DAUNTSEY HOUSE, CHURCH LANE, DAUNTSEY, WILTSHIRE TREE-RING ANALYSIS OF TIMBERS
 SCIENTIFIC DATING REPORT

Cathy Tyers, Matt Hurford, and Martin Bridge

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

DAUNTSEY HOUSE, CHURCH LANE, DAUNTSEY, WILTSHIRE

TREE-RING ANALYSIS OF TIMBERS

Cathy Tyers, Matt Hurford, and Martin Bridge

NGR: ST 9797825 I
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Dendrochronological analysis was undertaken on all 20 samples taken from the hall and cross-wing roofs. This resulted in the production of two site chronologies, DSDPSQ0। and DSDPSQ02, comprising eleven and nine samples respectively. DSDPSQ0 I can be dated as spanning the years AD 1393-1580 and DSDPSQ02 as spanning the years AD ||22-|355.

The results indicate that the hall roof is constructed of timber that is likely to represent a single programme of felling dating to AD 1356-79, whilst the cross-wing was probably constructed just over two centuries later using timber, again representing a single felling programme, predominantly felled in the early, or possibly mid-, AD I580s.

CONTRIBUTORS

Cathy Tyers, Matt Hurford, and Martin Bridge

ACKNOWLEDGEMENTS

Mr and Mrs Amati kindly gave permission to undertake the work. Thanks are also due to Avis Lloyd for arranging access and for providing additional background material on the building. The dendrochronological work was funded by the English Heritage Scientific Dating Team and coordinated by Peter Marshall.

ARCHIVE LOCATION

Wiltshire and Swindon HER
Wiltshire Archaeological Service
The Wiltshire and Swindon History Centre
Cocklebury Road
Chippenham SNI 5 3QN

DATE OF INVESTIGATION

2009-|।

CONTACT DETAILS

Cathy Tyers
English Heritage
I Waterhouse Square
138-142 Holborn
London ECIN 2ST
02079733000
(Cathy Tyers and Matt Hurford both formerly University of Sheffield)
Martin Bridge
Institute of Archaeology
University College London
31-34 Gordon Square
London WCIH OPY
martin.bridge@ucl.ac.uk

CONTENTS

Introduction 1
Dauntsey House
Hall 2
Cross-wing 2
Sampling 2
Analysis and results 3
Interpretation 4
Hall 4
Cross-wing 5
Discussion and Conclusion 5
Bibliography 7
Tables 9
Figures 12
Data of Measured Samples 21
Appendix: Tree-Ring Dating 28
The Principles of Tree-Ring Dating 28
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 28
I. Inspecting the Building and Sampling the Timbers 28
2. Measuring Ring Widths 33
3. Cross-Matching and Dating the Samples 33
4. Estimating the Felling Date. 34
5. Estimating the Date of Construction. 35
6. Master Chronological Sequences 36
7. Ring-Width Indices 36
References 40

INTRODUCTION

In 2009 the Wiltshire Buildings Record (WBR) successfully obtained support through the English Heritage Historic Environment Enabling Programme for their project 'Wiltshire cruck buildings and other archaic roof types'. The detailed aims and objectives of the project are set out in the Project Design (Lloyd 2009). The overall aim was to establish a typological chronology of archaic roof types and hence elucidate the development of carpentry techniques in the county. This would then facilitate detailed comparison with other counties allowing Wiltshire to be placed in a regional context. Investigation of these late medieval buildings (cAD I200-c AD I550) combined building survey, historical research, and dendrochronological analysis.

A series of 25 buildings identified by the WBR as having the potential to contribute to the aims and objectives of the project was assessed for dendrochronological suitability during 2009. In order to maximise the potential for dating the detailed dendrochronological and WBR assessments for the significance of each building informed the final selection of buildings, which were subsequently subjected to detailed study.

A single final Project Report produced by Lloyd (2012) summarises the overall results. However each building included in the project has an associated individual report on the structural analysis produced by the WBR, whilst the primary archive of the dendrochronological analysis is in the English Heritage Research Report Series.

A brief introduction to dendrochronology can be found in the Appendix. Further details can be found in the guidelines published by English Heritage (1998), which are also available on the English Heritage website (http://www.english-heritage.org.uk/publications/dendrochronology-guidelines/).

Dauntsey House

The Grade II* listed Dauntsey House (now known as Dauntsey Park) is located in close proximity to the Church of St James, about I. 5 miles west of the present village of Dauntsey in Wiltshire (Figs I and 2). The Dauntsey estate was granted to Malmesbury Abbey in AD 850 but by AD 1331 the manor was held by Sir Richard Dauntsey. Following the death of Sir Walter Dauntsey in AD 1420 the manor passed to the Stradlings and Dewall families through marriage, and subsequently to Sir John Danvers, with whom it remained until the Restoration.

The original plan is unclear, but it could have been a two-bay open hall with screen passages and service rooms to the south and a single-bay parlour to the north. This appears, on stylistic evidence, to date to the fourteenth century. This was extended with the addition of a cross-wing, aligned east-west, at the northern end of the hall, thought potentially to date to the later sixteenth century. Externally, there is no evidence for the
medieval origins of the building as it has been so extensively extended that the original core is completely encased in later fabric (Fig 3).

The focus of this investigation is the surviving early core of the house, that is the open hall and cross-wing. Details given below are based on information provided in the WBR report (2012).

Hall

The original roof consists of three base-cruck trusses and two intermediate principal-rafter trusses. Base crucks CI and C3 are the most complete of the trusses, with the others being very fragmentary. Truss Cl is an open truss with a cranked tiebeam and arch bracing, the spandrels being filled in with plaster (Figs 4 and 6); whilst truss C3 retains sections of its cruck blades, a cranked tiebeam, and evidence for lower purlins and two tiers of windbraces. Truss C 2 is missing its base crucks but retains its chamfered tiebeam and arch bracing. Trusses Cl and C2 have peg holes and mortices for an upper structure set slightly in from the ends of the tiebeam, possibly for some form of upper cruck. Intermediate truss II has an arch-braced cranked collar which is chamfered on its lower edge. The remains of the principal rafters are still attached but cut off at the top and bottom. Intermediate truss I2 has a cambered rather than a cranked collar.

Cross-wing

The cross-wing is at the north end of the hall and is set on a lower level. The extant roof comprises three trusses, with principal rafters and collars, and twenty common-rafter frames (Figs 5 and 6). Based on the assembly marks present on the principal rafters it is thought that this roof was originally extended by a further truss to the west.

SAMPLING

Dendrochronological sampling and analysis of the timbers associated with the extant remains of the open hall and cross-wing was commissioned by English Heritage. It was hoped to provide independent dating evidence for the construction of the original medieval hall house and its subsequent early development, and hence inform the overall objectives of the 'Wiltshire Cruck Buildings and other archaic roof types' project. The dendrochronological study also formed a key component of the English Heritage-funded training programme for the second author, although the reporting was not completed within the duration of the training programme.

