GROBY OLD HALL,
 MARKFIELD ROAD, GROBY, LEICESTERSHIRE TREE-RING ANALYSIS OFTIMBERS

SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

GROBY OLD HALL, MARKFIELD ROAD, GROBY, LEICESTERSHIRE

TREE-RING ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: SK 52390757
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Dendrochronological analysis undertaken on samples from within this complex building resulted in the construction of two site sequences, only one of which could be dated. Site sequence GROBSQ01 contains 45 samples and spans the period AD 1321-1516. Two further samples were individually dated to AD 1400-62 and AD 1577-1668.

The dated samples are from a number of ranges or areas and include some apparently reused timbers. All but one of the dated timbers appear to have been felled during the latter half of the fifteenth century and the first half of the sixteenth century. The exception to this is a door lintel from tower 2 which dates to the final quarter of the seventeenth century or the very early eighteenth century.

CONTRIBUTORS
Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank Mr and Mrs Dickens for allowing sampling to be undertaken and for their hospitality during the process. Neil Finn kindly accompanied us on site, providing invaluable guidance and allowed us access to his building report from which figures used to locate samples are reproduced in this report. Thanks are also given to the English Heritage Scientific Dating Team who commissioned the work and also for their advice and assistance throughout the production of this report.

ARCHIVE LOCATION

Leicestershire \& Rutland SMR
Historic \& Natural Environment Team
Leicestershire County Council
Room 500, County Hall
Leicester Road, Glenfield
Leicestershire LE3 8TE
DATE OF INVESTIGATION
2011-12

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 1FT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Range A (former open hall) 1
Range G (cross-wing) 1
Range E 2
Range F 2
Range H (stair tower) 2
Range B (tower I) 3
Range C (tower 2) 3
Range D 3
Sampling 3
Analysis and Results 4
Interpretation 4
Range A (former open hall) 5
Range G (cross-wing) 5
Range E
Range F 6
Range H (stair tower) 6
Range B (tower I) 7
Range C (tower 2) 7
Range D 7
Discussion 7
Bibliography 10
Tables 12
Figures 17
Data of Measured Samples 32
Appendix: Tree-Ring Dating 45
The Principles of Tree-Ring Dating 45
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 45
I. Inspecting the Building and Sampling the Timbers 45
2. Measuring Ring Widths 50
3. Cross-Matching and Dating the Samples 50
4. Estimating the Felling Date. 51
5. Estimating the Date of Construction. 52
6. Master Chronological Sequences 53
7. Ring-Width Indices. 53
References 57

INTRODUCTION

Groby Old Hall is a Grade II* listed building located in the village of Groby, just to the north-west of Leicester (Figs 1-3). The Old Hall forms part of an extensive complex with origins in the pre-Conquest period. However, with the exception of some reused stonework and perhaps a boundary wall, there are no remains within the extant building which are thought to pre-date the fifteenth century. There have been numerous alterations and additions since the fifteenth century which have resulted in the building as seen today (Fig 4).

The manor of Groby was granted to Hugh de Grentmesnil by William I at the Norman Conquest. After several owners, it passed to the Ferrers family who held it from AD 1279 to AD 1445. The marriage of Elizabeth Ferrers and Edward Grey (later made Lord Ferrers and Baron Grey of Groby) passed the manor to the Grey family. Thomas Grey (AD 1451-1501) undertook a major building campaign at Groby but abandoned his plans to concentrate on the nearby Bradgate House, where the family seat was eventually relocated in the early sixteenth century, and after which Groby declined in importance.

Range A (former open hall)

At the core of the extant building are the remains of a former open hall, believed to be fifteenth century in date (Figs 5 and 6). Only one bay survives, but it is thought likely that the hall originally extended to the north-west by at least one further bay. A single truss survives, at the junction between this range and the adjacent cross-wing. This truss consists of principal rafters, collar, and tiebeam and is studded above and below the collar (Fig 5). The purlins are clasped between the collar and principal rafters; the existing purlins are thought to be replacements.

Both the timbers of the truss and a number of those common rafters considered to be primary are smoke blackened indicating that the hall was originally open from the ground floor. Other common rafters show signs of previous use.

Range G (cross-wing)

To the south-west of the hall is the cross-wing; a two-storey, plus attics, range believed to date to the late-sixteenth century (Pevsner and Williamson 1992). It is divided on all floors into two main rooms. The roof is of four bays and five trusses originally, although that at the south-east end has been removed and the gable rebuilt in brick. Each surviving truss consists of principal rafters, with collar and tiebeam (Fig 7). The timbers are well finished with chamfered edges and the principal rafters have a slight camber to their underside. There are also windbraces between the principal rafters and purlins, and a repair to one of the principal rafters of truss 1 is thought to be an original purlin (Fig 8). The centre truss (truss 2) is closed forming two separate attic rooms.

Range E

To the south-west of the cross-wing is another two-storey, plus attic, range. Although access to this range is now via the cross-wing, the presence of a blocked doorway at firstfloor level indicates that there was once access from a since demolished wing to the north-west. Differences in floor height at each level between this range and the crosswing suggest they were built at different times, with this range thought to pre-date the cross-wing.

The roof over this range is very simple, of common-rafter type, with no collars and a single purlin to each side (Fig 9). A large number of the timbers show signs of reuse.

Range F

In the south-east angle between the former open hall and the cross-wing is a small, square range. Its lower portion is of brick and may represent the remains of a tower; above which it is mostly stone built. Some of the masonry used in the construction of this range is obviously reused, perhaps from an earlier structure on the site. There are blocked windows in the gable end at all levels.

The roof consists of a single principal rafter truss (Fig 10). The curved principal rafters are tenoned into the tiebeam and halved at the apex to carry the ridgebeam. There are raking struts nailed into position which carry the purlins. Stylistically this roof could be either sixteenth or seventeenth century, however within the overall development sequence it is suggested it may be late-sixteenth century (Finn et a/ 2009). A number of the timbers within the roof itself show obvious signs of reuse.

Range H (stair tower)

In the northern angle between the cross-wing and the former open hall is another small, near-square range which houses the staircase. The roof of this range is identical to that of Range F, consisting of a single truss of principal rafters tenoned into a tiebeam and halved at the apex to carry a ridgebeam (Fig 11). As with Range F it is also stylistically thought to be either sixteenth or seventeenth century, but again a sixteenth-century date seems likely (Finn et a/ 2009). This roof contains a number of timbers which appear to be reused.

Range B (tower I)
This tower, the furthest away from the house, is three storeys high above a brick-vaulted undercroft (Fig 12). It is possible that there is more than one building phase represented within this structure but it is generally accepted to be the work of Thomas Grey undertaken between about AD 1488 and AD 1492. There are few internal features remaining except lintels (Fig 13) and a fragment of the first-floor structure (Fig 14). The tower had been converted into a dovecote by the early nineteenth century.

Range C (tower 2)

This second tower is narrower and shorter than tower 1 and the lower portion of it was destroyed in the twentieth century to form a garage (Fig 15). The lower of the two openings in the south-east elevation are thought to be nineteenth-century insertions (Figs 15 and 16). There is access between this tower and adjacent structure to the south-west (Fig 17). This tower is also thought to be the work of Thomas Grey, dating to the last decades of the fifteenth century.

Range D

This was a three-storey range, aligned northeast-southwest but all that remains now is its south-east wall. This runs from tower 1 (Range B) to the cross-wing, although part of it was lost when the garage incorporating the bottom of tower 2 (Range C) was constructed. The splayed opening of the remaining first-floor window can be seen from the north-west, above which is a timber lintel (Fig 18). The lower section of the wall is stone built, with fifteenth-century brick above. It may be that the stone-built element represents an earlier boundary wall incorporated into the late fifteenth-century structure.

