CANONS GARTH, HELMSLEY, NORTH YORKSHIRE TREE-RING ANALYSIS OF TIMBERS

SCIENTIFIC DATING REPORT
Alison Arnold and Robert Howard

This report has been prepared for use on the internet and the images within it have been down-sampled to optimise downloading and printing speeds.

Please note that as a result of this down-sampling the images are not of the highest quality and some of the fine detail may be lost. Any person wishing to obtain a high resolution copy of this report should refer to the ordering information on the following page.

CANONSGARTH, HELMSLEY, NORTH YORKSHIRE

TREE-RIN G ANALYSIS OF TIMBERS

Alison A rnold and Robert Howard

NGR: SE 6122483923
© English Heritage
ISSN 2046-9799 (Print)
ISSN 2046-9802 (O nline)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of English Heritage, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing:
Res.reports@english-heritage.org.uk
or by writing to:
English H eritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY
A nalysis of 60 of the 65 samples taken from various parts of this building has resulted in the construction and dating of two site sequences. Site sequence HELMSQ 01 contains 11 samples and spans the period AD 1198-1283 whilst HELMSQ 02 contains 42 samples and spans the period AD 1381-1668.

The earliest group of timbers identified were those used in the construction of the roof of the hall house, felled in AD 1283. The inserted first-floor frame in this part of the building contains timbers felled in AD 1622-39, and at least two potentially reused joists felled in AD 1546-71. The roof of the south-west wing utilises timber felled in AD 1551-71. The roof over the west wing is constructed from timber felled in AD 1622, whilst the firstfloor frame in this part of the house utilises timber felled in AD 1614-39 and AD 1668. Also, located in this wing is a ground-floor fireplace bresummer felled in AD 1629 and a series of floorboards on the first floor with terminus post quem felling dates ranging from AD 1535 to AD 1577. A fireplace bresummer in the chapel dates to AD 1510-35 but is thought to be reused.

CONTRIBUTO RS
Alison A rnold and Robert Howard

ACKNOW LEDGEMEN TS

The Laboratory would like to thank Mr and Mrs O 'Loughlin, the owners of Canons Garth for allowing sampling to be undertaken. Malcolm Tempest, architect, facilitated initial access and provided some of the drawings used to locate samples. Peter Ryder's report on the building has been extremely useful in providing background information and further drawings. Thanks are also given to Cathy Tyers and Shahina Farid of the English Heritage Scientific Dating Team for their advice and assistance throughout the production of this report.

ARCHIVE LOCATION
North York Moors N ational Park HER
N ational Park 0 ffice
The O Id Vicarage
Bondgate
Helmsley
N orth Yorkshire YO 62 5BP
DATE OF IN VESTIGATIO N 2013

CONTACT DETAILS
Alison A rnold and Robert Howard N ottingham Tree-ring D ating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 1FT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Hall house 1
Roof 1
Smokehood 1
First-floor frame 1
W est wing 2
Roof 2
First-floor frame 2
Floorboards 2
Bresummer 2
South-west wing 2
Roof 2
First-floor frame 3
Chapel 3
Sampling 3
A nalysis and Results 3
Interpretation 4
Hall house 4
Roof 4
First-floor frame 4
W est wing 5
Roof 5
First-floor frame 5
Floorboards 6
Bressumer. 6
South-west wing 6
Roof 6
Chapel 6
Discussion 7
Bibliography 9
Tables 11
Figures 15
D ata of Measured Samples 35
A ppendix: Tree-Ring D ating 50
The Principles of Tree-Ring D ating 50
The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory 50

1. Inspecting the Building and Sampling the Timbers 50
2. Measuring Ring W idths 55
3. Cross-M atching and D ating the Samples. 55
4. Estimating the Felling D ate. 56
5. Estimating the D ate of C nstruction. 57
6. Master Chronological Sequences 58
7. Ring-W idth Indices 58
References 62

INTRO DUCTION

The Grade II* listed Canons Garth lies just to the north-east of Helmsley Church, in the Ryedale district of N orth Yorkshire (Figs 1-3). At the core of the extant building is the original hall house, thought to have been of base-cruck construction, possibly with a crosspassageway in the western bay (Ryder 2012). To the west of this is a north-south orientated cross-wing which projects slightly to the north of the hall. This wing is believed to have contained the kitchen at ground-floor level. To the south are two projecting wings with the porch between. To the east of the hall is a short wing which houses a chapel on the ground floor (Fig 4).

Hall house

Roof

There are two surviving crown-post roof trusses over this part of the building. These trusses consist of two parallel 'tiebeams', principal rafters, crown post, passing braces, struts, and collars. Between these are common rafters, collars (with bracing between), and collar purlin (Fig 5). This roof is thought to represent one of the earliest surviving roof structures in the north of England and is believed to date to CAD 1300.

Smokehood

At first-floor level on the east side, is a very large chimney stack of squared limestone and a hearth with chamfered stone jambs, spanned by a heavy timber bresummer, cut into a flat arch. There are nine stud posts attached to the top of this bresummer (Fig 6). This structure is believed to be sixteenth century in date.

First-floor frame

The hall house is thought to have been floored at both first- and attic-floor level in the seventeenth century. Although the exposed attic floor appears to have been replaced, the exposed first-floor structure is historic, consisting of a single large, spine beam with simple stopped chamfers and smaller, squared common joists morticed in to either side (Fig 7). These joists may be reused. The main beam can be seen to interrupt one of the studs of the smokehood (Fig 6).

W est wing

Roof

The stripping out of cupboards and partitions has exposed two trusses of this roof. The northernmost truss (truss 1) was obviously a closed truss as evidenced by the struts between crown post and principal rafters (Fig 8). There are purlins running between these trusses. Truss 2 does not have the struts and so was always an open truss. A third truss can be seen in the south gable wall. This roof is thought to be a sixteenth-century reroofing.

First-floor frame

The first-floor frame consists of a chamfered north-south spine beam and a series of common joists. It can be seen that the timbers of this floor frame and the underside of the boards were coated with red ochre (Fig 9). The main beam has an empty mortice at its north end.

Floorboards

At first-floor level a large number of wide, oak boards of late-medieval or sub-medieval character survive (Fig 10). These are laid north-south and supported by the floor frame below.

Bresummer

To the north of the west wing at ground-floor level is a large fireplace which has a large timber lintel supported on timber posts, the eastern one of which looks relatively modern (Fig 11).

South-west wing

Roof
This wing is slightly lower and has three trusses, two to the gable ends and one visible in a first-floor bedroom. This middle truss consists of principal rafters, tiebeam, and post to the east side (Fig 12); a further truss can be seen in the south gable end. There is a single tier of purlins to each side. This wing is thought to be sixteenth century in date.

A single east-west main floor beam is visible at ground-floor level (Fig 13)

Chapel

There is an old fireplace with chamfered jambs to the west wall of this room. Set into this are two lintels; the one to the back has possibly been reset as it has a large chamfer and concave stops towards the stack (Fig 14). The bedroom directly above the chapel also has a fireplace with chamfered stone jambs and a roughly cambered and chamfered lintel (Fig 15).

SAMPLIN G

Tree-ring dating was requested by Diane Green, English Heritage Inspector of Historic Buildings and A reas, to inform listed building consent and to better understand the chronological development and relationship between the various elements within this important building.

A total of 59 core samples were taken from timbers of the hall house, west wing, southwest wing, and chapel; the ring width sequences of six floorboards were directly measured using a graticule. Each sample was given the code HEL-M and numbered 1-65. The location of all samples was noted at the time of sampling and has been marked on Figures 16-24. Further details relating to the samples can be found in Table 1.

The stopped and chamfered doorframe of the porch was also of interest with respect to the overall development of the building. However, this was found to be wide ringed and of small scantling and, therefore, unsuitable for tree-ring dating.

AN ALYSIS AND RESULTS

Five samples, four from the hall house (HEL-M12, HEL-M 14, HEL-M24, and HEL-M25), and one from the south-west wing (HEL-M57) had too few rings for secure dating and so were rejected prior to measurement. The remaining 54 core samples were prepared by sanding and polishing and their growth-ring width measured. The data of these measurements, and those from the six floorboards, are given at the end of the report. All samples were then compared with each other by the Litton/Z ainodin grouping programme (see Appendix).