A total of nine timbers associated with the extant remains of the medieval hall house and eleven timbers from the cross-wing were sampled by coring by trainee Matt Hurford, supervised by Martin Bridge. Each sample was given the code DSD-P (for Dauntsey, Dauntsey Park) and numbered $0 \mathrm{I}-20$. The sampling encompassed as wide a range of
elements as possible, whilst concentrating on those timbers with the best dendrochronological potential. Sampling focussed on the cruck blades, tiebeams, and collars in the hall as all other accessible timbers were reused and not thought to be associated with the primary construction of the hall. In the cross-wing the principal rafters and collars were predominantly sampled as the common rafters present were either derived from fast-grown oak trees, and considered highly unlikely to provide samples with sufficient numbers of rings for reliable dendrochronological analysis, or were relatively modern softwood replacements.

The location of samples was noted at the time of coring. No formal plans or drawings subsequently became available so the locations of the samples were marked on the sketch drawings made at the time of coring, these being reproduced here as Figures 6-14. Further details relating to the samples can be found in Table I. In this table the timbers have been labelled following the scheme indicated in Figure 6. Truss Cl in the hall being the northernmost and truss C3 the southernmost. The trusses in the cross-wing have been numbered from the west to the east following the carpenters marks present on the principal rafters. Truss I is no longer extant so the westernmost truss is truss 2 and the easternmost truss 4.

ANALYSIS AND RESULTS

Each of the 20 cores obtained was prepared by sanding and polishing and the annual growth rings of each sample measured, the data of these measurements being given at the end of this report. The measurement and analysis was undertaken using a combination of the Litton/Zainodin grouping procedure (see Appendix) and software written by Tyers (2004). Tyers (2004) facilitates cross-matching and dating through a process of qualified statistical comparison and visual comparison. It uses a variant of the Belfast CROS programme (Baillie and Pilcher 1973). The analysis resulted in the production of two groups being formed, the samples of each group cross-matching with each as shown in Tables 2 and 3, and Figure 15.

The first group comprises eleven samples from the cross-wing which were combined to form site chronology DSDPSQ0 (Fig I5), with an overall length of 188 rings. Site chronology DSDPSQ0 I was compared to an extensive range of reference chronologies for oak, this indicating a repeated and consistent cross-match with a series of these when the date of the first ring is AD 1393 and the date of its last ring is AD 1580 (Table 4).

The second group comprises nine samples from the hall which were combined to form site chronology DSDPSQ02 (Fig 15), with an overall length of 234 rings. Site chronology DSDPSQ02 was compared to an extensive range of reference chronologies for oak, this indicating a repeated and consistent cross-match with a series of these when the date of the first ring is AD I I 22 and the date of its last ring is AD I 355 (Table 5).

This analysis can be summarised as follows:

Site chronology	Number of samples	Number of rings	Date span		
DSDPSQ0 I	$1 \mid$	188	AD \|393-	580	
DSDPSQ02	9	234	AD \|	22-	355

INTERPRETATION

For consistency the sapwood estimate used in all of the dendrochronological reports on individual buildings within this project is the Nottingham Tree-ring Dating Laboratory estimate of I5-40 (95\% confidence range) rings.

Hall

The hall is represented by nine dated timbers in site chronology DSDPSQ02 (Fig I5). None of these samples has complete sapwood and it is thus not possible to calculate a precise felling date for the timbers represented. However, four of the samples did retain their heartwood/sapwood boundary ring, the average date for this being AD I 339. The overall variation of the heartwood/sapwood boundary date is 10 years and it seems likely that they represent a single programme of felling. Allowing for the outermost measured ring on sample DSD-PI3, the estimated felling date is in the range AD 1356-79. The small amounts of sapwood lost from DSD-PI2 and DSD-PI 6 do not affect this felling date range.

The remaining five dated samples have no trace of sapwood and thus it is not possible to calculate their likely felling date ranges. With the exception of DSD-PI 8 whose last measured ring dates to AD I29।, the dates of their last measured rings vary from AD I34| to AD 1345. During sampling it was noted that the timber represented by DSDPI4 had heartwood/sapwood boundary present adjacent to the exit hole of the core, one other timber (DSD-PI5), was recorded as having a possible heartwood/sapwood boundary although, again, not at the precise location of the core, on another timber, (DSD-PI9), the potential identification of the heartwood/sapwood boundary was hampered by degradation of the surfaces of the timber, and the timber represented by DSD-P I 8, appeared to be, potentially, heavily trimmed. This, combined with the overall level of cross-matching within the entire group (Table 3), including a possible same-tree match, suggests that they are part of a coherent group and are hence all likely to have been felled during the period AD 1356-79. This interpretation is supported by the fact that these timbers appear integral to the roof structure with no evidence of insertion or reuse.

Cross-wing

The cross-wing is represented by eleven dated timbers in site sequence DSDPSQ0 (Fig 15). Sample DSD-P08 had retained complete sapwood. The final fully formed ring, and hence measured, dates to AD 1580 but the spring vessels for the following year are present, indicating that the timber represented was felled during the late spring/early summer of AD 158I. A second sample had retained complete sapwood but the outermost rings were very compressed and distorted so could not be measured or even counted accurately. However, with an outermost measured ring of AD 1565 it is clearly compatible with the AD I58I felling date and it seems likely that this timber was felled at a similar time. Four other samples were taken at points on the timber represented where complete sapwood was present but, due to its very friable nature in this roof, the sapwood did not survive coring fully intact. Three of these had lost between $10-15 \mathrm{~mm}$ of sapwood, whereas one had lost up to a maximum of 5 mm . Due to the variable nature of the growth rates of these samples, the estimated number of lost sapwood rings was calculated using both the overall average growth rate and the average growth rate for the last ten measured rings. This suggests felling dates ranging from the very late AD I570s to the early/mid AD 1580s and hence indicates that these timbers were felled at a similar time and a time compatible with the AD 1581 felling date identified.

One of the five remaining samples has the heartwood/sapwood boundary present and has a felling date range of AD I569-94, again compatible with the AD 158 I felling date identified. The other four samples have no trace of sapwood and thus it is not possible to calculate their likely felling date ranges. However during sampling it was noted that the timbers represented appeared to be more heavily trimmed. Thus with the dates of their last measured rings varying from AD 1499 to AD I539, combined with the overall level of cross-matching within the entire group, including several potential same-tree matches (Table 3), they appear likely to be part of a single felling programme in, or around, AD 1581. All of the dated timbers from the cross-wing roof appear integral, with no sign of insertion or reuse.

