The Abbot's Lodging and Corridor, Coggeshall Abbey, Essex

Tree-ring Analysis of Timbers

Alison Arnold and Robert Howard

Discovery, Innovation and Science in the Historic Environment

THE ABBOT'S LODGING AND CORRIDOR, COGGESHALL ABBEY,
 ESSEX

TREE-RING ANALYSIS OF TIMBERS

Alison Arnold and Robert Howard

NGR: TL 855292224 I
© Historic England
ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

For more information write to Res.reports@HistoricEngland.org.uk
or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

SUMMARY

Analysis undertaken on samples taken from various parts of this building has resulted in the successful dating of 40 timbers. The earliest timbers were identified within the Abbots Lodging where two roof timbers and a ground-floor ceiling joist were dated to AD I36388 and AD 1369-94, respectively. These timbers are thought to be reused.

The ground-floor ceiling of the Abbot's Lodging utilises timber felled in AD I488, with construction thought to have followed shortly after. Potentially contemporary are a roof timber from the Abbot's Lodging with a terminus post quem date of AD 1487 and a roof timber from the Corridor dated to AD 1487-1512. Again, these are presumed to be reused.

The majority of the dated timbers of the Corridor roof were felled in AD 1549 although at least three (and probably four) are somewhat later, dating to AD 1567-92. Boards of a door in this part of the building have a terminus post quem felling date of AD 1527 and may be contemporary with the roof.

The majority of the Abbot's Lodging roof timbers date to the mid- to late-sixteenth century with at least two being felled in cAD I57I. A lintel dates to AD I538-63.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank David Andrews, archaeologist/historian, for facilitating access, and the owner of Coggeshall Abbey for allowing sampling to be undertaken.
Thanks are also given to Cathy Tyers and Shahina Farid of the Historic England Scientific Dating Team for their advice and assistance throughout the production of this report.

ARCHIVE LOCATION

Essex Historic Environment Record
Historic Environment Specialist Team
Place Services, County Hall
Chelmsford
Essex CMI IQH

DATE OF INVESTIGATION

2014-15

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Abbot's Lodging
Roof
Ground-floor ceiling.
Corridor 2
Roof 2
Door 2
Sampling 2
Analysis and Results 2
Interpretation 3
Abbot's Lodging 3
Roof 3
Lintel 4
Ground-floor ceiling. 4
Corridor 4
Roof 4
Door 5
Discussion 5
Bibliography 8
Tables 10
Figures 16
Data of Measured Samples 28
Appendix: Tree-Ring Dating 42
The Principles of Tree-Ring Dating 42
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 42
I. Inspecting the Building and Sampling the Timbers 42
2. Measuring Ring Widths 47
3. Cross-Matching and Dating the Samples. 47
4. Estimating the Felling Date 48
5. Estimating the Date of Construction. 49
6. Master Chronological Sequences 50
7. Ring-Width Indices 50
References 54

INTRODUCTION

The Scheduled Ancient Monument of Coggeshall Abbey is located between Colchester and Braintree in the County of Essex (Figs I-3). The Abbey was founded in AD II40 by King Stephen as a Savignac house but was later converted to the Cistercian order. Following its dissolution in AD 1538 the site continued as a farmstead and house.

Remains of the monastic buildings are to be found on the south side of the farmhouse where they survive mostly as foundations and buried remains. However, the eastern arm of the claustral range still stands and part of the infirmary has been incorporated within Abbey Farm. Surviving, is a vaulted corridor, which originally flanked the eastern dorter range of the cloister and the adjoining Abbot's Lodging (Fig 4). There is also a detached building a few metres south of the abbot's lodging called the Guesthouse and a monastic timber-framed building on the river bank is identified possibly as a boathouse. There are also two post-dissolution barns.

Abbot's Lodging

This rectangular building (Fig 4) is believed to have been an addition to the now demolished dorter range. It is thought that the ground floor would originally have been undivided with the exception of the easternmost bay, as evidenced by one of the bridging beams and a common joist having mortices for a stud partition. It was altered, probably post-dissolution, by dividing stud partitions, which formed three stables at the western end, a tack room, and two rooms used for storage at the eastern end. There are references to an abbot's lodging (and guest house) as early as AD II94.

Roof

The roof over this building consists of five queen-post trusses with arch braces and clasped purlins (Fig 5). One of the queen posts is heavily weathered and is thought to be a reused medieval timber with moulded decoration. The present roof is believed to be a re-roofing of the late-sixteenth or seventeenth century.

Ground-floor ceiling

This extant ceiling structure consists of four large bridging joists with chamfered angles and step stops. These are supported by posts set against the walls; two of the northern ones are chamfered and have jowls whereas others are clearly reused. Between these main beams are a series of common joists, those in the two western bays mismatched and many showing signs of reuse, whilst those in the three eastern bays are larger and of a higher quality (Fig 6). Four of the existing common joists in the area previously partitioned off (above) are later insertions and are thought to fill the area once occupied by a stair. The use of soffit tenons with diminished haunches and the scribed carpenters' marks
suggest construction cAD 1500-1600 (Andrews 2014). The absence of joist holes and offsets suggests that any earlier ceiling structure would also have been independently supported.

Corridor

Access between this vaulted passage (Fig 4) and the Abbot's Lodging is provided at both ground- and first-floor levels.

Roof

This roof consists of four principal rafters with tiebeam and collar trusses. There is a single tier of purlins to each slope with windbraces between these and the principal rafters (Fig 7). Some of the common rafters appear to be reused.

Door

To the west side at first-floor level is a three-plank door, thought to belong to the Tudor period (Fig 8).

SAMPLING

Tree-ring dating was requested by Deborah Priddy (Historic England Inspector of Ancient Monuments) to inform listed building consent for conversion of the Abbot's Lodging/Stables into residential accommodation.

A total of 55 core samples were taken from timbers of the roof and ground-floor ceiling of the Abbot's Lodging and the roof of the Corridor; the ring width sequences of the three boards making up the first-floor door in the Corridor were measured directly in situ using a graticule. Each core sample was given the code COG-A and numbered I-55; the in situ measurements from the door were coded COG-D and numbered $01-03$. The location of all samples was noted at the time of sampling and have been marked on Figures 8-10. Further details relating to the samples can be found in Table I.

ANALYSIS AND RESULTS

Three samples, one from the Abbot's Lodging roof (COG-A27) and two from the ground-floor ceiling (COG-A50 and COG-A52) had too few rings for secure dating and so were rejected prior to measurement. The remaining 52 core samples were prepared by sanding and polishing and their growth-ring width measured; the data of these measurements, and those from the three door boards, are given at the end of the report. All samples were then compared with each other by the Litton/Zainodin grouping programme (see Appendix).

Firstly, three samples, two from the Abbot's Lodging roof and one from the ground-floor ceiling, matched each other and were combined at the relevant offset positions to form COGASQ0 I, a site sequence of 130 rings (Fig II). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to span the period AD 1225-I354. The evidence for this dating is given in Table 2.

Thirty-seven samples, taken from all sampled areas, also grouped and these were combined at the relevant offset positions to form COGASQ02, a site sequence of 196 rings (Fig 12). This site sequence was found to match consistently and securely at a firstring date of AD 1372 and a last-measured ring date of AD 1567. Evidence for this dating is given in Table 3.

Finally, seven samples (all from the Abbot's Lodging ground-floor ceiling) grouped and were combined at the relevant offset positions to form COGASQ03, a site sequence of 178 rings (Fig I3). Attempts to date this site sequence and the remaining ungrouped samples were unsuccessful and all remain undated.

INTERPRETATION

Tree-ring analysis has resulted in the successful dating of 40 samples. To aid interpretation samples will be discussed by area (Fig 14). All felling date ranges have been calculated using the estimate that mature oak trees in this region have 15-40 sapwood rings.

Abbot's Lodging

Roof

Sixteen of the samples taken from the timbers of the roof have been successfully dated. Two of these samples (COG-A2I and COG-A26) are substantially earlier than the rest of the timbers. These samples match at $t=13.0$, a value high enough to suggest that both timbers represented may have been cut from the same tree. The presence of the heartwood/sapwood boundary on sample COG-A2I dating to AD 1348 allows an estimated felling date of AD I363-88 to be calculated for both timbers.

With the possible exception of COG-A28, the remaining timbers are clearly broadly coeval. Sample COG-A25 has a last-measured ring date of AD 1567. This sample was taken from a timber which had complete sapwood but c 3 mm of the sapwood rings were lost during the sampling process. By estimating the number of rings likely to be present in the lost 3 mm it can be seen that $c 4$ rings have been lost giving the timber represented a felling date of c AD 1571 . Sample COG-A22 matches sample COG-A25 at a value ($t=12.1$) high enough to suggest that both timbers were cut from the same tree demonstrating sample COG-A22 must also have been felled in cAD 1571.

Ten of the other dated samples from the roof have the heartwood/sapwood boundary ring which varies from AD 1524 (COG-A33) to AD 1554 (COG-A36), a difference of 30 years, somewhat greater than one would expect from a group of timbers belonging to a single intensive period of felling. Using the estimate that 95% of mature oak trees in this region have between 15 and 40 sapwood rings it is possible to say that these ten timbers have estimated felling dates which range from AD 1539-64 (COG-A33) to AD I569-94 (COG-A36) suggesting that more than one period of felling may be represented or that felling was undertaken over an extensive period of time.

The two remaining samples do not have the heartwood/sapwood boundary and so estimated felling dates cannot be calculated for them. With last-measured ring dates of AD 1487 (COG-A28) and AD 1549 (COG-A32), the timbers represented would have terminus post quem felling dates of AD 1487 and AD I564, respectively.

Lintel

The sample taken from the lintel (COG-A35) has a heartwood/sapwood boundary ring date of AD 1523, giving an estimated felling date range for the timber represented of AD |538-63.

Ground-floor ceiling

Six of the common joists of this structure have been successfully dated. Sample COGA40 has a heartwood/sapwood boundary ring date of AD I354, which is substantially earlier than the rest of the dated timbers. This allows an estimated felling date to be calculated for the timber represented to within the range AD 1369-94.

Sample COG-A49 has complete sapwood and the last-measured ring date of AD I488, the felling date of the timber represented. The other four samples have broadly contemporary heartwood/sapwood boundary ring date. The average of which is AD 1472, allowing an estimated felling date to be calculated for the timbers represented to within the range AD |487-I5I2, consistent with an AD 1488 felling date.

Corridor

Roof

Fourteen of the samples taken from this structure have been successfully dated and again, one of these is somewhat earlier than the rest of the timbers. Sample COG-A06 has the earliest heartwood/sapwood boundary ring date at AD 1472, giving an estimated felling date for the timber represented of AD $1487-15 \mid 2$.

