TONGE HALL,TONGE HALL CLOSE, WILLIAM STREET, MIDDLETON, ROCHDALE, LANCASHIRE TREE-RING ANALYSIS OF TIMBERS
 SCIENTIFIC DATING REPORT

Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

TO N GE HALL, TO NGE HALL CLO SE, W ILLIAM STREET, MIDDLETO N, ROCHDALE, LANCASHIRE

TREE-RING AN ALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: SD 8775605821
© English Heritage
ISSN 1749-8775 (Print)
ISSN 2046-9802 (O nline)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY
D endrochronological analysis undertaken on 41 of the 45 samples obtained from timbers in different parts of Tonge Hall produced a single dated site chronology comprising 38 samples with an overall length of 239 rings. These rings were dated as spanning the years AD 1449-1687. Interpretation of the sapwood on the dated samples indicates that the roof, first-floor frame, and structural timbers of the hall range, as well as the roof and stair timbers of the cross-wing, were all cut as part of a single programme between AD 15891614. A ground-floor fire place bressumer of the hall range has an estimated felling date of AD 1609-34, while the timbers of a first-floor partition wall have an estimated felling date in the range AD 1640-65. The latest dated timbers are the floorboards of the crosswing attic, which have an estimated felling date in the range of AD 1697-1722.

CONTRIBUTO RS
Alison A rnold and Robert Howard

ACKNOW LEDGEMENTS

The N ottingham Tree-ring D ating Laboratory would firstly like to thank A lan Gardner, Historic Buildings Consultant and Project Coordinator, of A lan Gardner A sso ciates, Hebden Bridge, not only for the considerable help and assistance given in arranging assessment and sampling access, but also for his advice about the possible phasing of the building, and the background information used in this report. He also kindly provided the photograph used on the front cover of this report. The Laboratory would also like to thank the various contracting staff working on this site who made the visits both safe and successful. Finally we would like to thank Shahina Farid and C athy Tyers (English Heritage Scientific Dating Team) for commissioning this programme of tree-ring dating, and for the help and assistance provided during analysis and reporting.

ARCHIVE LOCATION
Lancashire Historic Environment Record
Lancashire County Council Environment Directorate
PO Box 100
County Hall
Pitt Street
Preston
Lancashire PR1 OLD
DATE OF IN VESTIGATION
2014
CONTACT DETAILS
Alison A rnold and Robert Howard
N ottingham Tree-ring D ating Laboratory
20 Hillcrest Grove
Sherwood
N ottingham NG5 1FT
01159603833
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction1
Sampling2
A nalysis and Results 2
Interpretation 3
Cross-wing and hall range - primary construction 3
Hall Range - later timbers 4
Cross-wing - floorboards 4
Conclusion 5
Bibliography 6
Tables 7
Figures 10
D ata of Measured Samples 17
Appendix: Tree-Ring D ating 27
The Principles of Tree-Ring D ating 27
The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory 27

1. Inspecting the Building and Sampling the Timbers 27
2. Measuring Ring W idths 32
3. Cross-M atching and D ating the Samples 32
4. Estimating the Felling D ate. 33
5. Estimating the D ate of C onstruction 34
6. Master Chronological Sequences 35
7. Ring-W idth Indices 35
References 39

INTRO DUCTION

Tonge H all is Grade II* listed and is described in the listing as dating to the AD 1580s with eighteenth- and nineteenth-century alterations. The following background information is from both the listing entry and Gardner (pers comm). Standing in a slightly isolated position off a gravelled trackway (Fig 1a/b), Tonge H all is a substantial late sixteenth-century timber-framed house on a stone plinth, with a single cross-wing to the east and a hall range running westwards that appears always to have had two storeys, although this is not certain. At the rear, facing south and east, the frame has been encased in brick. The main front and the side wall of the cross-wing, however, retain elaborate exposed framing with decorative quatrefoil panels, coved jetties, and projecting gables both to the wing and to a narrow parallel projection in front of the hall.

Internally, there are substantial remains of historic timberwork. The hall and cross-wing ranges are both roofed by principal rafter with tiebeam and queen-strut trusses (one cross-wing truss having a collar), supporting double purlins to each pitch. Both hall and cross-wing have a number of wall posts (many encased in plaster), with possibe braces (again encased) to the tiebeams. There are also studs and cross-rails visible in some walls, along with a substantial amount of decorative woodwork.

There are also timbers to the ground- and first-floor ceilings, including dragon beams to the cross-wing and a bressumer to the hall fireplace. A solid oak spiral staircase remains in the cross-wing, although it is again not certain whether this is original, a replacement, or a totally new and later insertion. U nusually, the attic of the cross-wing is floored by a number of butt-edged oak boards. These are not particularly wide, and thus probably not part of the primary phase, but neither do they look particularly modern, and thus potentially represent eighteenth-century work to this part of the house. The cross-wing also has a parlour lined with bolection-moulded panelling, most of which is believed to date from C AD 1700.

In addition, the hall range contains timbers (main beams and common joists) of a firstfloor frame. It is again uncertain if this is original or represents the flooring-in of an originally open hall. The first-floor rooms here have also been divided by a brick-filled stud and cross-rail partition wall. It is thought that this feature also represents a period of eighteenth-century alteration.

W hen built, its double-jettied form of timber-frame construction was used as an outward display of wealth, a display mirrored by the fine interior panelling. Tonge H all was obviously a building of note and in this part of the country is a rare surviving example of this building-type. W hilst, over time, the building has suffered deterioration, it is currently in a state of major disrepair due to vandalism and damage caused by a fire that took hold of the building in 2007. The fire principally affected the roof structure, sweeping over the rooms below such that the roof is now incapable of protecting the interior space against damage associated with water ingress and gradual collapse.

