150| 10|66| 45||578| 05106| 27|25| 85|02| 26|24| 358877$
 $96|38| 53|57| 38|76|||||999| 35|| 5| 24|04||||26|| 4| 40||6| 3| \mid 32$ $117168143146|60| 187593160|531| 5134927274338410786$ I2| 1199613267585355918214371129968466709015084128 65135951029977718986110
AUK-B25A 63
363286348364300365252246289335293209316295330264293312328264 $230263341393375335336298157109941401772201651871352 \mid 9186157$ $15|15415822916817819716721918| 20221 \mid 267204192220195949979$ |3| |4| |46
AUK-B25B 63
355303337363290369263245292328290192317286329253296314317260
$24025733839938|32| 332297|53||57| 148|902| 8|44| 86|4| 2|7| 80 \mid 56$
$162|59| 5923|17| 17918717821017019721425|2062042||2| \mid 998291$
132140165
AUK-B26A 71
556450517428586529527521451362435517480473401338286323234275 30119228723821118318011010888115129145100129103163195217159
 |5| | 33 | 74 |02 ||5 |44 |3| |3| || | |3| ||2
AUK-B26B 71
597461503428570538536509465350443521468458404335298333231261 $3002002862462|2| 82|7498| 1587|18| 26|3995| 36||4| 62| 902|2| 62$
$20428|120| 10|46239260| 52|52| 13|62224| 72|40| 42209|87256| 54 \mid 68$ | 52 | $3 \mid$ | 72 | 06 | 09 | 50 | 37 | 27 | 22 | 35 | 08
AUK-B27A 67
347278311307272410382404378432315377373374288261217267154203
$22516322120422626621518815319920626519 \mid 28818426229020816490$

72 |13 |14 |5| 130 | $26 \mid 07$
AUK-B27B 67
$3352733093|524935641739| 3734203|437837438529025023| 259 \mid 54205$ $2231642162052202532|2| 97153199199266192288|8525628321916| 82$
|45 |48 | 87 | 54206 | 82 |47 |49 | 39 |48 | $882||||355| 09| 30| 48| 285999$ 77 ||6||2|42|35 |28||5
AUK-B28A 64
509366318453450382343332336449484425351352240206268196220220 $162240214232172197|299073122| 36|7316422| 16022725|273| 8 \mid 203$ 24410587127235310262293345306346311245168182232328237282277 199170230143
AUK-B28B 64
50236631446245139734232633245148242436534522119426020422022 I 1802362142301751881289480110144172164228163219262264178 |79
24411290114234320249296359301346323249175182237325229284257 186167218158
AUK-B29A 124

$106|6| 100||||22| 53| 68| 40889678| 15|49| 08||2| 22769474| 02$
106798679807474795651678293888110997808289

36192725
AUK-B29B 124
|73 207 | 36 | 64 | $3|~| 28|55| 6||52| 2||34| 05999|74| 20|36| 2||04|| 0$
$109|6297||5| 20|58| 7||3| 889274||8| 39||8|| 8 \mid 04899278107$
$107768282817584795246658289918|l| \mid 92837492$

$\begin{array}{llllllllllllllll}72 & 59 & 55 & 43 & 49 & 27 & 52 & 63 & 63 & 80 & 77 & 65 & 87 & 79 & 95 & 65 \\ 80 & 72 & 83 & 99\end{array}$

33212927
AUK-B30A 78
$20017931524029 \mid 157250235247639640368364304333233254222248350$

 AUK-B30B 78
249167305266286148266220257619666359369295333230240230249358 $22123526418018413118018326 \mid 19630413619516320512586130177217$
 | $8 \mid 150263$ | $8|203| 70|66| 5||43| 24| 39|46| 33|4||6620||77| 76$ AUK-B3IA 58
279312376340319359352303276238326265239243264248288184245230 33। 283307224262254269240194265307262236285215243308248 । 8 | 2 I 8
 AUK-B3IB 58
283308381342315362346301282240318263242236272238296183237236 318297305224276250270246204272302253235293215255299249185217 $21624720019820222224421521021624319423226|298| 46$ |5| |3| AUK-B34A 134
 216172151197128106219246189205173242216155164124130129153177 166 | 45 | 57 | 32 |94 338 | 34 | $53|34| 53|4|||0| 08| 58||4| 46| 88|59| 30 \mid 00$ | 48 | 56 | 08 || 3 | 83 |92 25| |67 |68 $2362|7278| 45||2| 3||25| 2|||7| 68| 3|$