Firstly, 11 samples taken from the hall house roof matched each other and were combined at the relevant offset positions to form HELMSQ 01, a site sequence of 86 rings (Fig 25). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to span the period AD 1198-1283. The evidence for this dating is given by the t -values in Table 2.

Forty-two samples, taken from all parts of the building, also grouped and these were combined at the relevant offset positions to form HELMSQ 02, a site sequence of 288 rings (Fig 26). This site sequence was found to match consistently and securely at a firstring date of AD 1381 and a last-measured ring date of AD 1668. Evidence for this dating is given by the t -values in Table 3 .

Attempts to date the remaining ungrouped samples were unsuccessful and all remain undated.

IN TERPRETATIO N

To aid interpretation the dated timbers from each area have been illustrated separately (Fig 27).

Hall house

Roof

Eleven of the samples taken from the roof over this part of the building have been successfully dated. Five of the dated samples have complete sapwood and the lastmeasured ring date of AD 1283, the felling date of the timbers represented. The other six dated roof samples from the hall house all have the heartwood/sapwood boundary ring, which in all cases is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1263, allowing an estimated felling date to be calculated for the six timbers represented of AD 1283-1303 (taking into account sample HEL-M07 having a last-measured ring date of AD 1282 with incomplete sapwood), consistent with these timbers also having been felled in AD 1283. Further supporting the suggestion of all timbers having been felled at the same time is the good level of matching seen between samples from this structure, with all grouping together at a value of $t=5.0$.

First-floor frame

Eight samples taken from first-floor ceiling joists have been successfully dated. Three of these have the heartwood/sapwood boundary ring, the dates of which suggest two separate fellings. Sample HEL-M15 has the earlier heartwood/sapwood boundary ring date of AD 1531 which allows an estimated felling date to be calculated for the timber represented to within the range AD 1546-71. Two other samples (HEL-M16 and HELM20) have later, similar heartwood/sapwood boundary ring dates, the average of which is AD 1599, giving an estimated felling date for the two timbers represented of AD 162239. This allows for sample HEL-M20 having the last-measured ring date of AD 1621 with incomplete sapwood.

Of the remaining five dated samples without the heartwood/sapwood boundary it can be seen that sample HEL-M17 matches HEL-M 15 at the high value of $t=12.1$, a value which suggests both timbers were cut from the same tree and hence have the same felling (AD 1546-71).

W ith a last-measured heartwood ring date of AD 1544 it is possible that HEL-M19 was also felled in AD 1546-71 but this sample can be seen to match sample HEL-M21 at $\mathrm{t}=11.0$, again a value high enough to suggest the same tree. W ith a last-measured heartwood ring date of AD 1586, HEL-M21 cannot have been felled in AD 1546-71 but could have been felled in AD 1622-39. The other two samples, HEL-M 18 and HEL-M22, have last-measured heartwood ring dates which allow terminus post quem fellings to be calculated for them of AD 1566 and AD 1574 respectively, and, therefore, it possible that both of these timbers were also felled in AD 1622-39.

W est wing

Roof

Fourteen of the samples taken from the roof of the W est wing have been successfully dated. Two of these, HEL-M13 and HEL-M33, have complete sapwood and the lastmeasured ring date of AD 1622, the felling date of the timbers represented. Sample HELM37 matches sample HEL-M33 at the high value of $\mathrm{t}=14.0$, with both beams almost certainly being cut from the same tree and hence having the same felling (AD 1622). Four other dated roof timbers have the heartwood/sapwood boundary ring date which is broadly contemporary and suggestive of a single felling. The average of these dates is AD 1594, allowing an estimated felling date to be calculated for the five timbers represented to within the range AD 1609-34, consistent with these timbers also having been felled in AD 1622. There are seven dated roof timbers without the heartwood/sapwood boundary ring dates, but with last-measured ring dates which range from AD 1512 (HELM35) to AD 1553 (HEL-M27). All seven of these could also have been felled in AD 1622. The overall good level of crossmatching seen between the samples from this roof adds further weight to the suggestion that all timbers were felled at the same time.

First-floor frame

Six of these beams have been dated. Sample HEL-M 39, taken from the spine beam has complete sapwood and the last-measured ring date of AD 1668, the felling date of the timber represented. Sample HEL-M41, from a joist, has the heartwood/sapwood boundary ring date of AD 1599, allowing an estimated felling date to be calculated for the timber represented to within the range AD 1614-39.

Four other joist samples, without the heartwood/sapwood boundary ring date have lastmeasured ring dates ranging from AD 1529 (HEL-M43) to AD 1593 (HEL-M40) which
means that the timbers represented could have been felled in either AD 1614-39, AD 1668 , or represent a completely separate felling date. It can be seen that three of these samples (HEL-M42, HEL-M43, and HEL-M45) match well with samples taken from the west wing roof, felled in AD 1622, a date encompassed by the AD 1614-39 felling calculated for HEL-M41.

Floorboards

The growth patterns of five of the floorboards were successfully dated. N one of these boards had the heartwood/sapwood boundary ring but have terminus post quem felling dates ranging from AD 1535 (HEL-M 49) to AD 1577 (HEL-M52). Samples HEL-M48 and HEL-M49 match each other at the high value of $\mathrm{t}=13.8$ and are likely to have been cut from the same tree.

Bressumer

The sample taken from this timber has complete sapwood and the last-measured ring date of AD 1629, the felling date of the timber represented.

South-west wing

Roof

Seven of the samples taken from the timbers of the roof over this part of the building have been dated. Five of these samples have the heartwood/sapwood boundary ring, which is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1531, allowing an estimated felling date to be calculated for the five timbers represented to within the range AD 1551-71. This allows for sample HEL-M58 having the last-measured ring date of AD 1550 with incomplete sapwood.

The other two samples, without the heartwood/sapwood boundary ring date, have lastmeasured ring dates of AD 1470 (HEL-M54) and AD 1485 (HEL-M56), which makes it possible that they were also felled in AD 1551-71. Furthermore, one of these (HEL-M56) matches sample HEL-M55 (felled AD 1551-71) at the high value of $t=9.1$, adding weight to the suggestion that they were felled at the same time.

Chapel

O nly one of the samples taken from the fireplace bresummers in the C hapel has been successfully dated. Sample HEL-M64, taken from the inner bresummer of the ground-floor
fireplace has a last-measured ring date of AD 1495. The heartwood/sapwood boundary is the last ring on the sample giving an estimated felling date range for the timber represented to within the range AD 1510-35.

Felling date ranges have been calculated using the estimate that mature oak trees in this region have $15-40$ sapwood rings.

DISCUSSIO N

The earliest timber identified by the tree-ring dating was that used in the hall house roof. The dendrochronological dating has shown that the timber utilised was felled in AD 1283, with construction likely to have occurred shortly after. This roof was thought to date to c AD 1300 and this has now been confirmed, furthermore, the date gained puts it firmly in the thirteenth century.

It had been suggested that the first- and attic-floor frames of the hall house were inserted in the seventeenth century. It had also been suggested that some of the common joists had possibly been reused (Ryder 2012). The majority of the dated joists from the firstfloor frame have been dated AD 1622-39, however, at least two of the common joists are earlier, dating to AD 1546-71. These dates suggest the insertion of the first-floor frame in the first-half of the seventeenth century utilising some sixteenth-century timbers.

It is unfortunate that of those timbers associated with the smokehood, only the bresummer was found to be suitable for measurement and that this sample is undated. This feature was thought, on stylistic grounds, to be sixteenth century in date and at present this is the only dating evidence available. However, as noted in the introduction, one of the beams associated with the floor frame 'cuts' the smokehood meaning that the smokehood has to be earlier than the floor, now known to be constructed with timber felled in AD 1622-39.

Some of the walling of the west wing suggests that this part of the building is early, however, the present roof was thought to be a sixteenth-century re-roofing. The tree-ring dating has now demonstrated the roof is constructed from timber felled in AD 1622, therefore, putting construction in the early seventeenth century, somewhat later than previously believed. This roof may belong to the same programme of work as the insertion of the hall house first-floor frame (AD 1622-39).