SAMPLIN G

Sampling and analysis by dendrochronology of Tonge Hall was requested by Mair Hughes (English Heritage, Heritage at Risk Architect) in order to inform work to protect and stabilise this building which is on the Heritage at Risk register and in receipt of grant-aid for the repairs. The aim was to obtain independent dating evidence for the primary construction of the hall and its ensuing chronological development. Of particular interest, apart from the original construction date of the building, was whether or not the firstfloor frame of the hall range and the stair of the cross-wing range were part of the original build or were later insertions.

Thus, having first assessed the timbers as to their suitability for tree-ring analysis, a total of 45 samples was obtained from the most appropriate timbers, the majority of these by coring. Each sample was given the code TNG-B (for Tonge, site ' B ') and numbered 01-45 (Table 1). Five samples (TN G-B01-B05) were obtained from the roof timbers of the cross-wing, with a further nine samples (TN G-B06-B14) being obtained from the roof and associated structural timbers of the hall range. Ten samples (TN G-B15-B25) were taken from the first-floor frame of the hall range, with one sample (TN G-B25) being taken from the fireplace bressumer. Six samples (TN G-B26-B31) were taken from the treads of the spiral staircase of the cross-wing and eight samples (TN G-B32-B39) from the crosswing attic floorboards (these last obtained by, and following agreement, removing 10 mm slices from the end of those boards which were already lifted and loose). Finally, six samples (TN G-B40-B45) were taken from the first-floor partition wall of the hall range.

The locations of these samples were recorded at the time of sampling, either on sketch drawing, building plan drawings, or by photographic record (Figs 2 and 3a-k). Details of the samples are given in Table 1. The trusses have been numbered from north to south in the cross-wing and east to west in the hall, with individual timbers then being further identified as appropriate.

ANALYSIS AND RESULTS

Each of the 45 samples obtained from Tonge Hall was prepared by sanding and polishing. It was seen at this time that four samples from the hall range (one from a first-floor intermediate post to the north, and three from the first-floor partition wall) had too few rings for reliable dating and they were rejected from this programme of analysis. The annual growth ring widths of the remaining 41 samples were measured, the data of these measurements being given at the end of this report.

The data of the 41 measured samples were then compared with each other by the Litton/Z ainodin grouping procedure (see Appendix), this resulting in the production of a single site chronology comprising 38 samples with each sampled element of the building being represented. The 38 samples, cross-matching with each other as shown in Figure 4,
were combined at their indicated offset positions to form site chronology TN GBSQ 01 with an overall length of 239 rings.

Site chronology TN GBSQ 01 was then compared to an extensive corpus of reference material for oak, which indicated a consistent and repeated match with a number of these when the date of its first ring is AD 1449 and the date of its last measured ring is AD 1687 (Table 2).

Site chronology TN GBSQ 01 was also compared to the three remaining measured but ungrouped samples, one from the cross-wing roof and two from the first-floor frame of the hall range, but there was no further satisfactory cross-matching. These three ungrouped samples were then compared individually to the full corpus of reference data, but again, there was no satisfactory cross-matching and they must, therefore, remain undated.

IN TERPRETATIO N

A nalysis by dendrochronology of the timbers of Tonge Hall has produced a single dated site chronology comprising 38 of the 41 samples measured, with its 239 rings dated as spanning the years AD 1449-1687.

N one of the dated samples from Tonge H all retains complete sapwood (the last growth ring produced by the tree before it was felled), and it is thus not possible to provide the precise felling date for any timber. The dated timbers from the different areas, do however, appear to be coeval and each group of timbers includes samples that do retain some sapwood or at least the heartwood/sapwood boundary (this last indicated by ' $\mathrm{h} / \mathrm{s}^{\prime}$ in Table 1 and the bar diagram). Allowing for the minimum and maximum numbers of sapwood rings the trees are likely to have had (the 95\% confidence interval being 15-40 sapwood rings), it is possible to estimate a likely felling date range for the timbers and therefore the area of the building which they represent.

Cross-wing and hall range - primary construction

Twenty-six timbers have been dated that appear likely to represent the primary construction. These timbers are from the cross-wing roof, the cross-wing spiral stair, the hall range roof and structural timbers, and the hall range first-floor frame.

The average date of the heartwood/sapwood boundary on the samples from the crosswing roof is AD 1575, whilst that of the samples from the spiral stair in the cross-wing is AD 1574. Thus the timbers of these two areas have estimated felling date ranges of AD 1590-1615 and AD 1589-1614 respectively.

The average date of the heartwood/sapwood boundary on the samples from the roof and structural timbers of the hall range is AD 1573, while on the floor-frame timbers to
the hall the average heartwood/sapwood boundary is AD 1574. Thus the timbers of these two areas have estimated felling date ranges of AD 1588-1613 and AD 1589-1614 respectively.

It would thus appear that these timbers from the cross-wing and hall represent a single programme of felling, although in a moderately large building such as this, it is possible that timbers could perhaps have been felled a year or so apart. The likelihood of a single-felling programme is furthermore supported by the fact that the heartwood/sapwood boundary on the samples which retain it is at a similar relative position and date. A mongst these samples it varies by only 12 years from AD 1568 on sample TN G-B26 to AD 1580, on samples TN G-B01 and -B30, with the majority of samples having a heartwood/sapwood boundary dated to the AD 1570s. Such a similarity is indicative of timbers felled over a very short period of time.