SAMPLING

Sampling was requested by Tim Allen, English Heritage Inspector of Ancient Monuments, to complete a programme of investigative work as part of repairs to the building. It was hoped that successful tree-ring analysis would provide independent dating evidence for the different areas under investigation and hence clarify their relationship to each other.

A total of 65 timbers was sampled by coring. Each sample was given the code GRO-B (for Groby, site ' B ') and numbered 01-65. Fifteen of these are from the hall roof (GRO-B01-15), 12 from the cross-wing roof (GRO-B16-27), six from the range E roof (GRO-B28-33), 12 from the range F roof (GRO-B34-45), 12 from the range H roof (GRO-B4657), three from tower 1 (GRO-B58-60), one from the lintel of the 'lost' range D (GROB61), and four from tower 2 (GRO-62-5). The location of samples was noted at the time of sampling and has been marked on Figures 16-22. Further details relating to the samples
can be found in Table 1. The buildings lie on a northeast-southwest alignment but for the purpose of this report a site-north has been assigned with Range A at the north end and Range B at the south end.

Sampling of the staircase in Range H was not conducted because the softwood spindles are turned which would have removed all sapwood and they are of relatively small scantling which coring would have resulted in unacceptable visual impact. Other components are of fast-grown oak and hence unsuitable for analysis.

ANALYSIS AND RESULTS

It was seen that nine of the samples (two from the former open hall, two from the crosswing, two from range F , one from range H , one from tower 1 , and one from tower 2) had too few rings to make secure dating a possibility and these samples were discarded prior to measurement. The remaining 56 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. These samples were compared with each other by the Litton/Zainodin grouping procedure (see Appendix), resulting in the formation of two groups.

Firstly, 45 samples matched each other and were combined to form GROBSQ01, a site sequence of 196 rings (Fig 23). This was compared against a series of relevant reference chronologies where it was found to span the period AD 1321-1516. The evidence for this dating is given in the t-values in Table 2.

Three further samples grouped to form GROBSQ02, a site sequence of 71 rings (Fig 24). Attempts to date this site sequence by comparing it against the reference chronologies were unsuccessful and it remains undated.

Attempts to date the remaining ungrouped samples by comparing them individually against the reference chronologies resulted in sample GRO-B40 being found to span the period AD 1400-62 and sample GRO-B62 the period AD 1577-1668. The evidence for this dating is given by the t-values in Tables 3 and 4. The remaining samples are undated.

INTERPRETATION

Tree-ring analysis of samples taken from timbers in different ranges of this building has resulted in the successful dating of 47 samples. To aid interpretation the dated samples (Fig 25) from each area have been dealt with section by section below. All felling date ranges have been calculated using the estimate that mature oak trees from this region have between 15 and 40 sapwood rings.

Range A (former open hall)

Ten of the samples taken from this part of the building have been successfully dated; seven from the closed truss, two common rafters, and a wall plate: the latter three thought to be reused at the time of sampling. Six of these have the heartwood/sapwood boundary ring; five of which, including the wall plate and one of the two common rafters, are broadly contemporary and suggestive of a single felling. The average of these is AD 1479, allowing an estimated felling date to be calculated for the timbers represented of AD 1494-1519. The sixth sample (GRO-B13) has a slightly earlier heartwood/sapwood boundary of AD 1453, giving the timber represented, the other common rafter, a felling date range of AD 1468-93.

The other four samples without the heartwood/sapwood boundary ring (GRO-B05, GRO-B06, GRO-B07, and GRO-B08), all taken from stud posts of the truss, have lastmeasured heartwood ring dates which make it possible that they were felled in either of the two calculated felling date ranges. However, the level at which these four samples match each other and the rest of the dated samples from this range suggests they should belong to the AD 1494-1519 felling. Sample GRO-B05 matches samples GRO-B06 and GRO-B07 at the high values of $t=13.6$ and 10.3, respectively. This is of a level which might suggest timbers cut from the same tree; both samples GRO-B05 and GRO-B06 match GRO-B08 at levels in excess of $t=6.0$. Additionally, sample GRO-B08 matches GRO-B09, also taken from a stud post, at the value of $t=11.2$. This is again of a level which might suggest both beams were cut from the same tree and so felled at the same time. Sample GRO-B09 belongs to the later felling group, dating to AD 1494-1519.

Range G (cross-wing)

Nine of the samples taken from the roof of this range were successfully dated. Six of these have the heartwood/sapwood boundary, which in all cases is broadly contemporary and suggestive of a single felling. The average of these is AD 1510 which allows an estimated felling date to be calculated for the timbers represented of AD 1525-50. The other three dated cross-wing samples have last-measured ring dates which make it possible that they were also felled in AD 1525-50.

Range E

All six of the samples taken from this range were successfully dated, two of which have the heartwood/sapwood boundary ring, the dates of which suggests at least two different fellings. A common rafter has the heartwood/sapwood boundary ring date of AD 1463, giving an estimated felling date range of AD 1489-1503. This felling date range allows for sample GRO-B31 having a last-measured ring date of AD 1488 with incomplete sapwood. Another common rafter has AD 1493 for its heartwood/sapwood boundary
ring date and the estimated felling date of AD 1508-33. The four samples without the heartwood/sapwood boundary ring date have last-heartwood ring dates which give terminus post quem dates of AD 1450 (GRO-B32), AD 1451 (GRO-B33), AD 1459 (GRO-B30), and AD 1477 (GRO-B28). All of these samples were taken from timbers which showed signs of reuse.

Range F

During sampling of this range attempts were made to separate those beams which were thought to be primary from those which were believed to be reused (Table 1). Nine of these samples have been successfully dated, four from timbers thought to be primary and five from those with signs of reuse. Five have the heartwood/sapwood boundary ring date which suggests possibly three different fellings. Two samples, one believed primary and one reused, have similar heartwood/sapwood boundary ring dates, the average of which is AD 1456, giving an estimated felling date range for the two timbers (GRO-B38 and GRO-B41) represented of AD 1471-96. Another two (GRO-B39 and GRO-B42), again one thought primary and one reused, have the average heartwood/sapwood boundary ring date of AD 1480 and the estimated felling date range of AD 1495-1520. Finally, sample GRO-B45, from a 'reused' timber has the heartwood/sapwood boundary ring date of AD 1499 which allows an estimated felling date to be calculated of AD 1514-39. The last-measured heartwood ring dates of the other dated samples from this roof range from AD 1451 (GRO-B43) to AD 1490 (GRO-B44), all of which could fit into one or more of the estimated felling date ranges calculated or could indeed represent totally different felling/s. It can be seen that the felling dates gained do not reflect the 'primary' or 'reused' status as might have been expected.

Range H (stair tower)

Eight of these samples were dated, three thought to be primary and five reused (Table 1); five of these dated samples have the heartwood/sapwood boundary ring date. One of these, GRO-B56, taken from a beam thought to be reused, has a slightly earlier than the rest at AD 1453, giving an estimated felling date range of AD 1468-93. The average heartwood/sapwood boundary ring date for the other four (one which was thought to be primary and three reused) is AD 1466, giving an estimated felling date range of AD 14811506. The other three samples (a mixture of reused and primary beams) have lastmeasured heartwood ring dates which make it possible that they were felled in either of the felling date ranges or represent totally different felling/s. It can be seen that in the same way as with the dates from range F, we have primary and reused timbers with the same felling date.