Timbers have also been dated from the first-floor frame in the west wing. The main beam is now known to have been felled in AD 1668; however, a number of the joists are earlier, dating to AD 1614-39. It is usually assumed that main beams of floor frames are 'safer' in terms of interpretation due to the difficulty in replacing these large timbers. On these grounds, the dates would suggest the floor dates to AD 1668, but reuses timber of AD 1614-39. The other explanation would be that the floor dates to AD 1614-39 but was modified or repaired in AD 1668 when the main beam was replaced. It may be significant that only joists to the west of the main beam were suitable for tree-ring dating
with the joists to the east of the main beam all being found to be unsuitable. A closer inspection of this floor by a buildings archaeologist may clarify the situation.

Potentially providing further support for this latter interpretation, the ground-floor fireplace bresummer in this wing was felled in AD 1629, and can therefore be seen to be broadly contemporary with the joists. The floorboards above have terminus post quem felling dates ranging from AD 1535 to AD 1577. W ithout the heartwood/sapwood boundary it is not possible to provide a closer felling date/range. However, it is reasonable to say that they are likely to be of the same date, indeed two of the boards are almost certainly from the same tree (as above), making them all datable to after AD 1577.

The south-west wing was thought to have been added in the sixteenth century and this has now been supported by the dendrochronology which has dated the roof to AD $1551-71$. The first-floor frame main beam is unfortunately undated.

O nly one of the fireplace bresummers in the Chapel has been dated to AD 1510-35. This beam was thought to be reused and is likely to have come from somewhere else in the building. Although earlier, this sample matches most highly with samples taken from the west wing roof (eg HEL-M26, $\mathrm{t}=8.2$ and HEL-M36, $\mathrm{t}=8.3$).

A part from those timbers sampled in the hall house roof which form an earlier and discrete group, the matching between samples from both individual elements or wings and from different areas is very good and suggestive of the same or adjacent woodland sources being utilised.

The dendrochronology has confirmed the survival of an important and rare thirteenthcentury crown-post roof at Canons Garth. A part from this early survival and the sixteenth-century south-west wing roof, the majority of the timbers sampled appear to date to the first half of the seventeenth century. This period was obviously a time of substantial building activity with the insertion of the first-floor frame in the hall house, construction of the west wing roof, fireplace bresummer and possibly insertion of the floor, again in the west wing, all dating to this period.

BIBLIO GRAPHY

Arnold, A J, and Howard, R E, 2006 unpubl O Id H all Farmhouse, Mayfield, Staffordshire, unpubl computer file M AYASQ02, N TRDL

Arnold, A J, Howard, R E, and Litton, C D, 2006 Tree-Ring Analysis of Timbers from Low Harperley Farmhouse, W olsingham, County Durham, EH Res Dept Rep Ser, 6/2006

Arnold, A J, and Howard, R E, 2011 Church of St M ary, Stockport, Greater M anchester: TreeRing Analysis of Timbers of the Chancel Roof, EH Res Dept Rep Ser, 24/2011

Arnold, A J, and Howard, R E, 2012 Tree-ring analysis of timbers from 64-72 Goodramgate (Lady Row), York, N TRDL rep

Groves, C, 1992 Dendrochronological analysis of timbers from New Baxtergate, Grimsby, Humberside, 1986, Anc Mon Lab Rep, 8/92

Howard, R E, Laxton, R R, and Litton, C D, 1997 N ottingham U niversity Tree-Ring Dating Laboratory, Vernacular Architect, 28, 124-7

Howard, R E, Laxton, R R, and Litton, C D, 1998 unpubl A bbey Inn, Manor Green, Burton-on-Trent, Staffordshire, unpubl computer file BUTDSQ01, N UTRDL

Howard, R E, Laxton, R R, Litton, C D, and Cleverdon, F, 1998 N ottingham University Tree-Ring D ating Laboratory: Staffordshire Moorlands Dendrochronological Project, Vernacular Architect, 29, 105-7

Howard, R E, Laxton, R R, and Litton, C D, 2002 Tree-ring analysis of timbers from H allgarth M anor, H algarth Pittington, County Durham, Centre for Archaeol Rep, 86/2001

Hurford, M, A rnold, A, Howard, R, and Tyers, C, 2010 The Old Hall, W est Auckland, County Durham: Tree-Ring Analysis of Timbers, EH Res Dept Rep Ser, 75/2009

Miles, D H, and W orthington, M J, 1999 Tree-ring dates for buildings: List 100, Vernacular Architect, 30, 98-105

Ryder, P, 2012 Canons Garth, Helmsley An Historic Building Assessment
Tyers, I, 1999 Tree-ring analysis of oak timbers from the Old Chapel, Sinnington, N orth Yorkshire, Anc Mon Lab Rep, 22/99

Tyers, I, 2001a Dendrochronological analysis of timbers from M anor Farm, Scotton, nr. Knaresborough, N orth Yorkshire, A RCUS Rep, 574h

Tyers, I, 2001b Interim Report on the Tree-Ring Analysis of Oak Timbers from Two Barns at Headley H all Farm, Upper Headley, near Thornton, W est Yorkshire, Centre for Archaeol Rep, 10/2001

Tyers, I, 2001c Tree-Ring Analysis of Further Oak Timbers from the Old Chapel, Sinnington, N orth Yorkshire, Centre for Archaeol Rep, 11/2001

TABLES

Table 1: Details of tree-ring samples from Canons Garth, Helmsley, North Yorkshire

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
HALL HOUSE						
Roof						
HEL-M01	Tiebeam (upper), truss 1	60	26C	1224	1257	1283
HEL-M02	N orth passing shore, truss 1	68	22C	1216	1261	1283
HEL-M03	South strut, truss 1	71	21C	1213	1262	1283
HEL-M04	South passing shore, truss 1	82	22	1199	1258	1280
HEL-M05	N orth brace, frame 1	47	14	1230	1262	1276
HEL-M06	South brace, frame 1	61	24C	1223	1259	1283
HEL-M07	North strut, truss 2	85	09	1198	1273	1282
HEL-M08	South strut, truss 2	68	13C	1216	1270	1283
HEL-M09	South passing shore, truss 2	50	06	1222	1265	1271
HEL-M10	Tiebeam (upper), truss 2	47	h/s	1211	1257	1257
HEL-M11	North passing shore, truss 2	51	04	1217	1263	1267
HEL-M12	North principal rafter, truss 2	NM	--	----	----	----
First-floor frame						
HEL-M14	Spine beam	NM	--	----	----	----
HEL-M15	Joist 3, north	96	02	1438	1531	1533
HEL-M16	Joist 3, south	112	h/s	1484	1595	1595
HEL-M17	Joist 5, north	87	--	1423	----	1509
HEL-M18	Joist 5, south	89	--	1463	----	1551
HEL-M19	Joist 14, north	122	--	1423	----	1544
HEL-M20	Joist 4, south	190	19	1432	1602	1621
HEL-M21	Joist 13, north	155	--	1432	---	1586
HEL-M22	Joist 14, north	119	--	1441	----	1559
Smokehood						
HEL-M23	Bresummer	109	04	----	----	----

HEL-M24	Stud 1	NM	--	--	--	----
HEL-M25	Stud 3	NM	--	--	--	--
WEST WING						
Roof						
HEL-M13	North common rafter 4, bay 4	127	34C	1496	1588	1622
HEL-M26	East wallplate	187	h/s	1401	1587	1587
HEL-M27	Crown post, truss 1	83	--	1471	----	1553
HEL-M28	West principal rafter, truss 1	54	h/s	1540	1593	1593
HEL-M29	Tiebeam, truss 1	122	--	1415	----	1536
HEL-M30	East principal rafter, truss 1	133	--	1420	--	1552
HEL-M31	Tiebeam, truss 2	133	01	1463	1594	1595
HEL-M32	East principal rafter, truss 2	126	--	1389	----	1514
HEL-M33	West principal rafter, truss 2	129	26C	1494	1596	1622
HEL-M34	Crown post, truss 2	138	--	1381	--	1518
HEL-M35	East common rafter 8, bay 2	106	--	1407	--	1512
HEL-M36	East upper purlin	162	h/s	1442	1603	1603
HEL-M37	West upper purlin	152	h/s	1451	1602	1602
HEL-M38	East lower purlin	132	--	1408	----	1539
First-floor frame						
HEL-M39	Main spine beam	161	23C	1508	1645	1668
HEL-M40	Joist 11, west	88	--	1506	----	1593
HEL-M41	Joist 10,west	110	05	1495	1599	1604
HEL-M42	Joist 9, west	95	--	1442	--	1536
HEL-M43	Joist 8, west	83	--	1447	----	1529
HEL-M44	Joist 5, west	58	--	----	----	----
HEL-M45	Joist 4, west	84	--	1468	----	1551
Fireplace						
HEL-M46	Bressummer	129	26C	1501	1603	1629
HEL-M47	West post to bressummer	43	05	----	----	----
First-floor floorboards						
HEL-M48	Board 1	100	--	1430	----	1529
HEL-M49	Board 2	91	--	1430	----	1520

