LANGLEY ABBEY, LANGLEY WITH HARDLEY, NORFOLK TREE-RING ANALYSIS OFTIMBERS
 SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

LAN GLEY ABBEY, LANGLEY W ITH HARDLEY, NO RFO LK

TREE-RIN G ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR:TG 3624302852 and TG 3622002837
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (O nline)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English H eritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY
A nalysis undertaken on samples from the former west clo ister and former stables of Langley A bbey resulted in the construction of two site sequences. Site sequence LN GLSQ 01 contains three samples and spans the period AD 1313-1424 and LN GLSQ 02 contains 26 samples and spans the period AD 1436-1611.

Interpretation indicates that the roof of the former west cloister contains timber felled in AD 1605-30. The south end of the former stables has a truss constructed from timber felled in AD 1433-58, whilst the rest of the dated timber from this building is latesixteenth and early seventeenth century in date.

CONTRIBUTO RS
Alison A rnold and Robert Howard

ACKNOW LEDGEMENTS

The Laboratory would like to thank N atalie W ilson, Estates Administrator, for facilitating access. D rawings were provided by W ilson MacGarry A rchitects. Thanks are also given to Cathy Tyers and Shahina Farid of the English Heritage Scientific Dating Team for commissioning the analysis and their advice and assistance throughout the production of this report.

ARCHIVE LOCATIO N
N orfolk Historic Environment Record
Union House
Gressenhall
Dereham
Norfolk NR20 4DR
DATE O F IN VESTIGATIO N
2013

CONTACT DETAILS

Alison A rnold and Robert Howard
Nottingham Tree-ring D ating Laboratory
20 Hillcrest Grove
Sherwood
N ottingham N G5 1FT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Former west range of cloister 1
Former stable block 1
Sampling 1
A nalysis and Results 2
Interpretation 2
Former west range of cloister 3
Former stable block 3
Roof 3
Floor frame 4
Discussion 4
Bibliography 6
Tables 8
Figures 11
D ata of Measured Samples 29
Appendix: Tree-Ring D ating 38
The Principles of Tree-Ring D ating 38
The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory 38

1. Inspecting the Building and Sampling the Timbers 38
2. Measuring Ring W idths 43
3. Cross-M atching and D ating the Samples. 43
4. Estimating the Felling D ate. 44
5. Estimating the D ate of C nstruction. 45
6. Master Chronological Sequences 46
7. Ring-W idth Indices 46
References 50

INTRO DUCTION

The Grade 1 listed remains of the Premonstratensian Abbey of Langley is situated in the parish Langley with Hardley some 16km south-east of Norwich (Figs 1-3). Founded in AD 1195, extant remains and excavations have shown the abbey to have consisted of a cruciform aisled church with a tower at the west end, a presbytery flanked by chapels, and an additional chapel north of the north transept with the claustral buildings arranged to the south. These included the sacristy, chapter house, parlour, dorter, and its sub-vault and warming house in the east range, the frater in the south range, and a cellarium in the west range (Fig 4). The monastery was dissolved in AD 1536 (www.pastscape.org).

Extant remains of the abbey buildings include two barns that were formerly the stable block (west barn) and the west range of the cloister of the abbey (east barn).

Former west range of cloister

This Grade 1 building is thought to date from the thirteenth century but has experienced substantial remodelling since this time. Its structure comprises limestone, brick, and flint with red brick, and limestone dressings (Fig 5). The main block was originally of two-and-a-half storeys with vaulting above the ground floor. It has a steeply-pitched, thatched roof over the south end, with a later, shallower-pitched, pantiled roof to the north; the north gable retains the line of the earlier roof. The roof comprises two tiers of butt purlins, tiebeams, and collars to principal rafters and appears to be a mixture of modern and historic timbers. Additionally, trusses 5, 6, and 8 retain wall-posts (either both or just to one side) and there are arch-braces to the west side of trusses 5 and 6 (Fig 6). This building is part of the Scheduled Ancient Monument.

Former stable block

This Grade I** listed building on the Heritage at Risk register, has a red-brick ground floor with jettied timber-framed upper storey, beneath a steeply pitched, thatched roof (Fig 7). The roof is of a clasped purlin type, with curved wind bracing and surviving arch-braces to the two central tiebeams (Fig 8). Trusses 6 and 7 are immediately adjacent to each other suggesting they may have originally belonged to two separate buildings (Fig 9). The exposed first-floor frame consists of closely-set joists and bridging beams supported by timber posts (Fig 10). The building is currently thought to be sixteenth century with a rebuilt south gable in brick dating to the twentieth century.

SAMPLIN G

A dendrochronological survey was requested by John Etté (English Heritage, Heritage at Risk Principal Adviser) and coordinated by W ill Fletcher (English Heritage, Inspector of A ncient Monuments) to ascertain whether the former stable block (the west barn) dates
to pre- or post-dissolution in the early-mid sixteenth century and whether a similar date can be determined for the roof of the west range of the cloister. Additionally, dendrochronological dating evidence from the former stable block will contribute to the strategy for repair.

A total of 44 timbers from the former west range of the cloister and stable block was sampled by coring. Each sample was given the code LN G-L and numbered 1-44. Samples LN G-L01-15 were taken from the former west cloister range roof and LN G-L16-44 from the former stable block. The locations of all samples were noted at the time of sampling and are shown on Figures 11-21. Further details relating to the samples can be found in Table 1.

ANALYSISAND RESULTS

Four samples, one from the former western cloister, two from the former stable block roof, and one from the ground-floor ceiling, had too few rings for secure dating and so were rejected prior to measurement. The remaining 40 samples were prepared by sanding and polishing and their growth ring-widths measured; the data of these measurements are given at the end of the report. All samples were then compared with each other by the Litton/Z ainodin grouping programme (see Appendix).