Three of the samples have complete sapwood and the last-measured ring date of AD 1549, the felling date of the timbers represented. A fourth sample (COG-AI 2) has the last-measured ring date of AD 1543; this sample was taken from a timber with complete sapwood but c 5 mm of these outer rings were lost during the sampling process. By noting how many rings are to be found in the last 5 mm of this core it is possible to estimate that $c 4$ rings are missing, giving the timber represented a felling date of cAD 1547 .

Five samples have similar heartwood/sapwood boundary ring dates, the average of which is AD 1524, giving an estimated felling date range for the timbers represented of AD 1539-64, consistent with a felling in the later AD 1540s. Furthermore, the level of matching seen between these samples and those known to have been felled in AD I549 is particularly good (Table 4), with potential same tree matches noted between COGAIO, COG-AlI, COG-Al3, and COG-Al5 (all common rafters), as with the Abbot's Lodging roof samples, suggesting a coherent group of timbers of a single programme of felling.

Three samples have somewhat later heartwood/sapwood boundary ring dates, the average of which are AD 1552, allowing an estimated felling date to be calculated for the three timbers represented of AD 1567-92.

The final dated sample (COG-A07) does not have the heartwood/sapwood boundary ring but with a last-measured ring date of AD 1543 the timber represented has a terminus post quem felling date of AD 1558 and so could also have been felled in AD |567-92.

Door

Three of the boards making up this door have been dated. Unfortunately, none of these have the heartwood/sapwood boundary ring dates but bearing in mind the level at which these three samples match (Table 5) it is thought likely that all three boards may have been cut from a single tree, giving them all a terminus post quem for felling of AD 1527.

DISCUSSION

All of the dated timbers appear likely to have originated in relatively local woodlands as indicated by the high similarity shown by both dated site sequences (COGASQ0I and COGASQ02) to site reference chronologies from Essex and the surrounding counties (Tables 2 and 3).

The earliest timbers identified by the dendrochronology are found within the Abbot's Lodging where a ground-floor ceiling joist has been dated to AD I369-94 and two roof timbers (both collars) to AD I363-88 (Figs I| and I4). All three of these timbers are thought to be reused in their current locations and indeed the joist is located in a part of the ceiling thought to have originally contained the staircase. Sample COG-A40 matches
one of the early roof samples (COG-A2I) particularly well ($t=7.1$) and, combined with the similarity in felling date ranges, it is possible that all three timbers may relate to the same earlier structure.

The remaining dated timbers of the ceiling structure of the Abbot's Lodging are now known to have been felled in AD 1488 (Figs 12 and I4), with construction of this ceiling thought likely to have occurred shortly after. This would make the ceiling slightly earlier than previously believed (cAD I500-I600).

A single timber, a collar from the roof of the Corridor, dates to AD |487-15 I2, making it potentially of the same date as the timbers of the ground-floor ceiling of the Abbot's Lodging (Figs 12 and 14). The majority of the dated timbers in this roof appear to have been felled in AD I549. However, three, and probably four, other timbers are a little later with an estimated felling date range of AD I567-92 and hence may be coeval with the c AD 157| felling identified for the majority of the dated timbers from the roof of the Abbot's Lodging.

The three dated boards of the first-floor door in the Corridor are all thought to have been felled some time after AD 1527 (Figs I2 and 14). This makes it possible that the door relates to the same period as the roof of this part of the building (AD I549). Alternatively, it may represent a totally different phase of work.

The extant roof over the Abbot's Lodging was thought to be a re-roofing of the late sixteenth or seventeenth century. One of the timbers from the roof appears likely to be either heavily trimmed or felled somewhat earlier than the majority of the timbers and subsequently reused. It has a terminus post quem felling of AD 1487 which raises the possibility that this timber is coeval with the ground-floor ceiling timbers (felled AD I488) and the early timber in the Corridor roof (felled AD $1487-1512$) (Figs 12 and I4). However, the majority of the timber utilised within this roof dates to the mid- to latesixteenth century (Figs 12 and 14). At least two of these timbers are known to have been felled in cAD 157I, whilst the rest of this sixteenth-century timber has felling dates ranging from AD I539-64 to AD I569-94. It is possible that the majority of the timbers were felled in cAD I571, particularly if some of those dated had more than the usual number of sapwood rings, but it is also possible that felling of the timbers occurred over an extended period of time perhaps in the AD I560s and early AD I570s. The alternative possibility is that some of the timbers used in the extant roof are slightly earlier and could actually be coeval with those from the Corridor roof felled in AD I549.

The dated lintel in the Abbot's Lodging was felled in AD I538-63, a felling date range which is very similar to that of the potentially slightly earlier timbers in the roof and again raises the possibility that it is coeval with the Corridor roof timbers felled in AD I549.

It is, therefore, possible to suggest that there may only be four felling phases represented but that each of the areas analysed includes timbers representing more than one period of felling (Figs II, I2, and I4). The felling phases being late-fourteenth century (Abbot's

Lodging roof and Abbot's Lodging ceiling), late AD I480s (Abbot's Lodging ceiling, Abbot's Lodging roof, and Corridor roof), late AD I540s (Corridor roof and Abbot's Lodging roof), and finally early AD 1570s (Abbot's Lodging roof and Corridor roof) with the Corridor door being potentially associated with either of the two sixteenth-century felling phases.

It is unfortunate that site sequence COGASQ03 could not be dated. It can be seen (Table 6) that the components of this site sequence match each other extremely well and are almost certainly cut from a single tree. This may be the reason for the lack of dating as, rather than trying to match an averaged growth pattern against the reference material, we are in effect trying to match the growth pattern of a single tree, which is always less likely to be successful.

BIBLIOGRAPHY

Andrews, D, 2014 Coggleshall Abbey, Essex, The Abbot's Lodging, Report on observations made during the conversion of the stables to residential accommodation, unpubl

Arnold, A J, and Howard, R E, 2006 unpubl Tree-ring analysis of timbers from Newnham Hall Farm, Newnham Murren, near Wallingford, Oxfordshire, unpublished computer file CMGASQOI, NTRDL

Arnold, A J, and Howard, R E, 2008 St Leonard's Church, Main Street, Apethorpe, Northamptonshire, Tree-Ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 85/2008

Bridge, M C, 1998 Tree-ring analysis of timbers from Gosfield Hall, Essex, Anc Mon Lab Rep, 19/98

Bridge, M C, 200 I a Tree-ring analysis of timbers from the church of St George of England, Toddington, Bedfordshire, Centre for Archaeol Rep, 77/200I

Bridge, M C, 200 I b Tree-ring analysis of timbers from Priory Barn, Little Wymondley, Hertfordshire, Centre for Archaeol Rep, 18/200I

Groves, C, Hillam, J, and Pelling-Fulford, F, 1997 Dendrochronology in Excavations on Reading Waterfront sites 1979-1988 (eds J W Hawkes and P J Fasham), Wessex Archaeol Rep, 5, 64-70

Howard, R E, Laxton, R R, and Litton, C D, 1998 Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, 30/98

Miles, D H, Worthington, M J, and Bridge, M C, 2004 Tree-ring dates, Vernacular Architect, 35, 95-113

Miles, D H, Worthington, M J, and Bridge, M C, 2005 Tree-ring dates, Vernacular Architect, 36, 87-10|

Miles, D H, and Bridge, M C, 2010 Tree-ring dates, Vernacular Architect, 4I, I02-I0
RCHM Essex 1922 Royal Commission on Historical Monuments (England) An inventory of the historical monuments in Essex. Vol. 3. North-east Essex, London: HMSO

Tyers, I, I996a Draft Dendrochronological Assessment: Fastolfs sites, ARCUS Rep, 255
Tyers, I, I996b Draft Dendrochronological Assessment: Rosary sites, ARCUS Rep, 256

Tyers, I, I 998 Tree-ring analysis of St Martin's Church, Colchester, Essex, ARCUS Rep, 366

Tyers, I, I999a Dendrochronological spot-dates of timbers from five buildings in Essex, 1997-8, ARCUS Rep, 345

Tyers, I, I 1999b Dendrochronological Analysis of Timbers from Moyns Park, Birdbrook, Essex, ARCUS Rep, 47I

Tyers, I, Andrews, D, and Stenning, D, 2003 Tree-ring dates from Small Aisled Halls in Esssex: List 137, Vernacular Architect, 34, I0 |-2

TABLES

Table I: Details of tree-ring samples from The Abbot's Lodging and Corridor, Coggleshall Abbey, Essex

Sample number	Sample location	Total rings*	Sapwood rings**	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Corridor						
COG-A0I	Collar, truss I (from north)	104	h/s	1417	1520	1520
COG-A02	East wallplate, truss I-2	110	h/s	1439	1548	1548
COG-A03	Tiebeam, truss 2	103	h/s	1449	1551	1551
COG-A04	West purlin, truss 2-3	98	h / s	1459	1556	1556
COG-A05	East purlin, truss 3-4	74	h / s	----	----	----
COG-A06	Collar, truss 4	101	h/s	1372	1472	1472
COG-A07	West principal rafter, truss 4	56	--	1488	----	1543
COG-A08	Lower middle stud post, truss 5	115	h/s	1409	1523	1523
COG-A09	Lower west stud post, truss 5	138	h/s	1388	1525	1525
COG-AIO	East common rafter I, bay I	141	23C	1409	1526	1549
COG-AII	West common rafter I, bay I	123	11	1414	1525	1536
COG-AI2	West common rafter 4, bay I	90	08c(+ c4lost)	1454	1535	1543
COG-AI3	East common rafter 3, bay 2	104	23C	1446	1526	1549
COG-AI4	West common rafter 4, bay 2	59	h/s	1467	1525	1525
COG-AI5	East common rafter 5, bay 2	128	23C	1422	1526	1549
First-floor ha-ha door to corridor						
COG-D01	Upper door, closing board	105	--	1380	----	1484
COG-D02	Upper door, middle board	95	--	1388	----	1482
COG-D03	Upper door, hanging board	123	--	1390	----	1512
Abbots Lodging						
Roof and lintel						
COG-AI6	Tiebeam, truss 2	157	h/s	1385	154\|	1541
COG-AI7	Tiebeam, truss 3	149	h / s	----	----	----
COG-AI8	Tiebeam, truss 4	83	h/s	----	----	----
COG-AI9	Tiebeam, truss 5	83	h / s	1464	1546	1546