DISCUSSION AND CONCLUSION

Dendrochronological analysis has established that the original hall roof is constructed of timber felled in the period AD I356-79. This therefore confirms the fourteenth-century date assigned to the hall on stylistic grounds. It also identifies that the builder of the house is likely to be Sir John Dauntsey who inherited the estate after AD I 349 and held it until his death in AD I 38I. The cross-wing was probably constructed just over two centuries later using timber felled in a single felling programme, possibly in AD I58।, or spanning a few years in the very late AD 1570s and early/mid-AD 1580s, when the estate was in the ownership of Sir John Danvers.

The overall level of cross-matching between the dated samples from the cross-wing suggests that these timbers probably originated from a single woodland source.

Particularly high t-values in excess of 10.0 can be found between a number of samples suggesting the possibility that they could be derived from either the same-tree or trees located in very close proximity to each other (Table 2). The dated timbers from the hall also probably originate from a single woodland source (Table 3), and again at least one possible same-tree match is indicated. The two site chronologies generally produce the highest t-values, and thus show the greatest degree of similarity, with reference chronologies from Wiltshire and the surrounding counties (Tables 4 and 5). This suggests that it is likely that the timbers from both the hall and cross-wing were derived from relatively local woodland sources.

The timbers from the two roofs show slight differences in growth characteristics. Those from the later cross-wing are generally derived from slightly faster grown and slightly younger trees than those in the hall. However it is notable that all are from relatively mature trees.

BIBLIOGRAPHY

Arnold, A J, and Howard, R E, 2006 unpubl, Tree-ring analysis of timbers from Newnham Hall Farm, Newnham Murren, near Wallingford, Oxfordshire, Nottingham Tree-ring Dating Laboratory unpublished computer file CMGASQOI

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree Ring Bulletin, 33, 7-14

Bridge, M C, 200I Tree-Ring Analysis of Timbers from the Abbey Barn, Glastonbury, Somerset, Centre for Archaeol Rep, 39/200 I

English Heritage, I998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Groves, C, and Hillam, J, I 994 Tree-ring analysis of the Tithe Barn, Englishcombe, near Bath, Avon, 1994, Anc Mon Lab Rep, 64/94

Haddon-Reece, D, Miles, D, and Munby, JT, 1989 Tree-ring dates from the Ancient Monuments Laboratory, Historic Buildings and Monuments Commission for England, Vernacular Architect, 20, 46-9

Hurford, M, Howard, R E, and Tyers, C, 2010 Bremhill Court, Bremhill, Wiltshire: TreeRing Analysis of Timbers, English Heritage Res Dept Rep Ser, 77/20I0

Lloyd, A, 2009 Wiltshire cruck buildings and other archaic roof types: an archaeological and dendrochronological analysis of medieval timber construction in the county, English Heritage Historic Environment Enabling Programme, 5104 Project Design

Lloyd, A, 2012 Cruck buildings and other archaic roof types: an archaeological analysis of medieval timber construction in Wiltshire, English Heritage Historic Environment Enabling Programme, 5104 Project Report

Miles, D H, and Worthington, M J, 2000a Tree-ring dates for Surrey I: List I I I, Vernacular Architect, 31, 109-12

Miles, D H, and Worthington, M J, 2000b Tree-ring dates for buildings: List I07, Vernacular Architect, 3I, 90-101

Nayling, N, 1999 Tree-ring analysis of timbers from the White House, Vowchurch, Herefordshire, Anc Mon Lab Rep, 73/I999

Tyers, C, and Hurford, M, 2014 Old Manor House, Church Lane, West Lavington, Wiltshire: tree-ring analysis of timbers, English Heritage Res Rep Ser, 66/2014

Tyers, C, Hurford, M, and Bridge, M, 2014 Wick Farm Cottage, The Common,
Heddington Wick, Wiltshire: tree-ring analysis of timbers, English Heritage Res Rep Ser, 63/2014

Tyers, I, I999a Tree-ring analysis of three buildings from the Clarendon Estate, Wiltshire, ARCUS Rep, 429

Tyers, I, I 999b Dendrochronological analysis of timbers from Black Ladies, near Brewood, Staffordshire, ARCUS Rep, 484

Tyers, I, I999c Tree-ring analysis of oak timbers from the Manor Barn, Avebury, Wiltshire, ARCUS Rep, 524

Tyers, I, 2004 Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b
Wiltshire Buildings Record 2012 Dauntsey House, Church Lane, Dauntsey, WBR report, BI 436.1

Worthington, M J, and Miles, D W H, 2003 The Tree-Ring Dating of the Chapter House Roof, Christ Church, Oxford, Centre for Archaeol Rep, 3/2002

Table I: Details of tree-ring samples from Dauntsey House, Dauntsey, Wiltshire

Sample number	Sample location	Total rings	Sapwood rings	Average ring width (mm)	Cross-section dimensions (mm)	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
DSD-POI	Cross wing truss 4 north principal	130	13c 10-15mm lost	1.36	240×130	1444	1560	1573
DSD-P02	Cross wing truss 4 collar	116	no h/s	1.30	300×130	1415	---	1530
DSD-P03	Cross wing truss 4 south principal	133	no h/s	1.30	300×120	1393	---	1525
DSD-P04	Cross wing bay 3 south rafter 3	79	h/s	2.04	150×100	1476	1554	1554
DSD-P05	Cross wing bay 3 south rafter 2	113	$12 c^{1}$	1.17	170×90	1453	1553	1565
DSD-P06	Cross wing truss 3 south principal	158	20c $2-5 \mathrm{~mm}$ lost	1.35	250×150	1422	1559	1579
DSD-P07	Cross wing truss 3 collar	80	14c 10-15mm lost	1.09	280×140	1493	1558	1572
DSD-P08	Cross wing truss 3 north principal	106	$23 C^{2}$	1.31	300×120	1475	1557	1580
DSD-P09	Cross wing truss 2 south principal	144	no h/s	1.32	250×130	1396	---	1539
DSD-PI0	Cross wing truss 2 collar	129	7c 10-15mm lost	1.12	220×140	1446	1567	1574
DSD-PII	Cross wing truss 2 north principal	94	no h/s	1.30	270×130	1406	---	1499
DSD-PI2	Hall truss Cl west cruck blade	90	$\mathrm{h} / \mathrm{s} 5 \mathrm{~mm}$ lost	1.32	350×130	1246	1335	1335
DSD-PI3	Hall truss Cl west arch brace	80	16	1.33	400×130	1276	1339	1355
DSD-PI4	Hall truss CI tiebeam	191	no h/s	1.04	420×120	1155	---	1345
DSD-PI5	Hall truss II collar	88	no h/s	0.91	310×140	1256	---	1343
DSD-PI6	Hall truss C2 tiebeam	203	h/s 5-10mm lost	0.92	330×220	1143	1345	1345
DSD-PI7	Hall truss 12 collar	165	17	0.93	250×130	1188	1335	1352
DSD-PI8	Hall truss 12 west cruck blade	117	no h/s	0.86	300×140	1175	---	1291
DSD-PI9	Hall truss C3 tiebeam	221	no h/s	0.85	340×190	1122	---	1342
DSD-P20	Hall truss C3 west cruck blade	70	no h/s	1.10	400×190	1272	---	I34\|