The two floor beams were successfully dated; one to a last-measured ring date of AD 1450 and the other to a last-measured ring date of AD 1481. Neither of these samples have the heartwood/sapwood boundary ring date and so estimated felling date ranges cannot be calculated for them except that this would be estimated to be at the earliest AD 1466 and AD 1497 respectively. These make it possible that both beams were felled at the same time or alternatively they could have been felled at totally different times.

Range C (tower 2)

One of the door lintels and one of the window lintels were successfully dated. The door lintel (GRO-B62) has the heartwood/sapwood boundary ring date of AD 1662, allowing an estimated felling date to be calculated for the timber represented of AD 1677-1702. The other sample (GRO-B65), taken from a window lintel, does not have the heartwood/sapwood boundary ring, but the last-measured heartwood ring date of AD 1478, gives the timber represented a terminus post quem of AD 1493.

Range D

The exterior lintel sampled from the remains of this range has been dated to a lastmeasured ring date of AD 1468. Without the heartwood/sapwood boundary it is not possible to estimate a felling date for this timber, except to give it a terminus post quem of AD 1483.

DISCUSSION

Prior to tree-ring analysis being undertaken at Groby Old Hall the former open hall was believed to be the oldest surviving part of the complex, thought to date to the fifteenth century. Subsequent alterations and additions were made to the building during the following centuries, with Thomas Grey credited with undertaking significant work during the period AD 1488-92.

The earliest dated timber from the former open hall is a common rafter, thought to be reused, which is now known to have been felled in AD 1468-93. However, the majority of the dated timber from this part of the building appears to have been felled in $A D$ 1494-1519. This felling date range is represented by timbers of the truss, a common rafter, and a wall plate. These latter two timbers were believed, at the time of sampling, to have been reused, due to the presence of redundant mortices. It may be that all of these timbers are reused or, perhaps more likely, that the roof has undergone some reorganisation/repair resulting in the empty mortices.

It is unfortunate that site sequence GROBSQ02, containing three further hall samples including both principal rafters, could not be dated. This is most likely due to a series of re-occurring bands of narrow rings seen on each of these samples. These periods of restricted growth may relate to a particular woodland management regime or other nonclimatic influence which has interrupted the climatic signal necessary for successful matching.

Range E was thought to predate the cross-wing on the basis of constructional details. Unfortunately, none of the apparently primary timbers of the roof were suitable for treering dating but a number of the reused ones have been dated. These demonstrate that it contains timber from at least two separate fellings as indicated by two common rafters that have felling date ranges of AD 1489-1503 and AD 1508-33. For these to have been incorporated into the structure (unless they are replacements or repairs), construction must have occurred sometime after the latest felling date range.

Range F contains timber from at least three separate fellings. The earliest of these relate to a common rafter and a strut, dated to AD 1471-96. The lintel of the blocked window and a common rafter date to AD 1495-1520, whilst a reused collar has a felling date range of AD 1514-39.

The majority of the timbers from the Stairway roof have been dated to a felling of AD 1481-1506, with just one reused common rafter having the potentially earlier felling of AD 1468-93.

These two roofs are thought to be contemporary being of identical construction technique; both believed to date to the sixteenth or seventeenth century. The dated samples came from a mixture of primary and apparently reused timbers and with such a range of dates it is difficult to interpret them confidently. The majority of the timber was felled in the last decades of the fifteenth and the early decades of the sixteenth century, although a number of these timbers were thought to be reused at the time of sampling. The inclusion of a reused collar of AD 1514-39, demonstrates work being undertaken after this time, although it is possible that this timber is a later replacement, added to strengthen the roof. It is unfortunate, that the timbers which could have been more confidently identified as primary, the tiebeams and principal rafters were either unsuitable or are undated.

The two first-floor frame beams which survive in tower 1 have been dated to after AD 1465 and after AD 1496, although unfortunately, it is not possible to say how long after. This suggests construction of the floor at least, and possibly the tower itself also took place sometime after AD 1496.

One of the window lintels in tower 2 has been dated to after AD 1493, although again it is not possible to say how long after. One of the door lintels, over the access from the adjacent building to this tower is now known to have been felled in AD 1677-1702.

It had been suggested that these towers were erected by Thomas Grey during the period of his great rebuilding. The dates gained would suggest that if Thomas Grey was the architect of this work then he continued with his modifications and plans for slightly longer than previously thought.

The lintel seen in the exterior wall of the remains of the 'lost' range D is now known to have been felled after AD 1483.

The cross-wing roof had been dated stylistically to the sixteenth century. This has now been further refined by the dendrochronological dating of several of the timbers used in its construction to AD 1525-50. It had been suggested (Finn pers comm) that an original purlin had been used to repair one of the principal rafters of truss 1. This has now been confirmed with the timber under discussion (GRO-B16) dating to the second quarter of the sixteenth century with the rest of the dated timber from this range. Furthermore, this sample matches against one taken from another purlin (GRO-B23) at the high value of $t=16.9$ making it likely that these two timbers were cut from the same tree.

The potential same tree matches seen amongst the samples taken from the studs of the former open hall truss have been mentioned above. Additionally, high t-value matches have been noted between samples from different areas; sample GRO-B43, taken from a 'reused' timber within the roof of Range F matches GRO-B13 from the former open hall at a value of $t=13.5$.

It may be significant that the majority of the felling date ranges outlined above do encompass the period AD 1488-92, supporting the suggestion that this was a period of much activity at Groby Old Hall although how many of these timbers are still in their primary positions is unclear.

BIBLIOGRAPHY

Alcock, N W, Howard, R E, Laxton, R R, and Litton, C D, and Miles, D H, 1990 Leverhulme Cruck Project Results 1989, Vernacular Architect, 21, 42-4
Howard, R E, Litton, C D, and Arnold, A J, 2005 Tree-Ring Analysis of Timbers from the Main Guard, Pontefract Castle, Pontefract, West Yorkshire, Centre for Archaeol Rep, 48/2005

Arnold, A J, Howard, R E, and Tyers, C, 2008a Ulverscroft Priory, Ulverscroft, Charnwood Forest, Leicestershire, Tree-ring analysis of timbers, Res Dept Rep Ser, 48/2008

Arnold, A J, Howard, R E, and Litton, C D, 2008b Nottingham Tree-Ring Dating Laboratory: additional dendrochronology dates, Vernacular Architect, 39, 107-11

Arnold, A J, Howard, R E, and Litton, C D, 2008c Nottingham Tree-Ring Dating Laboratory, Vernacular Architect, 39, 119-28

Arnold, A J, and Howard, R E, 2009a Tree-ring analysis of timbers from 1-3 Northgate, Newark, Nottinghamshire, NTRDL rep

Arnold, A J, and Howard, R E, 2009b unpubl composite working mean of samples from Westernhanger Barn, and the Dovecote, Westernhanger Castle, Folkestone, Kent, unpubl computer file WHBCSQ01, NTRDL

Arnold, A J and Howard, R E, 2009c unpubl Tree-ring analysis of timbers from Castle House, Castle Street, Melbourne, Derbyshire, unpubl computer files MLBCSQ01/2, NTRDL

Arnold, A J, and Howard, R E, 2009d unpubl Tree-ring analysis of timbers from Walnut Cottage, Boat Lane, Hoveringham, Nottinghamshire, unpubl computer file HOVASQO1, NTRDL

Arnold, A J, and Howard, R E, 2012 Tree-ring analysis of timbers from The Old Rectory, Wiveton Road, Blakeney, Norfolk, NTRDL rep

Finn, N, Coward, J, and Clarke, S, 2009 Groby Old Hall, Markfield Road, Groby, Leicestershire: Historic Building Assessment: NGR SK 5239 0759, ULAS Rep 2009-126

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1986 Nottingham University Tree-ring Dating Laboratory: results, Vernacular Architect, 17, 52-3