| COG-A20 | Tiebeam, truss 6 | 109 | h/s | 1433 | \|54| | \|54| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COG-A2I | Collar, truss I | 124 | h/s | 1225 | 1348 | 1348 |
| COG-A22 | Collar, truss 2 | 62 | h/s | 1495 | 1556 | 1556 |
| COG-A23 | Collar, truss 3 | 72 | h/s | 1471 | 1542 | 1542 |
| COG-A24 | Collar, truss 4 | 91 | h/s | 1444 | 1534 | 1534 |
| COG-A25 | Collar, truss 5 | 85 | 15+4lost | 1483 | 1552 | 1567 |
| COG-A26 | Collar, truss 6 | 99 | -- | 1229 | ---- | 1327 |
| COG-A27 | South queen strut, truss 3 | NM | -- | ---- | ---- | ---- |
| COG-A28 | King stud, truss 6 | 95 | -- | 1378 | ---- | 1472 |
| COG-A29 | North stud post, truss 6 | 107 | h/s | 1426 | 1532 | 1532 |
| COG-A30 | South stud post, truss 6 | 80 | -- | ---- | ---- | ---- |
| COG-A31 | Lintel to east window | 89 | 01 | ---- | ---- | ---- |
| COG-A32 | West windbrace, north principal rafter, truss 4 | 48 | -- | 1502 | ---- | 1549 |
| COG-A33 | West windbrace, south principal rafter, truss 4 | 78 | h/s | 1447 | 1524 | 1524 |
| COG-A34 | East windbrace, north principal rafter, truss 6 | 55 | h/s | 1488 | 1542 | 1542 |
| COG-A35 | North window lintel | 112 | h/s | 1412 | 1523 | 1523 |
| COG-A36 | North wall plate, truss I-2 | 92 | h/s | 1463 | 1554 | 1554 |
| COG-A37 | North wall plate, truss 5-6 | 84 | h/s | 1447 | 1530 | 1530 |
| Ground-floor ceiling | | | | | | |
| COG-A38 | Joist 3, bay I | 52 | -- | ---- | ---- | ---- |
| COG-A39 | Joist 4, bay 1 | 134 | 01 | ---- | -- | ---- |
| COG-A40 | Joist 6, bay I | 78 | h/s | 1277 | 1354 | 1354 |
| COG-A4I | Joist 9, bay I | 90 | -- | ---- | ---- | ---- |
| COG-A42 | Joist I I, bay I | 47 | -- | ---- | ---- | ---- |
| COG-A43 | Joist I2, bay I | 126 | h/s | ---- | ---- | ---- |
| COG-A44 | Joist I3, bay I | 45 | h/s | 1426 | 1470 | 1470 |
| COG-A45 | Joist 14, bay I | 85 | -- | ---- | ---- | ---- |
| COG-A46 | Joist I5, bay I | 111 | -- | ---- | ---- | ---- |
| COG-A47 | Joist 16, bay I | 110 | h/s | ---- | ---- | ---- |
| COG-A48 | North post supporting main beam 3 | 48 | -- | ---- | ---- | ---- |
| COG-A49 | Joist 3, bay 2 | 46 | I4C | 1443 | 1474 | 1488 |
| COG-A50 | Joist 5, bay 2 | NM | -- | ---- | ---- | ---- |

COG-A5I	Joist 7, bay 2	48	h/s	1423	1470	1470
COG-A52	Joist 9, bay 2	NM	--	---	----	
COG-A53	Joist I0, bay 2	53	09	1432	1475	
COG-A54	Joist II, bay 2	47	01	1427	1472	
COG-A55	Joist I5, bay 2	56	$\mathrm{~h} / \mathrm{s}$	----	-----	

*NM = not measured
**h/s = heartwood/sapwood boundary is the last-measured ring
$C=$ complete sapwood retained on sample, last measured ring is the felling date

Table 3: Results of the cross-matching of site sequence COGASQ02 and relevant reference chronologies when the first-ring date is AD 1372 and the last-measured ring date is AD 1567

Reference chronology	t-value	Span of chronology	Reference
Hays Wharf, Southwark, London	12.2	AD I248-I647	Tyers I996a; Tyers I996b
Priory Barn, Little Wymondley, Bedfordshire	11.3	AD I450-I540	Bridge 200 Ib
Chicksands Priory, Bedfordshire	10.7	AD I200-I54I	Howard et a/ I998
Moyns Park, Birdbrook, Essex	10.2	AD I450-I540	Tyers I999b
Gosfield Hall, Essex	9.4	AD I449-I537	Bridge I998
Dannys House, West Sussex	9.1	AD I389-I589	Miles et a/20I0
Newnham Hall Farm - The Cottage	9.1	AD I4I4-I55I	Arnold and Howard 2006 unpubl
Lawns Farm, Great Leigh, Essex	8.8	AD I377-I536	Miles et a/2004

Table 2: Results of the cross-matching of site sequence COGASQOI and relevant reference chronologies when the first-ring date is AD I 225 and the last-measured ring date is AD 1354

Reference chronology	t-value	Span of chronology	Reference
Reading Waterfront, Berkshire	11.0	AD 1160-1407	Groves et a/ 1997
Chicksands Priory, Bedfordshire	9.8	AD 1200-1541	Howard et a/ 1998
St Laurence's Church, Blackmore, Essex	9.6	AD 1266-1399	Miles et a/2005
St Martin's Church, Colchester, Essex	9.4	AD 1218-1349	Tyers 1998
St George of England Church, Toddington, Bedfordshire	9.3	AD 1226-1392	Bridge 200 la
Normans Hall, Wakes Colne, Essex	8.6	AD 1229-1368	Tyers et a/2003
St Leonard's Church, Apethorpe, Northamptonshire	8.5	AD 1211-1403	Arnold and Howard 2008
St Thomas the Apostle Church, Navestock, Essex	8.4	AD 1201-1355	Tyers 1999a

Table 4: Matrix to show the level of t -value matching and offsets between dated samples from the Corridor roof; values of $\mathrm{t}=10.0+$ are likely to represent timbers cut from the same tree; --indicates no overlap or a not statistically significant t -value between samples (t -values below, offsets above; ie the offsets between COG-AOI and COG-A03 is -32 years and the t -value between these ring series is 4.5)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
COG-A01	1	**	-22	-32	-42	45	--	-	29	8	3	-37	-29	-50	-5
COG-A02	2	3.7	-	--	-20	-	-49	--	51	--	--	-15	-7	-28	
COG-A03	3	4.5	--	+rn	--	53	-39	40	-	40	35	-5	3	--	27
COG-A04	4	4.6	2.9	--	*	11	-29	50	71	50	--	5	13	-8	37
COG-A06	5	4.7	--	--	3.4		--	--	--	-37	-42	--	--	--	-
COG-A07	6	--	5.0	3.2	2.9	--		--	-	--	--	34	42	-	
COG-A08	7	--	--	3.5	6.2	--	-		--	0	-5	-45	-37	-58	-13
COG-A09	8	7.1	3.2	--	5.1	--	--	--		-21	-26	-66	-58	-79	-34
COG-A10	9	6.8	--	3.8	4.0	3.7	--	5.8	6.1		-5	-45	-37	15	-13
COG-A11	10	6.1	--	2.8	--	3.7	--	5.5	4.7	14.3	-	-40	-32	-	-8
COG-A12	11	7.6	5.8	4.5	6.2	-	5.4	5.5	5.0	4.5	4.2	-	8	-13	32
COG-A13	12	5.0	2.8	3.6	6.6	--	2.8	4.9	6.7	11.3	10.0	6.5	+	-21	24
COG-A14	13	5.5	6.1	-	4.8	-	--	3.2	4.6	3.7	--	7.0	4.0		--
COG-A15	14	5.5	-	3.1	3.4	--	--	5.0	6.1	11.3	13.1	5.4	11.4	--	

Table 5: Matrix to show the level of t-value matchingand offsets between samples from the Corridor door (t-values below; offsets above)

		1	2	3
COG-D01	1	\ldots	-8	-10
COG-D02	2	$\mathbf{9 . 8}$	\cdots	-2
COG-D03	3	$\mathbf{9 . 8}$	$\mathbf{1 2 . 1}$	

Table 6: Matrix to show the level of t-value matching and offsets between components of site sequence COGASQ03- indicates no overlap or a not statistically significant t -value between samples (t-values below; offsets above)

		1	2	3	4	5	6	7
COG-A38	1	-	--	-25	--	--	-15	-
COG-A39	2	-	**	19	-4	-5	29	-18
COG-A41	3	7.8	10.8	+	-23	-24	10	-37
COG-A43	4	-	13.7	14.3	"	-1	33	-14
COG-A45	5	-	12.1	12.7	15.1	**	34	-13
COG-A46	6	12.2	13.6	12.7	14.8	12.9	+	-47
COG-A47	7	--	13.7	10.2	14.1	8.2	10.5	

FIGURES

Figure I: Map to show the general location of Coggeshall, circled. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the location of Coggeshall Abbey, circled. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number I00024900

Figure 3: Map to show the location of the Abbot's Lodging and Corridor of Coggeshall Abbey. © Crown Copyright and database right 20I5. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4: Plan of Coggeshall Abbey, with the Abbot's Lodging outlined in red and the Corridor in blue (RCHM 1922)

Figure 5: Abbot's Lodging roof, photograph taken from the north-west (Alison Arnold)

Figure 6: Abbot's Lodging ground-floor ceiling frame, photograph taken from the south-east (Alison Arnold)

Figure 7: Corridor roof, photograph taken from the south (Alison Arnold)

Figure 8: Corridor door, showing the location of samples COG-DOI-03, photograph taken from the south (Alison Arnold)

Figure 9: Plan, showing the location of samples COG-AOI-I5 and COG-AI 6-37 (after RCHM 1922)

Figure 10: Abbot's Lodging plan showing the location of samples COG-38-55 (after Andrews 2014)