HEL－M50	Board 3	75	－－	1450	－－－－	1524
HEL－M51	Board 4	75	－－	－－－－	－－－－	－－－－
HEL－M52	Board 5	132	－－	1431	－－－－	1562
HEL－M53	Board 6	131	－－	1425	－－－－	1555
SOUTH－WEST WING						
Roof						
HEL－M54	East post	88	－－	1382	－－－－	1470
HEL－M55	East principal rafter	117	11	1431	1536	1547
HEL－M56	West principal rafter	73	－－	1413	－－－－	1485
HEL－M57	Tiebeam	NM	－－	－－－－	－－－－	－－－－
HEL－M58	East common rafter 1，bay 2	70	14	1481	1536	1550
HEL－M59	East common rafter 3，bay 2	68	11	1478	1534	1545
HEL－M60	West purlin	88	27	1458	1518	1545
HEL－M61	West common rafter 3，bay 2	65	13	1480	1531	1544
First－floor frame						
HEL－M62	Main spine beam	85	W／s	－－－－	－－－－	－－－－
Chapel						
HEL－M63	First－floor fireplace bressummer	116	W／s	－－－－	－－－－	－－－－
HEL－M64	Ground－floor fireplace bressummer（inner）	108	W／s	1388	1495	1495
HEL－M65	Ground－floor fireplace bressummer（outer）	94	h／s	－－－－	－－－－	－－－－

＊NM＝not measured
＊＊h／s＝heartwood／sapwood boundary is the last－measured ring
$C=$ complete sapwood retained on sample，last measured ring is the felling date

Table 3: Results of the cross-matching of site sequence HELMSQ02 and relevant reference chronologies when the first-ring date is AD 1381 and the last-measured ring date is AD 1668
last-measured ring date is AD 1668

Reference chronology	t-value	Span of chronology	Reference
Harome Manor (Ryedale Museum), North Yorkshire	10.5	AD 1391-1569	Miles and Worthington 1999
Old Chapel, Sinnington, North Yorkshire	9.9	AD 1296-1516	Tyers 1999 and Tyers 2001c
Low Harperley Farmhouse, Wolsingham, County Durham	9.8	AD 1356-1604	Arnold et al 2006
Hallgarth Pittington, County Durham	9.8	AD 1336-1624	Howard et al 2002
Old Hall Farmhouse, Mayfield, Staffordshire	9.6	AD 1437-1622	Arnold and Howard 2006 unpubl
Headley Hall Barss, Bradford, West Yorkshire	9.4	AD 1381-1604	Tyers 2001b
The Old Hall, West Auckland, County Durham	9.1	AD 1437-1619	Hurford et al 2010

Table 2: Results of the cross-matching of site sequence HELMSQ01 and relevant reference chronologies when the first-ring date is AD 1198 and the last-measured ring date is AD 1283

Reference chronology	t-value	Span of chronology	
64-72 Goodramgate, York	7.1	AD 1079-1315	
Manor Farm,Scotton, Knaresborough	7.1	AD 1096-1342	
51/2 High Street, Burton-on-Trent, Staffordshire	6.2	AD 1156-1387	Arnold and Howard 2012
St Lawrence, Rush Spencer, Staffordshire	6.1	AD 1034-1279	
Manor House, Abbey Green, Burton-on-Trent, Staffordshire	6.0	Howard et al 1997	
New Baxtergate, Grimsby	6.0	AD 1162-1339	Howard et al 1998
St Mary, Stockport, Manchester	5.9	AD 1099-1284	Howard et al 1998 unpubl

FIGURES

Figure 1: Map to show the general location of Helmsley, circled. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 2: Map to show the location of Helmsley, circled. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 3: Map to show the location of Canons Garth, hashed. © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900

Figure 5: Hall house, roof, truss 1, photograph taken from the west (Alison Arnold)

Figure 6: Hall house, smokehood (Alison Arnold)

Figure 7: Hall house, first-floor frame, photograph taken from the south (Alison Arnold)

Figure 8: W est wing, roof, truss 1, photograph taken from the south (Alison Arnold)

Figure 9: W est wing, first-floor frame, photograph taken from the west (Alison Arnold)

Figure 10: First-floor floorboards, photograph taken from the east (Alison Arnold)

Figure 11: W est wing, ground-floor bresummer and posts, photograph taken from the south (Alison Arnold)

Figure 12: South-west wing, truss, photograph taken from the north (Alison Arnold)

Figure 13: South-west wing, ground-floor ceiling beam, photograph taken from the south (Alison Arnold)

Figure 14: Chapel, double lintel over ground-floor fireplace, with inner lintel chamfered and stopped towards stack, photograph taken from the south (Alison Arnold)

Figure 15: First-floor bedroom, fireplace lintel, photograph taken from the east (Alison Arnold)

~

Figure 16: Ground-floor plan, showing the location of samples HEL-M14-22, HEL-M39-47, HEL-M62, and HEL-M64-5 (MalcolmTempest Ltd)

~

Figure 17: First-floor plan, showing the location of samples HEL-M58-61 and HEL-M63 (MalcolmTempest)

\approx

Figure 18: Attic plan, showing the location of samples HEL-M05-06, HEL-M13, HEL-M26, HEL-M35, and HEL-M38 (MalcolmTempest Ltd)

Figure 19: Plan of old flooring on the first floor, showing the location of samples HEL-M 48-53 (Ryder 2012)

Figure 20: Section through house looking east, showing location of samples HEL-M 01-04 and HEL-M 23-5 (Ryder 2012)

Figure 21: Hall house, truss 2, showing the location of samples HEL-M 07-12 (Ryder 2012)

Figure 22: West wing, sketch of truss 1 , showing the location of samples HEL-M 27-30

Figure 23: W est wing, sketch of truss 2, showing the location of samples HEL-M 31-4 and HEL-M 36-7

Figure 24: South-west wing, sketch of truss, showing the location of samples HEL-M 54-7

Figure 26: Bar diagram of samples in site sequence HELMSQ 02

Figure 27: Bar diagram of all dated samples, sorted by area

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units with the exception of samples HEL-M48-53 which are in 0.1 mm

```
HEL-M01A 60
    292 300 310 261297 256216190 201 126 209 264140220 185 260 197 112 88 128
    155120152205126 79 121 155 86 106 184 161 129153134144 122 76 130 95
    90 152170 116 130108117128117 125108102201 208123134150196 149100
HEL-M01B }6
    291292 311258293263215187197132206 263144221 188251 197 117 83 131
    161 128150208131 77 121 154 88 108178156 13914813514411979 78 129110
    8414317111512710811812713712291105206 200130127149196142108
HEL-MO2A 68
220215180 204 197 225183165174 85 80 82 133123118 95 127 116 115 169
121144134179167142132107168 200 169184151 138159206 155153 209 196
148133139176183131 142120 86 119101 130147 141 102 125 88 104 67 65
    7911369 89 108 129125 73
HEL-M02B 68
    225 214176 196 192 219190164173 95 72 92130119123 95 122 116 119164
    118141 140179168137 128110169192162183155145155 202 163153 204 207
    151 132129176188132144124 77 127 94134143139104125 91 98 72 66
    8410970 8911012213058
HEL-M03A }7
197237284247 371317 326 383 355 364 330 329264193215176167164138 155
136142171186 217 193 204193155 79107104106 132119 90 82 107 99 87
    76 97 95 119 149 136 170 175 142 179 122 92 109 92 96 98 95 99 94 81
    986064 84 696860 82 103 95 48
HEL-M03B 71
    194233288 244 367 324 332 376 358 360 336 327 271 192209179170163137157
    132146170181218198 207 198158 81 107 102109135120 90 85 104 99 88
    74 95 99 119149139172173138178124100 109 88 91 110 94 98 87 75
    94 53 70 74 62 63 64 86 85 110 72
HEL-M04A 60
351231231191215183140162107103156173122 86 87 112 89 102 101 84
    98120117 99 111 99 135101 102 122 108 80 69 82 55 78 75 63 71 64
    86 53 54 45 45 73 64 86 93 64 42 45 65 63 56 116 79 60 72 69
HEL-M04B 68
    86103 91 104 114 64 96 108 93 101 88 94 113 94 82 110 104 77 64 83
    57 60 69 51 66 57 74 63 44 37 47 69 57 84 88 54 49 43 70 60
    56 120 77 69 76 81 81 70 60 74 72 63 76 60 59 73 65 54 89 67
    6973 82129124 90 102 112
HEL-M05A 47
    180140113 85 126 165144223225 303274253283223226245273 314144 94
    104148133114144151110140 98 104 133 95 86 110 91 91 85 98 122 125
    10611311095616276
HEL-M05B 47
177139116 78 122162141223215 291275 254 274 225 227 238270 309145 88
90152145110136138107155117101135 84 82 114 92 105 80 103117128
125111115103 54 72 80
HEL-M06A 61
190197227164119173154143113157 95 80 119104122114 201 140263200
```