।।| 727380454457648284989813510082866584 ।। | 20
|5| |02 98 |23 |02||| 86 ||| $93723943556 \mid$
AUK-B34B 134
185244218 |49 | 69 | $8589697713913616223426 \mid 265240242275268$ |98
$207|5913519| 13|972| 223516319516|227198| 59164|24| 32|3416| 174$

$17014311210715718022016716923921628|144123| 27|19| 1810 \mid 169$ | 36
$1 \mid 58892$ |05 ||4 |46 |27 | $30|10| 3093|59| 196794837572|06| 17$
1157974754647536972859310712510486896579 |।। 123

AUK-B35A 202
|73 |59 |42 9672 ||2 |5| |45 |83 |55 |42 |07 ||| |36|42||8||3||8|5| |22

1001251209710811610910685921321221501129414313810076105
901211179712111689846172101107109106991231229398103

$\begin{array}{lllllllllllllllllllllllllllll}76 & 80 & 94 & 57 & 54 & 62 & 66 & 54 & 62 & 80 & 63 & 61 & 53 & 58 & 69 & 49 & 89 & 87 & 68\end{array}$

$\begin{array}{lllllllllllllllll}46 & 33 & 27 & 31 & 57 & 49 & 43 & 38 & 54 & 59 & 49 & 73 & 67 & 45 & 54 & 45 & 42 \\ 37 & 49 & 52\end{array}$

$1391432332|42262301892001561097478| 101|2| 87|79| 69|8| \mid 55109$
7660
AUK-B35B 202
 $11212810510310310487|13106838| 7810511089133 \mid 161098176$
$9|120127101108125109113969813| 11314912|102| 4513310666|1|$ 921151211001201288777647390106114991001351249610395 8510395 ।0। 8। $707076 \quad 628191987880855958475452$
$80829255 \quad 576264565882636254587744 \quad 65918572$

4540403526322525426336716065668188124156133
 7753
AUK-B36A I 34
$24222816528643520313590839|1| 517419823626|17617210210| 95$
9098115847271841342992162161647110213885507010972
$85136129178|451081428911211673689| 6466137129147 \mid 20316$
403889210482185224185216136984741107117124931048567
$59525594|869| 18|134| 32|24197| 447482|12495697| 43 \mid 13$
8310621145383133384230395572991331081115575127

AUK-B36B 134
$2652241763044272|2| 40102891031341632||232278| 86| 659610393$ $89981139066639 \mid 1363002172141708010513687527310272$ $9|143| 18|7| 158|1||3595| 12|1078708| 6664|39| 27|50| 14316$ $40395789987199232188214134102483710810712894989 \mid 65$ $58496287|8784162| 38 \mid 481291801307985108504990144117$ $87972325141283040433137558392|35116104588| 125$

AUK-B37A 140
|49 $2063|6307196284| 77|068876| 09|5||72209| 93|35||3||||67| 00$ 84891041021069496719590139176998364961321439097

8| |33 24575 |0| |42 $87|26||0||8||0| 0 \mid ~ 9845358389648076$ 8482535447751348310210513380121937286115705396 |0| | | $87715424310268575|4254526593| 22|4||54||5| 56|\mid 5$
 AUK-B37B 140
$14720|32130619925522010787741081521762| 5196|33||\mid 10916997$ $908|1141001139489699584146| 691047973941231478586$ $13110216513 \mid 1171751228899969916012291184628210110091$ $8813023363109132841301|51091098696433383827| 6890$ 9295435247681428210710213678116986789116685599 $10011486154243936562335255477990|19150150112| 601 \mid 5$ ||2 | 60 |24 $3736434|65675853577688||5| 33|22| 20 \mid 0484$ AUK-B38A 118
$27429726420920817416916510412|1| 6|66| 6|143| 68 \mid 39106100163132$ $13|1702001329| 94124|13106125135| 17|12| 32||8| 03| 73|50| 6910 \mid$
 ||4|30|6597|17|15 ||3|09 9| $62|4726027| 3|032234| 38932625926 \mid$

 AUK-B38B 118
$27029|275202206| 8|163| 66||8| 09| 25|65| 64|44| 7||37| 05| 04|65| 24$

 |08 |32 |6| 77 |। 11099 ||5 8369 |4| $26627|3| 33|834738032025526|$ $26 \mid 222305296283389262325255433233162178224$ | 83 | 91260182163 |74
 AUK-B39A 144