Firstly, three samples, all from truss 7 of the former stable block roof, matched each other and were combined at the relevant offset positions to form LN GLSQ 01, a site sequence of 112 rings (Fig 22). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to match consistently and securely at a first-ring date of AD 1313 and a last-measured ring date of AD 1424 The evidence for this dating is given in Table 2.

Twenty-six samples matched each other and were combined at the relevant offset positions to form LN GLSQ 02, a site sequence of 176 rings (Fig 23). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to span the period AD 1436-1611. The evidence for this dating is given in Table 3.

Attempts to date the remaining 11 ungrouped samples by individually comparing them against the reference chronologies were unsuccessful and all remain undated.

IN TERPRETATION

Felling date ranges have been calculated using the estimate that mature oak trees in this region have 15-40 sapwood rings.

Former west range of cloister

Twelve of the samples taken from this building have been successfully dated within site sequence LN GLSQ 02. All 12 samples have the heartwood/sapwood boundary ring date, which in all cases is broadly contemporary ranging from AD 1577 to AD 1597 and suggestive of a single felling (Fig 24). The average of this is AD 1590, allowing an estimated felling date to be calculated for the 12 timbers represented to within the range AD 1605-30.

Former stable block

Seventeen samples taken from the roof and floor frame of this building have been successfully dated (Fig 24), three within site sequence LN GLSQ 01 and the remainder within LN GLSQ 02.

Roof

Three of the roof samples, all from truss 7, are substantially earlier than the rest of the dated timber. Two of these (LN G-L42 and LN G-L44) have similar heartwood/sapwood boundary ring dates, the average of which is AD 1418, allowing an estimated felling date range to be calculated for the two timbers represented to within the range AD 1433-58. The third sample (LN G-L41) does not have the heartwood/sapwood boundary ring and so an estimated felling date cannot be calculated for it, except that with a last-measured heartwood ring date of AD 1381 this would be after AD 1396. However, this sample matches LN G-L42 at $t=10.2$ which is of a level which might suggest both timbers were cut from the same tree, meaning this timber would also have been felled in AD 1433-58.

Of the other nine dated roof samples, sample LN G-L17, taken from the tiebeam of truss 2, has complete sapwood and the last-measured ring date of AD 1611, the felling date of the timber represented. Seven further samples have the heartwood/sapwood boundary ring; the date of which varies from AD 1551 (LNG-L16) to AD 1577 (LN G-L20). Given that sample LN G-L17 has the heartwood/sapwood boundary ring date of AD 1586 this would give a difference in heartwood/sapwood boundary of 35 years, somewhat greater than would be expected for a group of coeval timbers.

The sample with the earliest heartwood/sapwood boundary ring date is LN G-L16, taken from the tiebeam of truss 1 . This is AD 1551 which allows an estimated felling date to be calculated for the timber represented to within the range AD 1566-91.

There are five samples (taken from three studs and two tiebeams) with very similar heartwood/sapwood boundary ring dates (LN G-G21, LN G-G22, LN G-G27, LN G-G28, and LN G-G30); the difference between these heartwood/sapwood boundary ring dates is only six years, entirely consistent with contemporary felling. The average
heartwood/sapwood boundary ring dates for these five samples is AD 1564, giving an estimated felling date range for the timbers represented of AD 1579-1604.

Sample LN G-L20 has a slightly later heartwood/sapwood boundary ring date of AD 1577, allowing an estimated felling date to be calculated for the timber represented to within the range AD 1592-1617, consistent with this timber having been felled in AD 1611.

The final dated sample, LN G-L29, does not have heartwood/sapwood boundary but with a last-measured heartwood ring date of AD 1556, this timber would be estimated to have a terminus post quem felling of AD 1571. Furthermore, sample LN G-L29 matches samples LN G-L27, LN G-L28, and LN G-L30 with t-values in excess of 10, with all four stud posts likely to have been cut from the same tree and therefore, felled at the same time (AD 1579-1604).

Floor frame

Two of the samples taken from the floor frame have complete sapwood and the lastmeasured ring date of AD 1611, the felling date of the timber represented. $0 f$ the other three dated floor frame samples, one (LN G-L34) has the heartwood/sapwood boundary ring date of AD 1577, allowing an estimated felling date to be calculated for the timber represented within the range AD 1592-1617, consistent with this timber also having been felled in AD 1611. The two samples without the heartwood/sapwood boundary have last-measured ring dates of AD 1541 (LN G-L33) and AD 1592 (LN G-L35), giving terminus post quem felling dates of AD 1556 and AD 1607, respectively. These two samples can be seen to match other floor frame samples at values of $t=8.0$ and above (LN G-L33 matches LN G-L34 at $\mathrm{t}=8.0$ and LN G-L35 matches LN G-L32 at $\mathrm{t}=8.3$) perhaps lending some evidence to suggest that these two timbers were also felled in AD 1611. A caveat to this would be that, given the variation in felling date ranges for the timber utilised in the roof above, one cannot be certain that all of these floor timbers were felled at precisely the same time.

DISC USSIO N

Dendrochronological research has successfully dated beams from both the former west range of the cloister and stable block, identifying timbers of pre- and post-dissolution date.

The earliest timbers have been identified within truss 7 of the former stable block, where two posts and a principal rafter have been dated to AD 1433-58. As mentioned in the introduction, this truss is located immediately adjacent to truss 6 , which might suggest two separate building phases. Indeed, timber dated from the roof over the rest of this building has been found to be substantially later. The tiebeam of truss 1 has been dated to AD 1566-91, four studs and the tiebeams of trusses 4 and 5 dated to AD 1579-1604, the tiebeam of truss 2 to AD 1611 and collar of truss 3 dated to AD 1592-1617. The floor
frame of the former stable block has also been found to contain timber dating to AD 1611.