Taken overall, the average date of the heartwood/sapwood boundary on the cross-wing roof and stair timbers, and the hall range roof, structure, and floor frame timbers, is AD 1574. Thus an estimated felling date in the range AD 1589-1614 is obtained.

Hall Range - later timbers

A sample from the bressumer to the ground-floor fire-place has a heartwood/sapwood boundary date of AD 1594. Thus this timber has an estimated felling date in the range AD 1610-34, which, it will be seen, overlaps with the estimated felling date range of the timbers associated with the primary construction of the cross-wing and hall range. It is therefore just possible that the bressumer was felled at the same time as the primary construction timbers, although this cannot be proven and it could clearly also simply have been felled a few years later.

The first-floor partition wall to the hall range, on the other hand, is certainly later, the average heartwood/sapwood boundary ring on the three dated samples here being AD 1625. Using the same sapwood estimate as above, 15-40 rings, would give these timbers an estimated felling date in the range AD 1640-65

Cross-wing - floorboards

The latest timbers detected in this programme of analysis are represented by the floorboards to the attic of the cross-wing. The average heartwood/sapwood boundary ring on these samples is dated AD 1682, which would give the timbers an estimated felling date in the range of AD 1697-1722.

CONCLUSION

Dendrochronological analysis has indicated that there appears to be no significant difference between the felling date of the timbers used in the cross-wing roof and spiral stair timbers, and the first-floor frame, roof, and structural timbers of the hall range. It would appear that all these timbers were felled as part of a single programme of work (though possibly not all at exactly the same time) between AD 1589-1614, and thus demonstrates that the first-floor of the hall and the spiral stair to the cross-wing were part of the original build.

The ground-floor fireplace bressumer of the hall range has an estimated felling date of AD 1610-34 and thus could be part of the primary construction phase or alternatively could be of a slightly later date.

The timbers of a first floor partition wall of the hall range are certainly later, these having an estimated felling date in the range AD 1640-65. The latest phase of felling identified is for the floorboards of the cross-wing attic which have an estimated felling date in the range AD 1697-1722.

The overall cross-matching between the 38 samples in the dated site chronology suggests that the timber was probably derived from a single woodland source. Indeed, the level of cross-matching between some samples, TN G-B41 and -B42, or TN G-B33, -B34, and $B 35$, for example, with values in excess of $t=10.0$, is sufficiently high as to suggest some timbers may in fact derive from the same tree. It is possible, though, that some individual trees were more widely dispersed within the source woodland.

In respect of the location of the source woodland, it may be noted from Table 2 that, although site chronology TN GBSQ 01 has been compared to reference chronologies from all parts of England, the highest levels of similarity (as indicated by the 't'-values) are found with other sites in northern and north-west England. Two other nearby sites in Greater Manchester and Cheshire give particularly good cross-matches. This would suggest that the timbers used at Tonge Hall are from a relatively local woodland source.

Despite having sufficient rings for reliable dating, and showing no problems such as compressed or distorted rings, three measured samples remain ungrouped and undated. The presence of undated samples is, however, a frequent feature of tree-ring analysis. In this respect Tonge H all is slightly unusual in having such a high percentage (92.6\%) of measured samples successfully dated.

BIBLIO GRAPHY

Arnold, A J, Howard, R E, and Tyers, C, 2007 Durham Cathedral, County Durham, Tree-ring Analysis of Timbers from the Refectory and Librarian's Loft, Res Dept Rep Ser 39/2007.

Arnold, A J, and Howard, R E, 2013 Auckland Castle, Bishop Auckland, County Durham, Tree-Ring Analysis of Timbers Res Dept Rep Ser 48/2013

Arnold, A J, and Howard, R E, 2013 unpubl Tree-ring A nalysis of timbers from Bramall H all, Bramall, Stockport, Greater Manchester - N ottingham Tree-ring Dating Laboratory unpubl computer file BRAM SQ01

Arnold, A J, and Howard, R E, 2014 unpubl Tree-ring A nalysis of timbers from Howley Hall, Morley, W est Yorkshire - N ottingham Tree-ring Dating Laboratory unpubl computer file HOW ASQ03

Groves, C, 1999 Tree-ring analysis of Hall I' Th' W ood, Bolton, Greater M anchester, Anc Mon Lab Rep, 12/99

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 List 65 no 8 N ottingham University Tree-Ring D ating Laboratory: results, Vernacular Architect, 27, 7881

Howard, R E, Laxton, R R, and Litton, C D, 2003 Tree-ring analysis of timbers from Staircase House (30A \& 31 M arket Place), Stockport, Greater M anchester, Centre for Archaeol Rep, 12/2003

Howard, R E, Laxton, R R, and Litton, C D, 2005 Tree-ring analysis of timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for A rchaeol Rep, 40/2005

TABLES

Table 1: Details of tree-ring samples from Tonge Hall, Middleton, Rodndale, Lancashire