 1119989929694799198114628376104951201001057777 $781058860861079594|10| 25107|3977|||||3|| 6| 3| 1047399$
 143186178143
AUK-B39B 144
| 59178205175 | $84187184230184163130128|52157| 80163164170208 \mid 60$

 $113110981135693991231001109|12| 726|7| 12|1| 7|16| 12 \mid 16$ $104105829|9693788910| 11263857|10699| 191021038272$ $82888065949910|10299142105138859| 128126123997898$ $5787|57| 20|46| 39|34| 308799|33| 26|49| 35|66| 56|55| 46 \mid 2394$ 132206169140
AUK-B40A 155
 751139589115909058495185547145616362615028
 $\begin{array}{llllllllllllllll}84 & 95 & 74 & 49 & 43 & 43 & 70 & 90 & 71 & 42 & 38 & 54 & 39 & 25 & 27 & 35 \\ 33 & 42 & 56 & 58\end{array}$

 46324341353650545553473933545846425042 31 2622 21 31 31 38293637262115203148

```
AUK-B40B I55
    |52 |08 |37 232 |83 |46 |59 75 75 57 69 |05 |38||7 |08 5| 44 76 29 47
    87 |08 92 92||5 86 87 60 5| 5| 78 59 62 43 66 50 70 6| 48 23
    46 52 65 62 66 55 52 65 38 56 92 78 98 9| 72 l03 6| 40 45 63
    78 100 75 44 52 40 59 99 62 47 41 50 38 33 30 33 28 42 62 56
    62 40 39 31 26 33 51 50 42 43 36 26 33 22 22 38 39 41 34 28
    34}3433\38 25 4| 45 30 31 26 22 35 32 30 34 22 24 33 35 27
    38}3038383846 39 51 58 62 38 50 48 36 48 62 54 39 43 44 40
    28 20 22 19 36 36 29 34 3| 26 26 18 19 31 45
AUK-B4IA I82
    287 22| |67 |75 |70 |24 |20 55 |43 | 68 | 87 2| 3|| 2|4 |77 |94 84 57 50 56
    83|33 88 6| 64 58 58 32 33 35 54 57 46 52 69 7| 50 49 28 37
    48 54 35 54 53 60 63 56 48 49 52 80 64 76 59 62 69 44 53 88
    69||3||0 86||5|08 47 62 68 73 66 9| 68 90 66 74 77 58 69 50
    60 48 42 39 32 30 32 34 39 54 27 28 19 33 29 38 35 3| 39 35
    24 20 27 25 42 30 34 24 19 21 32 28 24 13 22 22 28 21 26 20
    17 13 12 19 18 23 19 22 24 19 25 27 25 37 32 37 43 28 
    32 27 33 47 33 3| 28 3| 29 32 25 22 26 20 19 21 27 30 27 24
    14 24 23 19 26 24 20 17 22 27 35 35 30 32 26 38 25 36 45 5|
    6460
AUK-B4IB I82
279 232 |62 | 86 |70 ||7 |22 54 |4| | 72 |78 2|7 323 204 |80 205 74 52 58 54
    82।43 87 58 55 69 47 30 33 33 59 55 48 60 57 8| 46 37 37 49
    5346 38 5| 5| 57 72 5| 42 52 50 75 72 73 56 66 66 4| 60 8|
    77 |07||| 87||6|08 48 54 7| 74 74 87 66 9| 64 77 80 55 72 43
    62 53 35 38 33 30 3| 33 35 49 34 3| 23 33 24 40 39 30 36 29
    2। 22 3| 23 39 32 40 19 18 29 32 25 20 21 24 18 23 28 22 19
    19 16 15 16 22 2| 20 24 2| 21 2| 34 23 33 27 40 49 38 28 36
    26}343244 33 31 25 34 30 27 24 24 26 22 23 22 26 24 21 18
    27 32 17 19 26 27 23 21 21 20 32 37 36 30 25 42 26 33 67 50
    5563
AUK-B42A II7
    ||5 72 |4| | 46 |36 85 ||6 |25 |46 |28 |39 |09 73 72 |07 |26 |24 |3| |90 |53
    |28 98|65 |65|63 90 52 57 5| 34 42 5| 67 68 7| 59 69 6| 38 38
    6। 66 72 82 74 62 7| 74 95 ||3 86 56 77 56 53 65 48 66 87 73
    70 90 5| 64 63 55 84 |26 57 88 7| 54 63 79 93 78 67 6| 50 33
    42 68 6| 53 53 66 43 30 28 30 35 37 37 43 35 39 27 16 22 23
    28}36353530 28 29 24 25 32 36 35 36 28 32 32 26 31
AUK-B42B |I7
||3 75 |38|49 |35 85 || | |0 |5| |22 | 37 ||8 66 78 |0| |28|33 |29 | 87 |46
||7 100 162 170 165 86 52 67 52 27 47 55 60 74 72 52 77 55 38 40
63 62 78 82 7| 70 65 79 92 ||9 8| 62 7| 57 57 60 46 76 78 76
