Historic England

Scientific Dating

Fairfield House, Stogursey, near Bridgewater, Somerset
 Tree-ring Analysis of Oak Trees from the Estate Woodlands

Alison Arnold and Robert Howard

Discovery, Innovation and Science in the Historic Environment

FAIRFIELD HOUSE, STOGURSEY, NEAR BRIDGEWATER, SOMERSET

TREE-RING ANALYSIS OF OAK TREES FROM THE ESTATE WOODLANDS

Alison Arnold and Robert Howard

NGR: ST I879 4343
ST I84। 4316
ST 18974216
© Historic England
ISSN 0259-4453 (Online)

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Department of the Research Group of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

For more information write to Res.reports@historicengland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

SUMMARY

Dendrochronological analysis was undertaken on cross-sectional slices from seven recently felled trees along with core samples from 13 living trees from three locations on the Fairfield House estate. This analysis produced a single site chronology comprising 19 samples with an overall length of 227 rings. These rings were dated as spanning the years AD 1786-2012.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Nottingham Tree-ring Dating Laboratory would like to take this opportunity to thank the owner of Fairfield House, Lady Elizabeth Gass, for her unstinting enthusiasm for this programme of tree-ring analysis and her continued cooperation during sampling. We would also like to thank the Head Groundsman, and the other estate staff, who generously helped in this effort. Finally we would like to thank Shahina Farid and Cathy Tyers, Historic England Scientific Dating Team, for commissioning this programme of treering dating, and for providing information and advice throughout this analysis.

ARCHIVE LOCATION

Somerset Historic Environment Record
Somerset Heritage Centre
Brunel Way
Norton Fitzwarren
Taunton TA2 6SF

DATE OF INVESTIGATION

2013

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
01159603833
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction
Sampling 1
Analysis and Results 2
Interpretation and Conclusion 2
Bibliography 4
Tables 5
Figures 7
Data of Measured Samples 20
Appendix: Tree-Ring Dating 27
The Principles of Tree-Ring Dating 27
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 27
I. Inspecting the Building and Sampling the Timbers 27
2. Measuring Ring Widths 32
3. Cross-Matching and Dating the Samples. 32
4. Estimating the Felling Date. 33
5. Estimating the Date of Construction. 34
6. Master Chronological Sequences 35
7. Ring-Width Indices. 35
References 39

INTRODUCTION

Fairfield House is a Grade II* listed manor house located just to the west of the village of Stogursey in Somerset (Figs Ia-b). The manor house has origins in the medieval period but it underwent substantial remodelling in later centuries. It is set in an extensive, wellwooded, estate containing several areas of woodland comprising a variety of trees including a large number of potentially long-lived oak trees (Figs 2a-b). Whilst there are what are almost certainly late-nineteenth century or early-twentieth century plantings, there are a substantial number of trees that are potentially older, some thought possibly to have started growing in the late-eighteenth century.

Fairfield House, and a barn on the estate, known as Wood Barn, have been the subject of a programme of tree-ring dating (Arnold and Howard 2013; Arnold and Howard 2014) which resulted in the production of a series of site chronologies running from the latefourteenth century to the latter part of the eighteenth century. A number of fallen trees in two of the estate woodlands suggested that these were of significant age and that they could potentially add to the understanding of the history of the estate woodlands, thought to have been used in the house at various times.

SAMPLING

Following discussions with relevant parties, tree-ring analysis was commissioned to examine the potentially long-lived oak trees of the surrounding Fairfield estate woodlands. In addition to enhancing the understanding of the extant woodland within the estate, it was hoped that it might be possible to produce a site chronology anchored in the present day (2012 being the last full growing season at the time of sampling) which overlapped with the site chronologies from the building timbers on this estate (last ring date AD 1778), thus providing valuable reference data for the region for more recent centuries. It was anticipated that such local reference data may allow undated timbers from the latter phases in Fairfield House and Wood Barn to be successfully dated, and prove valuable for other buildings of late date in the region that have previously proven undated or may be included in future programmes of dendrochronology.

Although oak trees are to be found widely distributed about the estate, discussions led to the decision that this programme of analysis would concentrate on collections of trees growing in groups in three distinct areas: Martin's Wood, the Great Plantation, and those growing along the field boundary close to Wood Barn (Fig 3). All three areas contain a mixture of trees. However oak, beech, sycamore, and sweet chestnut predominate, all growing in moderately dense proximity, with some hazel under-storey and occasional clumps of bracken, though the field boundary trees are of a more open aspect.

From these trees a total of 20 samples were obtained in April 20|3, 13 samples being taken with a Haglof borer as cores from living oak trees, while a further seven samples were obtained by taking cross-sectional slices with a chainsaw from relatively recently
fallen trees. Each sample was given the code FFD-M (for Fairfield 'modern' trees) and numbered 0I-20 (Table I).

The position of both the cored and sliced trees was known (the fallen examples not having been moved any distance) and was plotted approximately on plans of the respective woodlands (Figs 4a-c). The sampled trees were also photographed (Figs 5a-t). It may be determined from the maps that the majority of trees within each woodland are never more than a few hundred metres apart, with the greatest separation between trees in Martin's Wood and the Great Plantation being about half a kilometre. The trees at Wood Barn are about one kilometre south of both Martin's Wood and the Great Plantation.

ANALYSIS AND RESULTS

Each of the 20 samples obtained from the three areas on the Fairfield estate were prepared by sanding and polishing. It was seen at this time that one sample, FFD-M20, had some distortion and knotting to its growth, precluding accurate measurement of the annual rings. This sample was therefore rejected from this programme of analysis.