Sample number	Sample location	Total rings	Sapwood rings*	First measured ring date AD	Last heartwood ring date $A D$	Last measured ring date AD
	Cross-wing roof					
TNG-B01	East principal rafter, truss 2	86	4	1499	1580	1584
TNG-B02	West principal rafter, truss 2	97	10	1488	1574	1584
TNG-B03	East principal rafter, truss 3	120	no h / s	1449	------	1568
TNG-B04	West principal rafter, truss 3	122	10	1461	1572	1582
TNG-B05	East upper purlin, truss 1-2	115	17	------	------	------
	Hall range					
TNG-B06	North principal rafter, truss 6	61	h/s	1509	1569	1569
TNG-B07	Ridge beam between truss 5 and cross-wing roof	79	no h / s	1486	------	1564
TNG-B08	Tiebeam truss 6	90	no h / s	1477	------	1566
TNG-B09	First-floor main wall post, truss 6	93	no h / s	1464	------	1556
TNG-B10	North lower purlin, truss 5-6	68	no h / s	1495	------	1562
TNG-B11	First-floor intermediate post to north wall	nm	---	------	------	------
TNG-B12	Ground-floor main post to north wall	82	6	1501	1576	1582
TNG-B13	Ground-floor intermediate post to north wall	99	no h/s	1469	------	1567
TNG-B14	Ground-floor main wall post, truss 6	59	no h / s	1487	------	1545
	Hall range first-floor frame					
TNG-B15	W est, main ceiling beam	97	4	1478	1570	1574
TNG-B16	West, middle main ceiling beam	84	h/s	1495	1578	1578
TNG-B17	East, middle main ceiling beam	56	h/s	------	------	------
TNG-B18	East, main ceiling beam	110	h/s	1469	1578	1578
TNG-B19	Bay 1, common joist 4 (from north)	78	no h / s	------	------	------

Table 1: Continued

Sample number	Sample location	Total rings	Sapwood rings*	First measured ring date $A D$	Last heartwood ring date AD	Last measured ring date AD
	Hall range, first-floor partition wall					
TNG-B40	North cross-rail	52	14	1588	1625	1639
TNG-B41	Central cross-rail	51	13	1589	1626	1639
TNG-B42	South cross-rail	41	10	1595	1625	1635
TNG-B43	North stud post	nm	-	------	------	--
TNG-B44	Central stud post	nm	--	------	------	-
TNG-B45	South stud post	nm	-	------	------	-

$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample
$\mathrm{nm}=$ sample not measured

Table 2: Results of the cross-matching of site sequence TNGBSQ01 and relevant reference chronologies when the first-ring date is AD 1449 and the last-ring date is AD 1687

Reference chronology	Span of chronology	t-value	Reference
Staircase House, Stockport, Greater Manchester	AD 1489-1656	13.5	(Howard et al 2003)
Bramall Hall, Stockport, Cheshire	AD 1359-1590	9.5	(Arnold and Howard 2013 unpubl)
Hall I Th W ood, Bolton, Greater Manchester	AD 1467-1687	8.4	(Groves et al 1999)
Manor House, Sutton in Ashfield, Nottinghamshire	AD 1441-1656	8.3	(Howard et al 1996)
Aukland Castle, West Aukland, Co Durham	AD 1370-1520	8.1	(Arnold and Howard forthcoming)
Howley Hall, Morley, West Yorkshire	AD 1415-1635	8.0	(Arnold and Howard 2014 unpubl)
Refectory/Librarian's roof, Durham Cathedral	AD 1431-1683	7.9	(Armold et al 2007)
Riding House, Bolsover Castle, Derbyshire	AD 1494-1744	7.7	(Howard et al 2005)

FIGURES

Figure 1a: M ap to show the location of Middleton © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 1b: Map to show the location of Tonge H all © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 2: Simple schematic plan of Tonge Hall to show arrangement of the rooms and the general location of the sampled timbers

Figure 3a-c: Annotated photographs to locate sampled timbers

Figure 3d-f: Annotated photographs to locate sampled timbers

Figure 3g-i: Annotated photographs to locate sampled timbers

Figure 3j-k: Annotated photographs to locate sampled timbers

[^0]$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary; $\mathrm{nm}=$ rings not measured