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1991 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 22, 40-3

Howard, R E, Laxton, R R, Litton, C D, Morrison, A, Sewell, J, and Hook, R, 1997 Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME dendrochronological survey 1996-7, Vernacular Architect, 28, 128-9

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring analysis of timbers from Stoneleigh Abbey, Stoneleigh, Warwickshire, Anc Mon Lab Rep, 80/2000

Laxton, R R, Litton, C D, and Simpson, W G, 1984 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in Eastern and Midland England, Vernacular Architect, 15, 65-8

Pevsner, N, and Williamson, E, 1992 The Buildings of England: Leicestershire and Rutland London: Penguin Books

Tyers, I, 2001 Dendrochronological analysis of timbers from New House Grange Tithe Barn, Sheepy Magna, Leicestershire, ARCUS Rep, 574d

Tyers, I, 2004 Medieval Pembridge: Report on the tree-ring analysis of properties in the village, ARCUS Rep, 778

TABLES

Table I：Details of tree－ring samples from Groby Hall，Groby，Leicestershire

Sample number	Sample location	Total rings＊	Sapwood rings＊＊	First measured ring date（AD）	Last heartwood ring date（AD）	Last measured ring date（AD）
Range A（former open hall）						
GRO－B01	Tiebeam	86	h／s	1397	1482	1482
GRO－B02	East principal rafter	56	h／s	－－－－	－－－－	－－－－
GRO－B03	West principal rafter	67	h／s	－－－－	－－－－	－－－－
GRO－B04	Collar	62	h／s	1418	1479	1479
GRO－B05	Stud（middle above collar）	74	－－	1360	－－－－	1433
GRO－B06	Stud	93	－－	1349	－－－－	1441
GRO－B07	Stud	92	－－	1352	－－－－	1443
GRO－B08	Stud 8 （from east）	94	－－	1362	－－－－	1455
GRO－B09	Stud 1 （from east）	115	h／s	1357	1471	1471
GRO－B10	West common rafter 4 （smoke blackened）	NM	－－	－－－－	－－－－	－－－－
GRO－B11	West common rafter 5 （smoke blackened）	NM	－－	－－－－	－－－－	－－－－
GRO－B12	East common rafter 8 （smoke blackened）	64	h／s	－－－－	－－－－	－－－－
GRO－B13	East common rafter 11 （reused）	99	07	1362	1453	1460
GRO－B14	East common rafter 12 （reused）	107	h／s	1376	1482	1482
GRO－B15	East wallplate（reused）	86	h／s	1394	1479	1479
Range G（cross－wing）						
GRO－B16	North principal rafter，truss 1 （repair）	101	h／s	1408	1508	1508
GRO－B17	North principal rafter，truss 1	61	h／s	1451	1511	1511
GRO－B18	South principal rafter，truss 1	110	h／s	1399	1508	1508
GRO－B19	North principal rafter，truss 2	57	－－	－－－－	－－－－	－－－－
GRO－B20	South principal rafter，truss 2	NM	－－	－－－－	－－－－	－－－－
GRO－B21	South principal rafter，truss 3	105	h／s	1407	1511	1511
GRO－B22	North purlin，truss 1－2	144	－－	1321	－－－－	1464
GRO－B23	North purlin，truss 2－3	100	－－	1395	－－－－	1494
GRO－B24	South purlin，east gable truss 1	139	h／s	1378	1516	1516

GRO－B25	South purlin，truss 1－2	NM	－－	－－－－	－－－－	－－－－
GRO－B26	South purlin，truss 2－3	88	－－	1349	－－－－	1436
GRO－B27	South purlin，truss 3－4	140	h／s	1366	1505	1505
Range E（reused）						
GRO－B28	East common rafter 3	94	－－	1369	－－－－	1462
GRO－B29	East common rafter 5	58	h／s	1436	1493	1493
GRO－B30	East common rafter 6	75	－－	1370	－－－－	1444
GRO－B31	West common rafter 2	83	25	1406	1463	1488
GRO－B32	East wallplate	92	－－	1344	－－－－	1435
GRO－B33	West wallplate	63	－－	1374	－－－－	1436
Range F（primary）						
GRO－B34	Tiebeam	NM	－－	－－－－	－－－－	－－－－
GRO－B35	North principal rafter	NM	－－	－－－－	－－－－	－－－－
GRO－B36	South principal rafter	47	10	－－－－	－－－－	－－－－
GRO－B37	North strut	69	－－	1419	－－－－	1487
GRO－B38	South strut	71	01	1388	1457	1458
GRO－B39	Lintel	126	h／s	1353	1478	1478
GRO－B40	Collar，frame 1	63	－－	1400	－－－－	1462
Range F（reused）						
GRO－B41	South common rafter 6	74	02	1383	1454	1456
GRO－B42	South common rafter 7	103	h／s	1379	1481	1481
GRO－B43	South common rafter 9	99	－－	1353	－－－－	1451
GRO－B44	South common rafter 11	57	－－	1434	－－－－	1490
GRO－B45	Collar，frame 4	167	h／s	1333	1499	1499
Range H（stair tower）（primary）						
GRO－B46	Tiebeam	56	15＋6	－－－－	－－－－	－－－－
GRO－B47	North principal rafter	NM	－－	－－－－	－－－－	－－－－
GRO－B48	South principal rafter	48	09＋3	－－－－	－－－－	－－－－
GRO－B49	North common rafter 2	84	－－	1323	－－－－	1406
GRO－B50	North common rafter 8	92	h / s	1379	1470	1470
GRO－B51	South common rafter 5	124	－－	1338	－－－－	1461

Range H（stair tower）（reused）						
GRO－B52	North common rafter 5	75	－－	－－－－	－－－－	－－－－
GRO－B53	North common rafter 7	85	h／s	1381	1465	1465
GRO－B54	South common rafter 3	62	h / s	1404	1465	1465
GRO－B55	South common rafter 7	103	h／s	1362	1464	1464
GRO－B56	South common rafter 9	81	h／s	1373	1453	1453
GRO－B57	South common rafter 10	65	－－	1357	－－－－	1421
Range B（tower 1）						
GRO－B58	North beam，first floor	102	－－	1380	－－－－	1481
GRO－B59	South beam，first floor	93	－－	1358	－－－－	1450
GRO－B60	Door lintel	NM	－－	－－－－	－－－－	－－－－
Range D						
GRO－B61	External lintel	140	－－	1329	－－－－	1468
Range C（tower 2）						
GRO－B62	South lintel	92	06	1577	1662	1668
GRO－B63	Mid south lintel	NM	－－	－－－－	－－－－	－－－－
GRO－B64	First floor window lintel	84	－－	－－－－	－－－－	－－－－
GRO－B65	Second floor window lintel	91	－－	1388	－－－－	1478

Table 2：Results of the cross－matching of site sequence GROBSQO I and relevant reference chronologies when the first－ring date is $A D / 32$ I and the last－ring date is AD 1436

Reference chronology	t－value	Span of chronology	Reference
Thatched Cottage，Melbourne，Derbyshire	10.4	AD 1372－1530	Howard et a／1997
Stoneleigh Abbey，Stoneleigh，Warwickshire	10.4	AD 1398－1658	AD 1391－1590
Gotham Manor，Nottinghamshire	9.5	AD 1343－1443	Howard et a／2000
April Cottage，Rothley，Leicestershire	9.1	AD 1336－1533	Howard et a／1991
Hagworthingham Church，Lincolnshire	9.0	Alcock et a／1990	
Aisled barn，Newark，Nottinghamshire	8.7	AD 1249－1399	Laxton et a／1984
Ulverscroft Priory，Charnwood Forest，Leicestershire	8.3	Laxton et a／1984	