Figure II: Bar diagram of samples in site sequence COGASQOI

Figure 12: Bar diagram of samples in site sequence COGASQ02

Figure 14: Bar diagram of all dated samples, sorted by area

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units with the exception of samples COG-D0I-03 which are in 0.1 mm

```
COG-A0IA 104
```



```
268275 23| 232 |98 2|5 | 35 |22 |44 203 207 |08 | 32 | 50 | 23 || | |2 | 54 |5| | 36
|0| |3| | 36 |79 |48 | 54 |5| |25 |55 |4| |09 |23 |4| |73 |28 | 33 |26 | 35 |63 |46
|06 ||| |35 |48 |55 94 93 83 7| 98 |39 79 89 |34 95 94 89 |0| |0| |09
8566 63 80 57 57 38 55 76 87 62 64 73 76 94 |22 93 |05 |23 |25
72 108 I39 93
COG-AOIB IO4
203216226339263259352318370190188282380266 326332 262 | 87 |72 | 83
```



```
|07 |28 | 28 | || | || | 5| |57 |2| | 65 | 32 ||2 | 32 |44 |70 | 30 | 28 |25 |3| |66 |46
||2 102 |29 |46 |56 87 105 82 69 99 |35 69 98 |7 83 90 88 102 97 |22
88 56 65 86 55 53 50 57 80 95 6| 64 73 83 |04 |20 95 |09 ||7 ||2
68 ||5 |37 93
COG-A02A I IO
|24 |75 258287 283 |87 |40 |40 ||7 96 98 55 54 43 43 25 2| 37 25 2|
40}94~297|||5 73 68 4| 44 43 49 78 60 47 67 50 62 48 49 33
43 50 43 29 50 52 34 25 35 36 34 43 29 37 59 92 ||7|36|l34 98
```



```
9567 49 50 80 62 ||3 126 143||5
COG-A02B IIO
|26 173 254 29| 286 195 |34 |4| |26 89 92 59 59 38 37 27 22 4| 24 24
    30 102 29 64 ||4 73 6| 48 42 37 6| 72 63 4| 57 60 8| 46 40 33
    4| 43 29 34 36 49 32 40 4| 37 36 35 39 33 49 |02 |25 | 48|40 |00
```



```
|73||6 85 |69 ||7 |89 |22 |36 |22 ||9 ||7 |09 |26 98 82 66|53|09 88 84
97 8| 47 57 70 6| |28 |33130146
COG-A03A 103
```



```
140109 75 71 73 74 86 76 69 56 84 90 78 62 57 42 48 77 95 100
||7 |38 99 9| 85 |26 225 4|| 377 |63 208|80 74 |09 ||3 |09 |06 |45 |02 ||4
||5 72 |50 |5| | || | 36 |79 | 58 |0| | 62 |45 |27 |04 76 | 32 |47 7| |45 |55 |75
|44 |28 |96 |54 |20 | 38 232 |27 98 98 |73 |2| |23 87 99 76 |34 ||0 88 |39
|50 95 ||5
COG-A03B I03
237 |92 |64 | 85 |56 2|6 |64 | 85 |72 | 35 ||3 | 40 |52 |45 |02 69 |0| 276 |55 98
|37||277 77 68 78 79 79 64 62 8| 8| 86 54 63 48 42 83 93 |02
||4 |38 |06 82 9| || | 236 399 383 |66 |99 | 86 77 ||6 |09 ||6 |06 |44 |05 ||2
||| 74 |54 | 44 | 67 | 36 |77 | 60 9% |62 |46 127 100 8| ||9 |40 69 |4| |58 |70
```



```
1549593
```

```
COG-A04A 98
    |20 |20 |04 |24 ||| |3| |66 ||8 ||6 |50 |44 ||0 |30 |02 ||8 |7| |76 |40 |08 |07
    |28 |34 |75 |32 |09 |46 |25 ||5 |59 |43 |4| |42 |07 ||7 ||5 |24 |37 248 |73 |25
    ||| |09 87 74 82 |03 ||4|2| ||0||8||9 | 37 |24 |20 ||6 |23 |55 |6| ||6 |36
```



```
COG-A04B 98
    ||2 |25 98 |23 ||0 |27 | 75 |22 |08 | 43 |42 |24 || ||2 |2| |7| |70 |37 96 ||7
    ||9 |35 |74 |3| ||6 |40 |2| ||8 |47 |44 |32 |46 |08 |09 ||5 |32 |32 230 |66 |22
    |07 ||| 84 83 7| |09 |09 |22||4||8||4|42 |24||||| |26|49 | 63 |2| | 30
```



```
    |73 |75 |73 95 |27 |25 |46 | 38 || | |6 |78 | 45 |62 |24 |79 |94 |70 | 82
COG-A05A 74
    |34 |83 |88 | 34 |79 | 64 |72 |83 |83 23| 220 23| 205 |54 |02 79 |23 |37 | 82 |94
    |35 |57 ||| ||4 73 82 |06|30 57 65 57 53 47 6| 54 52 56 64 40 43
    73 56 73 53 4| 46 44 38 32 27 26 3| 34 30 18 32 33 39 35 37
    38 34 55 49 7| 93 69 76 83 87 107 99 |50 ||4
COG-A05B 74
    |28 |87 | 89 | 38 |7| | 58 |64 | || |90 228 2|7 2|3 2|| | 50 || | 93 || | |8 | |2 |83
    |39 |52 |05 |07 72 8| ||||23 7| 63 53 53 48 62 5| 54 54 53 50 44
    59 59 7| 57 45 5| 47 4| 33 27 26 2| 29 3| 24 34 3| 36 34 37
    43 30 52 55 65 82 68 8| 80 93|09 ||5 |29 |||
COG-A06A IOI
324 2|| 2|3 9| |28 |25 207 280 289 258 256 |7| |39 2|| |79 2|7 264 242 |55 ||3
||7 |76 |65 233 202 |4| |72 |9| |72 99 | 43 |29 |69 |7| |70 |04 ||4 99 |53 |87
|62 |37 94 ||2 |09 86 75 77 |47 |2| |00 |54 |49 |05 80 7| |09 |24 |06 |64
|5| |39|38 85 |00 96||5 95 70 73 9| 74 70 67 76 66 6970 |0| |02
90 67 85 86 107 104 86 84 79 64 63 72 52 54 42 33 37 35 37 40
26
COG-A06B IOI
332216202 98|39 ||9 2|6 254287 253 264 | 67 |39 22| |73 2|9 26| 240 |57 |||
||9 |75 | 64 233 206 |45 |70 |88 |77 |0| | 40 ||4 |70 |78 |70 I04 ||3 97 |52 |88
|65 |29 |04 ||4 ||3 85 85 74 |4| |22 |0| |52 |49 ||6 79 70 |06 |24 |07 |63
|54 |44|36 86 |00 95 ||9 95 73 65 94 73 62 75 90 67 78 73 |04 |00
93 66 84 95 ||| |06 86 93 83 73 7| 65 52 63 40 34 42 38 35 42
3 3
COG-A07A 56
|19 36 102 100 128 |08 23| 194 230 |6| 98 |00 164 198|32 104 225 272 220 173
|54 |88 285 29| 235 |90 | 85 | 88 | 73 68 282 20| |08 ||7 |55 |28 |95 ||5 267 293
333338288352294258363627334428345556349345 34| 3|4
COG-A07B 56
I07 43 |04 |05 |22 |04 223 |92 2|6 |68 87 ||3 |77 |92 |3| 98 235 257 2|5 |76
| 80 2|4 274 292 244 |92 |6| | 60 | 64 7| 286 |99 |09 | 24 | 52 |25 |97 ||6 275 284
330 35। 293 337289260367630 33| 4|6 35255| 340 342343 390
COG-A08A II5
389 308 37| 33| 327 |70 2|||72|44 ||2 83 63 63 45 64 84 59 50 46 39
46 45 43 75 55 72 6| 4| 64 59 86 63 70 56 5| 39 57 8| |39 |02
|77 |79 |5| |2| |06 |20 |28 |40 |32 |05 67 99 |06 75 87 73 |06 98 79 |45
|23 |25 76 || |5| 208 280 |77 || | | | | 65 ||5 |53 | 50|46 |08 | 33 ||5 202 |95
158 18| 79 100 86 ||3 68159 128 62 68 78 69 84 77 88 94 92 78 8|
63 |02 94 ||9 94 90 |20 ||| 80 |2| | 47 |48 | 64 2| | |66
```

```
COG-A08B II5
    407 32| 345 362 328 |87 |93|80 |44||9 72 69 62 45 67 86 58 52 45 38
    5। 36 39 77 63 72 57 47 50 6| 88 58 70 68 50 4| 54 84|32 |02
    |84 |74|44||2 98|09 ||6||9|26||5 67 |05 |02 79 8| 8| 99 |05 75 |38
    |3| || 76 |22 |54 208 277 |77 |22 |22 |7| |06 |69 |48 |5| |08 |23 |2| 2|2 200
    |68 |7| 95 92 94||8 68 175 127 57 72 67 63 86 75 87 97 94 85 74
    66 |00 ||5 |06 |05 88 |3| ||3 75 |39 | 45 |20 |29 2|4 |72
COG-A09A 138
    |9| |46 209 2|0 23| 3|5 325 342 40| 333 258 | 86 |26 |42 |37 209 22| | || 226 |9|
    |7| | 38 |78 | 52 ||6 85 |22 |42 |20 98 87 95 |03 |39 |26|43 |3| ||8 97 9|
    |38|2| ||2||2|26 9| 7| 69 90||8|28 87 87 72 78 |0| 87 69 73 72
    606460656466 65 75 6| 74 72 76 92 84 80 83 77 104 64 46
    52 76 81 93 64 78 67 83 55 42 48 45 59 79 43 48 47 35 68 l03
    75 95 88 80 73 6| 55 65 96 67 50 58 53 45 36 42 57 72 90 72
    7| 68 52 95 |04 8| 67 69||| 94 87 |00 79 58|0| 8| ||0 96
COG-A09B I38
205 |50 207 209235 3|7 325 34| 404 343 250 | || | 36 | 38| | 37 2|5 2| | | 80 229 |90
|72 |40 |77 | 47 ||7 9| |25 |42||7 |00 83 98 |02 |36 |27 |43 |35 ||6 99 92
|36 |25 ||| |09 |25 |00 64 66 90 ||9|28 86 85 73 77 |06 79 72 78 73
    52 67 64 65 62 65 67 74 62 72 75 75 95 90 82 84 73 99 59 51
    48 74 81 87 66 80 72 75 59 43 45 50 47 78 42 46 57 44 69 ||3