167257298315375263168110118118162243205155269260237221157138 11811112012913712710785111111877564781128173758459 57
HEL-M06B 61
18719823517214617716014811414910281122107130115192136250224
192281290314382246179125140125159251205153257278241223134125 10610212013812915311189111112918567841038370777665 53
HEL-M07A 85
273412237210222310166166217111144166160121668785165189321 233275277228191198199207113112151132806373586910666115 631037953404769486510374635857485882677694 10512716112010910380816869798775879811976107198227
152125229208156
HEL-M07B 85
288410242217193317167164243120142160157108588684156180296 25227927921819021819520811812015512980578253689172108 70977552474865525910677614566724178616992 11412116211811310280846963829174829110379103196228 147127232214158
HEL-M08A 68
1672251522232181602402362923321471502041521328410869111193 12520013218412263897212698121200126110120119103123148124 8617114418324819717721719420720916117517016320818312395123 250268195215323346205107
HEL-M08B 68
1712291442182081512372492733301441481961571367611767113188 130181113185109777771133117141207120110120119102128148120 8917215118224219817421419319921515116514315921619212296121 249293201218325333208123
HEL-M09A 50
263382263260197185256303246190210204239370237368265301240197
166200245204259262204127117124116170239209191236180213186153
227242134195149275224205153195
HEL-M09B 50
298409264256189175228307272147201207259388239387241309241188
17319423221423828719212789150123161244205195247198219194158
229250129195147284294249148201
HEL-M10A 47
138148284191328210452178284326300345362428300231198242256231 1601961012002011452501631818865676689867677524236 395163108877494
HEL-M10B 47
142157281206331207457178285324302346362426303234201240253228
1621891051962071202411661829069636090837875534432
425359107916997
HEL-M11A 51
147158185181236270327235189165156227220195139155128144212156 251209271206177129211188193227260172117115157143164222252243
283238219189200226232168176147119
HEL-M11B 51
144154177189237262323237192163161242216202145153143140184166 238202268214184139192191185215262159119115164133163227242239

279230227186199237232155199162132
HEL-M13A 127
164115606276821281151171511301351291549611992127142125
15413289100951241178481596064567665871018480100

42578364778677
HEL-M13B 127
154122526576821191191331571341361321519512884126145139
149144113107104132123968362625961716391978976104
1021036311714717291108869491475154608473775977
$\begin{array}{llllllllllllllll}46 & 45 & 61 & 73 & 70 & 94 & 63 & 78 & 91 & 49 & 56 & 62 & 60 & 75 & 82 & 85\end{array} 71845047$

43587275668773
HEL-M15A 96
144126102193160152135106931521271451261201421178110284116 816360115116869710216222518018712413511313660109155118 1121075711779917085891279610389797784106887181
 11911912211211610513163757477821031249977
HEL-M15B 96
146115116202157151139112104143135133133113148125859088119
92566710113378999416022918518212213012013762113151115
1181016012181926885871279510686817382104916779
8086121725072106848240529510286961038381111132
12111712111311510712779618276791051299278
HEL-M16A 112
2371932573412421579995118191179171210190107120139151129114
136146144113116176133113120121124141128134109102102140138114
1281079877981071221389614093948912091105146107100101
93108131618383102176135133110144738698125104122121101

8611480656769634645526166
HEL-M16B 112
25119525531224115810192126192171174210182119117139148128118
133158139108104190129112124117121147130130106102106135126108
128108938097110122143931409694891179010414911194107
10610812366778310416913713411514275829712999120122100
746275827399931369710062635060747382787961
8710882657273584646486566
HEL-M17A 87
2162202021561641893122322452362002102001451821558292165165
20213493104133132177175133159134113111112121896075108110
861171171872061571411631711401511001311681441161037510975
90741071171179210211310011810913611910396911011457158
1031271071326596153
HEL-M17B 87
2412231951601521892952302472372052191881401741628696169161 21114191105134130174173131169135107118115125896273106109 89112116191203159142167169163151931321731441131057211271

```
    9274109117 117 92 104 117 102 123 103 140124 97 102 90 91 145 67 64
    109131109127 65104153
HEL-M18A }8
    71107 87 104 135 118 114 129 101 63 5247 59 80 70 60 47 54 36 52
    65 59 71 73 99 73 63 68 46 50 61 54 58 60 65 55 50 71 78 53
    68 77 95 108 60 55 73 62 46 56 93 86 72 73 81 42 51 65 90 105
    103134 61 69 77 76 87 63 42 69 62 54 75 77 82 57 94 103 77 69
    82 75 64 74 41 42 36 35 58
HEL-M18B }8
    96 104 84 105 123 116 113129 93 63 59 28 67 91 71 63 50 45 43 52
    67 74 62 70 95 72 68 66 46 56 55 49 65 59 65 55 51 67 73 57
    73 70 102 93 64 60 63 58 53 57 100 76 80 68 78 50 46 69 101 129
    102125627878 82 86 75 51 64 62 55 58 73 78 61 101 82 74 63
    6973 82 66 40 47 36 37 50
HEL-M19A 122
269301315 216 234 301 391 306 248 319242 284 238206 191 100 106 140 137 142
140177120 94 125 106 108 101 109 107 119 115117 99 78 65 58 71 84 75
103 80 78 86 143123109101 82 57 59 58109123101 85 73 69 106 56
77 7965 861089393696869 99 9910110415078100112134100
99111132104 75 71 95 69 79 91 128 114103115 116 83 85 69114 89
78 70 58 49 52 49 53 65 50 50 50 54 52 57 50 38 62 60 41 61
6 2 6 0
HEL-M19B }12
278303 316212235303406 301255 314247283230210183128109137145142
148178114 95 121 118110101 110 111 113118116 96 80 71 54 74 6978
1068485 83 141 121 107 107 77 59 69 55 123 116 108 95 66 82 101 62
807971 93 111 96 90 79 71 76 102 101 112 117 138 78 107 116 126 118
101 112 129100 78 56 97 75 75 88 137 113 110 109 111 84 88 73 106 98
77 77 57 47 47 61 45 58 52 53 47 56 66 61 54 46 64 58 44 52
6771
HEL-M20A 190
    92 110 87 108 80 56 52 42 52 82 54 85 81 91 63 65 78 60 74 55
    75 73 54 60 52 56 38 57 51 52 56 55 48 54 48 46 83 77 49 50
    55 40 43 42 41 42 48 31 48 37 38 26 46 47 55 86 60 60 58 45
    52 94 80103 74 78 58 58 88 82 94 93 118 121 127 100 94 96 106 86
104 82 90 71 104 77 68 49 58 111 82 63 74 69 36 46 73 72 70 74
57 82 45 63 74 59 47 67 51 69 44 52 60 69 49 38 26 38 51 75
65}6746467444 48 73 57 60 57 48 59 45 41 39 39 45 54 64 49
49}4343629 29 35 43 42 59 54 36 31 43 59 58 74 48 43 54 33
52 71 48 63 63 55 47 39 57 48 41 51 65 50 45 45 47 47 47 46
53 45 27 30 37 56 76 50 70 67
HEL-M20B }19
106 110 92 103 80 56 52 38 39 79 71 87 76 91 55 57 67 55 69 64
66 76 57 55 62 54 44 55 44 49 62 62 46 47 46 52 80 73 48 57
55 44 42 41 47 37 41 42 35 51 23 31 52 51 48 88 67 53 58 52
49 91 92 101 78 87 58 46 97 89 87 124 115124134103100 110112 85
96 66 77 87 101 75 59 73 64 99 93 61 86 61 51 55 57 77 76 69
64 70 53 73 71 49 49 59 63 67 46 54 56 61 46 46 33 31 61 66
67 64 63 65 54 47 72 60 38 56 58 70 51 39 41 41 40 48 72 44
52 46 34 30 30 34 30 59 53 48 44 37 44 44 72 77 29 47 41 37
47 62 62 63 64 49 48 42 52 30 44 51 68 48 49 50 53 37 47 52
49 41 25 37 44 48 80 56 70 62
HEL-M21A 155
```