Table 3：Results of the cross－matching of sample GRO－B40 and relevant reference chronologies when the first－ring date is AD I400 and the last－ring date is AD 1462

Reference chronology	t－value	Span of chronology	Reference
1－3 Northgate，Newark，Nottinghamshire	5.7	AD 1339－1523	Arnold and Howard 2009a
The Old Rectory，Blakeney，Norfolk	5.6	AD 1339－1518	Arnold and Howard 2012
Pembridge bell tower，Herefordshire	5.4	AD 1382－1471	Tyers 2004
Governor＇s House，Newark，Nottinghamshire	5.3	AD 1355－1503	Howard et a／1986
Chalgrove Manor，Chalgrove，Oxfordshire	5.2	AD 1346－1581	Arnold et a／2008b
Westernhanger Barn／Castle，Dover，Kent	5.0	AD 1373－1506	Arnold and Howard 2009b unpubl
New House Grange Barn，Sheepy Magna，Leicestershire	5.0	Tyers 2001	

Table 4: Results of the cross-matching of sample GRO-B62 and relevant reference chronologies when the first-ring date is AD 1577 and the last-ring date is AD 1668

Reference chronology	t-value	Span of chronology	Reference
Wheatsheaf, Cropwell Bishop, Nottinghamshire	6.6	AD 1604-1703	Arnold et a/2008b
Pontefract Castle, Pontefract	6.3	AD 1507-1656	AD 1538-1671
13 Hallgate, Diseworth, Leicestershire	6.1	AD 1583-1720	Arnold et a/ 2005
Castle House, Melbourne, Derbyshire	5.9	AD 1562-1655	
Oak House Barn, West Bromwich, West Midlands	5.6	AD 1571-1727	Arnold and Howard 2009c unpubl
Rufford Mill, Nottinghamshire	5.6	AD 1603-1676	Howard et a/ 1991
Walnut Cottage, Hoveringham, Nottinghamshire	5.6	Laxton et a/ 1984	

FIGURES

Figure I: Map to show the general location of Groby, Leicestershire, circled. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the general location of Groby Old Hall, Groby, Leicestershire, arrowed. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: Map to show the location of Groby Old Hall, Groby, Leicestershire. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4：Ground－floor plan showing the various areas under investigation（after Finn et al 2009）

Figure 5: Smoke-blackened truss in the former open hall, photograph taken from the north (Robert Howard)

Figure 6: Roof of the former open hall, looking north-east (Robert Howard)

Figure 7: Roof truss I in the cross-wing, photograph taken from the north-west (Alison Arnold)

Figure 8: Repair to the principal rafter, truss I in the cross-wing, photograph taken from the south (Alison Arnold)

Figure 9: Roof of range E, photograph taken from the north-east (Robert Howard)

Figure 10: Roof of range F, photograph taken from the south-west (Robert Howard)

Figure II: Roof of the stair tower, photograph taken from the south-east (Alison Arnold)

Figure I2: Tower I, photograph taken from the south (Robert Howard)

Figure I3: Tower I door lintel, photograph taken from the north-west (Alison Arnold)

Figure 14: Remnants of the first-floor frame in tower I, photograph taken from below (Alison Arnold)

Figure 15: Tower 2, south-east elevation with openings, photograph taken from the east (Alison Arnold)

Figure 16: Tower 2 window lintels (GRO-B64 and GRO-B65), photographs taken from the north-west (Alison Arnold)

Figure I7: Tower 2 door lintels (GRO-B62 and GRO-B63), photograph taken from the southwest (Alison Arnold)

Figure I8: Remains of 'lost' range D with timber lintel (GRO-B6I), photograph taken from the north-west (Alison Arnold)

Figure 19: Section A-A, showing the location of samples GRO-BOI-09, GRO-BI 7, and GRO-B22-3 (after Finn et al 2009)

Figure 20: Attic plan, showing the location of samples GRO-BIO-16, GRO-BI8-2I, GRO-B24-7, GRO-B3I, GRO-B33, and GRO-B39-57 (after Finn et al 2009)

Figure 2I: Section C-C, showing the location of samples GRO-B28-30, GRO-B32, and GRO-B34-8 (after Finn et al 2009)

Figure 22: Ground-floor plan of tower I, showing the location of samples GRO-B58-60 (after Finn et al 2009)

Figure 23: Bar diagram of samples in site sequence GROBSQOI

Figure 24: Bar diagram of samples in site sequence GROBSQ02

Figure 25: Bar diagram of dated samples, sorted by area

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

GRO-B01A 86
2032271691501482042182551652031631521641221011301131118665 35644853624471603743466453487312470109115185 91100153165292170186146114157225146183184181145204202234206 184168105172165171222185172221195240269235227200235191287228 186165193221203168
GRO-B01B 86
207234167149142201228245166206159150167118941361191139571 43604359604872583739536054546712465114105182 96102145177302172180154103165228149198194196146201197232215 184169111165174171209183169224201241258235229201234200285230 191167194216200223

GRO-B02A 56

288369358300472433364448348388295208172119163125174276344208 110105161149250286298259383327281373142144107240358308403377 2994034092287886118169169175204170327301216308 GRO-B02B 56
289360351297431448360444340384303201128106162135180274336213 108103124156249284299263378323282371163152103297390322405385 3094113992347784116138171177201168316255234321
GRO-B03A 67
220322382304320307388108132171126159163226264308299298407348 2903652782952501621258912113717431334019293151182176200202 15414616623019215174926617730127140539225632428215975137 210210232251186168224
GRO-B03B 67
247324376304319304406107137181109169154216255315311281413348 2853802772972431571208612113617130834519092155181172200207 149145170229193160731047718632527440739024833028015982135 211209228247195165225
GRO-B04A 62
390306341300273273342808819723132315331315015418213213385
11294176195190226177125100174178162175189191180206177226215
187146215188120179166205246161148160234230147187204290285188 127163
GRO-B04B 62
3933073372982732743408110619322932114928317215618112213279 11410317419417022917211697171179181176191166196186186234211 165156202191122182165210248165142158238224150183199295281185 126160
GRO-B05A 74
291331403341362301281180161288287209228179197181223234290255 2342152092222102082673172982191251041128310796145149204207 214164167197211210207169153108756710011310010395141140119 1211731151501459677122152144124146166123
GRO-B05B 74
288320403346387292279194171278291208228177199179218235291254 23921420622320821227231730121113411111780104101146147203210

2101621671962132072111691561077372961131029796141142121 1231671211501409467112155149118145166127
GRO-B06A 93
350235201196307256362305360271257221245342301306263242174152
191186143161117144134167173251238208190184200157188242250231
157109868178746899111155149167113118143140145155148126
94754965911038712613615211013117613415919711868114170 2101361941971381411221569711686197154
GRO-B06B 93
351234200172293261356306342272268228250336301298259211154145 190189145172131144135164183242237199185188196156191243250230 155111868376716998110154149170108113146143146148149123
8966557080869612014215610112617913616119411265113162 1921401982011281431151559711092188157 GRO-B07A 92
118181125200339346323244198264403282287249181113791049594 1276294689311314814813911210914414716121422119514813290 76737467115117162143172142164150200202164148105835950 95121929111417014714013317416220820313193175223228164199 178130114136177115130389355290251285
GRO-B07B 92
122186125219374351326245191271398282284257185116751039793 124698069801141511551211099814714316722821518815212596 7174796811298148154182140157158196200160148107815654 93126928512216115313713417116020721113395186220229155189 173142123131180126127375345275223286 GRO-B08A 94
35629731832924325224526614487124128116162180211266240298222 241349241248276269241109895965857386161166244238138143 13314216417918815412394777083926871507210083111141 14321814869641071581841281731751181028862695472126163 13917714692101226269287236218288182164166