    76 IO| 82 84 67 64 56 6| IO| 62 46 57 54 42 37 40 52 72 90 7|
    6765 6| 96 99 82 73 64||0 90 96 93 80 67 98 85 |05 75
COG-AIOA 14I
    |26 86 |34 |34 |70 |50 |64 |34 |08 |20 87 |08 9| 82 ||2 |23 84 58 55 82
    93 80 9| |67 |29 |2| |05 |04 |09 |08||0 83 87 97 68 42 72 7| 69 46
    77 45 52 75 85 76 69 61 85 88 74 89 99 76 83 75 102 97 79 |l5
    95 |03 96 ||2 |20 ||0 |39||| 67 84 |02 |36|47||6 95 89 72 87 89 78
    102||0 7| 80 69 76 63 98 70 7| 73 7| 7| 69 64 86 78 87 58 47
    59 4| 77 95 88 88 76 IO| 78 98 98 70 5| 78 59 74 54 64 68 7।
    56 64 83 79 54 65 76 89 97 96 85 64 77 49 80 72 75 70 73 8।
    96
COG-AIOB I4|
    |29 84 |36 |35 |69 |53 |55 |36||5 ||2 90 ||| 89 85 ||4|25 8| 60 56 87
    90 80 98 |75 |3| ||7 |05 |07 |07 ||7 |08 85 86 97 78 42 58 82 68 54
    7। 45 58 70 8| 84 67 70 79 92 74 95 94 82 84 75 93 98 79 |।0
|02 |04 93||5 ||7|||37||0 69 86 90 |28|32||2 94 86 76 87 88 78
100 107 78 93 63 94 72 109 78 74 73 72 74 67 75 80 74 87 55 50
63 44 7| IO| 86 84 79 105 77 104 87 73 45 80 50 72 53 52 59 6।
54 66 86 76 58 70 78 86 ||3 85 84 68 74 60 83 62 82 60 76 85
IOO
COG-AlIA I23
|92 |73 |45 |0| |22 99 |23 |08 80 98||5 69 55 57 88 |09 80 95 |58 ||5
|04 ||5 95 ||5 |48 |63 |09 ||| |43 76 64 70 74 9| 52 88 58 5| 85 76
9| 78 65 67 8| 87 77 |03 98|30||| |3||40 90|34|46|35 |37 |69 2|9
|49 |83 ||| | 04 ||2 | 50 |96 2| | |9 | 74 |57 |23 | 40 |43 |32 |22 |54 ||5 ||3 |06
|80 ||0 |7| |02 |03 |06 ||5 94 |0| |05 |2| |00 |00 73 63 72 58 82 98 89
|09 88 |32 98||7 83 64 53 69 5| 8| 53 60 55 62 60 62 82 76 75
57 8| 85
```

```
COG-AIIB I23
    20| |7| |5| |05 ||7 |05 |23 |0| 85 9| ||7 77 60 48 |00 |05 92 92 |60 |22
    IO3 |08 |02 |08 |49 |63||7||2|39 82 62 67 74 80 56 8| 62 55 75 86
    78 8| 65 69 78 9| 79 |04 94|34||9|36|38 |03|4| |24|42|33|66 220
    |52 |87 || |0| ||3 |55 |98 209 |96 |70 |49 |27 |40 |38 |4| ||3 |53 94 ||9 |02
    175 ||3 166 100 98 || |09 99 99 103 125 95 99 8| 6| 7| 58 83 96 92
    107 85 |40 96 ||6 85 64 48 68 55 76 57 52 54 63 55 60 80 83 64
    57 8। 84
COG-AI2A 90
    |29 |48|42 79 89 |06 94 |02 82 87 7| 8| 77 65 90 |07 |38 |23 86 |07
    |33 |60 |29 7| |03 ||7 |0| |06 85 92 90 79 ||2 |57 |36 |44 |87 |26 |3| |36
    |53 |55 2|0 l98 |20 |06 ||7 ||7 ||| |3| | 52 |8| |94 |79 |53 | 68 | 67 |43 |5| | 55
    |22 |86 |98 |00 | 30 | 56 |2| |09 | 57 |60 |78 ||9 |48 |59 |99 |54 |35 |6| |43 |2|
    |0| 20| | 35 |44 |24 |47 | 37 |2| 97 |48
COG-AI2B 90
    |5| |47 |37 78 95 |03 94 97 85 86 66 84 75 66 99 95 |4|||8 93 |04
    |37 |62 125 73 |07 ||7 |03 |08 87 90 97 73 ||3 |54 |35 | 43 | 85 |26 | 28|40
    |5| |59 2l0 209 |08 |02 ||9 ||7 || |27 |53 | || |9| | || | 56 | 63 | 67 | 45 |53 |50
```



```
    |06 |94 |50 | 30 ||9 |55 |30 ||9 |0| |46
COG-AI3A 104
    92 88 54 69 56 50 76 84 7| 54 47 73 89 77 |06|30||4||0 93|42
    |33 ||3 |46 |42 | 64 |48 |3| | 62 | 70 222 |29 |04 ||4 |47 |53 |9| | 69 |36 ||| 90
    IO2 |22 ||7 ||2 |33 86 |03 9| |23 |00 |74 |0| |00 |05 |07 8| 82 82 |03 96
    104 72 53 58 57 57 64 60 67 67||0 82 97 97 68 43 86 5| 78 57
    66 52 56 5| 47 63 57 49 45 49 50 60 42 60 57 74 44 84 8। |l0
    95 93 129 | 33
COG-AI3B IO4
    92954968604575 96 63 55 58 62 88 83 |05 ||9||5 |02 97 |42
    |35 ||4 |46 | 32 |62 |44 |3| | 58 | 69 225 |29 |08 ||2 |52 |46 |92 |70 |34 ||3 88
    105 |23 ||4||3|3590 94 94 123 |02 |7| 102 99 |08 |05 77 79 67 |04 93
    100 76 57 69 47 62 62 55 68 62 ||| 78 86 97 75 44 77 59 80 48
    64 52 56 49 50 62 56 52 40 49 56 56 44 59 58 68 40 86 86 92
    ||3 93 |27 |53
COG-AI4A 59
    86 ||3|45 |67 |62 |3| | 63 |43 |28 |06 78 8| 7| ||5 |25 94 96 79 68 80
    85 89 82 |23 | 36||9 | 58|64|40 |72 | 56 |02 94 |2| ||5 82 |02 9| | 37 |58
    |42 |42 | 57 | 63 |43 | 67 |50 ||| | 69 |92 |27 |78 2|| | 47 |47 20| | 47 |90 |32
COG-AI4B 59
    9| ||0 |46 |67 |62 |29 |66 |45 |30 |02 83 73 77 ||| |27 88 97 8| 76 69
    87 8| 95 ||7 |44 |20 |6| | 62 |49 |62 | 64 97 |02 ||5 ||2 80 |00 |03 |29 |57
```



```
COG-AI5A 128
    58 99 |04 84 55 5| 7| 83 54 83 |69 |72 |22 |03 |08 94 |36 |07 |07 88
    |04 9| 46 65 70 98 5| 68 55 4| 77 80 65 69 52 57 89 63 80 9|
    97 78 77 95 92 8| |09 89 |24 97 95 |49 95 |32 82 57 8| 94 |00 ||7
    108 85 73 58 80 74 7| 94 9| 69 73 70 100 74 ||2 65 57 69 79 52
    77 73 60 68 62 65 58 47 43 60 65 64 67 52 98 64 87 76 63 39
    88 45 9| 64 54 50 6| 56 68 65 80 65 4| 84 67 96 69 l02 80 67
    55 86 74 9| 95 85 10| 91
```

```
COG-AI5B I28
    55 |0| |02 87 53 48 75 77 62 78 |69 |70 ||8 |04 |06 |00 |33 |06 |04 95
    |0। 90 56 65 68 100 46 72 55 37 88 73 68 7| 58 63 84 70 75 88
    937977 92 97 79 |08 92 ||9 |07 97 |48 94|30 84 67 78 9| 96||7
    109 94 69 64 75 81 74 84 102 74 80 65 98 72 |l6 67 60 70 73 71
    65}7466654 68 60 50 46 36 60 60 70 61 56 96 61 82 67 56 42
    88 4। 83 47 55 47 75 47 7। 57 70 64 5। 87 73 83 80 95 75 70
    50 84 73 97 104 76 73 10।
COG-AI6A 157
    250250 3|4 308236 2|| | 74 |27 |54 2| 2 238 264 | 83 |72 |46|42 |08 64 |26 |56
    |59 |63 |27 |06 | 39 | 35 |64 |67 |66 |29 |50 |22 99 58 64 57 ||0 68 88
    |09 ||3 |08 I02 ||| |06 ||0 I28 209 ||7 |09 96 62 68 7| 63 78 85 89 |73
    ||8|08 63 I28 94 ||5 |04 |35 88 I05 |28 95 86 55 62 60 93 9| 79 60
    3। 82 52 42 50 6| 58 56 35 40 30 45 34 24 33 22 34 61 66 lO2
    95 72 79 105 79 84 63 71 50 58 37 54 67 45 30 49 35 45 32 42
    34}5
    4| 3| 28 29 40 35 25 30 33 47 31 78 46 61 35 72 60 63
COG-AI6B I57
    243 255 334299225 2|5 |7| |25 |55 226 229 269 |90 |63 |69|40 93 75 |56 |72
    |55 |48 | 40 ||0 |5| |24 |66 |63 |50 |05 |33 98 77 56 63 62 |06 64 86
    |34 || |2| 97 ||5 |08 |05 |03 |85 ||5 |06 |04 55 7| 70 6| 78 82 94 |79
    ||8 |07 62 I27 ||2 |06 |07 |32 88 || |2| IO| 90 52 60 6| 94 90 76 54
    42 80 49 51 53 58 59 60 28 39 35 39 36 25 29 28 36 57 70 103
    92 77 7| ||5 77 80 63 78 4| 53 47 45 7| 42 37 44 39 34 38 43
    35 5| 30 34 24 30 35 42 32 30 26 24 35 27 48 38 24 34 28 32
    27 25 27 30 26 45 33 47 4| 49 3| 73 45 60 40 70 67 63
COG-AI7A 149
```



```
    |08 64 107 99 |09 ||3 70 69 76 99 8| |24 97 96 9| ||4 66 60 67 7|
    66 76 66 57 44 45 43 50 50 35 35 32 35 50 51 35 54 42 48 38
    3। 93 58 54 55 5| 45 42 4| 39 47 56 41 35 42 42 34 35 34 36
    36}39343036 34 43 63 61 75 73 70 58 58 73 63 28 69 52 54
    47 36 36 3| 25 36 29 21 42 32 3| 35 32 28 22 15 27 40 37 40
    5। 67 66 85 98 94 59 55 63 62 66 68 60 70 52 78 48 35 48 30