67 95 5| 60 69 53 82 |23 62 87 73 5| 66 7| |00 76 69 6| 50 35
40 67 6| 55 55 6| 44 32 3| 24 38 34 4| 42 36 4| 23 20 19 28
24 33 34 3| 33 27 23 26 33 33 34 24 29 3| 32 3| 29
AUK-B43A I26
|35 |32 99 89 79 9| 46 42 |2| |6| |70 |83 249 |09 85 64 40 52 47 47
87 |48 |00 85 69 35 70 53 37 65 92 9| 74 |05 |05 92 8| 65 69 62
62 89 68 79 85 50 57 38 31 30 40 34 48 53 64 43 44 44 50 67
106 102 |22 72 98 87 7| 70 67 88 125 105 88 44 64 48 82 79 97 76
|04 8| 63 62 5| 72 |04 ||7 99 |04 67 47 45 67 92 |32||4||0 |00 49
48 55 65 49 95 86 86 5| 62 57 73 98 84 44 60 48 59 39 56 62
100 80 74 48 32 44
```

```
AUK-B43B I26
    |39 |3| 97 90 87 85 48 43||9 |72 |74 |70 246||3 8| 56 36 5| 45 36
    98।46 99 84 70 36 67 5| 46 64 93 90 65 |09 |02 99 83 60 7| 60
    53|02 65 8| 83 48 64 32 28 27 39 3| 49 53 68 43 52 4| 52 64
    IO6 97 |39 68 |08 9| 66 67 70 87 |3| 97 8| 53 64 48 75 78 l0| 73
    108 78 6| 62 50 74 |02 ||5 95 107 6| 53 49 57 94||9|22 |09 93 45
    57 55 55 57 88 93 83 49 67 53 75 |0। 80 43 59 52 57 40 53 65
    94 84 72 47 37 35
AUK-B44A I46
    93 90 6| 7| ||9 |27 |52 |47 |72 |00 79 67 5| 52 43 6| 79 |43 |04 86
    825476 64 50 85 109 95 73 72 94 86 77 74 63 63 48 100 60 79
    84 57 82 47 38 39 58 55 69 62 75 58 46 39 65 71 70 62 83 82
    88 70 57 36 73 72 IO6 92 73 5| 39 38 5| 50 4| 48 53 48 4| 43
    48 46 45 68 68 74 47 42 38 40 64 73 56 62 63 30 45 35 28 50
    69 64 65 36 42 35 55 67 49 32 44 44 46 34 36 42 79 5। 54 42
    37}3722 31 26 28 22 28 30 29 37 29 35 29 32 41 32 30 44 50
    46 29 30 27 32 48
AUK-B44B I46
    95 86 59 63 |33 |26 |49 |46 |75 ||0 69 72 54 46 45 63 73 |40 |0| 85
    6। 62 64 54 54 93 100 80 71 70 90 8| 73 65 66 59 54 93 66 75
    80 66 80 63 36 46 63 59 83 66 67 7| 38 38 85 64 7l 59 82 84
    83 78 49 37 77 63 102 85 7| 50 43 44 49 46 50 40 53 46 4| 43
    5। 42 50 68 66 69 48 40 3| 35 67 78 65 62 60 38 39 39 29 4|
    73 67 59 45 41 32 46 72 50 32 52 44 35 38 34 47 73 48 50 45
    36 38 32 26 26 20 27 28 24 28 3| 28 37 33 34 33 33 30 46 52
    42 30 40 29 23 25
AUK-B45A 100
```



```
    |63 |88 | 74 227 | 65 |52 95 | 38 |20 | |0 203 |2| | 54 | 30 |09 |0| 82 |05 || | |57
    |23|46 |84 83 65 77 98 |69 |56 |59 |47 |0| | 75 98||4 |23|49 |87 |79 |76
    208 |76 |40 | 57 | 35 |57 |68 || | |7 |9| |3| | 73 | 35 |89 | 48 | 30 ||6 92 | 39 |63
    |75 |37 |57 228 |78 237 260222 304 273 326 |89 266 2|3 24| 200 239 | 50 I76 |48
AUK-B45B I00
    |97 |34 |27 ||5 |77 | | 208 |88 236 282 223 |75 |55 |98|79 |73 222 |52 | 87 2||
    |6| |92 |67 232 |62 |46 96 |4| || | || |85 || |67 |4| 94 |07 84 97 ||6 |48
    |29 |48 |78 89 64 8| 9| | 60 |52 | 45 |68 |00 |73 |06 |0| |29|46 | 85 |74 |76
```



```
    | 58 |32 |7| 209 | 78 230 254 22| 30| 262 335 | 85 247 2| | 233|8| 24| | 66|92 |5|
AUK-B46A 95
```



```
    |72 233 |34 |25 93 ||3||4||8|46 92 ||4 |26 |03 89 72 8| 97 |30 84 |36
    154 66 55 8| 66 I27 95 98 94 58 I20 96 69 89 97 |25 98 ||6|78|||
    92 90 9| ||9 |2| 78 ||6 |58 |55 |32 |25 |43 ||5 |0| 83 99 | 33 |53 |44 |44
    |65 232 |42 |7| |86 226 289 297 297 |83 223 |75 I77 204 2|8
AUK-B46B 96
    ||8 |08 96 |38 |26 |33 |57 |74 |88 || | 38 |02 99 || | | | |69 |23 |40 |93 |46