GRO-B08B 94

46532131132323724624126514785128131119163181214266234313216 240355258276283273233112746568827281157175257232155131 1131501651821971511308978668078747254759994115156 1492021416758100162183127172186116999563646067120161 14716715390104221266259235203298187166181 GRO-B09A 115
152218145196212308175170207178170249257136110149118139123158 179193157182174155188189159218184191122104755474515691 901021068768539716315517112812172819610291667559 8310384869487136906348739387761029581806046 4342456279818279595386108123122125142901379689 859469807985707186938094506583
GRO-B09B 115
135218152197226296165170204172175237256145101151117111107164 18419815918916715619019015722518718612899825469555792 8110610687685591172148189116114828110310193637164 671108284100811379064506992898210211075796155 50474076818885835254731021251151311539413010798 82103708480846770871038695497888
GRO-B12A 64

2452463104333313363344745846794578122209219183226134209 1741682162331851731511741171421352683404471738456131116140 180991081641701701551072701612793612842552138620820814188 128166130127
GRO-B12B 64
2602433144323313563024779546805186137197218182230140202 1821672112121601791521651141321362633324261909063109117139 185119781671761711541032761622813602842562108322020313795 122161125130
GRO-B13A 99
376332238179161921411831421261291351088290156165130134117 1211108811311112010284533962485860757588748679 5568725975476283593850524142542756384350 59117976267116105137107100186785068706046659798 87105138757572929210314111094120109119887083118 GRO-B13B 99
3783312481891591061451681451251241321197193143167134128129 119889910012411510488564359535255806590768874 5271695971446680614249474347492856483648 64112113607111411413010398188745172576649619799 8610313782747398988915498109107105130927285105 GRO-B14A 107
 6152595273604667476250504556697563543663 53769356537049881069386149135987491105126119135 1481721371381631981191111661017018898104103111108109128108 13198808890129121150123137186172232211216130116121102186 159126164112118168119
GRO-B14B 107
 6353595270615458516343405062647770534164 45769656536553881089385145139109699295129123132 14316914414016319211711216410266181111100106118102116132100 13197806511412512214512214317717623120922413211012799180 164120169115119160121

GRO-B15A 86

66671452333663692832911432654204764563482561791218575111 112145143205223214203293254280212247148159163140104155217157 1601501549366108132168205205211143115166146146159170126158 10712912715211616915310411512810411484928787949398131 107166179115117126
GRO-B15B 86
65711592823683722642871262694124904473562461841168581108 110142147199226196207291250256222254142157163138105173212156 1591511569267107136165202202214144114171141143167166128156 10913012415411417013911811012896121799585889610399132 107165181105120132
GRO-B16A 101
 918367127121928093104148128881421901311441391188298 114102981331401561792081861338759861291161089988117122 13415014812181826411313288817078939493110109172299 223252262176217308427433488292196212215274258239204144161174

GRO-B16B 101

9173741221269776861061481298514018713713113711488100 1081071021381401471752101891388364871321171049195119119 12715115111885766911312792848374929898108110169296 222247266174211292402423480296200211210276264241201150157168 239
GRO-B17A 61
22622016117024420117413510511313816613711098156163186162187 1461221138812713212811710711412696106141121143221201165148 14617117618523422718710310910011411410198791179184153138 185
GRO-B17B 61
2132201631742061932021449811913615414111592141171194168170 1471291148113012913112111310612894105140121153236201156149 146158179181230236189101114105117115102106831169286159139 210
GRO-B18A 110
208267207226320288210254182218170132144161179137222207155270 173344303232235213146118219180213186209253198196209212137182 1522102451662562311401691972452231188910390109126144148159 18119016214114614698929511680103838983109133141111124 13114714814411779598711313413712713213711713883926362 667690879911571887970
GRO-B18B 110
213259253224298276207249184212171121138159179142217204150273 169346298229235215155134190167215156204294189193207213126182 1512052481592562261431651902532071287810992107120148145153 18219115514214814210576821237992878684115147143112119 13713915314411577657611612712812914012612214583906460 7370878110012271917166

GRO-B19A 57

119901552142273092821842152852102871971881571337312010688 118120107180166153189133135173188246263308232233176165228176 16715712798186118136116119136136150188143162162195 GRO-B19B 57
116831572172323043081812202842132741951901501387711511287
12112793192180165205137145171212245265309229238183160237176
17016211994181120147120117140131146189140173154169
GRO-B21A 105
1171221291321551101189798110185175118106138108165140109112 190153137119148206185148141174230209160168249142184177125137 121133120181195217202209223204219170172137134164160125149157 176220216230144145131130179177119127928112883899196108 1051011021129887909094999686103127108105105125114100 9189124154127
GRO-B21B 105
1111141321361461091237796117188181118112136102168146111111 191152139121151203174148140174233207161168246147189178143134 126127131182208220209218224207215173160159134159150131156157 176222210240143149131127179179117122948812681939099104 1071039811499889085941029087109121117103102125113105

8884133153125
GRO-B22A 144
527321268159166156268179286315245295295347273257201249281250
193208135191137161140245137132304252190204211208118135138218
2241941511611709467556559484434679172759097129

$\begin{array}{llllllllllllllll}55 & 45 & 65 & 72 & 57 & 79 & 43 & 41 & 49 & 63 & 37 & 37 & 40 & 34 & 33 & 57 \\ 56 & 68 & 44 & 39\end{array}$

100737573463960606662658388105879174615652
115809264
GRO-B22B 144
534314266177162163265172291311250280297345262250203248290253
193213135195139164145238134145305256185202214207117138134218
2271961481621718567606162464040638970858698129
$\begin{array}{llllllllllllllll}88 & 30 & 99 & 76 & 89 & 98 & 97 & 83 & 51 & 48 & 37 & 62 & 33 & 39 & 48 & 73 \\ 67 & 78 & 74 & 59\end{array}$

87798563403867606463639177119759776604959
111789359
GRO-B23A 100
10717215311413816517711812512610810567797693101856743 34609011369639449776839559410087551001228768 741021181156710917712313113984637692134105144174177187 188161134815079102108100106110123175158180177128778061 1522021281121168010610594113104196376219214226176232252322 GRO-B23B 100
1131671479513316117612312611712010068797499103857448 4355931146757925574674647891008265841247459 73971251217111616612113313575716698136101154174176186 19315213777547610610497116105124179149187176126767864 1552001191181177910910795107111189379223216223164257250320 GRO-B24A 139
10611318514469106102134137175175131104867812310159120109 1401411031259416415210210610087941047575856675112105 101604396509787625411010986598513067608559116 756480151921108764641258611294121141114112123148127 5392919980103787211083121142104896975639610064 701017799613962856790113991121011239996100135200 8798113118841421049310313095158151158286267237207170 GRO-B24B 139
1361192031547711411014215424917912611285989710269126115 1381331051438216415510911193821071137372795281125110 11349481044996926553959775669012666548866106 706483153981138962681288311383124142114114120149120 5592939487101767311282132146931026681649211164 7591761016433688079881081021111071179687111137197 9298112111761531058710713096152157155286265234207176 GRO-B26A 88
222241371237203238261241226210138199225284321269219249155141 25919413311083223128200157169187228194136120169173181231179 19487869297168112174208157167149113112125119152164136133 120206221131121888710818320178105151119210148105148231166 167163203261145151164200