$\mathrm{nm}=$ not measured; $\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample; $\mathrm{c}=$ complete sapwood was present on the timber sampled but was partially lost during coring; the estimated amount lost is indicated; $C=$ complete sapwood is present on the sample; '= complete sapwood is present on the sample but compression of the outermost rings prevented accurate identification of the ring boundaries; ${ }^{2}=$ complete sapwood is present on the sample but the outermost ring is only partially formed and hence not measured, this sample is therefore felled in late spring/early summer AD 158 ।

Table 2: Matrix showing the t -values obtained between the matching ring sequences in site chronology DSDPSQOI; - indicates t -values less than 3.00; \indicates overlap of less than 30 years; grey shading indicates possible same-tree matches

Filenames	DSD-P02	DSD-P03	DSD-P04	DSD-P05	DSD-P06	DSD-P07	DSD-P08	DSD-P09	DSD-PIO	DSD-PII
DSD-POI	6.65	8.58	5.04	8.31	7.95	3.53	7.08	6.73	7.35	4.62
DSD-P02		5.81	4.85	5.43	8.69	5.20	6.62	11.56	6.64	4.26
DSD-P03			-	5.36	7.48	-	5.13	9.15	6.39	5.28
DSD-P04				4.20	5.66	4.56	6.24	5.76	4.96	\backslash
DSD-P05					7.94	-	8.34	5.82	6.95	6.07
DSD-P06						6.19	11.43	10.63	9.59	6.41
DSD-P07							5.39	3.63	5.64	1
DSD-P08								6.57	7.07	1
DSD-P09									6.71	5.09
DSD-PIO										-

Table 3: Matrix showing the t-values obtained between the matching ring sequences in site chronology DSDPSQ02; - indicates t -values less than 3.00; \indicates overlap of less than 30 years; grey shading indicates possible same-tree match

Filenames	DSD-PI3	DSD-PI4	DSD-PI5	DSD-PI6	DSD-PI7	DSD-PI8	DSD-PI9	DSD-P20
DSD-PI2	-	3.53	-	4.16	4.29	5.50	-	3.77
DSD-PI3		3.39	5.34	3.89	4.62	1	5.76	-
DSD-PI4			7.64	8.11	6.41	8.96	6.75	4.19
DSD-PI5				3.50	4.16	3.58	4.27	3.14
DSD-PI6					9.35	5.34	14.95	3.70
DSD-PI7						5.55	6.45	3.99
DSD-PI8							4.07	1
DSD-PI9								-

Table 4: Results of the cross-matching of site sequence DSDPSQOI and relevant reference chronologies when the first-ring date is $A D$ I 393 and the last-ring date is AD 1580

Reference chronology	t-value	Span of chronology	Reference
Newnham Hall Farm, Newnham Murren, Oxfordshire	10.1	AD 1414-155\|	(Arnold and Howard 2006 unpubl)
May Tree Cottage, Hambledon, Surrey	9.2	AD 1413-1559	(Miles and Worthington 2000a)
Old Manor House, West Lavington, Wiltshire	8.9	AD 1264-1497	(Tyers and Hurford 2014)
Upper House Farmhouse, Nuffield, Oxfordshire	8.7	AD 1404-1627	(Haddon-Reece et al 1989)
Queen Manor Farm Granary, Clarendon, Willtshire	8.4	AD 1337-1602	(Tyers 1999a)
Black Ladies, near Brewood, Staffordshire	8.3	AD 1372-1671	(Tyers 1999b)
White House, Vowchurch, Herefordshire	7.9	AD 1364-1602	(Nayling 1999)
The Old Mansion, Clarendon, Wiltshire	7.9	AD 1315-1625	(Tyers 1999a)

Table 5: Results of the cross-matching of site sequence DSDPSQ02 and relevant reference chronologies when the first-ring date is AD I/22 and the last-ring date is AD I 355

Reference chronology	t-value	Span of chronology	Reference	
Bremhill Court, Bremhill, Wiltshire	16.2	AD 1\|	1-1323	(Hurford et a/ 2010)
Court Farm Barn, Winterbourne, Gloucestershire	13.7	AD 1177-1341	(Miles and Worthington 2000b)	
Wick Farm Cottage, Heddington Wick, Wiltshire	11.6	AD 1158-1335	(Tyers et a/ 2014)	
Chapter House, Christ Church, Oxford	11.4	AD 1142-1260	(Worthington and Miles 2003)	
Abbey Barn, Glastonbury, Somerset	9.8	AD 1095-1334	(Bridge 2001)	
The Manor Barn, Avebury, Wiltshire	9.7	AD 1072-1278	(Tyers 1999c)	
Tithe Barn, Englishcombe, near Bath	9.7	AD 1157-1304	(Groves and Hillam 1994)	

FIGURES

Figure I: Map to show the location of the village of Dauntsey in Wiltshire. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the location Dauntsey House, Dauntsey. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: The west (principal) front (Avis Lloyd)

Figure 4: Hall, truss CI viewed looking south-east (Matt Hurford)

Figure 5: Cross-wing, truss 4 viewed looking east (Matt Hurford)

Cross Wing

Figure 6: Plan of hall and cross-wing, showing truss position and location of samples 04 and 05

Figure 7: Cross-wing, truss 4, west face, showing the location of samples 01-03

Figure 8: Cross-wing, truss 3, east face, showing the location of samples 06-08

Figure 9: Cross-wing, truss 2, east face, showing the location of samples 09-II

Figure 10: Hall, truss CI, north face, showing the location of samples 12-14

Figure II: Hall, truss II, north face, showing the location of sample I5

Figure I2: Hall, truss C2, north face, showing the location of sample 16

Figure 13: Hall, truss II, north face, showing the location of samples 17 and I8

Figure 14: Hall, truss C3, north face, showing the location of samples 19 and 20
Cross-wing

Figure 15: Bar diagram of the samples in site chronologies DSDPSQOI (cross-wing) and DSDPSQ02 (hall) with the individual felling date ranges. White bar = heartwood rings; hatched bar = sapwood rings; narrow bar = estimated unmeasured rings or rings lost during coring