    42 37 4| 54 67 33 48 40 57
COG-AI7B 149
    |78 204 |58 |89 90 96 |53 267 255 |75 |69 | 39 |2| | |0 | 36 | 76 2|4 |79 |20 |4|
    ||| 59 |04 100 ||0||4 7| 64 82 92 87 |2| 99 |00 92||| 66 52 75 67
    68 75 67 52 5। 42 48 50 44 36 36 30 35 51 55 43 43 43 51 37
    37 85 59 53 56 52 43 41 43 43 48 45 40 40 43 37 36 42 36 28
```



```
    42 43 32 33 28 30 31 27 46 25 33 30 33 26 19 27 3| 29 33 47
    48 6। 72 77 109 87 59 56 6| 63 64 69 64 64 58 7l 47 35 5| 37
    35384458 60 36 52 42 50
COG-AI8A }8
333254 |68225 |60 24| |79 |3| |90 299 |85 |52 |35 |92 234 324 332 30| 233 |06
|66 255 358 385 303228|27 |57 95 ||7 |96 |90 284 270 205 243 222 202 250 283
293242 236 |55 98 99 |40 |25 |49 ||4 |20 |07 ||| 82 76 93 |05 ||3 |08||2
|09||3||0 90 65 56 59 65 90 77 90 90 ||6 |20 |39 |45 |6| |24 || ||4
|24 |48 | 30
```

```
COG-AI8B 83
3|8228 | 88 I8| |65 278 2|9 |48 20| 260 |90 |49 ||8 204 239 342 333 3|6 232 |06
|65274 365 365 292 209 |3| |55 ||7 |35 |77 |97 279 260 2|4 236 2|6 |97 230 269
283245 203|49|06 95 |44 |20 |6| |03 |27 |07 ||| 86 74 95 |00 ||8||0 |05
||3|09 |07 93 6| 56 66 56 93 83 86 8| |24 ||9 |42 |49 |55 |3| ||7 |09
126|43|25
COG-AI9A }8
276357 303 373 3|4270270229260206275 299242174166 2।6 247 307 240296
286 |54 | || 232 224 270 23| |27 |43 | 38 | 80 |94 36| 2|3 |25 94 58 56 73 70
86 ||0 |7| | 43 | 33 ||9 93 |69 |64 |52 |25 |27 |57 |00 |50 |65 |09 87 70 |44
|65 ||6 |93 |73 |53 | 35 || 2| | | | || | |8 26| |70 2|| | |8 240 |53 |5 | | | |2
12| 206 |37
COG-AI9B }8
276 347 270 35| 308 26| 244205 268204266 299258168152 240257 328 267 250
307 |46 |77 226 233 266 2| | | 26 |52 | 39 |75 |98 360 2| | |27 89 63 54 69 65
```



```
|3| 197 ||9
COG-A20A 109
    68 86 ||6 2|7 |0| |92 |40 || 97 |04 |32 |3| | 34 |6| |58 | 38 |6| |26 |78 ||9
|3| ||3 80 ||8 |03 64 50 I03 94 96 64 59 |08 98 |09 ||7 |5| |23 96 85
99 |05 ||5 82 88 |28 |25 |00 |33 |06 |29 ||2 66 |0| |28 | 25 ||4 ||8 |26 |0|
|07 |43 |20 274 336 2|2 258 2|4 |92 |72 |38 I79 336 223 242 | 58 | 83 | 68 |82 | 83
|63 ||6 |58 |46 ||9 |8| |82 |32 |36 |75 |32 |45 ||| |56 ||5 |63 |33 ||9 |43 |03
|2| |26 192 | 38 222 2| | 285 26| | 80
COG-A20B I09
```



```
|29||2 79 |2| |05 7| 6| 107 |02 87 68 65 ||| 9| |09 |27 |67 |37 97 90
|07 |0| ||7 89 87 ||4 |27 |00 |44 |03 |27 ||5 59 |03 |25 |27 ||5 ||2 |27 |04
```



```
|20 ||7 204 I24 233 225 305 280 I9|
COG-A2IA I24
|94 382 28| 2| | 299 |70 |06 |07 |64 |99 |59 |5| 260 |93 263|59 ||2 82 ||7 63
|44 |50 |88 73 |05 94 ||3 7| |49 |29 |72 |36 |04 93 ||5 |22 |32 |36 74 83
|05 |16 87 7| 95 8| |39 |08||2 |06 70 57 88 98 |07 |56 |58 |88 |75 |38
|27 95 66 78 | 48 | 89 |69 | 78 204 2|| | 64 23| 225 |86 |27 | 64 |57 |54 |0| |||
```



```
|37 9| 30| 275 229 | 70 94||9|49 |9| |96 | 64 |2| |08 22| 25| 207 | 84 |67 |83
280258254231
COG-A2IB I24
206399285 232 297 |73 ||3 ||2 |67 |99 |63 |49 259 203 272 |57 ||5 82 ||5 77
| 37 |55 |95 66 94 95 |04 73 |39 |43 | 60 |22 |03 89||4 |24 |43 |2| 87 86
||5 ||5 88 73 90 84 |45 92 ||5 |03 66 57 96 9| ||2 |56 |4| |7| | 86 |30
```



```
|27 |25 |59 92 |75 96 |0| ||3 |04 |58 277 204 207 ||8 69 9| ||| |38 |7| |38
|37 95 299 278 247 |65 93||9|49 | 89 |95 |62 |25 ||| 236 244 2|2 |90 |77 2|7
253 25। 260 228
COG-A22A 62
218333239 195 2|4 |57 96 |08||| | 09 77 |43 ||| | 67 |28 84 |27 |24 |54 | ||
|54 |33 99 98||3 |22 |08 |02 |36 |2| 9| | 38 | 60 |52 |20 ||2 |45 ||5 82 96
|7| |6| | 48 ||2 |39 || | |8 94 | 58 |24 232 |22 |22 | 86 2|9 |25 |29 |24 338 25|
252 18|
```

```
COG-A22B 62
222 333 24| | 85 205 |53 93 |02 |25 96 90 |3| ||3 |66 |22 90 | 20 | 32 |52 |32
|65 |44 95 94||7 |26 |09 | 08 | 34 |06 | 05 |3| | 67 |50 |24 |07 |4| |06 85 89
|7| |62 |57 ||7 |39 ||6 |33 93 |66 |2| 224 |24 |35 | 84 222 |36 |3| |2| 329 260
235|85
COG-A23A 72
    |394|8 263 323 2|5 l65 23| 256 322 3|0 346 36| 278 234 |33 23| 273 2|3 25| 2|9
    |55 |5| | 62 |45 |6| 26| 253 |73 |72 |50 9| ||7 |09 264 2|4 267 420 280 |55 |03
    85 80 94 75 77 76 52 83 67 79 67 56 92 76 77 99 94 136 99 102
    |69 |03 93 58||4|| |2| 75 ||0|02 96 98
COG-A23B 72
    |60425 270 326 |60 |48 |9| 242 324 307 345 356 285 257 |44 |7| 257 23| 226 225
    |64 |53 |6| |22 |8| 274 268 |84 |77 |58 8| ||4 ||5 255 208 250 42| 28| |46 |07
    86 83 94 82 84 84 54 88 79 86 6| 75 89 72 8| 97 |07 |28 |04 |04
    |75 |09 95 69||8||9||6 75 ||| |06 85 93
COG-A24A 91
    |49 269 | |0 | 45 |65 |57 |49 |62 |78 |24 |28 ||0 75 43 34 24 40 37 27 4|
    4| 83 |55 |99 | 74 223 226 24| 279 22| 32| 263||4|40|48|66 2|| 242 224 229
    20| |4| | 79 235 2|0 2|6 206 |54 |7| | 39 |47 |66 262 227 |89 2|0 |5| 79 75 73
    85 72 ||7 |27 |22 |27 79 | 36 | 35 | | | | |2 | 53 | 52 | || | 34 | 39 | | | | | | 24 | 39
    |4| |43 | 69 |92 |79 |25 || | |9 | 37 |22 ||9
COG-A24B 91
    |49 253 | 84 |49 |46 |44 |48 |58 |85 ||7 |2| ||9 62 5| 37 27 36 3| 25 48
    43 75 |67 |99 | 85 2|7 226 232 290 2|4 304 253||3 |33 |34 |65 197 23| 225 239
20| |42 |78 225 208 2|6 2|0|48 |58|47 |46 |55 266 222 |78 2|3|5| 78 75 72
```



```
    |40 |40 |66 |99 | |5 |26 |20 |73 |4| |20 ||7
COG-A25A 85
```



```
    |65 || 98 |25 |06 |65 |20 8| |34 |4| |64 | 85 |94 | 86 96 ||3|48 |5| |26 83
    |49 |22 ||3 |52 |53 |67 |42 |46 |83 | 35 96 || |95 | 30 | 36 85 |22 |03 |06 80
    |20 ||0 | 80 98 |08 |45 |83 |09 |2| 83 |37 |39 |40 |28 95 84 80 70 95 90
    82 I04 73 70 61
COG-A25B }8
224 |92 |43 |70 224 |64 | 85 202 |66 |72 |49 | 86 |46 240 |92 |63 |7| | 63 ||0 |94
|65 ||5 |05 |20 |09 |65 |23 8| |27 | 46 | 62 | 87 |9| | 85 98 |09 | 46 |57 |2| 87
|46 ||9 ||7 |48 |37 |48 |47 |37 |80 |40 94 |09 |88 |37 ||7 89 |29 96 ||| 74
|22 |09 | |8 |06 99 |7| | || |3| |29 88 |53 |28 |26 |23 90 73 98 65 95 88
90106656667
COG-A26A }9
30| |79 |26 |28 |76 |58 93 88 |33 98|46 |4| 83 79 68 59 74 ||6 |75 6|
|00 7| 92 82 |46 |4| 2|4 |38|30 86 94 |2| | 33 |55 |06 |05 |27 ||9 87 66
||6 |05 |27 9| |24 93 69 54 67 67 76 |20 |62 |52 |33||3 84 59 52 44
82 ||2 90 |22 | 56 | 35 |43 |57 | 80 | 29 | 24 | 63 |28 |27 90 85 95 90 9| 8|
|03 |0| 86 99 85 |04 |8| | 56 2|3 |25 |25 |07 |77 202 238 |52 | 25 ||4 |79
COG-A26B 99
304 | 80 | 33 |26 | 70 |43 |00 73 |28 95 |49 |37 89 74 76 52 76 ||4 |77 65
9276 94 8| |43 |35 2|0 |48 |27 77 92 ||7 |38 |6| |08 |04 |29 |24 84 68
||3|02|38 86||4 98 69 52 66 75 73||9|58|62|3|||| 88 50 54 48
```



```
97 95 92 |06 87 |09 | |6 | 60 222 |29 | 23 || | | | | 89 234 |43 | |0 ||5 |83
```