Figure 4: Bar diagram of the samples in site chronology TNGBSQ01

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
TNG-B01A }8
    249162168103112163180122128125161 104151123126137112139116 97
113105153175207169180162171165149117 137132110134186 160186 175
228244218192168181231214231235292 250251 190246 200 159 75 95 148
1681952121851791981624656 76 173184201187173193132103135164
210334225159208181
TN G-B01B }8
174165168105112156194125129134156116153128124134116135121 98
116 105157175 214175185170162155150120136132110137191 153192178
238225 220 185165178232220 223 232 289246 246 192 240193 171 72 99 139
1821812251751701951594359 75 187189217 185163192117 110 134163
230 314 221 182 211 162
TNG-B02A 97
270283230192250279 316 289 293 209 211253151158107 115107 158185 131
110147 99 192 95 101 130 133 121 100 105 84 75 178 153 145153125176 179
15912590131110 96 109119130151145193275 239226 303265 300 293269
26227628725917625317613473 89142 228168240203190276108 54 62
5713813419817222220212396103117156175107103102123
TN G-B02B 97
252322 303 179201284 312298260187206 251166 139110114 92163190132
131146110183100 113134131125103100 87 83164157 137 157 128182 171
156129 95 128 109 100 107 120 126 151 156 195 264 227 232 296 275 296 284 282
261267293 275 178 271 160156 71 87 132 234166227 193 184287 104 56 58
63130134187163228212118107 96 117160168124 97 109 115
TNG-B03A 120
222109241 303132163 312284221262199229217219152207 210 223229178
96 93 74 60 66 96 125125 94 104 116139117153189164177142175 64
39627865 54 81 107112100 95 112 143129 89 88 85 114 156 150100
121 115106 103 100 117 90 85 92 108 68 53 70 71 54 84 84 107 108 121
98 128 96 89 64 67 87 49 57 57 79 73 72 46 40 45 57 67 59 73
6462825971 62 71 60 78 91 148119 137 124125 109 77 40 69 53
TNG-B03B 120
174 88 217 275 156 267 310 287 282 303 201 209 200 199165 222 216 204 214 177
105102 89 64 59 99 115 125 82 117 114139124156 185169183140171 62
44 56 79 64 54 78 116110 89 96 114 146 130 83 87 84 110 159 154 107
108117104103104110 88 87 89 109 72 51 68 73 57 82 82 107 109 123
104 126 92 85 62 70 86 54 64 66 81 78 70 47 40 42 62 65 56 76
65 62 79 64 73 54 66 65 71 92 151 106 126 128 128 108 70 48 65 84
TNG-B04A 122
158181110150228152155154 86 122 104 66 71 80 138146 94 110 85 116
121 13916918520518922570 58 77 76 77 74 108 110 98 89 98 115 97
12571 98 103103136 188 168162182128126109159 82 117 106 79 50 46
64 68 46 70 87 103 76 90 82 110 93 78 85 80 107 90 148 101 118 145
10073 65 85 170143139131118122142139146142139167114123169153
176195142146 95 84 80 72 114 92 87 99 121 79 96 91 100 92 110 146
100 153
TNG-B04B }12
151187107146217218165146 88 128 83 71 64 90 128 117 91 109 88 123
```

12813916419619218622183508276857710112110096100110107 12178961061031361801711571761361271311648911593754446 537047607587579973101968581851048514893124154 104716586172150136132107110133137137143132160114114162132 1791901391511007882761159094961128493929596113142 105157
TNG-B05A 115
777783691141381632031341811221268611783117100102141127 929871585355573744324062447380557269107121 8214313510410385105112112149147108777294721121016785 68789612311112091951159687938410787871011067689 92110759279641001531101061151301331336663516579112 11711291595463727810796100941017698 TN G-B05B 115
95100117103144160144186151167120129921108312598101135133 10010465507258625041415053456976588867119128 821281171051281031051341271311461077568857779965593 5774941491241258989968981968411296841101037997 10410678759667841251091131061311201397068566281106 1121148965546275951039998981007798
TN G-B06A 61
409444486452393376366346247362293232356351344353264286327314 260276315228196221251234250227239212221198243262271214225226 234279245221268188178124134184262231231255218234182165142169 192
TN G-B06B 61
401443480426375391313334250359304233350352334322272284351317 267273320224206226231239225233238217207198240260265226220240 219290242225264190178125134181276222240252225235192161146156 192
TN G-B07A 79
193344161220382217167128123157121116107132971111118084146
142120102133114116929310377687575828411912997114110
115921089810112578988213910095107968885679077129
114117120126108117931141006865715885103113117116111
TN G-B07B 79
17234715423837717518313011012815714113213412711611097105148
 1141101089211096791009512885104100938489769177133 11511812213510711210089957877726887100101114125109 TNG-B08A 90
2162472562162151511721751821551981371211428510598108189234 179173165917860901281671711421181831661441411241129278 428399961151217510811211293100100786342285092101 11511411250402340355070758082939879110646868 6094188184268222178282193120
TN G-B08B 90
21425625520220315916917018517316013011413567989883241228
1821561669266601001141711661371221751321511461271119273

121106110434222394045707585858210076104606873
6592189185257218171303170115
TN G-B09A 93

403464542652673418526314433433554693550509451503210215212271 3252282532989270697076678212310662726668344380
75961121019585761277291849811498134111123175141143 1611431631551538165961351021091041201561349810768135197
199278234258198190234247131114847571
TN G-B09B 93
424487558625623428510320417439542693552509467503217208219259 3212502533107870707576658710311078676365404671
739012510610484891406988959011696134130121169144129 1481531651671537861109137831121101211471258910573109217 202287234253204187234250121121787588
TN G-B10A 68
271382280178378370364246194230278289188251296227272232264291
225214175236242218255259146193167201231217161134162184184175
134128132117120168146115173168198177300210364305286156184150
10587149137210170222174
TN G-B10B 68
248457283184368363375237189242275262191254291239248246283252 200226178228249212264255146195173223220193162134167179160195 131129121120115159146128178176184179310203364301287155184144 13190134136209166208166
TNG-B12A 82
222231244220265290274219368362337221242210325352232350257183
272261242252225225228251236274275192163170157139140160167226
1561462042062962041652231512172282202151461358488119233195
186175156226185137130190271161161140191117126104129100120261 162306
TN G-B12B 82
218232243213266297262214359350319232247208315343242337267177 262260239230248237242248246251264198171167157139142164184210 1671422102003072081792261572132152122171421358784107248186 190181158207187137128201275171171116199131122127109101129268 175211
TNG-B13A 99
22524326316224521627220321220311713010485137198254228282190 15020515015719621722127619916918717110796126168208214166159 151137187146123135131100104168173131218146126165123148220169 158174170160200185171195165132162142115107123137144142114160 173167244136131129102778793147118156134961301006965 TN G-B13B 99
21523327215925324127320421620310913810082138209246225286191 15519615515519722022128220517517817111385130159214206185164 15413118514312013413198109165168119209162121173122143234174 162168164178192193170201165120165143114106120140136139109177 162168226146137128103788688155118162134971311027859 TN G-B14A 59
294236152225162209122117156266205156201182144130139143207208 2011551651341341331391208811110112412113714210365655672
6068565771587278135779285175200156107167165178 TN G-B14B 59
265231157208174208115108164273210160203182141103150139205212 1961671641321391311331337710310711712513414410260755364

67595357606975841328410793148207178120165163187
TN G-B15A 97
193215196169227292375409291305215228296285278301259285378246
21723218214014915317317516020814416815313112210913213413987
11013313916916314913513215914614815098151143135130178125154
148143164129736278110125170198189179164122118121917662
6680110184171159175105888485146119138118117159
TN G-B15B 97
194217198187213300364426257364213226303278277297280288381253
23621620115714316715418317022113417615814812410512914012193
103123143161164150145128165143145146104151134134131176138144
140148158130745481121123166201178184165115121128897665
5690102181166163176118808487140125134118122168
TN G-B16A 84
3143373262632261388912013213229928514896153177139135158204 9623113922224622125624722722513711817819016213718217010695 17582206160801461177866146219186256239262232231214185160 210196289346498364483398373436372168170238267240203148165186 211137121157
TN G-B16B 84
2573443252702211379112512913129427815792158173148142159225 9422613523625322125424422325412112118018116813218017310692
17985198174861451237878124222196245243266225221212185154
217207280352509383505381359439356164175239259235211159168185
200125134156
TN G-B17A 56
273309273241181162197167190173229160175173165215302217270247 214232307315314262305224285292225267343254319364328321359129
304348335309289331337226197228384253187331341378
TN G-B17B 56
300312273245178158196164190163198182181211156203268243256230 196235338308314259318200321310231245350239351334313300375129 323354329312316314304241184200398257187325338387
TNG-B18A 110
21119217083125153254176125141129107674851599610010143
4662285135352873657262462842356713911014281
143178204115767470109921141211341581531098290929280
974881536289156101120129118168220706791213180244258
25924523720164261625523124032040533830628421131625914010096
188203216134168205230116154150
TN G-B18B 110
2021801838013415825417513013014888644652561009710046
4273324829284267687555472939266813012412983
14418219611675717311291105131129146121938886918885
935972606092145106121123128168218627085204179240276
27323924218965662025722325131737934830428520531627814890108
172207200153167218216106167139
TNG-B19A 78
3213204312491711461371821011252441641181371234832327166

1101572101622332462261659512112882126164114215151201