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
DSD-POIA I30
    ||7 |08 |07 |63 |54 |66 |38 |58 |06 96 || | |6 |64 |48 |2| 92 99 72 8| |47
    97 |09 |35 85 ||8 |24 |23 |28 |2| |07 |22 98 93 92 86 76 90 |5| |53 |26
    |43 |02 |33 |62 |45 |65 |53 |5 ||9 |45 ||7 |3| |73 |30 93 |09 |2| |03 75 90
    ||9 ||4 |24 92 76 |08 ||| |42 |88 |3| |52 ||8||3 |52 |56 |65 ||3 |4| 205 |57
```



```
    86 |30 |29 |4| | 3| | 49 | 78 |60 | 36 |54 | 40 | 60 | 36 78 92 | 65 |76 |73 |45 206
    |77 26| 2|2 |46 | 46 | |3 | |8 | 63 | 32 | 32
DSD-POIB I30
    ||4 |03 ||3 |69 |55 |69 | 35 |38 |09 8| |08 |7 |58 |56 ||5 7% |09 70 88 |54
    IO6 90 |42 86 IO0 ||9 |43 |36 |06 I07 |2| 97 92 90 89 68 90 |6| |50 I26
    |33 |0| |26 |59 |55 |62 |54 |3| |29 |44 |20 |29 |70 |32 95 ||3 ||7 |08 95 90
    ||3 ||3 |27 93 8| |00 ||3 |40 | 86 |27 |55 |23 ||4 |49 |57 |55 ||9 |43 203 |59
```



```
    |66 272 2| | | 44 | 37 | 88 | 84 |59 |27 | 33
DSD-P02A 116
278 3|2 35| 250 |72 308 323|40 263 486 27| | 58 269 283 | 60|40 |76 245 |63 ||9
|90 |98 |27 |09 |36 ||4 |97 |22 |03 |24 ||0 |23 |67 |73 |77 |90 |88 ||4 89 ||2
|67 |34 |54 |05 85 9| 98|3| |62 |07 ||9 |38 |08||4 93 |23 |08||| |40 80
|50 ||6 |22 |0| ||7 ||7 |49 |2| 92 83 76 |07 ||7 84||5 |03 ||8 98 84 72
88 98 IIO 68 60 65 60 58 54 63 70 68 64 58 59 45 67 79 83 92
    63 68 |04||9 82 47 67 |09 |06 79 80 79 |24 |35 97 |0|
DSD-P02B II6
282305 354 256 |66 3|7 332 |35 258496 266 |58 270 280 |50 |57 |7| 255 |56 ||6
|84 2|3 | 30 ||| | 35 |27 | 87 |22 |02 |29 ||7 || | |8 |72 | 82 | 84 |90 |00 |05 |08
|62 |29 |56 |03 78 96 l04 | 34 |64 || | | |44 |07 ||| 94 |25 |09 ||| |37 85
|50 ||| |22 |07 |23 107 |49 |23 78 93 79 |02 ||4 84||6 |00 122 97 84 69
99 94 |0| 64 64 7| 64 64 4| 65 7| 65 65 56 57 45 70 80 83 89
76 56 |23 |03 92 57 5| ||5 97 89 67 85 ||5 |33 |02 |02
DSD-P03A I33
    66 66 7| ||2 ||0 |4| |59||6 |72 |43 ||9 92 |08 22| |30 |59 99 92 ||9 |5|
|57 | 87 205 |76 225 |95 |7| 2|2 |94 |53 204 ||7 8| 66 9| |25 |39 ||3 |36 |60
||| 93 85 82 87 94 98||5 |84 |48|38|82 |55 | 40 |54 |69 |99 | 68 |78 ||5
| 30 |22 |67 |50 |55 |43 |06 |09 67 79 90 77 |00 95 63 6| 65 6| 66 75
77 76 67 64 57 65 54 69|26 99 |00|35||8|56 2|0|6||40|3||66|35
|72 ||3 |34 209 203 | 36 | 88 |44 |25 |0| |22 |24 ||5 94 | 39 ||8 |77 |66 206 |86
|96 |76 |53 | 30 | 38 |55 |77 83 | 30 2| | | 66 |20 |22
DSD-P03B I33
70 58 74 |07 ||6|5| |52 96 |6| |30 |26 83 ||7 2|2|40 |6| 93 98|2| |42
|52 | 87 2|0 | 75 225 |93 |7| 207 200 |50 20| ||5 85 67 89 |26 | 36 |08 |36 |59
||6 92 97 74 86 87 94 ||| | 85 | 37 | 39 |78 | 60 | 30 | 63 | 70 |96 | 66 | 75 |22
|26 |24 |65 |56 |5| |5| |02 |08 72 68 97 9| 85 97 57 58 68 52 74 69
72 80 68 64 57 63 50 74 |24 98 |03 | 39 ||2 | 53 2|6 |59 |42 | 32 | || | 30
|69 ||5 | 32 2|3 |98 | 35 |86 |48 |3| 9| | 28 |23 ||3 98| |6||| |73 |65 204 |94
|86 |9| | 42 |33 |44 |4| | 75 93 | 30 2|7 |66 ||7 |22
```

DSD-P04A 79
329249219309428335269212205168303295325260279170219169173246
330244 | 43 | 39 |90 207 | 22 | 88 | $8234932|177| 94|53| 83227272|832| 6 \mid 92$
|68 |69 |99 208 |07 | 3025 | 222 |97 |3| | $862092|2| 94||7| 95| 86|69| 62334$

DSD-P04B 79
332267213310426337266217214162298297325257281167219166172257
$33|250| 44|391872071221871993333| 6|83194| 50|85222260178220| 89$
|74 |79 |96 207 | I7 | $382582 \mid 5$ |99 | 29 |9| |98 $20620 \mid 109$ |96 |97 |69 |57 320 $2202|7| 6525||88| 76||4| 48|2820||2||26| 59|4||55| 35|07| 44 \mid 37$ DSD-P05A 113
95 |35 |59 |5| | 55 | $30|23| 73||5| 552| 9|09| 38|85| 04|35| 80|80| 84 \mid 22$
166 |09 | 34 | 24 | 48 | 52 | 49 | $5622||69|| 8||8| 0|||2| 93| 80|62| 95|06| 07$ $1|7| 03|1323| 15498|06| 30|0289| 1076|36| 4998|2||36| 2588 \mid 45$ |29 | 35 | 3382 |35 |34 |50 79 || 8 |57 |25 ||4 ||2 ||4 ||9 |52 ||0 |27 |83 ||5
93858980761156466916382565863586669658072 88689368586876926277575451
DSD-P05B |13
88 | 39 | 62 | 52 | 58 | $22|32| 75||2| 532| 3|05| 32|86| 06|29| 94|82| 90 \mid 24$
 I20 I03 | $2022|15| 93|06| 32|04| 039376|26| 4597|2||38| 06|06| 4 \mid$ |40 |32 |33 89 |3| |39 |4| $80|28| 52|33||5||3||9| 20|49||||30| 8|| \mid 4$ $7189907778 \mid 175765826986506065586850827974$ 897389715470769461775357 5।
DSD-P06A 158
| 50289 | 80 | 94 | $792833782|6| 7224|260| 54|80264222| 65|08| 72 \mid 49226$
$135|46| 139|7284771036| 92626765|0|||8| 25| 0687 \mid 2589$
 $257|69| 4|1| 1|43230| 83210|54| 32859594105168 \mid 3693989079$ $67857675747784|17| 00|16| 60|49| 46||4|| 2|28| 88|848| 102$

 ।|2 62 I27 $999296|I 0| 77|35||\mid 89958675658869107$
DSD-P06B I58
|5| 289 | 85 |93|89 $2893782|3| 70248246|63| 8|2672| 9|88| 02|68| 492 \mid 8$ $126|47| 248|847578907685637056| 07||3| 25| 0677|3| ~ 9 \mid$ |52 2|9 ||5 |7| |72|24|03||5 $232|65| 75|43| 57|87| 55|69| 49235260327$ $25|1751521| 3|37239| 772||156| 2683| 0|90| 06|68| 3394929374$ $76768272847482|1596|||150| 5| 147|16| 03|34| 90|8| 9095$ $176|60| 169997|0| 162|8||6| 206|03||5| 30|85| 88|24| 43|7||4| \mid 32$

DSD-P07A 80
 |06 ||8|04 $96|2|||3| 235885| 57||0|| 597|08| 30|30| 33|28| 65|\mid 8$ |23 |46|65 |32 97 ||4 |74 |5| |50||3|44 $90|239983| 29|28| 20|\mid 587$ $889382708084|249689| 50|04||393859482| 36||||03| । 0$ DSD-P07B 80
$43929396|451449188| 139893818896868910088102128$ $1071211049412012310|74851601| 2|0694109138| 28 \mid 39125152105$ $1|8| 42|6513210710| 174|46| 53||4| 3284| 079895|28| 28|20| 1798$ $959285667786|249690| 4897|2| 9785868||35|| 4|03||\mid$

DSD-P08A 106
$2|7| 49|84| 502|82||242252| 43|45| 28|522| 8|53| 60|69| 55|24||2| 04$ $10020514712|10010289606895821096810| 12396 \mid 031278988$
$8363|10| 3||276| 95| 48|3||22| 30|6||84| 92|46| 34|75| 06|3| \mid 29$
$182|57| 53163189|48166108136969910596| 23|48106| 0592108100$
$1279810589|37| 46||2| 2| 9|1| 8|||8887| 25195167| 72971051| 9$ |46|36|33|22|36 24|
DSD-P08B 106
$24||42| 90| 52220|9822424| 137|42| 33|54209| 65|53| 76|53| 22||4| 07$
$110218|42108102106836374938| 105669513496|10| 4010294$
$80649|13| 1285899|43| 36||8| 32| 48|80| 88|48| 38|76||8| 28|3|$
 |28 |09 |06 89 |38 | 48 ||3 |24 89 |44 |0| $9|86| 39207|63| 7795|02| 32$ | 57 |4| |26 ||4|4| 227
DSD-P09A 144
$23316|188| 6013723|1932251821973282271658579129102| 12 \mid 48170$

|28 |05 |3| |5| |54 239 | 75 | $36|46| 38|2||48| 52|77| 7||52909564| 0|$
$14|1229268755910718610388| 18979|8987| 0|1| 5 \mid 3897177$

।18 |1674908986747597797| $769694||5| 22| 54|47| 30 \mid 00$

173200 I59 233
DSD-P09B 144

$13|1078779| 58|89| 1|132| 339|88| 42|98| 45|33| 6||498488| 16$
$137|0| 130|46| 60243|72| 39|48| 4||25| 4||54| 8||7|| 5398946595$ $140122897|775610919010387| 149884959397|20| 399 \mid 174$ $126|23| 12|42| 8622||55||||1085|| 0|75||4| 78|43| 39|08| 1287 \mid 05$ 108 | | $28288849060789|7264779| 10|||5| 27| 47| 50 \mid 35$ |0|
 I70 196 I60 226
DSD-PIOA 129
90 || 8122 |32 | $362||78757390| 24| 23|0382| 5|||||2|| 8||| 8 \mid 25$ |38||6|5| |3| |37|25 77 73 72 $97586259597 \mid 8562576562$ 65676966525852605152100635254675546515360
 $8|1| 3||3| 10| 14|578| 10383|||12| 109| 23| 57|17| 267|8947| 45$ ||2|47|9| | 44 | $30|4| 143|82| 29252|38||2206233249| 9|368| 68224 \mid 86$ 214217214359218192188206213
DSD-PIOB 129
79 | 24 | 20 | 23 | $492238|687983| 26|279| 88|53||||23| 78|| 6 \mid 08$
|53 || 8148 |25 |43 |30 6388679865586163649260626652
7270656851585361564698785255685245555457
49404969535083546730444653674756149967293
$83||2| 06| 17|04| 5|859286| 09||6|| 4||8| 69| 08|23799649| 42$
$120|48| 65|65| 32|38| 38|9| 130258|5|||520325| 257| 84383|75236| 86$ $21721720935722318819 \mid 206218$