COG-A28A 95
233 |93 |94 2|2|70 | $39832062032242552||149| 38| 08|55| 47|19208| 63$
189 | 83 | $3810757|43| 68|3||168490| 39|65| 05|46||797||29| 72$
$828812410473|4512690636593959387| 3083668263 \mid 14$

121879495108807765654674102126109102
COG-A28B 95
$2372022042|2| 62|25952082| 8233240208|78|||97| 5| l 37|24229| 69$
 $8|87| 309875|46| 1787646|94|||98| 00| 3|96628062| 08$ $94829266868|7390947| 6284698|9480| 23|15| 29128$ $127767891 \mid 1675707859497392$ |2| | 17 105
COG-A29A 107
145 |23 $20021620724930227826025|19619622619223| 162235264209192$ 207209169210220212238237230200207217166 |l9 | $26 \mid 67202172142166$

 175 | 33 ||6|43 ||| |2| | $70|30| 38|62||8| 09|28| 37||4| 20| 5|9| 8897$

COG-A29B 107
|58 |3| 199 $21221|24731034726925319019022019| 243|5| 25|2672| 4190$ $21021616521721920824222823119520820516312|1| 9168198163140166$ | 56 | 35 | | 8 | 46 | $8|15520| 19|1842| 6|33| 2||30| 52||7| 65|8||7||84| 98$ 187245 | 75 |94 |93 | 50 | 28 | 32 | $6||6|| 8||72| 38| 3|||7| 49| 23| 35|55| 69$ 179 | 38 ||4|4| $108|22| 67|37| 34|65| 22|03| 25|46| 20|28| 58928895$ 115 ।0| 98 । 00 | 17 | 52 | 30
COG-A30A 80
395575416503504346362377357353345380377173758994849987 | | 7 | $3622|169| 6625823|244263396273| 427257|04||3| 40||499| 25$ $130|8| 167||4103103647584102||||19109| 10| 37|45203| 77 \mid 97227$ $2|8| 52|10797| 129949|120| 2|122| 39|39| 842|8| 72 \mid 52259536390$
COG-A30B 80
$38955742248649|339362368334349346372367| 70759393839598$
 $126|8| 164|13| 03|056| 7|87| 07||6|| 8|07||||34| 47| 95| 78 \mid 99225$ 222 |47|।0 7574 |27 9494 |। 8 | 20 |20 |39 | 33 | $872|8| 77 \mid 45284534365$ COG-A3IA 89
$206204220|49| 8412218013393|29| 17|9| 185194235|88| 3010893|3|$ $14612776426778105109|1297135178| 40122|13| 25|4496| 4 \mid 132$ $106||2| 78| 45|66| 32||2| 30| 65|60260203| 73|80| 35|2996| 70|23| \mid 9$
 67828878 91 94937468
COG-A3IB 89
$193208230|45200| 22 \mid 79$ | 3797 | 28 |। 8 |92 | 87205234 | $86 \mid 288683$ ||6 $136|2| 735|5978||5||8| 1098|36| 83|28| 28|20| 35|33||0| 58 \mid 25$ $126|10| 79|55| 63|32| 16|29| 66|60268204| 79|76| 37|2589| 39||||\mid 9$
 788289829393927168

COG-A32A 48

 $1631642 \mid 2223166236267302$

COG-A32B 48
|52 ||8 |60 257228202 |48 |22 205 |96 $2|733| 20|222| 84|27| 58|84| 0||2|$
 162 |58 20522 | | 54248274300
COG-A33A 78
135 |58 |26||8 $99649288|12| 28||79883| 63| 36|49| 7||78| 92| 58$
 |2| | $30|39175| 64|03| 45|44| 3|196| 6986|70| 3|||6| 086680| 06| 02$ | 30 | 24 | 25 | 54 | 25 | 57 | 76 | 23 |0| ||4 8399 ||| $7 \mid 65$ |09 |03 |02

COG-A33B 78

|3| |55 |46 ||9 $97649396|07| 26||38797| 63| 35|69| 73|85| 99 \mid 58$
 |20 | 35 |36 |76|6| ||0 |5| |42|25 |97 |72 92 |63||2|34|03 $548|96| 26$

COG-A34A 55
$233219213201|16| 5925520|275290| 40244|69126| 1387|||180| 54| 58$
 206208231300257278282438339419344461370366201
COG-A34B 55
$249223221197117174254178285298|3823518712313085125180147| 58$
 $2 \mid 2204235295264272$ 3I। 4I2 $33941833|44838537| 189$
COG-A35A 112
|25 |42 |03 |94 263247298 |82 235272200274265 |89 |95 |47|62|48 |76|78 $2|52| 4240 \mid 89232$ |90 22| |6| |52 | $20|6||58||296| 24|25| 24|23| 3||\mid 4$ $12492|38||8| 67|53| 8||38| 4||53| 52|3886| 2692||3| 44| 25|35| 27$ ||8|36||4|2797|07||3||3|3||2| |06|3292 59 |02|03||||02|35 ||3 104 |I2 | $3310013012467698683547|104| 23 \mid 77106941058487$ 1348597 |। 104759610373859598 COG-A35B 112
|06 |34 | | 2193262259304 |92 $204287|95269247220| 90 \mid 49$ |48|5| | $8 \mid$ | 88

 ||2|40||2|25 96|07||4||7|2| |2| |05|27 966499 || 8 |03 |07 ||8|27 |03 |। | | 25 96|27|।8 $77608286527397|28| 53|0293| 0 \mid ~ 8589$ $1388996|12| 10758 \mid 97829210672$
COG-A36A 92
$656043664|70| 07|83| 52|79| 27|47| 53737|9||422| 5230242$ $21418212018021518017017911812|115136129196| 55120 \mid 17965349$ $5545 \quad 5875739010252556568626280486172605040$
 $47455346366375536236 \mid 14123$
COG-A36B 92
$65585|6| 367798|80| 66|85||9| 53|60567874| 542052 \mid 8237$
232207 |59 | 74222 |70 | 48 | 82 |2| | $20||||49| 39| 97| 55| 28|05995| 37$
6352497868919956537278595782466478574751
$5210370 \mid 1480897779845559517262715764615443$
42445946475574505440109 । 25

COG-A37A 84
||3 ||6|69 | 80 | 84 |46 |33 |53 |26 ||3 |05 $725483 \mid 23254346264323269$
$26721424429622223920518620|14493| 19|34| 59204|42| 65 \mid 166273$
97102981008467668992 I20 IOI 857166774844515479
6571707183124878084984668574832909012577116
92109114102
COG-A37B 84
 $2592082572982282332|||84204| 4294| 16| 43|48207| 36|56| 235773$ 9410688106786455848612697856776644952485480 756870649412083907897606352583489 IO3।I9 84 II6 9711311398
COG-A38A 52 21725424434932835129531728927334176517117926832033666 II7 250297198147190157220288757812019324729926818822619617384 54 |28 |84 226243 |67|50 202204 | 68 | 44 |97 COG-A38B 52
$20526424435033035|31032| 29|26934367626417627529832| 92$ I।। $24|29620| 146|87| 5822029|7267| 3|192248296272| 88222|9| \mid 7386$ 50 । 32 | 8 | 232242 | 65 | 5 | 200205 | 57 | 58 | 78
COG-A39A 134
| 83 |77 |9| $2323202232 \mid 6244$ |68 203 |96|8| |98 63 ||2|40|5| |64|5| |53
|43 |77 | $3||3|| 59|38| 89|35| 36|30| 25655256|22| 03||7| 66| 29 \mid 52$
|66|82 |5| | 52 | 45 |4| |67|68|4| $76464036505268729599 \mid 30$

$112643652525868868410888107|16| 23474333514344$ $494550706998122|97| 65|49162| 86|86| 6 \mid$
COG-A39B 134

$10595140|10| 36|54| 69|7684488291929| 107|10| 3910210971$
|2| |0| $10|66578| 8476839|129| 1710696|20| 26|20| 03|52| 38$
$109584|4956536992851009| 106|2| 1 \mid 9464338434644$
4947526669 |0| $123200|57| 54|6||80| 9||6|$
COG-A40A 78
31928030133030727923321119516296117198182177298228232165160
$18215820319721620416317|1852| 42||240| 82| 8515|106| 0|164199| 58$ 969078 | $37|68| 66|85| 63|30| 03|5||82| 8||29628097| 4||5| \mid 48$
 COG-A40B 78
$31527430032630628623|210197| 6297|17197| 85|84297229230166| 62$
 $998969|36| 59|67| 85|60| 2697|52| 78|82| 2|557583| 30|3| \mid 40$ ||6|20|60|62|34|0| $8|1| 7|42| 4||54| 42| 3287||8|| 2|30| 37$
COG-A4IA 90