GRO-B26B 88
217238327237195237255269228216149203216297308283222243157145 25720013710889223122220158167184231201132122162169191230173 19591849198168117170191180177151124110127129141156122133 123207220132121878910418420279102150110214143106149224171 167157194256140159160208
GRO-B27A 140
28618322931026520513980272171265219206242299228178147216229 22326721016811397133116196138209154176162152150227167161140 1731011182051481371089389115168152143717817713013511185 1381391161051051831526286921531344931424836463953
 346911773747346463041563446425255525210050 7491624028507870918093110108847793978511476 GRO-B27B 140
30118920531924621513082285169266219209241302236178158200235 22927221216711198134120199143210156179166161151226174154150 1601111222191441451119591115165149141777818013113611093 1321381201091011811586488891561334936434336494151
 406912775757049483440563744395358535010154 7399604227508082877596117107877194938510679 GRO-B28A 94
1041337397718591106147155157119104146124121111168142131 10189108687158581118410210012311584927476584887 100103891119373856894155979411313612511010087154165 14215214920910593101114139130127153198161241202165154163149 13816421316314014713115713712812914194117 GRO-B28B 94
101135769869859099152158157120104150122117113173140126 103911047568527093909710712311391928073546081 10810310110395718267101154941011201231351119888162180 13416013821110798100123150135101153201156234202160159163161 14214520517613314312616014413211414294118

GRO-B29A 58

11516315469127163134254262170132243274219265307288288246228 309200160128190162182171155186183206248186216160135159175308 241139129127138188128132173176219248178166152138149109 GRO-B29B 58
11516415154127160143250255172131245272219257318272294243240 293213154123184155181172152188188198251207212157138161173310 233143122131136186125127180173225245180164155142145106 GRO-B30A 75 42228429815121116621923217714415510319017214813918019917296 119154126114108868071801021462301271311839710388208281 176144122817250527412390821181041219891110172160113 187165189105105122146198186144211266226288267
GRO-B30B 75
40928729715220617421623418912211486183173154135173202175105 1161241211181061037670871001422151321291639810489209289 1891421047673484877127948811110512210289113167147115 18116219096114121146206175146217272220295251
GRO-B31A 83

3192221821621119710814012084107137171125155183157198178132 12321621919713814719514116511511910196110143161119143134102 96111155139134183177166152159170147142132143124139123115126 1011211299487635045475467565155576950575660 6584100
GRO-B31B 83
3182201871591149211514612185109143183116148186173181189129 1222022262041331441881381661161091099810114115312314213995 104122150117137189182162156160171146136134147124135139105115 928610511589625244535360604757577051545861 689091
GRO-B32A 92
441365343241323268257334297372301254245276213241230261295243 23318119721918922520711813789125148180213213179155190179199 18619523020020116613411112993145129202184188165205173130115 1499012511098152149130132119831181071701499663136120127 15564135180172204132132184154110138
GRO-B32B 92
441355366228322271255337293364297261241268216245222254294234 20718919424020122721611713693137141183207207179157190173209 18420621519719115912212212183154129185190192167200170132139 123971261091071481551321411168312610316415110568127122129 15079130178172217129141181156110151
GRO-B33A 63
931061321542122071911971721821241652391682041671479811481 971251481561571771971391551331449311088103113124119123103 7694881211491279512010112413662126126133162134183169133 108147157
GRO-B33B 63
1061191301572042041811891701741261752171711991471509111982 102112159153164178192136145127135971019389136136115119113 71971011241491138311911213613568115128144158133179178141 112138161
GRO-B36A 47
417420327312377224199224166205325259263163129197236185157108 150229182244237236269234271271265281267211131144144158148125 200153114115128192214
GRO-B36B 47
425425322322347233193232164221307250258171139198240191164113 152230180245241232268246263268269277256219136147146160143126 193152110119135194216

GRO-B37A 69

11381190142226233156168233188255181215402229240150333325270
156247227190282179155122161160161164174195206221182203178124
12615211715415617485184159209258207169122128129236169151153
220175245180165227265230294
GRO-B37B 69
12284202142219237152168224184222204218395227233152330321269 137228217192272174156114174151172168175204207219183199181130 12114712216115917688189157210255210165126124133236170149154
221176241184157233262233292
GRO-B38A 71
471414241184184211141241286252309168244213238216287260204157

13513716314616318915015614914622614116821616516314883100183 152142125153256149111110166198168142181206141166139136127136 146167191148194129125134180169121
GRO-B38B 71
468410246183191218151248279273300184249201242198267256200173 1461361381481691861471681391362261421592221471681378499171 166148115154239153115113158199160147184204137168145130132132 143173189155191127128133182169121
GRO-B39A 126
15817617915817412913318020414319516011813811078161144133102 8114311110897858164797287931091181089597704252
83656712897769768105104119968580949997868995

8766741011108285821057161456375816166947475
8385881171028351112101919374981028211291858366
8473102906757
GRO-B39B 126
17317917815515112812718519814818615512013910582158137134112 71143115114918185698481729111211510910681735241
72636312799789771951141218594949394929474122
75685798978947518856898159707883774779103
8865721021098384841066859466870835969917670
848588124988644113105919482881078610490858368
817793986957
GRO-B40A 63
4143915584895513883412291811699910712221116512594137218152 258228229345291200131114137201256278314194346391230194148165 155263259264176148119137163151224219265201223199213234172139 165197275
GRO-B40B 63
420391552497543373349226182171105120110193144125100132217156 248236239337294215126121136196247277311196348393226200146158 161288260244183147117135170148220219272198223202213225187139 176179262
GRO-B41A 74
12916912712522219415714712010293126149162158220255197182126 197268248316158161149141148124121134125165166202153150159161 15415880641021311071181251649980759684737610213299 1031078063675767889192959983108
GRO-B41B 74
14416112912422220216114212210786123153165154209233193165121 193265234316148174155134147124127131123165167203151151162159 159163786110313610811312816395867293818169102133100 1011108069586567908896951008899
GRO-B42A 103
11011286556159779410010557553748624743704968

 8913818110514596904784918880929311410714614211883 84108140146112931071081581711991681457712489198140117103 82139140
GRO-B42B 103
1161108754655880939810260503750624436735267

9990947393798364536891877270545562819485 53535838898069577611310053130918582104156139102 91139183117146100845187869081929211710614713912080 8610714014511692106106167166202167145791298619814112391 95128136

GRO-B43A 99

37441122026120917512111912518481120132125951191141067899 888464921001511271671121108290107103958949544850
 443645363357474448711089972701151061197874146 585871626042639899739310476688710010499149

GRO-B43B 99

38640421725922017112111811917683118130121981231031007490
808364921101411151581031128199101991058257504452

463543363352524345761179770791081091148076144
59606962594262100977986110727086102108109134
GRO-B44A 57
12789165155186119166152132228184146125123124146131147159141 19715215314512112614414215915713396142176176160156133128134 14818913613010711412512312999125129136190134187206

GRO-B44B 57

12594166157186117168140145220192148121139123140137142162143
20315315114112912113813216615713685136165179152149140131143
139185138125100126127119130105122126126181136192205
GRO-B45A 167
103128146149494650113129190107102627450957879254245 2491671552249977781811902153252551651928162108773837
 43675391676793867562641029270415053484233
 39353532404336455366576552574948815781100 111881008274473154815958575456706970676136 403556674650394236354449217309341244191200131205 174206269253187132123

GRO-B45B 167

85130148132644848115135218126995377511036582261251 24616516221610173831851872053292491661788265105753941
42797964827498926566567510660847450553445
32734986656892866667691009465504948474233

106901029366563562745860576351746573734940
443452655150433848404053214322343253175208132202
153219272228187136124
GRO-B46A 56
245269267124132781281171331271331861281581001281328910993 1181671531451301271481141129694119110134163148173167221177 162163188178184187227154134106129176141109119175 GRO-B46B 56
233260243122125951051031381201211851221541011221358010796 1161671461541311251541211039190125106142162149176163214177 160168182176186191225152134105127176140109114175