    209 |70 229 |47 |20 82 ||4|28|07 |52 9| |22 ||7 |0| 82 70 87 97 |24 99
    |25 16| 6| 59 75 66 |28 92 104 10| 67 120 87 60 9| 98|30 95 ||7 |7|
    120 90 9| 98 |24 |26 77 106 | 58 | 42 | 36 | 23 | 40 | 30 95 92 95 |3| | 53 |44
    |39 163 236 135 179 | 89 217 287 295296 180 233 170 176 207 212
AUK-B47A 90
208 |92 |55 |43 205 |59 |99 249 |96 |9| | 80 232 258 |27 ||| | 85 |83 203 |84 |89
|89 ||5 |69 |53 89 |05 |20 ||3 ||8 |6| |36 ||6 |06 99 70 97 ||3 76 76 78
```

```
    76 52 74 69 48 49 48 4| 43 85 94 82 39 25 30 27 43 28 33 25
    46 39 34 29 47 45 42 43 40 36 56 70 77 56 72 65 75 7l 62 47
    40 34 3| 26 20 28 25 28 27 28
AUK-B47B 90
    2|5 193 |4| | 30 200 154 205 246 189 |79 | 80 23| 237 | 38 102 | 80 | 80 205 |72 |90
    |89 ||| | 72 |42 88 |00 120||9 96 |76 136 |2| 103 96 72 |0| l06 8| 7| 93
    75
    5। 30 3| 36 50 47 40 43 34 42 57 72 7l 57 70 66 74 75 60 42
    39 28 27 3| 20 27 30 30 24 25
AUK-B48A 86
    |70 |43 |52 207 269 307 2|6 242 249 280 | 88 |98 |66 224 |45 |94 2|| 209 | 85 |62
    |73 |74 | 50 | 33 |46 |45 |3| |56 | || 228 23| | 8| | 26 |58 |46 ||3 ||5 |05 87 9|
    |30 82 ||8 || | 55 |5| |62 |42 |07 | 30 ||7 |29 |24 |55 |6| |07 ||0 |20 9| |33
    |44 | 37 |29 | 32 |2| | 48 ||3 88 84 |07 |42 |25 || |22 |25 || |09 |08 94 86
    106222127 98 72 72
AUK-B48B }8
```



```
    |75 |69 |56 |33 |47 |47 |36 |52 |77 243 235 |80 |25 |50 |52 || | || |00 93 89
    |02 ||0 || | 34 |67 |52 |60 |40 ||0 | 38 |08 |30 |24 |59 |58 ||5 ||2 |23 86 |35
    |43 |34 |28 | 30 | 25 |48 |09 88 89 |06 |43 |27 ||4 |29 |20 |||||3 |05 96 84
    IO7 2I3।38 89 80 66
AUK-B49A I02
```



```
    7260 8| 59 86 78 |0| |2| 100 12| 65 39 59 54 64 65 49 40 48 60
    67 103 ||9 106 125 73 65 7| 106 |20 |63 ||2 |24 104 58 60 52 99 93 90
    ||7 |37 |24 |4| 94 94 9| 86 |0| 8| 96 88 93 76 70 92 9| l06 74 92
```



```
    197 I67
AUK-B49B IO2
```



```
    68648660 85 84 I07||2 99 ||9 56 46 56 57 63 62 52 4| 42 77
    59 |02 |||||6|25 65 72 69 |07 |27 |60 ||| |20||4 70 47 59 |02 92 92
    ||0|40 |22 |37 97 9| 92 85 |0| 80 |0| 85 92 75 69 95 95 |04 73 89
    |22 |28 | 48 |52 | 34 | 52 | 46 | 55 | 35 | 55 | || |92 | 30 |02 | 54 ||9 | 54 | 23 | 50 203
    194170
AUK-B5IA II3
```



```
|22 236 274 | 67 206 215 225 |59 ||6 205 | 80 194 |07 |82 205 229 219 2|4 | 82 2||
```



```
|70 |63 192 202 205 |70 |59 76 75 |05 |57 |3| 109 |24 ||9 78 57 55 90 |2|
```



```
|2| ||6 |24 |7| |92 |6| | 75 |24 |22 |29 |4| | 40 |46
AUK-B5IB II3
|56 93 62 80 77 |08 |60 |24 |2 |55 ||9 |49 |58 | 89 | || | 30 | || |06 |56 94
|26237 264 |682042|8209 |73 |27 200 | || | || ||5 | 67 203 23| 2|9 2|5 |79 |92
246 |93 |93 |37 |63 | 80 |43 83 |32 89 |00 | 83 |5| | || |57 2|| | 85 | 65 |49 |89
|66 |69 | 86 202 202 | 82 |53 83 75 ||3 |58 |22 ||0 || | | | 85 49 63 87 |24
```



```
||6||4|| | 82 |95 |57 | 60 |26 ||| | 32 | 33 | 36 |67
AUK-B52A I64
|67 |70 |04 | 37 |77 | 80 | 55 |40 | 38 |24 |45 |22 | 25 |47 | 82 |89 |63 | 60 |96 257
224 |98 |75 | 89 |50 |28 |05 |54 |73 |94 20| 220 225 227 220 236 204 |90 202 273
|69 |55 |6| |42 | 83 | 37 |53 |4| 204 |53 |3| |33 |48 96 8| 9| | 39 | 62 |75 |65
```