It had been suggested that most of the roof timber in the former stable block was original (D onal MacG arry pers comm), and it is unclear how the slightly different dates that have been gained for these should be interpreted. The central bays (between trusses 3-6) were thought to be the earliest phase and it is from these that the six samples dated to AD 1579-1604 can be found. The tiebeam of truss 1 has a slightly earlier but overlapping felling date range of AD 1566-91, making it possible that all seven timbers were felled in AD 1579-91. The timbers dated to AD 1611 (with felling date ranges consistent with an AD 1611 felling) are from roof trusses 2 and 3, and from the floor frame below trusses 1-3, could relate to modification in this part of the building. Alternatively it may be that construction simply occurred in or soon after AD 1611 utilising a degree of stockpiled or reused material, although no obvious signs of reuse were noted during sampling.

The dendrochronology appears to show the incorporation of a truss belonging to a mid fifteenth-century building into a later structure. Interestingly, it can be seen that the tiebeam of truss 7 is very similar in appearance to that of truss 3 with a distinctive 'bend' in it (Figs 8 and 25). The tiebeam of truss 3 was deemed unsuitable and not sampled whilst that of truss 7 has 47 rings only and is undated. Although conjecture, it may be that these two tiebeams are cut from the same tree suggesting the inclusion of at least one salvaged fifteenth-century timber in the main body of the barn (date by association with the other timber elements in this truss). Furthermore, this tiebeam appears to have an empty mortice for a brace with no matching mortice on the wall-post suggesting that either it is reused or the wall-post is a replacement.

A number of timber elements from the former west range of the cloister are now known to have been felled in AD 1605-30. It can be seen that this felling date range encompasses the AD 1611 date gained for a number of the beams from the former stables. Additionally, there is evidence for possible same tree matches between the two areas with sample LN G-L17, taken from the tiebeam of truss 2 in the former stables matching common rafters (LN G-L13 and LN G-L15) from the former west cloister particularly well ($\mathrm{t}=10.2$ and 9.9).

The apparently contemporary nature of the surviving timber from the former cloister and stable block poses the question as to whether the structures are indeed of the same early seventeenth-century date or whether one utilises salvaged material from the other, although if the latter is the case this reuse is not obvious. These buildings would undoubtedly benefit from further study from a buildings specialist.

BIBLIO GRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring analysis of timbers from the M anor House, W est Street, Alford, Lincolnshire, Centre for Archaeol Rep, 55/2003

Boswijk, G, and Tyers, I, 1998 Tree-ring analysis of oak timbers from Dragon H all, King Street, Norwich, ARCUS Rep, 365

Bridge, M C, 1998 Tree-ring analysis of timbers from the bellframe and bell chamber floor, Church of St Peter and St Paul, Cranfield, Bedfordshire, Anc Mon Lab Rep, 35/98

Bridge, M C, 2008a St M ary M agdalen's Church, Wiggenhall St M ary M agdalen, Norfolk, TreeRing Dating Analysis of Timbers, EH Res Dept Rep Ser, 14/2008

Bridge, M C, 2008b Framlingham Castle, Suffolk: tree-ring analysis of timbers from the Poorhouse and gates, EH Res Dept Rep Ser, 40/2008

Bridge, M C, 2009 All Saints' Church, M ettingham, Suffolk, tree-ring analysis of timbers from the tower, EH Res Dept Rep Ser, 101/2009

Elliston Erwood, F C, 1922 The Premonstratensian Abbey of Langley, C ounty N orfolk, N orfolk Archaeology, 21, 48-103

Howard, R E, Laxton, R R, and Litton, C D , 1997 Tree-ring analysis of timbers from Astley Castle, Warwickshire, C entre for Archaeol Rep, 83/1997

Howard, R E, Laxton, R R, and Litton, CD, 1998 Tree-ring analysis of timbers from St Andrew's Owston, Leicestershire, Anc Mon Lab Rep, 39/1998

Howard, R E, 2002 unpubl composite site chronology for Ightham M ote, Ivy Hatch, Kent, unpubl computer file KIM ASQ01/02/03, N UTRDL

Howard, R E, Laxton, R R, and Litton, C D, 2000a Tree-ring analysis of timbers from The Barn and Cottage, Abbey Farm, Thetford, N orfolk, Anc Mon Lab Rep, 48/2000

Howard, R E, Laxton, R R, and Litton, C D , 2000b Tree-ring analysis of timbers from Exeter Guildhall, High Street, Exeter, Devon, Anc M on Lab Rep, 56/1999

Miles, D H, W orthington, M J, and Bridge, M C 2007 Tree-ring dates, Vernacular Architecture, 38, 120-39

Miles, D H, W orthington, M J, and Bridge, M C 2009 Tree-ring dates, Vernacular Achitecture, 40, 122-8

Tyers, I, 1999 Tree-ring analysis of timbers from M arriot's W arehouse, King's Lynn, N orfolk, Anc Mon Lab Rep, 11/99

TABLES

Table 1: Details of samples from Langley Abbey, Langley with Hardley, Norfolk

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Former west range of cloister						
LNG-LO1	East wallpost, truss 5	NM	--	----	----	----
LNG-L02	W est wallpost, truss 5	94	04	1506	1595	1599
LNG-L03	Tiebeam, truss 6	92	h/s	1503	1594	1594
LNG-L04	W est wallpost, truss 6	77	01	1519	1594	1595
LNG-L05	W est brace, truss 6	79	h/s	1505	1583	1583
LNG-L06	East principal rafter, truss 7	72	h/s	1507	1578	1578
LNG-L07	West principal rafter, truss 7	59	01	1520	1577	1578
LNG-L08	Tiebeam, truss 7	75	h/s	-	--	----
LNG-L09	East principal rafter, truss 8	109	h/s	1489	1597	1597
LNG-L10	Tiebeam, truss 8	78	h/s	1514	1591	1591
LNG-L11	East wallpost, truss 8	48	01	-	----	----
LNG-L12	West common rafter 5, bay 6	55	h/s	1539	1593	1593
LNG-L13	East common rafter 2, bay 7	100	03	1497	1593	1596
LNG-L14	East common rafter 4, bay 7	69	h/s	1523	1591	1591
LNG-L15	East common rafter 6, bay 7	106	02	1490	1593	1595
Former stable block						
Main barn - roof \& structure						
LNG-L16	Tiebeam, truss 1	104	h/s	1448	1551	1551
LNG-L17	Tiebeam, truss 2	164	25C	1448	1586	1611
LNG-L18	W est wallpost, truss 2	NM	--	----	----	----
LNG-L19	East principal rafter, truss 3	49	08	----	----	----
LNG-L20	Collar, truss 3	52	01	1527	1577	1578
LNG-L21	Tiebeam, truss 4	63	h/s	1501	1563	1563
LNG-L22	Tiebeam, truss 5	67	h/s	1498	1564	1564
LNG-L23	W est upper main stud, truss 6	73	--	----	----	----