$162|25| 46|52| 43|46| 3||7|| 53|25523980| 17|38| 65|47| 5||56| 55$ | 78 | 86 | 54 | 40 | 23 | $50|38| 65874|434770| 0||3|| 47|64| 4||78| 3|$ |28 |49 |08 |05 |3| ||3 ||0 785290

```
COG-A4IB 90
    |34 |27 |82 60 56 |39 |44 |67 200 2|4 |55 |98|70 |49 95 76 74 |23 |43 |27
    |27 |47 |6| |67 |25 |22 |52 |27 |37 || | | | | 39 44 82 |28 |4| | |2 | 36 | 55 |49
    |53 |29 | 37 | 55 |45 |44 | 30 |73 |54 |28 46 39 75 |29 | 34 | 66 |5| |48 |57 |6|
```



```
    |34|48 ||0 |02 |33 ||3||0 74 5| 87
COG-A42A 47
    |08 |96 |55 |47 |34 ||9 |73 78 ||4 |22 99 ||4 |7| 22| | 83 |86 |34 2|2 20| 2|6
    |86 |82 |5| |92 |43 |75 ||9||4 67 96 |02 | 37 |43 |48 232 |92 | |8 | 66 | 64 |83
    I7| |66 |35 I07 83 97 I02
COG-A42B 47
    |49 2|0 |57 |5| |29 ||9 |68 9| ||| ||3 |08 |06 |70 207 |95 |80 |26 204 205 208
    |86 |80 |56 |9| |39 |68 |29 |04 87 |00 |06 |32 |38 |5| 232 |90 |50 |60 |53 |99
    |74 |55 |44 |07 9| | 03 9|
COG-A43A I26
```



```
    |9| |70 205 |82 |72 |05 45 35 27 62 68 |04 |24 |52 |36 | 62 ||5 |23 |30 ||0
    ||| |42 |29 | 32 62 48 67 72 75 96 96 89 ||7 |28 |29 |09 | 35 |08 |24 56
    454969 87 |00 ||3 ||0 |09 |02 |09 |26 |2| |3| ||9|36|3| |22 5| 38 40
    86 83 84 98 |06 |26 ||9|33|22|56 46 48 45 49 6| 59 70 75 84 78
    87 |02 |04 |2| |20 | 06
COG-A43B I26
    |64 |64 |39 230 |77 |69 206 |63 200 42 73 |08 |36 |39 |46 |68 |34 |42 |27 |33
    |62 |46 |49 |66 |8| |79 |56 62 59 53 93 ||0 |46 |44 |4| |75 |82 |88 |79 |85
    |89 |58 204 |73 |66 |00 48 34 26 59 73 |02 |23 |5| |40 |58 ||| |24 |35 |03
    |08 |5| |28 |26 7| 49 57 80 67 99 93 96 || | | | |8|09 | 32 |06 |23 57
    4 3 5 2 6 9 ~ 8 7 ~ \| 0 2 ~ \| 0 8 \| \| 4 \| 0 9 ~ 9 8 \| \| 3 ~ \| 2 6 \| \| 9 \| 2 9 ~ \| 2 0 \| 4 2 \| 3 0 ~ \| 2 0 ~ 6 0 ~ 3 8 ~ 4 7 ~
    74 78 92 96 |09 |25 |25 |33|| | |0 4| 5| 44 48 58 60 70 86 74 7|
    97 |04 99 ||3 |22 |08
COG-A44A 45
    |26 |50 228 2|0 208 253 498 308 366 5|| 329 326 282 352 283 372 44| 285 202 287
    397 36| 2|4 36| 273 |69 I95 208 208 238 22| 202 209 |78 353 377 305 264 |69 |92
    |88 |52 |53 |92 202
COG-A44B 45
||3 |6| 235 202 |84 259494 3|3 364 5|| 328 332 283 354 285 363437 274 204 294
385 36| 209 356 279 |66 |9| 205 205 226 224 |98|95 |73 353 375 302 263 |68|95
|82 |55 | 56 | 86 | | |
COG-A45A 85
|53 |78 237 |07 |47 ||5 |04 |33 23 43 93 |07 |33 |42 | 80 | 74 2|2 |59 |96 220
2|3 242 |69 | 89 225 |7| 55 56 96 |47 |49 |70 2| | | || | 66 |90 204 |73 |85 200
197302 243 |9| 92 34 23 37 50 64 79 87 99 8| 78 69 90 96 107 93
95 98|22 66 5| 76||3 83 82 |07 82 94 95 92 8| 97 8| |40 37
34 57 87 89 85 79
COG-A45B 85
|58 |79 242 |20 |45 |24 99 |30 |9 54 85 ||5 | 30 |43 | 80 |67 2|3 |56 2|4 220
202 220 |72 |98 207 |70 55 7| 9| | 50 |56 | 86 208 |57 |58 | 87 |9| | 83 |8| 20|
182284 246 193 93 31 32 33 53 58 76 95 104 76 76 66 85 99 106 92
94 95||| 68 47 80 |09 85 8| |04 84 105 |00 100 84 94 85 |33 39 39
9576 957878
```

```
COG-A46A III
    |33242 3|6 70 55 ||8 |26 |39 |07 |77 |49 | 84 207 59 49 82 |22 |79 2|2 |70
    |27 |75 |9| 20| 63 42 50 93 |0| |40 |64 |4| |9| 229 |68| |3 273 2| | 226 |72
    |58|68 36 47 87 |09 |23 |26 |29 | 28 | 57 |20 | 36 | 47 |46 |5| | 24 | 34 |4| |22
    43 4| 33 60 75 88 90 84 84 99 97 |23 ||5 |47||4|36||7 |23 84 3|
    29 28 37 42 43 53 87 84||4 79 |0| |24|||||3|62|85 |8| 53 52 63
    |06 |06 l09 | 33 |52 | |4 |34 |74 |2| | 54 |4|
COG-A46B |||
    |46 239 3| | 72 63 ||8||9|52 ||6 | 86 |52 |85 207 69 6| 8| |22 |85 205 |78
```



```
    |72 |77 4| 55 90 ||8||6 |2| |4| | 35 | 68|4| | 38 | 62 | 50 | 55 | 23 |4| |44 |2|
    47 42 33 66 74 89 9| 76 90 95 84||7 |06|43 |09 | 38||4 |09 79 33
    26 32 37 38 38 49 79 7| ||0 83 99 |25 ||4||4|56|86|7| 57 50 64
    ||5 |04 |42 |46 |38 |46 ||9 |45 95 |3| |43
COG-A47A 1IO
```



```
    |34 |44 |68 | 36 |26 |33 |46 |22 |45 |3| |43 88 49 5| 3| 62 63 60 88 |08
    103||9 87 98 100 93 86 |02 ||| |02 58 32 73 77 65 87 84 76 |07 |00
    |।O 88 |04 93 |06 73 80 89 74 83 |02 99 68 85 82 |29 |4| | 39 |36 |28
    |78 |50 |35 65 43 55 84 77 |0| |24 |22 |3| ||5 |02 |08 |29 4| 43 44 55
    645474767275 57 85 |07 ||3
COG-A47B IIO
|57 ||7 |47 |5| ||9 |37 |43 |28 |3| ||2 |40 |28 |06 56 45 79 |2| |39 |34 |55
|23 |44 |68 |42 |27 |27 |57 |22 |5| |24 |42 94 5| 44 38 6| 70 6| 79 ||2
94 |30 87 IO| 104 93 89 97 106 100 58 26 66 88 72 90 83 85 |02 108
|08 78 ||| 93 106 63 78 83 70 79||5 94 90 94 96||8|44|39 |38 |88
|73|57 |29 72 38 65 72 69 |04||4||4|3| |05 |06 |05 |34 4| 44 45 53
65 57 6973 73 83 62 86 103 ||2
COG-A48A 48
220246 2|7 405 323 200 |6| ||5 | 38 |96 ||8 2|2 269 |42 |43 || | |9 | 37 |23 |36
2|8|92 |60 ||5 |26 |62 | 35 88 |72 |4| 22| | 35 |39 220 225 |5| | 89 447 7|0 450
    982025I7 36750766346। 613
COG-A48B 48
2|8248 220 399 308 |89|60||3 |37 226 |05 225 268 |66 |52 ||4|45 |37 |30 |34
2|9 |99 |7| ||3 |23 |67 |44 90 |75 |37 254 |33 |43 225 23| |44 |88 502 722 463
9। 2IO 5|4 366507674470665
COG-A49A 46
49। 377 278 362332333 353 320408406 30। 468 3584|0 357 356।50 223 267 319
265 20। 28929320। 197 303 372290295308307 365 I83 27। 222 299 304365353
236254255247280278
COG-A49B 46
494394 29| 37| 332342358325427399327 49| 3664|8 384 359 |50 233 275 339
28। 2।2 288 294207 203 303 377 305 295 318 309 372206254 224 303 303 392 3|4
257247219283278 28।
COG-A5IA 48
263 2|| 248248 I84468402259262306243 375495440317 379464333268267
32928730। 2662582372532464|6322 22। 3|5 320 3|9 30| 329|83|82 243 262
287 I82264 292264278 392292
COG-A5IB }4
24421424724419047534725725829523536546543। 296355462326268272
3262922952692572382502464|0366229307 323 340300322 I77 194 230 262
290 | 80 266 287 260 28| 39| 299
```

```
COG-A53A 53
233426426 57| 495468 4I5 48| 344 346 342 3662502।6 206 243260 298 30| 335
266203 396 3|6 35| 297 367 |8| 269 307 295 389 2| 8 277 286 I 80 |45 3|2 355 242
237222294440।88 I74 I75 285 284 298 365 227 260
COG-A53B 53
25042242557950444442।466353354340369245 2|7 2|।| 244263 3|4 298337
2642083853|7354300373 |82268303294392 2|। 282 28| | &| |47 308358247
230222292435 20। | 83 |79277 28| 352 3|5 232 267
COG-A54A 47
    45 3|0 297266 32952। 44447062953648।430465398364366426308254265
263236 309246345299272387278 380 334 4|0185 270 28| 285 3|0195 260 262
207 |77 297 333 2।0 247 |28
COG-A54B 47
|26 320 284267 3|9542 4|246962756048943| 448400 364 377433 304 26| 266
264242307250 34| 308 283 388280 385 338404183276274 297 3|2 | 89 267 253
215168305 337 210 245 I57
COG-A55A 56
|5| 286430 32| 2|0 199 2|0 |82 287 294 2|2 | 84 252 333 | 84 |52 |74 327 230 237
45। 634 299447268273257 23| 309299 28| 316383262 252 25। 225 2|| 237 203
207 258 |92 |6| ||4 93 ||8 |88 |82 |69 | 60 | 83 |53 |08 |92 |96
COG-A55B 56
    |532924|4 325 2|0 207 2|5 |7| 276 27| |87 |57 229 334 | 83 |49 |78 327 225 235
    473638 3|| 459290 256237240 299293280 3|8 387 257 257 256 2।7 219 238 20|
    2|2 263 |85 |63 |22 96 |22 |98 |99 |68 |69 | 67 |46 ||2 | 80 |82
COG-DOIA I05
    55
    27}3002
    20
    18}20
    17 18 20
    18 22 23 20 20
COG-D0IB 105
    55}45
    30}30
```



```
    16
    20
COG-D02A 95
    40}404
    37}33
    15
    14 15 150 18 20 18 19 18 17 15 12 11 14 18 18 18 19 20 15 12
    12 13 18 18 23 19 18 20 17 12 15 20 20 18 25
COG-D02B 95
    40}45
    36}30
    18
    15
    13}1
```


APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master TreeRing Chronology and its uses for dating Vernacular Buildings (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer
rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C04, then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin I99।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It
also uses it when dealing with samples with very many rings, about I 20 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between I506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full complement of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.

5. Estimating the Date of Construction. There is a considerable body of evidence

 collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/200I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

C45 C08		C05		C04
C45	+20	+37	+47	
C08	5.6		+17	+27
C05	5.2	10.4		+10
	5.9	3.7	5.1	

Bar Diagram

	1	1	1	1	1	1	1	1	1	1	
0	10	20	30	40	50	60	70	80	90	100	110

C45

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

Figure A6: Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Figure A 7 (a): The raw ring-widths of two samples, $\mathrm{THO}-\mathrm{AO}$ I and $\mathrm{THO}-\mathrm{BO} 0$, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths

The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, I 998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I 992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 5I-6.

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, $P A \subset T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200 I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7
Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, / Archaeol Sci, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, I 995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

Historic England Research and the Historic Environment
We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside Historic England up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Report Series incorporates reports by the expert teams within the Investigation\& Analysis Division of the Heritage Protection Department of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series