```
TNG-B19B 78
    331326439247170137134185 97 134 246 153126 129 116 49 35 32 75 61
    13011594 60 75 64 74 71 98 106 66 50 41 83 110 73 73 72 52 47
    3567 36 27 38 27 15 18 22 17 21 46 32 37 30 25 32 30 67 86
    107160200175235252200177117115118 85114168124212150200
TNG-B20A 54
279220258256235251290241170204160171191257196298200 141210186
115131129178201193217253263244233233176156129109127176115 217
243268292167114126190234196222134154134171
TN G-B20B 54
265 211 253248269233280 242 144 232176 180 208 257 194 301 200 146 217 220
117147142189199204240218256252206 209185170135120137170118219
246254 292153117120 201 228184184128131 132189
TNG-B21A }8
209213167120144 302 225207156160139154135125134116 137147132144
112126185182172173191159167158151137146107145188 135164132161
165185115110 93 95 120135131148129152132115125118 99 111 112176
153161154146164137 82 67 80 107 103 121 126 113 109 98 78 78 73 108
130103 81 82 123104111143
TNG-B21B }8
227227158119158 307 222217150173137153141134119124130150130153
117125191179171 171 189166164156147141139119146185131 160129162
170184120107 85 104 132124142136138159126120115 121 95 112 110 173
14616016013916513179 76 78 109 98 127 121 115 103102 78 66 84 117
114103 88 93 120 93 123112
TN G-B22A 98
261226136207177163145202216268201175190207191126 115178242 210
160128171171164110103107125132118140144120114 200 141 122 126 151
115143121148142115121117151101128121125121128 89 101 109142 139
137150132148146129121901129010996 135134159142120 119 114 70
676590 82 95 92 107 85 82 64 70 68 92 110 77 68 90 125
TN G-B22B 98
278221 146 193201 153142200218264201 177 198207190 117 113167 233214
157129177 174160110106109126132111146135111 125 182 141 124121 157
120135123143144110128124140 95 131 114120135120 95 96 110 139132
132157135148150125123 92 110 90102100140132162137123131114 65
7367 93 81 90 96 109 95 101 68 59 66 102 112 78 62 87 119
TNG-B23A }8
106 92 83 83 105 96 97 85 73 51 44 39 39 63 86 94 68 67 85 81
81 75 73 76 53 59 40 41 46 45 75 92 51 78 75 114 69 82 62 53
60 41 44 38 59 66 87 65 64 96 85 57 66 89 89 125 143 124 147 160
139155173149178142138151214213228284281362184144113153149190
217
TN G-B23B }8
136105102 64 91 99 100 85 89 68 47 42 42 42 84 92 75 59 94 83
78 76 77 59 53 64 42 41 44 46 83 87 46 82 82 107 71 87 67 50
46 53 50 60 85 70 82 67 71 95 82 57 75 79 98 119139 116 154 153
142146174159169151142148217223216289289362192153112151142182
234
TN G-B24A 78
16620623220120319312912296108150201214176128150126148149139
136142145146197186117150225167 200 244271222253185180196178192
```

195250154168152142157157150145146185164190200167156209132170 10311064628310795112100961127868576573112109 TN G-B24B 78
160204244202228194148150129117135192214172130153126155141142 139150150130198175126143234173210242269231267186166192164198 201254164170149147153167146153141185158178195181150195136148
1091075958931069111496921108070576372108109
TNG-B25A 69
589457401320286367455385488510485404368336314267129243242257 217250260220273318337373203256259240365476369345343256317393 299262378329300315323242294350253245196315373310160289369372 328278162305218209206233318

TN G-B25B 69

612462434324293395468407518484490386366340321270135243241253 206260284209278323360400178267270270387453368339317248321372 291267376321297318340228284339239242190295371300156296401373 330278159326213198184246303
TNG-B26A 110
428510362347319419305296213353415473444539402335323273225165 15125328226023719612310986946810610089799045763750 4531404562645654583937334045463435565757 711019614811262366243486813216420722918115618596114 1011257775115215146372371416403129614851889310610388 6253314149841901244657
TN G-B26B 110
418509365330325435321280175327425468425528396314335268231167
 4232424264625157544040363946513230606053 809810414212062375343545712816021723519416620197115 931127883106192131343347416404118644853858511110687 6559324847811781064356
TN G-B27A 70
3832171842001641511211041841801301231179880641019291101
107917863102706759434246786860674643594061
4983413210899103158298323358386565801412285281265464536 664604485601548409494566497268
TN G-B27B 70
3802171851861651591121041911781411071169880631059385108

50684936103112100150309309358397564791429287259276485529
642620475589553401487559512284
TN G-B28A 77
35729824523619230138026122615413212310312096152160217158170
100104676571376063526665785830463031283133
25425075109154184208189282407300145150137170214248273324
376389267287375340318468526703534830763583618332215
TN G-B28B 77
356306226221190297379266227167114132101124100143139216140156
96100716470247337657157775933413532213533
24434864114156189216192270414279176145146168207247282315
384398245282379346314452542737528837761588617334213
TNG-B29A 79
505509498424409317387291319402359329335384310355334289356323

849611886128220204214221157157235284206212163131168131233 1961672031782281731351381311338790143200128184165169148156 1101381541471631411171751461231151401031381358775123142 TN G-B29B 78
484447551434430344398311346396318332331400293349326282350333 8810011092125201206210220180154256281204214163123196120242 19217018419619518514013213713710086142196134203143171155153 111143144160150162106162149162941281061341419977128 TN G-B30A 65
505415393411375407314245312224229186188141134207212175164146 120221197164250138125171139235201179245201212207164184148112 104123156195153223193171229192171184182152195192153184165210
137136142181189

TN G-B30B 65

471410407408393412310257337211242185179151123210217171166144 126227186160257146125175131234193193243197217221165178145110 98121170182157215189193215206175192182148186195153185155210 132139143165200
TN G-B31A 70
654535625283328256451263249450234343282303307280339275217307 268104123157110173193184210175186148250248218235156160123157 264243230193168192193185201178152139135184249134164140156212 193150173206228181187169176268
TN G-B31B 70
667535628290325266443275239464226362279303313285339241222309 242120135151115175198193210178181168219251209267165157159144 250259228196181192190201195170171124138181268131165135164212 198168178200232172187157187286