GRO-B48A 48
5572135140195220247150197143152173291257296307245203136162 15596204235181193176169209222303300263269245254279189148264 251153122173290309338229

GRO-B48B 48

6161138132190217244149193145155172306251304317250203142158
16295198226192194179164214225297304266263247248278192149262
252157122169285317331231
GRO-B49A 84
314295117961231444655519620123829723429028128919719686 117130179163134194204179223140216194186242224207225163182312 27430410451597998133143222103134116113166223165188211263 15516315614221518896877783669279150150173154123123132 215262173188

GRO-B49B 84

327294123901431394553499320424829724328428128620519783 129150189168153182211172219141216191191243226202224166189313 27430410256558098132144225103139118114162228166185210254 15915715814921219193918271688683156158171163120122124 219253169199
GRO-B50A 92
10198164162201180157174159132808457671019481132210146
1281551221341841271039253102192239216134118558191155165
78989179199170941051108310390172181969388133143147
76861187476484764745965779611513010297979844
5393112106105635986120152151146
GRO-B50B 92
9998170159198178150167170127847364701118769133199143
12815312713316513097966897187233212137123488499146160
82991029020417189100108929298167186999592129145141
74891186983495066745470739811613310086979440 579311291107676382125152146147
GRO-B51A 124
2742982712302522452332812083638384549561068410811586 929710514419314719113174529313411691954412410610590 9311016911254851141061391341341107666566176808786 9911810110169729052785462946952734753547865
 4440509146656558345251444255475253566140
44354231
GRO-B51B 124
2672932852302492502302812043840425044561098810210278 899112215519214918613177361121421309698481269912190 10511618512059881151051331341301167069556077768982 99117102100657785608347541027158714750527367 8243588572756449445955483646844034484664
 $4033 \quad 4037$
GRO-B52A 75
347342312342340352353308244365319428458341466370379406327329 22821619522822521921622620318597505348333830203026

556054707182102103106717454779794

GRO-B52B 75

352346313344340353350304244366325429454341468373378407320320
24022818723522022721622520418594505850323329243425
2931393241341924485155633730483331344760 5960507169851031031037670577495108

GRO-B53A 85

21627726426528743724617011580655357524588143198161151 9683136127128102114109896868951628511111015421716197 133102145142736810414613893114156127102916753625465 138107978573538296104941089110084799089756252 61661027681
GRO-B53B 85
16926826725929443424816711780625359534292135204160151
99851381271311011131098770659616094120108162217156101
1379616014275671031361479611215813196956755655980
11410995917561799210491102899771779389825566
6773927497
GRO-B54A 62
183208217155131145146181150215157144126147164103170217181203 17212714420125824718625024217821619326421425610390707080 8778861068575811047310211311398107997811510710283 5794
GRO-B54B 62
186207211159133147145186150208161134127141163109177209183201
18313613520524424419024125317520919326721126710487726683
8579861029072859978101115113961041018011010710585
7391
GRO-B55A 103
3503293469730435180961131331008110491147203174190176 19514515513112117318313910910399103138117162164188170157123 1132342261561979410210476989987118112120132166112131145 1071191338464901171067711013176686382786460101105 79858460436263941041201051079689121101998711894 7972183
GRO-B55B 103
35532534210127426079961001261129110491157208177171183 21813316113912617118013311510788118132112165168183169155128 11423321616316992101107741009888115113120128162111134148 991221337462891201057710813183646289717053103106 86838462436467901051161081139586122931018711194 8870191
GRO-B56A 81
1011767587163156129225229244149218256275276289204159156123
12089119233199274131166130185170244235231176147110776392
11373849282132637414311210989786811413312483131153
11379909896174125205162115147103908513498131122106119 112

GRO-B56B 81

1091768281167148132225226248151209250274271290206161152127
12095119235195257139164129176170251235231173151111776593
11381848567138677913811211288747611112112890111162 10682861029817411718917011414897968513595131125112117 94

GRO-B57A 65

190185170253276249231250152909811412716110910864101123157 1521498711312712197139246220249231207161116117113176172198 209221243343257169237199166196187140246214212231181124152249 204308145105214 GRO-B57B 65
19118917523427524023725315681103106133151123966796126155 15014584111125131103124246218247231204165118120110180179199 203225242335263155236198173198181136247218201240183123153250 203314144108204

GRO-B58A 102

9710715117513714016816311786545257557167129107130129 11190798786989575736353444957514654556362 89209103118112664161575048376768525154534358 66819779957379799593851159498122124133150101102 115125123133871061091061087688104114116123129116149132178 226294
GRO-B58B 102
8512516617415715716018612784644560576960122122127125 93888610176959673796653464957544766546959 106232100128104774456645052457064496347395353 6683919086738086969186121879812212913116099103 12612211713994105991121067986109119117124137114110110181 230300
GRO-B59A 93
184197110124216173272182175168177232267232238222197209239212 258288238278225246247285377347366226171187128102152155233214 21121520617218219622122620817316514416010916018813314616193 1478910012190126118916876100101115128162111781029970 82106133156141143122138106155162151149
GRO-B59B 93
186195106132213175245220183173184223256222244234194199237219 258295227254249244253275418354375245170189122111147161243214 21322220117318920921422420018816314716111515118913116116292 14298101121901261148677601079812912516511588999679 88102139159151142121136123146162148162

GRO-B61A 140

2423152021732002491309270841341509514510510395956991 1211822381971992351761811281048579127223222199117977397 90767264664748457048667077818210078114122143 7995643542425072809496127146105163132141906364 778986916959586210312075718657807964417291 725877103678279659411675698183709972535054 52548083881021031141268653789411411687137141138153 GRO-B61B 140
222326208182209251135907481131144991441139796966782 130181233204201230179181132100888012722422219813210072101
8680666665464940665169667875869783108118149 71926037494244737210993143130104162142143796367 828896896766526510112870758662727769456785
 53488681861081021121168162799412912488143131139158 GRO-B62A 92

938311712695187204124128159184129878874113141153179159 147124921501821671621429111112312913717510716118311810298 146160136149133143174847568861281549778127112857958
 $\begin{array}{llllllllll}92 & 85 & 62 & 87 & 87 & 78 & 91 & 72 & 79 & 114 \\ 98\end{array}$ GRO-B62B 92 9385113121101187203133127160186129858582110151153173160 1471268715017217515614588971291371331751071611911178999 139160150146132146179767471841311539279131107847856 787550907048604560958580795442475671105104 88747380887890717885100107

GRO-B64A 84

202141139164195215213281216291264265177234108117133138179274
303265225226325234326231144127122139176305307216236250237190
16519716715092133156162199179166177115113158150151148106165
 67736374
GRO-B64B 84
190146127161190214217277226285268258173232121109139132178268 310261228217327238332230141134114136172308308217256234244196 151201155150103120156168226149160173116107156154156151102161
 57836276
GRO-B65A 91
104126968360958589128118124146106117135179182847979 101106921069477513990134152394676518862626581
11193837610865474966989483701151077372856383
829685117109102132941161045174113112958647708462
76811118461776310212275100
GRO-B65B 91
1151181017963948454113123123130128129123166178988273 10592100969582485087140142584469578875557379 11586807211763504664997680691121018177865587 8696851151021111109411010456801101181008564667967 748610485647862871188199

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the
sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C 45 and C 08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/ 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95\% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings’ are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 110 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 |

C45

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C 08 and C 45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, \downarrow Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber. Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, \checkmark Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