2201841791331251239079105129114107123856797869271102 81959610485878310213111112814512110312314912511512794 8663546480887165707663526556567967736042
477471817578677881100968393118917473786262 6099919897100808386164111927560584328365662
52625061747340103935973828296795641556681
858371101625070124677477739154465160577676
798649395255625577908579109115200
HEL-M21B 155
214182175146119122957210913210412012176748485848385
868899938883939012511112214711910711215112711312791
8164526580876876687660536556588160596350
53805771738466798299958391122897069836157
61100939597101737896166120908063634341445362
6152516975714796956875808192804950476987
82926895546669124667880819157444148677265
898547444656576475888076106118191
HEL-M22A 119
961201107252586668718285819783707145437371 987265726799104106887774664937446644636954 54485838706471514253396372727557705378114 11378101941261369060708064691051421286884100110107 150174140136747378591029611388718710210112581100117 100114101120807844363648526358469151483891 HEL-M22B 119
989912278524981647878867610483697840497864 887264677299100101957076644840426740647054 56445841706072514352416079657657695779115 11379102101122131957670866172951321296687100110103 1561651391407078815697991079275899710112292108107 82111105119838050353552526267399459423583 HEL-M23A 109
306370249308354246286236252282182237238237219293246287258244 240239249232192268208200178195201240220223198201139154161160 1441331531831671421291341641581461159314012187122101161133
131951249887509688110113113100132105125130141135116112 1181231531301621361301447813610713312910412297110111135166 13611711910011410310710085
HEL-M23B 109
325353283305364245292230251278182242238240202289241282261243 245240247255188274198197186207199234200232201202139163166168 147133150179176147128139164162163128104141128100114100159129 108107114110936485901031021129510897110135146134121115 11211415512916512810713575138114128124105125101107119122161 12811411910911796888779
HEL-M26A 187
196224262177205172135811071631441201011118272131174136143
1388611912511961811291391571631731111187946115735399
100981431389142678680931131001111058310077546681
58987663669912913515513872544036386970667662
77616767117179184121858446457869808178494786
85545775837754657276100556768100134122867998 87114929481607759114891018590889712991106115156

9461109998783495059851501221511181947064100139131 1091081031188461711001511581209390775766677769121 96615168119119122
HEL-M26B 187
187221254190210174978810716814412497979273135174130138
13686123124117608312218915716716812211674441207748101
98101144143805358858290120931141058410568636480

83666564119173182119888045478174689669525770
87536874777660547475936774651031351248876192
871139298756175631089810078801009512091115114160
916610997848847536077154129150114191757097135133
1111191071157767721051461561209697725565667675123
91565374105117132
HEL-M27A 53
1609291721291411191137958665110214812714714796158117 911191211171921271147469691041121139215987116108155159 136117126100100134159152147128179155118 HEL-M27B 65
1731529912813412021413711868717813095999215193103110 1611561391041019511117715116814614217517012921916220390101
1448810013114512216815113477122150114126112991451065249
54106848374
HEL-M28A 54
7355545050636755618310217812914013119515410591140 107118113110132121112103971009410010198808993987598 90108131123165172198129130151131819395 HEL-M28B 54
755455515061725362819717312115012420014510391142 10311810711213411511510594101949898104948795968287 96110127122152167201124126153129839192
HEL-M29A 122
240136162207726884921141311057484157166127138138122176
16410210413110810513013313914093711048111310511412210181
92133996777831046261527710183111878683686854

$\begin{array}{lllllllllllllllll}72 & 71 & 55 & 41 & 38 & 39 & 60 & 56 & 42 & 57 & 62 & 47 & 54 & 51 & 55 & 50 & 61\end{array} 575260$

10471
HEL-M29B 122
230136147211667075901151321067186150167123139137116179 14810010213410310912712914413996741018611310811012010978
100138997371901046564497710181111898382696960

10184
HEL-M30A 133
240279257265212239173213207229159168296185207158183180163130 147129101981221027911311911990110101891007977738463
 4472606364677589726567575881685763685864 6771624955508158777356605570524653475652

4850505547374348434845604435424645413344

HEL-M30B 133
253280263260237249173209206247151166301192212153185191168134

6874665156478553757755606361555150565351
4452495151393845524051574638413144482845
43472539441943423244509295
HEL-M31A 133
134105101115151125111151150113883576136162102849813273
691211522032451731771398768125134175224153658574131172
12715115015513114715015415012613111212010711092697281100
6073726577801018812210310411610911779739613711089
$848691854747516678 \quad 84759575944648558094110$
806788645559871051139675745462656267739383

HEL-M31B 133
1341001001041411701121441551128834741391681098110213287 741241532032541741751458471110144173220152687681129161
1321551481511381491551561501261291101281031169467698596
717168697683989212310011210811111687759314011384

HEL-M32A 126
217213211182138123941151441289517218416718811813312410068
129133108105741058950567971766970808248334057

79674957694856525048568890101789073112156164
1061551609092588111268694843544668789410913687
11612948556688991017059488380788788111555865
857874535367
HEL-M32B 126
21720620718213612584117145127891751761631861171381229770

7769495768537264516062931031079410182127139157
12813915489935581112745954475642786910310114388
1211384459688786977650577679719181113575961
927669555566
HEL-M33A 129
1391531901836569101105103105125143111101103127102124114101
11614120015112082709168117827768701059198122130100
13516711210476868877605759688039382852767266
51613840601066989698177466174686866566384

1291381071211117191989511310792969384115102988887
766455779510613012091
HEL-M33B 129
12215218117764699810394105117129113941031259611510995 11114519016912082569885927877637898899411912792
 50593636581037190608380435974677063646176 494167605570876152497497134948410373536498 122139118110112797497841211058610595771171211019083 6668506810810512811096
HEL-M34A 138
335344549518315405421328259198238255270234171175207168127219
16013514114816116112080149196174124851091004550899295
74789978694546577211787737187718476665288 1051311077878628892907260697969747391646469 8714091998512714212011812511079786111210379968768 6959104113140137143110120166639896701481121067074101 100757778989164679510912588909295131101171
HEL-M34B 138
337322553520319407429329258195235263277233161177205183136219 15014313313916714011270146181182108991099640471008790 708510481764149627312997677691799784596284 11113711179786290928775597066728068104605675 89134951038513013611612612011276805811410580898967 71571071111441381431041271626692101771451221067065108 97767782961026566100110106879510296120100167 HEL-M35A 106
32530429631730426319718724416719525822122217717022318619779 911242181771972251431509487766857105168144150176131122 1601311421351291318590757163475543556182744769 8611694981125850355873677465878251658287102 13810081536170837392826966881308575989695113 9111497798476
HEL-M35B 106
32829129130132426019717924918019222823522217717321917920588 941222181791992491551399993696860105174141176194146123 1621341371331331267599746752486059476568705669 9011810110311157543354836768678684517310882106 1329873565472768494897765941279279899987113 9811296878381
HEL-M36A 162
8112713311256881061351441991641601811521521158882105100
 $41294012315515486656746618956807263 \quad 33365747$

 1661261428310440445779100134176113168735186164137184 14012511971696813011914513911110769526287113129175141 6854811231862061621451188285184212173129143161101132154 125145
HEL-M36B 162
881201331275987115133159195183163174150151119887910397
 3238541111501489666604763796373685337426246 68547084999510312511316099817995798076667675 91749988517166937410799889980102818878120180 136126142859646446478103130172107169695686163138181 14312911972667111912315412810911271556785116126175121