```
DSD-PIIA 94
    |89 |88 27| 2|9 |20 |08 ||7 ||2 || ||0 92 ||2 |45 78 ||| |38 ||0 |36 ||6 ||6
    85 88 |56 |45 |46 2|3 2|9 |23 |26 |48 |03 |20 96 93 |09 |52 |47 |25 96 ||5
    |30 |27 9| |45 92 |08 97 99 ||9 ||7 || |07 |26 |00 ||3 70 9| |44 69 |20
    |32 |00 ||3 |2| |54 |53 |53 | 36 ||2 |57 |25 |44 ||3 92 |39 |45 |47 84 |09 97
    ||6 |64 | 46 | 48 |97 | 65 | 45 |00 127 |43 22| 2| | | |6 209
DSD-PIIB }9
    |98 |8| 27| 2|4 |09 |08 ||2 ||7 ||| ||6 ||8 |02 |25 83 |06 |35 |20 |27 |20 ||8
    84 89 |63 |42 | 38 225 23| |23 |22 | 36 |04 ||9 |02 94 ||4 |43 |40 |34 9| |||
    |29 |29 92 |34 95 99 97 |03||4||6||3|04 |29 |00 |07 66 94|42 70 ||4
    |33 93 |24 |22 |59 |52 |50 |33 || |60 |2| | 45 ||2 92 |44 | |7 |42 92 ||4 75
    |37 |64 | 48 |44 |63 |57 |40 |08 |32 |48 2|9 2|7 |34 209
DSD-PI2A 90
    93 94 54 64 86 98 |07 |53 |27 | 87 | 65 |44 | 47 ||7|| ||| | 78 | 52 | 66 |54
    |60 |4| 207 |79 |56 239 | 64 | || 246 |69 |3| 205 |94 2|9 266 |90 292 |75 |3| | 30
```