TNG-B32A 160
49235531043333031217818416414913510799106143131145162169213 2712753651646584110144116190182171159195188192163127102151 15622818125113917517613111513718411028513915821424016210398 1291501261341001671981531681159813110311712116314214094112 1061149011890113168153134169143152140150156187150160110140 16715116515613412412110310690891151091091181029711899156 16311511816294118112128146108787061786275741099499 937887100719384871001017110012414611513496127109138 TN G-B32B 160 5233553094223393101941751641461441009999140118159160173213 27828535015371799515712519618519419220017420016212396154 16224017524513217518413210714019610929715015920922616598112 12414613312711417820315115210310612398103134165133159105100 110109771159013416314214717413715313714017417614914396153 154145168146142130122104102928713110310011810990117100153 169114118162871091161251541076862736956787210710089 9676829983949390811037998125151114129109118107133 TNG-B33A 145
113921421392082232673142962252952189271107276386225243173 157186132103911171752032432031721681581178389101121137145 1541852042121871211751299076137248261198101153137878978 126160159152162143156126101123164121120984282106124112125 749162595587100737187709599719910799689589 10668901281047184781099387941201121181379383108116

1461391101209376108128100124137128115110134117132112109118
112958190120
TN G-B33B 145
1059313715622422527031430623428515412698111277382243258183
14818716081951211752002542031581651501329276104117145114
15718921520419012517513978821372462641931061481251029375
12816015914516714515613298126173125137894273112128107119
819568506475968978757583106758414081659687
9972821379576888010477100931051321141259394102121
1431411121099084112118116115140120119104138131110114119133
729387102138
TNG-B34A 150
1532381841561851465797837910816117616521618918220611287
617078146136169901111291227974981021121549212189121
10357577885777580130151157130101120987546118135181
131104132128102938512013411414314012011811488118146142118
10856106114142123154110125957568841041119312987100119
971321391181041481311201091441831341031091001169096109147
100100113849110980981121238981801199811895112109123
115105108908178101687282
TN G-B34B 150
1662171921641851296886648511616218016922319216917811487
62588814614616792105138110787798961231359612489125
1025752698283868414218516913199125906457114150173
13110412911284848410114014213913512811711092110155133134
1155810512315312615412111293678579103977511810892118
89137137122101156116125111150168125118108941099996112162
1341451438210084861031141081038480939811110410098110
10110297999378100688771
TNG-B35A 90
11089981019572735986129114114129111961087286103103
12389537389103871108998745767761077468797778 756192117102821037496921001259697106891079990119 101119109100978789921191221061029488110120908910498 93103939893846610467109
TN G-B35B 90
1318683106101707555941381131161271061011126989103101

8370891178371103831039193135969696901009989121
1021181041019090929811711511510910787110117110929889
9510398959081639978108
TN G-B36A 64
430468531582569360482250278217261180287266325310275315246221
19716514520517914617618520924516812614014285134121142214214
2121981621671271969496101921572001621651421091461457390
68153116160
TN G-B36B 64
479438509608576343468258268220264171275268317293296321248210
20317814020317514618518521422216313413215384129123142209220
1962041611801211941039398921431901601751401011501458373
77144127168
TNG-B37A 141

415279215226147215254209400417462311355372367285193136173156
11092717310312812116090106149155166103121112104122125164
13185961177910418722919016416718516013114315496125148173
15617313511764717877766746607368564565374050
$\begin{array}{lllllllllllllllll}50 & 51 & 76 & 51 & 45 & 45 & 48 & 38 & 43 & 40 & 40 & 45 & 53 & 54 & 61 & 51 & 48 \\ 46 & 33 & 37\end{array}$
 $404650374257595678503935385458474643 ~ 3646$ 61
TN G-B37B 141
419285217226142218252212401432398289343378431310203135158128 10894857810013613415010112512116516710111013796142125164 1441001051168311220323722418216419215313415415596100165143
$15316814510667677978786650606765485163 ~ 39 ~ 3957$
$\begin{array}{lllllllllllllllll}45 & 51 & 80 & 43 & 43 & 47 & 41 & 47 & 43 & 40 & 37 & 50 & 53 & 53 & 54 & 59 & 48 \\ 42 & 40 & 37\end{array}$
$\begin{array}{llllllllllllllll}44 & 46 & 59 & 48 & 47 & 43 & 39 & 39 & 32 & 43 & 34 & 37 & 34 & 37 & 50 & 52 \\ 53 & 47 & 36 & 54\end{array}$
 54
TNG-B38A 144
2653983563313432502873094013633434253924756616646252597056 5166128149167226234232269363317243160176793335313746 50484153729110312511812513314412011211498212117126146 1812112501841582098843373443513622252637313340
5061627065861181061261501031678983119118190183196159
15015013714112616214014313813297122126112125165130153128172 17112417212496107104112123121152169128125128116158108119124 119113117146
TN G-B38B 144
2653863703093742762682823953443213923824735786396242676457 5756103107128166175231267362332246152208853740444456 674364737884126101145123127148117122108100206118132136 1872122461871512188634374538483228232834313443 4859627264781251031211531031659086122112190190193153 149153137145120161140150137128100133118104131137115146115139 148125193131108112112103121115155156149129111116159106118127 132113117143
TNG-B39A 139
459251198204242278193251282319385475310256179129726071178 17323016018825411714611414211721222113213215916068463950 6867537512810415618913218584656215115718912089101115 53604676841141451511381141251071351511391348695148189 262168232122159981189111919311411917814014716274115146146 104137117906810313796808868685364777896788888 847311278100965862537111280757990848385125
TN G-B39B 139
425238208212233280201256277324387470303263185121646676180 13724517819222515514111914713716821011815114315171504048 756351751251001621871401767571561431451841158290109 60535775841181461481511051481091391471411219687149185 2781712211511361491468112019712110918014213515080101134164 111137117956311013686676962625961728387908889 79731098589977558566811079728199789376120 TNG-B40A 52
193277175220191276281366256232310418408475321359479392310271