9253801211802111571431178990186224157140135162102127149 135140
HEL-M37A 152
19116513517014615175948613214711011110187110140166107142 118101513580131145112949511449598810315918013210886 5955969113817918684527398667284981048010812595 11911912013216017917212393111115127979911375708910996 124130105101143112117791451351219211112318013656525289 1401099378132616468130122116115127116648111089119134 15111012184588875791131321037956821351751299110870
485895112165120166125919899111
HEL-M37B 152
1811691341711441548680941361431081159383120134163113143
112954645761311471129210211959559210415217914210998
6252989313717818587547096707278106938510912096
118123121130152181171131101106117126939612078698910597
1221271051021471111217614814311510411112718513657545285
1421099481126675968132114126116122120648011285124130
15510812083589277761121311048256851261871408710879
4262951161601171701228611296117
HEL-M38A 132
219212203171198143123110861131601582271911281851541386889
9212598106928111466604731444976100103112785668
8911111615216311311672854546415164765752576777
$99111119977342454476926757 \quad 7590546094118130139$

1371561061006685997988841008194102104122108927567
69704478989269100941057399
HEL-M38B 132
236212204175199141124103911151581582262011331891481397481
10312587987863845335443428476997103118735669
8612010916717113311476815249484856716452626678
10214610910274373657808367577592526695113131140
757469544769116151194126546068667484768890100
117166106976579918793798710482108110120121867659
816142761019192919510176104
HEL-M39A 160
$\begin{array}{llllllllllllllll}79 & 60 & 61 & 65 & 83 & 67 & 93 & 53 & 94 & 63 & 64 & 43 & 52 & 70 & 76 & 62 \\ 61 & 41 & 42 & 31\end{array}$
4759476045533762604335616353434440505338

43827649634627333248506050443434677411260
5170434560826391566160526679767976685862
8269707778595643414363786669794057707782
77921168794685694951251681007713148617279151111
89675876821381641471778878101737110211885787572
HEL-M39B 161
$\begin{array}{lllllllllllllllll}88 & 50 & 69 & 66 & 68 & 79 & 86 & 58 & 93 & 57 & 66 & 44 & 47 & 80 & 66 & 72 & 63 \\ 39 & 43 & 37\end{array}$

7772658260676432434455658475854541627475
7595119848766659198121166939112851606983147109

956257598115415815519785789677689412685675771 78
HEL-M40A 88
270182163254232241215168169186176176215207205207188202243159
15216116216018119010513411115713115083102155146135131135144
148898911913217215217415921215010096133115129163116146131
10911210617812716613912410798899413315617312510486118106
10394971041039272116
HEL-M40B 88
276185161245238237215171170185175175219207190208195192246161
14316316415617719511813511815413914986101158147140131135144
157838812812217416216815820513312396133118132160123152130
11110810617912316913812910793929713315916612410488114109
94101891021088689100
HEL-M41A 110
1401901107710112311711610611813111186114147114138141142144
12014914611510385128131111103827188100123103138117104118
109119117741291461271151471321281148889728511710310999
11999888911911013311111410181797610411313315911810559
708389951099910384749710512010976656556839399
1359510086691018590138141
HEL-M41B 110
143194109799812610911011611512712079117150106137145144144
117144150114100104123133104101867392100116108124115116109
109126108701241481241171441341311248693751021149610594
124100978711611113710811310184808010711213115811610668
6579949310610110980799210512310981686659829499
13110210086691048392142148
HEL-M42A 95
16116311477921281431581691701711751431227968101114119126
14611596847892106106119103975045828410079657383
576179116125117877154643486861231431007689136126
117133132147133941181291011261151041071141321341108395125
144105118748873751039410491100112105106
HEL-M42B 95
1561701197299127137161155162167172137110906499103116133
14411610071729011810512010796504892879381628285
53606712211811596645951467986136154967895137120
121127128143129911141251111281131031181041341361098597124
141110109798774691029310496104109106115
HEL-M43A 83
76120119140201294258180187178107132140127120131100979386
1161079110795865155146245193143135162214174214309399360
396281159706810516317420520014991111156153142134152148119
78107148118145103117122103103116102779610098861018364
697182
HEL-M43B 83
671201221411932852631931751831151191471311241329010585100
10411294106102765563138243192147138160214171213303396385
396269149697610317718119520614512780154152141134151152112 8210614212214610311312510010211897801019510090988868 687180
HEL-M44A 58

323269212204197253206203166145203158156169169140109140188228 165157150140112971201301151121732232351951721309775169208 92135153176138455286877164607510214566152161 HEL-M44B 56
325238240214192253211205166152194146156169169147119157184228 163163148140110991131341171111612152341911881328983167202 911261591991365152798471726283103143275 HEL-M45A 84
858879745142375910295846273784956588458128 72877976951221311589710663617483105931071449194 106113113151114100115931441231029688125123134116968593 951079212111397871361171231071451441131159711814611278 617410599
HEL-M45B 84
93818670495633539484906171804956596183116 86739260981191231681089169577488101961111399888 104122116136116971111111401181088793125125133115818993 9610096120114929213713612511414014811110211511513712269 708810380
HEL-M46A 129
12111814826326321518116119016618320620318214316112812512795
13010591123126138137159152123143106136121163128112998599
8782948779847153424448466451713847556654
5883594933332857646462836660607366707547
4830474572929366826249507283686670646164
4232596060685260426171457646343541344738
443936342735222442
HEL-M46B 129
116121144257305209192169194154183209195180149155135125121100 130117111125118141135146155131143118125117147129125968495
8888978480737651404945566746754052556356
6177615133313057636268836359567964737348
4736414677899661816446637573787672466562
4642506445754754496369536943333641404031
384035353531352535
HEL-M47A 43
17215316816114411111387169193158186167140228267141252240253
267233183258301326365300307372288279232205216161108142143130
110101127
HEL-M47B 43
171151166156152108104101164190159196180142229263148256238255
265243175255298320374279312371288281246204210144111138129131
109103127
HEL-M48A 100
3137332935454735222523332840292518222425
3031302526223235242525222524202427251820
1720151518252524232321221820191920241816
1814161515202417131721151717182120151517
1916151414161513192020222118202017182015
HEL-M48B 100
3137353040474535222523303043322617222525
3030302627223236232526222524212527251619
1520161518252527242220201920202020231917

1715151514202518131721151717182120141516 2013161315161515202021222018162018182017 HEL-M49A 90
2032223040423020202030273530242028303030 3032303227405027313225282825273030303024 2520202026323028252221202016192021151517 1515141524251712131614151518221916141520 19161411101211151920
HEL-M49B 91
2019302130404527182020302840302620303031 3030313035274050283334263030282730303230 2525202018253230282523222020201820231717 1517151514252818121417141616182418141315 1916151515121110152020
HEL-M50A 75
3526282834284847303030262825242626293025 2225232223273334222021201824201720251918 1713171517222218151618141615161916141518 171313141413121318151518161416 HEL-M50B 75
3525282740255048283430272723242427302825 2223232422273235212023201623181720251817 1913191518232217151520151516161817131515 181313151412111215171619171618
HEL-M51A 75
4340505340445053414050362530353335233532 23191720252417202716182021222026211455 67891191012141210121110101012202523 241820171719251818181520211920 HEL-M51B 75
4337505243425043404048352530363538233332
24201720262317202516192020222024201455
67881091012131210111110111012222425
241720151819151820181519201820
HEL-M52A 132
15101114108965771010105679109 58958859111314151010101015251820 141110713221415151720101515202223202115 81113111017107612992533303622242525 2519181917182221202021262028191813151517 1813151213161312162018141312108571415 171414112015111217141516
HEL-M52B 132
16101115107854781010105668108 78867858101213171010101217252018 141110812231315151720101515202123182015 811121210151177121092523303723232523 2418181817182019182020222028181910151517 1812151312171511152120131413810651214 181214111616101114151516
HEL-M53A 115
4035334841323238202833252720151824202528 25171813181517202027172517121213121099