LNG-L24	West common rafter 10, bay 1	46	h/s	----	----	----
LNG-L25	West common rafter 7, bay 2	53	13C	----	----	----
LNG-L26	West common rafter 8, bay 2	NM	--	----	----	----
LNG-L27	West upper stud 2, bay 3	142	10	1436	1567	1577
LNG-L28	West upper stud 3, bay 3	131	h/s	1437	1567	1567
LNG-L29	West upper stud 1, bay 4	116	--	1441	----	1556
LNG-L30	East upper stud 2, bay 4	128	11	1445	1561	1572
Ground-floor ceiling structure						
LNG-L31	East joist 5, bay 1	54	15C	1558	1597	1611
LNG-L32	West joist 1, bay 2	67	13C	1545	1598	1611
LNG-L33	East joist 2, bay 2	67	--	1475	----	1545
LNG-L34	East joist 3, bay 2	86	h/s	1492	1577	1577
LNG-L35	West joist 5, bay 2	52	--	1541	----	1592
LNG-L36	Beam 1	75	h/s	----	----	----
LNG-L37	West joist 1, bay 3	NM	--	----	----	----
LNG-L38	West joist 6, bay 3	71	18	----	----	----
LNG-L39	West joist 7, bay 3	83	03	----	----	----
LNG-L40	West joist 11, bay 4	88	--	----	----	----
South Extension						
LNG-L41	East post, truss 7	67	--	1315	----	1381
LNG-L42	West post, truss 7	98	h/s	1315	1412	1412
LNG-L43	Tiebeam, truss 7	44	h/s	----	----	----
LNG-L44	East brace, truss 7	112	h/s	1313	1424	1424

*NM = not measured
**h/s = heartwood/sapwood boundary is the last-measured ring
$C=$ complete sapwood retained on sample, last measured ring is the felling date

Table 3: Results of the cross-matching of site sequence UNGLSQ02 and relevant reference chronologies when the first-ring date is AD 1436 and the last-measured ring date is AD 1611

Reference chronology	t-value	Span of chronology	Reference
St Peter and St Paul Church bellframe, Cranfield, Bedfordshire	10.7	AD 1342-1469	Bridge1998
Manor House, Alford, Lincolnshire	10.3	AD 1500-1668	Arnold et al 2003
All Saints Church, Mettingham, Suffolk	9.5	AD 1528-1598	Bridge 2009
Bedfield Hall, Suffolk	9.1	AD 1473-1627	Miles et al 2007
Astley Castle, Warwickshire	9.3	AD 1495-1627	Howard et al 1997
Poorhouse, Framlingham, Suffolk	8.7	AD 1426-1585	Bridge 2008b
$7 / 9$ Gracechurch Street, Debenham, Suffolk	8.7	AD 1497-1600	Miles et al 2009

FIGURES

Figure 1: M ap to show the general location of Langley with Hardley, N orfolk, arrowed. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the general location of Langley Abbey, Langley with Hardley, N orfolk, arrowed. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: Location of Langley Abbey, Langley with Hardley, Norfolk. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 5: Former west range of the cloister, from the east (Alison Arnold)

Figure 6: Former west range of the cloister, photograph taken from the south (Alison Arnold)

Figure 7: Former stable block, photograph taken from the north-west (Alison Arnold)

Figure 8: Former stable block, truss 3, photograph taken from the north-west (Alison Arnold)

Figure 9: Former stable block, trusses 6 (right) and 7 (left) (Alison Arnold)

Figure 10: Former stable block, ground-floor ceiling (first-floor frame), photograph taken from the north (Alison Arnold)

Figure 11: Former west range of the doister, long section, east side (inner view), showing the location of samples LNG-13-15 (Wilson MacGary

Figure 12: Former west range of the doister, long section, west side (inner view), showing the location of sample LNG-LI2 (Wilson MacGary Architeds)

Figure 13: Former west range of the cloister, truss 5 , showing the location of samples LNGL01 and LNG-L02 (W ilson M acGarry Architects)

Figure 14: Former west range of the cloister, truss 6 , showing the location of samples LNG-L03-05 (W ilson M acGarry Architects)

Figure 15: Former west range of the cloister, truss 7, showing the location of samples LNG-L06-08 (W ilson M acGarry Architects)

Figure 16: Former west range of the cloister, truss 8 , showing the location of samples LNG-L09-11 (W ilson M acGarry Architects)

Figure 17：First－floor plan of the former stable block，showing truss numbering and the location of samples LNG－16－18，LNG－L20－9 and UNG－L42－3 （Wilson MacGarry Architects）

Figure 18: Long section of east side (inner view) of the former stable block, showing the location of samples LNG-L19, LNG-L30, LNG-L41, and LNGL44 (Willson MacGarry Architects)

Figure 19: Sketch of the ground floor of the former stable block, showing the location of samples LNG-L31-40

Figure 20: Former stable block, truss 4, showing the location of sample LNG-L21 (W ilson M acGarrry Architects)

Figure 21: Former stable block, truss 5, showing the location of sample LNG-L22 (W ilson M acGarry Architects)

Figure 22: Bar diagram of samples in site sequence UNGLSQ01

Figure 23: Bar diagram of samples in site sequence LNGLSQ02

Figure 24: Bar diagram of all dated samples, sorted by area and heartwood/sapwood boundary ring position