```
    |9| |49 |33||| 63 44 44 62 63 47 49 67 63 58 7| 82 7| 65 52 66
    72 76 64 64 43 44 62 57 65 72
DSD-PI2B 90
    89 93 59 53 97 88 ||4 |52 |2| | 82 | 65 |43 |49 | 30 |00 2|0 | 82 | 36 | 56 | 54
    |62 |49 203 |79 | 52 246 |74 | 87 246 | 67 |36 2|4 |94 227 265 |97 286 | 83 |30 | 32
    | 80 |40 |2| | 37 |29 ||| 220 225 2|4 |64 |65 |72 | 68 |35 |7| |44 |93 |72 |72 |66
    |88 |50 | 38 |06 64 45 39 63 65 44 54 67 57 64 66 85 70 66 55 67
    63 85 57 6। 52 50 54 6| 66 76
DSD-PI3A 80
    253 3382892852742082|0230292235 230 |68 ||9 |68 207 |56 226 |97 |27 ||9
    94 89 |07 |02 |64 |55 |47 || | | | |07 |34 |20 |30 |2| |25 99 87 |2| |3| |46
    2|0|4| 93 |2| 97||| 93 |0| 66 94 80 ||6 |0| |20 73 88 ||2 79 |09 |29
    92 ||3 |04 |53 |30 |39 97 69 49 49 69 54 77 53 92 82 68 88 74 77
DSD-PI3B }8
    254 33| 28| 2872782202|6232 292 23| 236 |75 ||| | 68 203 |54 223 204 |23 |20
    |05 88 |02 |0| | | | |6 | |6 |2| | 30 |06 | |2 |22 |26 ||9 |28 98 96 ||3 |30 |5|
    2|6 |4| 94 I22 98 |06 98 99 66 97 80 ||7 94 |23 74 89 ||0 79 ||3 |25
    95 ||| |03 |57 |29 |36 99 67 48 50 63 67 67 55 9| 80 70 93 77 73
DSD-PI4A 19|
469604 5|9 40| 424425 328396 268 232282256 224 399536 355 236|85 |33 250
2IO।54 85 86 94 5| 60 98 5| 43 50 52 73 46 76 8| 46 29 49 38
```



```
40}3246474445394874 39 52 67 75 40 61 70 62 80 ||7 82
|46 ||7 74 63 77 |3| 97 |03 72 89 |33 |08 |20 ||3 98 72 |5| |03 |54 |27
90 80 |03 |0| |3| 97 88 |03 |23 9| 70 |24 83 93 94||2 82||2 |39 |09
87 85 74 98 76 |27 8| 90 79 94 77 |09 ||9|08 80 72 53 62 55 63
I03 I20 98 72 87 99 84 99 70 72 62 7| 63 77 78 99 62 77 77 9|
|09 85 85 97 88 96|30||7 8| 64 78
```

```
DSD-PI4B I9|
    478 6|0 5|2 395 48| 4I0 348 386 274 235 240 225 225 399524 375 2|9 I74 |63 246
    20। |56 82 88 95 53 64 88 56 48 47 54 82 34 80 82 45 42 39 34
    40 47 54 38 4| 37 46 40 37 36 50 45 40 48 47 73 5। 39 45 4|
    4| 44 47 35 47 4| 56 39 42 42 42 50 44 4| 49 3| 39 3| 39 45
    39 32 49 46 45 48 46 38 60 69 56 64 73 47 55 74 59 77 12। 84
    |40||9 70 70 79 |28 |00 97 75 92 | 30 109 ||8 ||3 95 72 |57 97 |58 126
    84 87 |08 |07 |26 9| 94 99 |26 90 72 |20 86 9| 92 ||9 80 ||6|34 |06
    84 85 83 88 84 |25 8| 92 80 92 79 95 |26||0 77 74 55 56 56 64
    |06 ||4||0 64 97 87 82 93 74 7| 69 73 59 80 82 95 58 75 79 92
    |00 9| 86 |04 87 95 |29||0 90 6| 82
DSD-PI5A 88
    |IO 80 85 |04 ||4 |20 |35 93 99 |27 85 ||6|53 |08 98 233 2| 286 I75 97
    |02 ||3 |30 |38 | || ||0 |27 |33||7 |02 |2| ||0 76 |08 |62 93 |30 |25 ||| 82
    74 5| 73 66 69 57 68 60 57 65 79 88 97 6| 7| 54 56 48 48 69
    78 60 44 54 55 63 55 47 45 63 44 42 64 58 47 43 5। 36 66 8।
    55 62 64 7| 74 9| 73 78
DSD-PI5B 88
|09 84 79 |08 || |26 |34 94 97 |28 8| ||4 |59 ||3 94 23| 207 277 |80 |08
|09 ||3 |2| |52 |59 ||6 |42 |48 |20 97 |33 |23 87 ||3 |49 93 |37 ||4 ||0 79
8। 59 66 66 66 65 70 54 67 60 79 88 92 74 66 59 50 48 49 73
82 59 47 48 53 62 57 4| 49 73 36 32 63 58 54 4| 54 34 60 82
646264 80 77 9| 76 80
DSD-PI6A 203
224 293284229 |47 ||| |29 97 |48 |29 |76 || 87||| |37 9| |2| |26 |4| |40
```



```
102 65 78 94 174 7| 83 64 85 69 98 72 69 83 93 88 78 98 |38 ||2
69 64 61 56 56 67 78 90 92 66 91 72 80 63 65 69 83 86 65 53
49 45 58 92 46 83 94 58 49 53 49 61 67 59 80 99 64 77 73 47
87 78 48 63 58 35 47 69 56 63 53 49 74 50 4| 42 55 55 43 58
72 6| 9| 87 57 87 ||0 8| |55 |06 |36 |2| 58 80||||05 |23||9 88 84
697872 92 60 64 79 |0| 30 IO3 86 75 54 76 59 6| 69 89 73 82
62 8| 79 96 83 |02 8| 94 86 ||3|44 |92 |55 |37 ||7 74 ||3 |03 85 99
9577 79 |07 68 63 72 74 60 59 65 65 95 85 83 95|83||5||6 94
107 72 69
DSD-PI6B 203
224 3|3 307 2|4 |63 |29 |43 ||9 |58 |26 |64 |2| 94 97 | 38 |0| ||6 | 25 |47 | |8
```