711181313121713121417172015141217151816 161417171311101114121215121012161112710 101511151513152016151511111212101010910 71012131313171515151413151415 HEL-M53B 127
3533354028373328252315142214212422121714 2015182025322328272022252218171514192827 2318221412152019171414161817171815202516 1411111315171315131112141312101314161315 1514151817131611121011101413111110131514 1215141313101515121415121211111016151011 1011151081011
HEL-M54A 70
249237266234111997175788072106128115159128225215139148
1929726521817515418013413817713515514021418513613694107179
1739415214712684145192165141140185175165173204187151160145
134173134150117133149202197163
HEL-M54B 57
173178148233234196172164225229320223178258231258237333307282
26626915891778910711495115123121169140266202132159194112
30224022121719116814918614117016222917913113897113
HEL-M55A 117
265428279280322303273226161163143145151152171120159169179133
12220014517114515412410496107949582769190881077494
9769676483116999287781058810490628285556063

323228374659789782104133132105142134143142141138138
152108125119127111991058895108101139105148134151
HEL-M55B 117
250418284284324304273241159160168146159158180131158170179130 1201931481691441571271011021051038284769884951058489
98677462891161058698671068310191658587625665
7254565550575850484752433935324829303435
2933303244647410377107129138104146129140142143138134
1531141191201031141031009189112129115104144152149
HEL-M56A 73
298326328277298332312367310266276343386231231333365287300412 273282301293323252193195203177201196216142161157187138148172 139140136154144119131124125119879410412512515010911812685
8579108120107115108124146131142116171
HEL-M56B 73
301325332287298342328363309255281340387234235329363286299413
272275292298317261199190206170203195221143161155193137150171
139140131159146119132128122118869610213211815011012111990
7783106121108112112118149124140121160
HEL-M58A 70
207160180162143148204130131137121123135122119136142130139155
118136112145139177136148214198174194192179216323297292231256
276284251240216208227212171233246200188192186209169169153182
15313312114017816415713597117
HEL-M58B 70
206164180164144152202130126134128124134118128132141130142156 119131116151130183138142215206167199195177213327303285238250

278273257247232210229210172232252197185195183211168173152180 15413512213917916015413898105
HEL-M59A 68
132132117126121116116108104129881131141029490112142132105 11211211610212610913511712489118164158164181156136135162164 144157130146169178193157190169149126158168139152159174150115 157131152140106126112153
HEL-M59B 68
13613311812013111011611195136841041141049493112141127103 11111512510310911913011713493117170158162168155132133168163 149146130144173175193151195166151126156173137151155175156118 138134154148106124116129
HEL-M60A 88
273276223159234158149145181174220172182208203171145185191137 136159110117101951028291100841158381868370878781 9294118849610594931015855998278819272788174
 811091169881699593
HEL-M60B 88
286265219163229153147140165188200168178191215164139178199135 137156121124831061018999105871059079838870838785 10110212378951089399966559928480829077717972 10174809312499108719411070647170607368736193 74108118106826673112
HEL-M61A 65
190161180177160180178195172191184174151144180224209181161201 163166193186204168160104115170155164175164144149212190179157 128174156146152129157148155119152148113108114109135102109104 100949210695
HEL-M61B 65
204164176177164166171193176192184177155148179200213180161200 163167198181211171157107115174161161176164147144210192173165 134171158146152129158137159125156149114109112109129109108105 99949210099
HEL-M62A 85
887811714880149123144165134105134151166142169210219224168 187164153154187192171195174208183145189175178207138175156147 159146118122176134138153130141114110116105737453718567 83917868898318122412713711098124112918683648563 6479655747
HEL-M62B 85
908012014582147128138163143108138172159147178228210225168 174166150163199196170191172207185147185173178211141170156150 162147121123176138137152141138111114118111797160738072 87898757908414820613114111298124108988675698457 7276645369
HEL-M63A 58
83908816683557276908680797982847991869190 129144141120148135149127112165137188181180136148144178241212 228171144169202187154139210126149152152145203246121158 HEL-M63B 114 195185184129175141144137165259221308345280181263288226232165 202177128197184187127142134156152177144167126206229234191212

```
24819517480130 118174118124107 57 67 85 80 105 97 119132120105
9619281 66 77 90 110 144114103119137141 115101 104 96 102 129169
142165189210180 143122207196203190150157 153135180 209231214167
133146164173154183232137153138148141177187
HEL-M64A 108
215198156134180166130139178230223197198191166189170169232175
165161155159167130141160170165193178158165157171 147 130 69 93
150183140166171150154145 84127 93 9312014914516815412075108
143126167163153134143117123 97 83 94105117 158141 111 93 113133
175160159155126 97 73139158154162141 149167145119138213193189
12713711494130163157250
HEL-M64B 108
210193140133184173126137173238219192196189171 200 170174 225 177
166163157165158133145164173164188202173178170181 152150 62108
15018114417416115015714595131 98 94125152145173156 113 79 103
14312916016215312614311612592 86 94104118156133119 80 103 156
160154164155127 98 70 138157157160142146163149120141 214191 191
13513211198129154159288
HEL-M65A 94
234209190184209156179194166175165146143119130119115 117 113147
119111107107 117 99 105 102 87 87 71 91 92 92 91 108 101 85 93 97
74 85 84 66 45 44 62 49 47 47 61 50 45 60 62 58 95 67 77 47
40 48 42 45 71 77 73 82 64 63 47 60 61 67 72 63 56 32 34 62
85 113104 86 74 66 52 35 71 56 64 62 71 59
HEL-M65B }9
239218200179216163181200166183168151146122137119112121111150
124111111114112101103104 94 86 83 85 98 89 100 91 107 77 97 96
74 81 77 48 44 46 58 54 44 53 55 50 50 61 61 59 93 68 75 49
3948 38 48 76 72 81 79 66 61 45 60 61 67 77 66 51 34 38 59
78115 110 93 67 63 48 34 67 63 65 56 72 76
```


APPENDIX:TREE-RING DATING

The Principles of Tree-Ring D ating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East M idlands M aster Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about A pril to 0 ctober, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A 1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring D ating at the N ottingham Tree-Ring D ating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. W ith fewer
rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A 2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. O ne reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO -A 06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. W here it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

D uring the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring
on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, whidh grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: M easuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring W idths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln C athedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of $C 45$, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other

 one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Q uite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A 06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CRO -A 06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541 . The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A 06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 (=35-9) and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. O ak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A 2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full complement of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A 6 such a sequence is $\mathrm{SHE}-\mathrm{T}$, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for N ottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). O ther laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and W ales covering many short periods.
7. Ring-W idth Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

	1	I						1	\|	1	
0	10	20	30	40	50	60	70	80	90	100	110

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. N otice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, M organ, R A and Tyers, I, 1987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, 165-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 N ottingham University Tree-Ring D ating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 N ottingham University Tree-Ring D ating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6.

Hughes, M K, Milson, S J, and Legett, P A, 1981 Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 381-90

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East M idlands M aster Chronology and its use for dating vernacular buildings, U niversity of N ottingham, Department of A rchaeology Publication, M onograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, M edieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and W oodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH AND THE HISTORIC ENVIRONMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for the protection and sustainable management of the resource, and to promote the widest access, appreciation and enjoyment of our heritage. Much of this work is conceived and implemented in the context of the National Heritage Protection Plan. For more information on the NHPP please go to http://www.english-heritage. org.uk/professional/protection/national-heritage-protection-plan/.
The Heritage Protection Department provides English Heritage with this capacity in the fields of building history, archaeology, archaeological science, imaging and visualisation, landscape history, and remote sensing. It brings together four teams with complementary investigative, analytical and technical skills to provide integrated applied research expertise across the range of the historic environment. These are:

* Intervention and Analysis (including Archaeology Projects, Archives, Environmental Studies, Archaeological Conservation and Technology, and Scientific Dating)
* Assessment (including Archaeological and Architectural Investigation, the Blue Plaques Team and the Survey of London)
* Imaging and Visualisation (including Technical Survey, Graphics and Photography)
* Remote Sensing (including Mapping, Photogrammetry and Geophysics)

The Heritage Protection Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support community engagement and build this in to our projects and programmes wherever possible.
We make the results of our work available through the Research Report Series, and through journal publications and monographs. Our newsletter Research News, which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.
A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage.org.uk/researchreports
For further information visit www.english-heritage.org.uk