Figure 25: Truss 7 of the former stable block, with distinctive 'bend', taken from the south (Alison Arnold)

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
LNG-LO2A 94
214232 321 292232231158134185 301 320187 241 117 103 77 123122119103
103147148150105171 135145151269248251234282297 332207 252186 190
141148211188169134133129129135174138122129126130150145102119
136114154200231137148197186226190211237235241178176 210249251
249191143162134143113172181 202169164193158
LN G-L02B }9
224243 331 306235 219140121199271299200232121105 78 116127112105
104146147150109172127150149270240256240278298 327193239184187
150152236199142126121126118143175135121132115128144142102109
136112154201223141147193190214192 211232235 253163167199273259
246198153162123148122176184232155177193170
LN G-L03A }9
399384532 312453508 884718407434 353208252228148 210297 185138193
142128 94127165160190184 262170222164 20015712011816163130148138
100 132 107 72 56 67 85 64 86 63 58 68 101 80 82 81 77 130 87 112
75 74 74 59 44 90 72 109126 103118133126122102 84 63 86 87 107
84163102108 91 82 106 69 55 91 100 124
LN G-L03B }9
419398517 301444493928709412435368204258224146213290188141189
137126101132171159182173261162189164199154130121148126156144
96 126 110 79 56 70 87 71 72 58 67 65 100 74 86 79 80 130 86 114
7261 70 63 48 77 83103137105 127 136 114 121 108 78 68 94 83 111
82154 97 115 85 87 102 72 52 92 92 129
LN G-L04A 77
326268202 260286220 177 161 233199264192 373 349347 311 397 321 360286
331328 315 182271240 203157167182211225 186 181 240188 211 263215 223
288248262 318265223237189212275 241 292 190 222 237 282 368 248 249221
241276208158190 295 253289218167176 178157110137181 171
LN G-L04B 77
321262206 258289229183148235197267191 360 346 345 312395 317 359284
329313 319180269243199159160177 231224192191238198222 271216 229
282 254 259 313268 223238189209275 239291 194 219239284 368 247 251229
236278207161186 271280287 218166 174182159112138171 172
LNG-L05A 79
173194180185320 322 287 317296 275 329 332 224 355 330174147 223193 215
133178215 234239196 306 248269268 381 215 289 302403 453482268210252
274186 118185 200 204 268 238279258 396288284 333 311 399286 283279230
256227254 324262 329 304 272 233255204162149151181194101 89 96
LN G-L05B 79
179196 183 181 325 323 293 319290277 325297 218358 321 170 139231219184
154178207248240204 313254235279367233290298 384473473256209255
291199136179196218254239280260394 271 291 337 324443268299279233
270225 253 292 257 309 303 259245 242210138150145184190105 94 95
LNG-L06A 72
238223236 351236223 314 326 304 395406477 285278218265182175 264196
403224 312187539470255204 343 328 333230 332472387134168153185309
205400507 317150247 310244483 306256202 273440305 382263165 216124
```

136246190211170119161210140129195205
LN G-L06B 72
241229234349235226317323319373413491290287231260180176275200
407218311186546474256198338342329234326465372124182156188304
206403501315155245308249485302259198265441303384271161214122
129249191218168116167220146125190200
LN G-L07A 59
321302237297260239178299215221154340233173151222234223215293 387310150153164197407218443670397303294389424640363310216302 458329276276167209152178319306257223196262218126121158128
LN G-L07B 59
332289246286250237183289234213173325238163134255206230211281
398299147157160195426213441676403298299401432636373313225305
450338267270174223154180326307266188194270216135114164127
LN G-L08A 75
30027525323525415425120819613923615019014415914513114192144 13015513914810538125916010310465995780705782746277 611007910497107969413398137128133131113145237338375302 185189236267231152159179199161142166217244251
LN G-L08B 75
29428323922925415924720820813226115018814615914713413093148 13114814315110338525616310410763865484666281736780
579774103951099191131103128142119120106144205364367302 187192235261232160153179203157148169211248271
LN G-L09A 109
2612401991212222352411751479195198215155151142183167181157
16213710385671041191787120519012078120203182179160155186
18516923218721716127917122628734933023625820328336316186170 237186202131296225304209193153174323251306254171211230224207 261302263269229225269248263213138257178176143194245243174293 292182173195229244320297186
LN G-L09B 109
2652322001192222312491771469292179226150158147189178183159 1541429483741071161787720319213372127202180180162155181 18616723319121616427517322828235132922726121229735016090179 259188209137302227296210193152176317256305253179201240218210 261299271274226221275252266213136257177176146196243253174288 294173178198241237313315170
LN G-L10A 78
264255329192341328287251308228223175189187202171141206204201 141229204220169233211189157144158199156105167224187186154174 1611751681691411501541601451029397112146153196219207184200 219204180144191183184134146125172172190166166209144187 LN G-L10B 78
257249324190340329298239306227223182189192199166120183179185 129233194214179246217193152131149195155112172225187184149176 1621851641711451441561611381099298115145148193213211184196 219207178145190183185132150118171170192170171196145161 LN G-L11A 48
526614558513589632556472541491435511383424475479391299202285 188219295216476598520432257447329210289178246188279159169202 230194206166151158128166
LN G-L11B 48

510586532509577645551463530478433505409385474475403305200270 181219283226485597513434256438325204285174243190277164171202 234178213165151149135166
LN G-L12A 55
285262256168125141212349204431494437414301360315293242275301 254346222268260215225168195233203192126120137136121147139102
9114775731011211371219282106106139132160
LN G-L12B 55
264284248175135140213365181437494440412298358315290249281308
247353219274252225219166195215206199125121133140120148140100
911518072991211371229580106110134128163
LN G-L13A 100
6860515455524348624945347162687064687870

11811315416614112310111812510392136184152195137148133196164
145172199211177191170162125161137157200218218197201218177139
124156129233121226151227274225189185183127138168210252252181
LN G-L13B 100
6949554564534650614642417149796862707271 59687657666572807595751068175109911099411899 1161141541661451259411813410286148180145201124150126197170
147170209199180183175160121162136169192221217204207217182134
129161116247118222154232271223188185181129146161203238260189
LNG-L14A 69
12487961201271159883118118132138156143174177241267196162
135202180161137180209150229175188185239206173185205258214222
169174140125132167227255228186179229188160139131136163100126
130178197192158138140129135
LN G-L14B 69
104106901211281159786115112152130168151187165238245218184
161195177144122176212157223161194180234193160177201268198210 17017613712911916922824222517918422719916113313213516296129 128173195195157136133128146
LN G-L15A 106
 614767686183826089898676929810110113512911895 8814096130116160137159129199203174154148207199149129172279 184265221237181240225195174230253227231201199125160160158179 185200157177160133129108148134163111130117175193158140152138 116123153166202234
LN G-L15B 106
 4851736063848663868681858799102102139127120100 73151103124121154141158127200199171151145202212137128171270 177271217234187230220198173245257222229203202124155161158185 181204156175158136132103147140165107135112175195155139156133 115128154166195235
LN G-L16A 104
11014112512587120143135173150174152161149135132114979388 837611310380999884927270113991217077931106988 $\begin{array}{lllllllllllllllll}97 & 62 & 62 & 61 & 26 & 50 & 35 & 46 & 63 & 48 & 39 & 39 & 39 & 27 & 35 & 37 & 31 \\ 34 & 37 & 21\end{array}$ 2642484947475056644664586654657574678876 102896810180120116130116124129150161149120120145147119120