$172|26| 0785108|10100| 05|23||485| 26|3575837792| 06|36| 27$ 102115 || $1209995128|3| 1|7106| 2|122147| 1788849 \mid 1027590$ $80685588758098|40126| 1212415515|168| 17|1| 136 \mid 179757$ 43585953445358514333395656
 789772115
AUK-B52B 164 |37 |76 | |9 |3| |98 | 84 |62 ||2 |63 |35 |43 |24 |3| |63 $206204|68| 65 \mid 98275$ 230208 |93 | 85 |79 | 26 | I 0 | 53 | 84207206229234224238236223204 | 88254

 $8|6060848274102| 39122|15| 33|4| 154|7| 124|||139| 12| 0557$ $4857 \quad 61 \quad 5262576355436045636878959575897050$
 7710177109
AUK-B53A 80
74 | 26 | 44 | 62 | | 5 | $07|40| 50|7920| 163|56| 62|3||07| 35|65| 5||53| 20$

 AUK-B53B 80 $60|04| 35|58| 2||19| 43| 5||65206| 58| 52|8||3||08| 32|58| 55|57| 05$ | 52 |67|35 ||3||7||7|67|33|02||9||3|29||0|03 $99||5| 35| 36|50| 62$ $18818514517716320018412710412419518016512816 \mid 146117725841$ 52735896979080627011482969380102628698 ।10126 AUK-B54A 81
$96809|7884829| 82|36| 36|26| 30|72| 298762|28| 10|30| 60$ $1821871091461028510|100108| 10198|7| 162|50| 5698|5||591091| 4$