```
215114153143221 317 187 253240237227 275410261427 340 311 184 179 96
164248165218229158193210103196 203184
TN G-B40B 52
169279172215180280 275 358262216 318419421476 317 371482396 308278
186 115143148212317 181265229245238281 375 248406 323 290 156 152 91
138217191217223156192210100198197196
TN G-B41A 51
256162 203 182 269 301 366 296 244 282 292 216 349217 207 291 257 296264 236
242335242236235149118116112182182180178228203198235 292 246432
492198210 306211203259228284292260
TN G-B41B 51
248159198177 260 304 363 313234209291220 339228205 291253 303251236
253 325239238246150120104127171179186179217 212193235 291 225428
492218214 308216210254248281299259
TN G-B42A 41
219159143228250284422341 323582486523568479428651426457496 323
264282296 351 325 304 292 315 227 201246 302 249452483206 227 298 200 215
265
TN G-B42B 41
229162135 224 252285434327 318590539549590487428648434467507 325
259287293 361 329291 300 317 232198251 292 254439475196 231 287 205 219
271
```


APPENDIX:TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East M idlands M aster Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about A pril to 0 ctober, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A 1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. W e normally look for timbers with at least 70 rings, and preferably more. W ith fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique
position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. O ne reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A 06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. W here it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring
on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, whid grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: M easuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring W idths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln C athedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of $C 45$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other

 one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Q uite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A 06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO -A 06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A 06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. O ak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A 2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the D ate of C onstruction. As m There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 50-5). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A 6 such a sequence is $\mathrm{SHE}-\mathrm{T}$, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for N ottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). O ther laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and W ales covering many short periods.
7. Ring-W idth Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

	1	1	1	1	1	1	1	1	1
0	10	20	30	40	50	60	70	80	90

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and TH0-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. N otice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, M organ, R A and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 N ottingham University Tree-Ring D ating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 N ottingham University Tree-Ring D ating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6.

Hughes, M K, Milson, S J, and Legett, P A , 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East M idlands M aster Chronology and its use for dating vernacular buildings, U niversity of N ottingham, Department of A rchaeology Publication, M onograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, M edieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and W oodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

[^0]: W hite bars = heartwood rings, shaded bars = sapwood rings;