```
158182149161
LNG-L16B 104
112140136135 98 108 128 144 181 142 198 158 154151 151 124 123 100 84 93
87 86 115 96 73110 99 86 83 82 60 122 106 112 77 71 101 96 77 82
94}5357[\begin{array}{lllllllllllllllll}{57}&{65}&{42}&{27}&{62}&{60}&{43}&{38}&{34}&{44}&{30}&{42}&{28}&{38}&{37}&{32}&{28}
33 36 42 48 46 48 56 47 69 41 65 65 61 53 73 72 76 67 79 72
106 85 68104 79124114136122121116160170150121124135150118121
153178128135
LNG-L17A 164
127 181 182 148127 135146170193217193144154126139107 97 99 115 105
111 124160166 128104105 97 67 76 69 97 103 99 74 90 69 77 50 63
80 104 77 65 39 45 39 50 57 48 40 35 36 34 34 35 33 30 36 27
25 36 22 31 41 38 40 35 37 36 53 36 37 44 44 44 29 43 58 43
57 50 40 54 55 57 58 86 63 64 57 92 81 76 66 60 77 93 70 86
118157116140108119101139111112105118144110116122100 69107 91
102121148127114130137124 97 71 110 81 114 70 115 99 142 156 151 82
11190 90 82 90 117 142 122 141 107 132 100 106 82 104 95 77 67 90 101
109 88 51 70
LNG-L17B 139
138174177 145121136189173205175204142149124123110115110126108
97 118138143129105116 85 78 64 72 99 102 99 83 81 73 75 54 62
81 103 65 75 42 40 35 55 64 40 40 37 38 28 33 31 43 31 31 25
31 37 29 31 35 36 43 41 43 30 49 51 41 41 34 35 36 40 56 50
6142465957 61 55 77 63 66 64 92 81 86 65 57 80 90 75 86
121 157 119 139109122101 142 109 108 112 122 144 114 121 121 105 70 103 87
105123156125117132135126 95 75 110 81 111 73 117 98 150 154 133
LN G-L19A 49
634593522369437 380526 395 385418540 363402361412432458342289336
326418299314217165156258278273 85104110 211 158181 151217 293242
181300 186 258255 253291284 157
LN G-L19B 49
675601525 368421 360493 372 384403538362408361387418502340300341
315420299313225162153247277271 83 99116 197165173158227 309236
186291 194 277 241251282283 143
LNG-L20A 52
327451441255468 357 380 356424247 280 328 305 243259243193208269153
163182306140157131250242239181149129137 325160182141 88 77 93
109118136285183161155 246199175 276 351
LN G-L20B 52
507448441 256463 361 380 364433244275 324 312241266 236197 209263157
162179 310 137 152136247234248192148139141 328163181 140 85 74 93
121118126292195171130245193185 281 342
LNG-L21A 63
312377 392474475429385344440475 376423512326 360 326 257 367 392 347
298289290 222 276 290 381296 278 230 328 277 256 251 308 228 206 241 274 266
228189230 310 351 184128197 361246198148133137153137119151 129197
151222173
LN G-L21B }6
322366 372465455426 376 348425482355415518320373 307268367373 342
299288290223281292 378 301277 226 327 280 255 251 301 236 206 233282 271
235177 245 318349177 120210 360236208138142135149135123142127197
165205163
LNG-L22A 67
```

350368388435500406588545494460440602549451465558524420504399 538554561579546253183219199270282214180263269247236317246234 292330330279210260324387217102184258216255179214205212178162 192180267178250200229
LN G-L22B 67
352361398437493411588535493474426601536437471568514419504392 539562566570551254181217201270279216188260271234231315250238 295329334274211268323385215110183256218253187217196219180159 198184264194242199207
LN G-L23A 73
218206189163157188149104115141158125168129120106134181158132 117175203210125111122125136115102119115217159145127168160105 15111515318419511910511010711412284636980107115155234360 187105107156144213175275183136123151129
LN G-L23B 73
190213194157154187147117116135158120164136123110127180162133 118201187196118113123129127120100115118213158147130166154100 15012014618020312410811110811711984657078101125160236365 182105110156149210178273175137122154133
LN G-L24A 46
2572042182562752302432451751862742231932291912692459690128
182194188162158104163150185120126183157195201193204164141163 2092531649280176
LN G-L24B 46
2522042192522422322432471681862682231892321922852409685138 180204179161153106170149181123124186160190198191215159143168
2112521578995164
LN G-L25A 53
201123221236156206135209168186160128140164173152179157206100 1561161751941349695135203206155163221236137213183290226269 284330260207117118167185125184122191201
LN G-L25B 53
211115228232154203136210170181158135134163172155176151208101 1521231741971309098124216215150166221233137206181285239261 320279278208117120159184126183118185204
LN G-L27A 142
$25627617917016519220618379115981117598 \quad 856465698484$
$\begin{array}{llllllllllllll}90 & 70 & 94 & 69 & 70 & 102 & 47 & 64 & 78 & 72 & 47 & 46 & 69 & 38 \\ 77 & 46 & 43 & 43 & 44 & 51\end{array}$
4848314535713334556042906258357973658289
1138287981001551491101541001261181061431199898636753
51596054704666667410111811513610483235152221130241
195225149329294192149180153202155139189236152221165174188209 19616810916720011115813293121142155181218211152176170146209 151166
LN G-L27B 142
267273179172166204209185741209411473105817167658387

1198084100991521531211699812411510814512110195617254 5358595670507473799712511513311279237149228127243 192226147333294197159177150205164137185237150219163172189203 196167121156193110155125103116133146190210223146174173152207 117177