 35
AUK-B54B 81
$10297788|768| 8594125130|37| 39166|239253| 3|10| 128 \mid 58$

 4051466846634056545657889589867583675956 40
AUK-B55A 151
$22821920516|233223196| 47|43| 46|5410298| 4|1| 49258957 \mid 55$ $6872106100103123108129167150851039293768|9| 120139125$
 13210261395493125961071361269694939510182705661 5170685645636466765656505547465657737964 $8314891657770504838494951915253669078 \quad 6968$
 6089665662544452544042
AUK-B55B 151
$20021420518321 \mid 2181841521451441521051021461129461957156$

761638961776752485039624910551545997806967
$837075 \quad 5355604652464252605653879462403639$
5885645665534453434549
AUK-B56A 105
$22716424817817018022913718|13416717319516718315312| 134138103$
$123|5| 138121128133167985687|1| 168153116|171761842| 812099$

7674766475

AUK-B56B 105

$235150247192167190254142198|3| 174177194166|74162| 38 \mid 4512999$
 | 52 ||| | $0|123| 35|46| 52|37| 35|40| 02||589|| 3|38| 38|0499||4| \mid 6$ $991109973119123115162140185179143156|5019| 129107104123128$ |52 |43|37|4|||8 $8564354356436 \mid 7265665469896987$
$727976 \quad 6278$
AUK-B57A 70
|28 727485 |32 |97 | $82|38| 32948793|34| 29|67| 22|32| 538677$ $9914316|1181071131021859411519713917010| 1|913| 9988120137$ $166126871171901652002252032||20| 1832482| 2220239159183245197$ 194160277239249245122275234168
AUK-B57B 70
$119797290108277|63| 32|36877390| 10|32| 70|26| 36 \mid 537780$ $104|4| 168|10| 15|1997| 8|99| 2|197| 38|6| 102|23| 3|9399| 15 \mid 49$ $1601218113220616220422221020720518625|19721923716| 180246200$
193169238232232250123292210161
AUK-B58A 65
746544448620540608456423724446637396438472409422425399255234 279 3। | 23921216823542927526946127528423232020321699284 |66 I98
 237240269165165
AUK-B58B 65
695554427619549610467456699478635393432472375427427397251246
305302227229167255409293263445262329232322 | 84 | 86 |00 285 |7। | 89
|25 |67|82|78|85 |90|37 28| | $40286|54| 96|92| 7620734|32622923226|$ 246232 28। 162167
AUK-B59A 57
$228|76| 94|76| 17|48| 06|59105| 59|79| 86263332404482478383380366$ । 70 I03 I 391672192312302102453349211792106155132208169155199 2।| I3। 467757105163170170215159216247237247253263 AUK-B59B 57
232 |86 |75 | $8 \mid$ | $4 \mid$ | 57 | 32 | 78 | 38 |62 | $87|8026034939948748540| 404373$ 177102 | 25 | $6322|23324| 2 \mid 6249339$ |0| | 2693 |05 |5| | $3|2|||76| 46207$ 202 |26 4। $65651071451651892261682 \mid 924623923727925$ । AUK-B60A 58
431339388539619577228269288289253281247246251232237270339291 $16533728820121522715513821218520315886861202 \mid 5294250235164$
 AUK-B60A 58
409328389541714616229264288284257270236241244214242292318285 $1493362882072 \mid 6235$ |50 | 35 |97 | $8020 \mid 1548485$ |22 $2|53| 0244226 \mid 72$ 11989 | 34 | 49 | $7|157| 23|558| 7||37| 68| 74|82| 66|6||28| 45$

```
AUK-B6।A 58
    |97202 24। 367 227 300 254225 234 308 388 835785278328289 30। 287 37| 427
    3।8283 3| 8 386262350269309 |96 345243 | 85 29| 305 300 264 320 27| 254 274
    244244296330306 354 370 38। 349435407343220296437276356 325
AUK-B6IB 58
    19420023533225228826222422। 298398 855798285334286298292374433
    303293324378272359257 3|।196350232209273 3173042663|8286 252277
    239242270 33| 310 365 396 369 366456406 339246 28| 399286 |88 | 85
AUK-B62A 57
    4I4160 258248364 307 297 373420477544490443403695546288240206 210
    297 354 325 2804224I0404407447 393 I80 242 2084285I24IO448 340 35| 377
    |58 |68 |68 |99 |76 268 242 330 266 236 267 |86 265 265 |43 |20 |30
AUK-B62B 57
    429 | 63 25। 244 370 386 292400440465484474435388730560308 24| 206 232
```



```
    |57 |74 |6| |94 |83 27| 255 325 269 230 263 |97 275 263 |33 || | |2