```
103 65 69 |05 |6672 8| 65 84 69 |0| 73 64 90 89 87 75 |0| |34 100
71 60 63 56 56 70 73 95 93 62 98 74 70 64 66 73 83 84 64 49
48 55 52 95 50 82 89 65 42 56 50 59 69 59 87 93 62 80 69 54
89}76596056 33 51 63 64 63 36 62 79 48 42 43 55 56 4| 58
70 66 9| 75 73 7| ||6 78 |54||0|4| |03 75 77 |22 96 |22 ||9 85 87
7। 8| 63 96 63 63 8| 76 5| I05 86 82 58 7| 58 59 66 97 7| 78
6275 82 89 87 |03 83 88 9| ||| |46|86 |54 |36 |05 83||5 |0| 94 97
9| 77 83 99 78 72 6| 73 62 60 69 69 89 8| 84 88|87||5||2 9|
||26455
```

```
DSD-PI7A 165
    59 82 58 78 77 84 8| 57 74 64 50 57 83||7 82 48 40 76 60 55
    83 75 ||0 73 6। 88 63 85 74 62 88।05 73 93 65 44 73 79 99 65
    80 84 53 42 5| 5| 56 68 60 69 72 79 79 89 63 95 I04 88||4 |09
    8| 84 |2| ||3 94 |34 |24 |7| |45 97 92 |05 |09 |23 | 60 94 | 47 |58 |29 |||
```



```
    97 |35 | 38 ||6 | |0 |65 |37 99 96 |02 |2| |03 |25 |24 |36 || 9| 89 ||4 |0|
    |06 ||| 94 97 70 77 94 103 12| 87 94 82 90 84 82 75 59 62 66 75
    6473 66 40 61 58 69 88 80 80 68 107 9| 94 80 94 63 74 59 75
    52 52 82 86 96
DSD-PI7B 165
    49 8। 62 77 75 84 70 64 73 62 54 56 94 l07 80 62 4| 75 60 60
    83 75 |08 70 62 86 63 89 74 65 78||| 75 97 62 59 65 70 |04 6|
    79 9| 55 45 50 45 70 66 50 77 69 69 85 86 59 9| |04 9|||2 |02
    8| 85 |20||9 99|40||5 |59 |47 98 93 98 |22 |07 |64 9| |50 |57 |34 |09
```



```
    92 |36 |4| ||6 | 80 |65 |5| 9| |08 93 ||4 |05 |23 |3| |25||5 86 95 |09 |03
    99 |00 9| 95 7| 76 87 ||0||5 |09 79 9| 83 86 73 76 79 58 73 75
    60 69 65 50 54 56 75 89 80 84 62 95 102 94 80 92 68 73 59 70
    43 55 83 89 92
DSD-PI8A |I7
|47 I20 5| IOO 72 42 46 64 45 38 40 34 5| 39 52 5| 3| 44 79 57
66 66 54 47 49 73 86 68 52 40 43 50 53 57 59 86 59 47 49 36
5| 53 56 4| 64 54 64 4| 4| 62 56|I7 79 80 IO8 8| 58 46 50 44
6653 83 83 8| IO| 57 72 |0| 8| |06 92 82 57 69 69 83 89|4| 77
|56 |46 | 35 94 |08 | 32 |68 205 |53 |6| |78 |37 75 || 72 78 89 94 |04 ||6
|05 82 ||2 | 04 | 30 |24 | 04 | 62 | 38 | | | | 30 | 48|45 |53 | 84 2|6 |29
DSD-PI8B |17
|39 |25 47 103 65 43 45 66 43 39 39 3| 47 35 5| 56 36 39 75 46
67 62 54 43 50 76 88 65 46 48 4| 47 54 64 59 84 50 50 46 39
53 54 59 34 64 62 60 43 34 68 60 ||5 77 72 IO9 7| 67 60 47 52
63 56 80 87 82 I00 55 70 106 76 ||| 93 86 56 65 72 82 88|43 73
|53 |49 | 35 98 |07 | 30 | 68 208 |52 |64 |84 |28 90 |06 75 75 89 94 ||9 |22
|04 82 ||3 |0| | 30 |27 |06 |57 |47 | 30 |28 |48 | 46 |50 | 82 2|4 |29
DSD-PI9A 22I
|79 |39 | |2 |55 |59 |43 |54 |26 2|9 28| 24| 255 253 275 373 |93 355 26| 332 347
```



```
|।| 78 105 125 76 60 67 60 62 67 59 74 73 84 58 44 53 59 49 59
103 67 52 47 68 ||0 47 38 33 36 43 53 41 51 42 48 49 4| 52 54
57 42 33 58 28 35 43 47 51 42 36 52 51 42 47 38 54 55 42 39
32 37 3| 5| 58 25 5। 68 34 34 34 33 64 54 3| 74 50 58 62 57
47 47 48 27 33 43 35 47 44 36 43 39 32 52 45 32 30 44 35 34
42 66 44 49 54 45 60 7| 53 130 85 85 73 54 66 78 68 77 75 63
76 56 70 58 8| 56 47 75 60 54 75 74 55 5| 56 53 5| 59 47 64
60 44 52 54 56 63 67 51 60 63 64 83 74 82 85 75 49 73 59 60
77 70 63 63 65 84 8| 82 72 66 77 73 96 IO| 69 72 85 |35 |02 |05
94
```

DSD-PI9B 221
|78|42 | 82 |62 | 33 |42 |67|24 225272250258 25| $276362 \mid 92349264332339$
$52|275268290222197| 2899104137|33173138| 20|73| 90|04| 30|00| \mid 2$
$13399116 \mid 4063715760587564778375604460655057$

$\begin{array}{llllllllllllllllll}51 & 33 & 37 & 27 & 32 & 32 & 45 & 43 & 33 & 40 & 41 & 43 & 52 & 36 & 36 & 39 & 45 & 60\end{array} 4043$

42644453504769646011884917950707356917964
6166725776595471615375785954565250544567 5651486150627461605266817582876857686160 $6971656463888076716675789199657582 \mid 4390112$ 94
DSD-P20A 70
 $144|58123848782| 0|1| 7|45104| 15|26| 2|126| 23|68| 2513887 \mid 15$ 115 | 23 | $371771542031039|991231| 4107102909410013 \mid 947973$ 779980978498 ।। 2156 ।।। 127
DSD-P20B 70
$1131281079473987987949788117979712398881171099 \mid$ |48 |76|20 $80798998||||42| 0|| 06| 3||2|| 32|23| 68|24| 379|||\mid$
 8। 9578999294 |। $015|1| 5$ | 28

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master TreeRing Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last I000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI , then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer
rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C04, then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/200I) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between I506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

C45 C08		C05		C04
C45	+20	+37	+47	
C08	5.6		+17	+27

Bar Diagram

	1	1	1	1	1	1	1	1	1	1	1
0	10	20	30	40	50	60	70	80	90	100	110

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, I998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 5I-6

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, RE, 200 I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, / Archaeol Sci, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, I 995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