```
LNG-L28A 131
    278 368 235194149194176 87 130136 137 76 122 83 67 78 91 119 97 92
    65108 70 76 12471 70 108104 86 51 104 61 106 64 59 68 48 53 64
    48 21 63 52 70 28 43 62 60 50 63 51 56 42 59 70 51 86 79 92
    111 82 76 83 175 154 133 145 120 115 105 111 119 77 83 72 59 66 42 57
    4673605850 70 81 66 139144130147104 97 197 145181 147 241 347
    325181313 309292166 226162199139152187197169155106 140 121 117 182
    15611612512197141107106 94 73 104
LN G-L28B 131
278 372 253205154 204174 93134138132 81 123 82 68 76 89 121 103 84
    61104756813368 78 95 118 79 53 103 62 100 65 77 47 52 51 55
    4827 67 46 71 37 37 56 64 44 66 53 52 37 59 63 54 71 89 90
    111 95 74 78 167 158 132 143121115104113118 84 75 75 61 61 41 62
    427357 63 5266 85 73 132 143131 140100 99178148188140241 339
    311208 355 324298158 223164185134156192198165155125117135112185
    15311712911995144109102 96 76 99
LNG-L29A }11
165201 161 97 121 139 136 73 109 81 57 68 100 104 95 101 66 110 98 101
135 77 90 97 111 80 79 114 69 84 72 54 73 46 63 61 64 34 62 59
7147 30 45 43 46 68 47 45 31 53 70 57 66 55 73 75 74 86 69
108 92 87 119 99 104104108 138 61 72 70 59 54 42 66 65 91 65 64
57 84 93 76 123138103125110 81 197 125 179137 213 271 287 225 333 305
264150186159190156131165176194206 134132152134 91
LN G-L29B 116
172204163 87 126 136 145 64132 71 63 66 98 109 99 93 70 98 102 91
130 89 86 94 108 82 76 117 65 91 61 68 66 50 70 57 58 42 49 58
78 44 30 41 50 41 66 55 40 19 52 84 49 59 69 66 85 74 75 86
105 82 86 123101101 98 116 129 65 71 71 60 53 41 66 71 103 66 66
6979 90 74130131105127109 86 194 128169145 204 257 285 215 327 305
267145197152173152140163204168198141137153136 94
LNG-L30A 128
141 159173 93 116 98 72 83 104 81 92 99 81 98 72 89 87 75 64 69
9942 55 62 52 67 53 39 45 40 45 41 33 30 30 34 47 21 29 43
38 28 47 56 55 35 55 52 42 39 46 71 43 45 37 35 47 48 52 67
49 52 58 62 74 61 60 72 67 60 58 63 55 77 72 84 46 87 79 54
1021087713711973132137165145148130147133213191 202 116 162 124
165147131135166117167110129123131120112 90 106 119 92 113 78 71
74 72 80 97 119108 111 119
LN G-L30B 128
136 153176101 114 98 76 73 98 89 92 103 90 90 92 68 93 70 67 73
99 44 53 59 60 59 43 46 44 41 39 43 45 22 34 38 51 35 26 35
41 35 49 44 47 35 68 46 54 39 40 62 47 42 38 32 52 44 56 60
52 48 58 66 76 58 69 58 73 56 51 78 57 77 72 82 48 84 87 51
103108 81 136127 62 146 124164137145114151 135 213187 204 120161 126
162141 137 140164121 165107 130 125128118117 86 111 107 94 110 72 78
7573 77 92 122 109 105 117
LNG-L31A 54
291 338 349298348288259316 327230323 302 292233256247 242 222176153
176136238140163170186 223283159178 200156161198 203196223144188
221189160145141208127123166210148132155172
LN G-L31B 54
329342 340 291 349296254 304 329217 324 300292244254254239217174161
171136235135164164188221276157178199156160196196189223130196
```

230184166138165193136118193182153150157165
LNG-L32A 67
247239206291289289221256265265243228188197216249199186205168
202178141199215207144129146155129142157139139211118147133186
161201122159164128124143169166197121164200184170150159244132
131181213151147166254
LN G-L32B 67
239248197288289277221263259267238227201193214244198191212168 200176145195211203146147153155124130167148136209119145133179 160204133156172134125144176163198119160189214165155154233130 133178205161149172248
LNG-L33A 67
238188274311309339257192283501354289299292261226226215127227
247275225137126184175197153245152180221165163144140126141111
103143871201078677665795848313312817513815312010396
129112126149162140131
LN G-L33B 67
225194276326323334260194284473359289301290261235237204123218
227256228137130186171194154246151178223168160144140125168117
106146871221078874735892848513012617314714212611585
128115111154168144137
LN G-L34A 86
367242388328391312168147215169199147232140152173148141148113 1041431121141259110590716062558297112136105116112127
95891161531331051341481421346412110712894951131237693
68847811179791008612087106655662465470598052
504862575047
LN G-L34B 86
354247380332393313161144213164197155228143148175143139152112 1111421251131307098828360595064107104132106116113128
87791101581441121221571341286911910712097991091257688 7280791108186968612379124656061465568627651 544760595847
LN G-L35A 52
203182185199233250216299330297232308262299286253232225281335
246294241205250214167220232244206165205190209172193181142238
168175139191214228163195207152154182
LN G-L35B 52
189183191199226260230293323297238311276303285256231226283326 243292243203256207170217242242207171204198211172184177132242 181175137190213232162194198160155195
LN G-L36A 75
156172958699128173164142140186195198213204245200197308231
227268270265227152151258150294264267227186208154198210243192
1869611712217417013293127102132127106123161145126138133117
15711791111139207178142145109133115134169182
LN G-L36B 75
157172928693125169169148143174198185215222246201189312233
220267277258229156150266146294256261229188197153196211245190
188901351271861761299612898133131105126162140116134127119
15312294110133212183140144114126122128164190
LN G-L38A 71
159211192121262172318245189181203177136103208112147272200298

427412599273356350329268276211319170304229230121110136154139 140186276167164132127273218247289227217158147104157190185142 187175186185152189223127848286
LN G-L38B 71
162214204131254175321243198192200183128127203113186286209318 430415594279348357328268279214321173303231228143110136155136 143187274169164136128268212251289226188166138110170190139173 1971621801811571922141357486105
LN G-L39A 83
254295301209143159271196158166189142159143168155166170214164 143143122112141259300179152229219229136114151143157102123151 12623418614110913417611716013715314016712111611112611711877 48587793901612112431409582115191207171172132149108151
186136115
LN G-L39B 83
256295296210141157280197153170183158144141190161158168244154 138134132101122269295179151234218227138118142144161109110147 13723019713711813617610816713015314616211712711612311712171 52587397861642102201469483109173196168188145130115159 198147120
LN G-L40A 88
11826631954071861656628438928734925735616511859175244127101 4524202131242326272925263123232940242130 211144762088919910311185509212172534257549076
14176168109173166125209254271194234213115165139105198139271
243210169182166203149318
LN G-L40B 88
127266328536734605567280398284350258343169996116825213498 4728182624252129262928252622262943222226 3123267420774184819870568512269534753588972 14380165107173171138215280296205231220112171135104198143222 191175164192162213153268
LN G-L41A 67
27532318911111618518414715891654869626443423436126
1321247811222920013216072203234151144144188325328139198142
171195222145101235207996881677186172177141132184123229
272252232200148142241
LN G-L41B 67
275336177116116143187125141103636056686934404441123
1311318011323219813315581204230155149139188322340135192149
182197221141952382121047485747992180167138134194123229
273267226205147145275
LN G-L42A 98
4944443151782783363673373292021498413011710859384649119
143118801181831231281356810011157918512125035513916797
1431331097265110895643586179699599758910858149 111109741051308410613814556455789157921691067676122 8616678139147178107126117544629324536446362
LN G-L42B 98
4994423131822803483823383352031419013111211953374954113 145119811101791381241416994118599588116257359145168111 1471191036965111874958685980699495679511551153 11610486107129821141371455441628114881162957779117