AUK-B63A 65
    372322 39| 405400410425406 3|4 335 297 392 258 322 285 246 253 74 4| 4|
    35485357 69 75 80 |06 |05 82 63 |09 |00 78 ||5 |29||6 76 28 46
    79 65 76 69 |00 90 |03 94 82 94 ||2 |29 60 35 3| 5| 63 80 85 93
    94 I06 99 I04 | 32
AUK-B63B 65
    400 323 40| 403 398 4|| 428 4|| 299 345 302 385 254 335 273 258246 84 3540
    4447 56 58 67 78 90 |02 IO| 74 56 |07 95 82 || | |0||6 75 30 44
    76 65 83 69 99 95 |04|00 84 94||| |34 56 28 36 48 55 86 83 96
    90109 90 106 129
AUK-B64A 68
|72 235 |84 234 |5| | 84 367 2|9 250 2|9 |43 | 88 |53 274 2|2 3|4 |34 | 85 234 225
|77 | 65 | 88 | 87 2| | |74 |84 | 30 |53 |43 |66 |48 208 200 205 |52 |47 |24 77 49
64 54 55 87 75 ||| 88||9 98|06 |32 |02 |03 ||0 | |7|54|48 200 | 86 ||7
|58 85 88 83 |23 |49 | 39 |5|
AUK-B64B 68
    I70233 |79 234 |53 |77 373 220 24| 22| |38 | 86 |54 256 220 3|9 |32 |96 233 225
```



```
    54 40 54 8| 66 ||0 9| ||4 99 |09 |26 |00 |08 ||0 |3| |53 |42 20| |98 ||9
    |49 82 84 83 |22 |52 |20 |62
AUK-B65A 61
233296 | 82 I76 238253 3|6 330 255 |63 236 3|9 364 324 268 329 324 244 |9| 265
32| 310 | 85 |62 220 2|| |92 |72 |54 |69 220|48 202 | 80 2|4|44 220 I76 75 97
99226 233 |64||5 69 88|2| 92 204 95 98 |53|58|48 95 69 74 66 82
96
AUK-B65B 6I
230276 I76 I75 246 250 336 337 245 I7| 250 322 359287 269 325 334 233 200 254
327 305 |82 |63 223 220 | 80 | 57 |52 |79 226 |59 208 | 78 208|50 206 |69 82 93
98222 230 |58 |23 68 90 ||7 |00 |93 |05 88|59 |56|42 96 74 66 72 82
l04
AUK-B66A 57
|55 |4| |06 |07 |29 |52 |73 |4| |68 |59 87 83 ||5 |30 |64 ||| |02 | 86 |33 |49
|30 |23 |34 || |26||6 |34 |22||8 73 56 64 9| 9| 8| 96 |0| 80 49 80
92 80 6| 107 83 94||4 58 88 94 77 65 79 9| l00 88 90
AUK-B66B 57
|52 |39 |02 ||| | 30 | 50 |65 | 38 | 65 | || 96 75 ||7 | |0 |64 |09 || | |3 |32 |72
|36 ||8 |29 ||6 |23 ||8 |25 |22 ||9 77 53 70 88 90 79 |00 |02 76 5| 76
```

93846210692971127079897959759112095100

AUK-B67A 59

$1981527211011510|16997140179132113941262102| 4126|4918| 140$

|05 |60|3| 8| |09 |3| |48 |29 |7| | |9 |09 89 87|59|34 9| 556660 AUK-B67B 59
$170|5865125122103| 6394|43| 78|3410799| 3|1982| 6|37| 54|78| 39$ |8| | 38 | 55 |43 |72 |99 | $84|44| 059996595262506250907470$ $10016|13077106| 20|5| 132|7310910588| 00 \mid 4914089605961$

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring..

If the bark is still on the sample, as in Figure AI , then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring
on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the
sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t -values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid$ (=50-9). If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between I506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.

5. Estimating the Date of Construction. There is a considerable body of evidence

 collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

0	1	1	1	1	1	1	1	1	1	1	1

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6. The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-I4

English Heritage, I998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I 987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, I65-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vermacular Architect, I5-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 5I-6.

Hughes, M K, Milson, S J, and Legett, P A, I98I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38।-90

Laxon, R R, Litton, C D, and Zainodin, H J, I 988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200 I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