```
    90161 89 139 151 185 118 126 118 43 42 25 25 39 41 46 55 61
LN G-L43A 44
194178164303590 341 348472409214 333 306 383 390163117261 348 349219
338411449465 31612910269120129156112136223 311214 337 30914296
118137144159
LN G-L43B 44
191181163 303582339 345486422199338308 367 382151108234 337 344217
3384044534593031199276116 126 138117 138 214 311211 324 317 132 100
112134173183
LN G-L44A }11
109 212 254 249149129106 96 130 102 111 78 53 47 92 79 86 69 63 70
65100104 79 95 90 83 75 86 95 75 101 120 75 74 62 96 133166 131
131109125157158130 106 185125 251288198166122194 230 238 203161 190
141179267 366 276278185160240249156 81 111 148172177 141 191 125 102
152163127184165 305225 235 246165179 64 58 47 40 36 36 44 47 51
74 74 77 77130182128176260 207 240182
LN G-L44B }11
118206 257257168127 95 98 120 113 103 79 56 45 81 76 65 73 68 63
63101105 86 90 97 84 77 84 99 75 97 115 78 75 64 95 135 162 132
137105128162159131104182135246279201 171 116 195 233 241 205163198
136180269 365 277 277 188 159247248152 78 117 151 180 175 145181 135 98
166164120 183 174 299 227 241 242 162 181 61 54 46 43 47 33 39 44 55
7175 82 71 123179136175 253211243182
```


APPENDIX:TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East M idlands M aster Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about A pril to 0 ctober, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. W e normally look for timbers with at least 70 rings, and preferably more. W ith fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. O ne reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A 06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. W here it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring
on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, whidh grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: M easuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring W idths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln C athedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of $C 45$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other

 one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Q uite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A 06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO -A 06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A 06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. O ak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A 2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the D ate of C onstruction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A 6 such a sequence is $\mathrm{SHE}-\mathrm{T}$, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for N ottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). O ther laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and W ales covering many short periods.
7. Ring-W idth Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

	1	I						1	\|	1	
0	10	20	30	40	50	60	70	80	90	100	110

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. N otice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, M organ, R A and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 N ottingham University Tree-Ring D ating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 N ottingham University Tree-Ring D ating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6.

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East M idlands M aster Chronology and its use for dating vernacular buildings, U niversity of N ottingham, Department of A rchaeology Publication, M onograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, M edieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The M edieval H ouses of Kent, an Historical Analysis, London
Rackham, 0, 1976 Trees and W oodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