The annual growth ring widths of the 19 suitable samples were measured (the data of these measurements being given at the end of this report) with the data then being compared with each other by the Litton/Zainodin grouping procedure (see Appendix). This comparative process produced a single group comprising all 19 measured samples, the samples cross-matching with each other as shown in Figure 6. The 19 cross-matching samples were combined at their indicated offset positions to form site chronology FFDMSQ0 I , this having an overall length of 227 rings.

Site chronology FFDMSQ0 I was then compared to an extensive corpus of reference material for oak matching with a high number of these when the date of its first ring is $A D$ 1786 and the date of its last full growth ring is AD 2012 (Table 2).

INTERPRETATION AND CONCLUSION

Analysis by dendrochronology of samples from both living and recently felled trees on the Fairfield estate has produced a single site chronology comprising 19 samples. This site chronology is 227 rings long and spans the period AD I786-20I2, thus providing very valuable data spanning the late-eighteenth to early-twenty-first centuries. Unfortunately, though, this modern tree chronology does not overlap with the site chronologies from Fairfield House or Wood Barn, ending at AD 1778 and AD 177 I respectively, nor has it proven useful in dating any previously undated samples from either building.

The analysis demonstrates that the oldest trees in both Martin's Wood and the Great Plantation are of similar ages and, allowing for uncored additional rings towards the centres of the trees and the location of the samples along the trunks, are generally well in excess of 150 years old, with a few, FFD-MI2, MI5, MI6, probably being in excess of 200
years of age. As may be seen from Table I, where the approximate growth start date is estimated, these trees may therefore be associated with plantings in the early- and midnineteenth century. The undated Wood Barn field boundary tree, FFD-M20, appears to be of similar age to those in Martin's Wood and the Great Plantation, while the other tree here, FFD-MI9, appears to have begun growing in the late-eighteenth century, perhaps shortly after the adjacent Wood Barn itself was constructed (AD I77I).

The analysis also provides useful information on the level of similarity between ring series derived from trees growing a known distance apart. It may be seen from the t-value/offset matrix (Fig 7) that the samples from the trees in Martin's Wood (FFD-MOI-FFD-MII) generally match strongly with each other, with a number of t-values in excess of I0.0, although t-values actually range from 3.7 to 11.5 and have a mean value of 7.5 . The trees from the Great Plantation (FFD-MI2-FFD-MI8) are a similar distance apart as those in Martin's Wood but the level of cross-matching is a generally slightly lower with t-values ranging from 3.2 to 9.5 with a mean value of 6.0. Such information provides comparative material for assemblages used in the construction of historic buildings and can thus provide an insight into nature of woodland source, or sources, utilised within historic buildings.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, Laxton R R, and Litton, C D, 2003 Tree-ring Analysis of Timbers from Exeter Cathedral, Exeter, Devon: Part 3 (Western Roofs, Bays 1-4), Centre for Archaeol Rep, 49/2003

Arnold, A J, and Howard, R E, 2013 Fairfield House, Stogursey, Somerset - Tree-ring Analysis of Timbers, English Heritage Res Rep Ser, 35/20I3

Arnold, A J, and Howard, R E, 2014 Wood Barn, Fairfield House, Stogursey, Somerset -Tree-ring Analysis of Timbers, English Heritage Res Rep Ser, I4/2014

Arnold, A J, Howard, R E, and Tyers, C, forthcoming Sydenham House, Lewdown, Okehampton, Devon; Tree-ring Analysis of Oak Timbers, Panels, and Trees, Historic England Res Rep Ser

Barefoot, A C, 1975 A Winchester Dendrochronology for I635-I975 AD - its validity and possible extension Journal of the Institute of Wood Science, 7 (I), 25-32

Briffa, K R, Wigley, T M L, Jones, P D, Pilcher, J R, and Hughes, M K, 1986 The reconstruction of past circulation patterns over Europe using tree-ring data, final report to the Commissions of European Communities, contract no CL. I I I.UK(H), unpubl rep

Howard, R E, 1999 unpubl Dendrochronological analysis of living trees in Gloucestershire - Nottingham University Tree-ring Dating Laboratory unpubl computer file GLOMSQOI

Pilcher, J R, and Baillie, M G L, 1980 Eight Modern Oak Chronologies from England and Scotland, Tree Ring Bulletin, 40, 45-58

TABLES

Table I: Details of tree-ring samples from the Fairfield House Estate, Stogursey, Somerset

Sample number	Sample location	Circumference at breast height (m)	Total rings	Sapwood rings	Growth start date (approximate)	First measured ring date $A D$	Last heartwood ring date AD	Last measured ring date $A D$
	Martin's Wood							
FFD-M01	Tree (fallen) *	1.50	150	14	1819	1819	1954	1968
FFD-M02	Tree (fallen) *	1.60	140	30C	1830	1830	1939	1969
FFD-M03	Tree (fallen) *	1.50	116	11	1835	1835	1939	1950
FFD-M04	Tree (fallen) (centre rotted)	2.00	157	37C	1830	1845	1964	2001
FFD-M05	Tree (fallen) *	1.80	125	h/s	1842	1842	1966	1966
FFD-M06	Tree (live)	2.80	166	26C	1840	1847	1986	2012
FFD-M07	Tree (live)	2.60	165	31 C	1845	1848	1981	2012
FFD-M08	Tree (live)	2.50	177	29C	1820	1836	1983	2012
FFD-M09	Tree (live)	3.60	169	23C	1840	1844	1989	2012
FFD-MIO	Tree (live)	2.90	158	29C	1850	1855	1983	2012
FFD-MII	Tree (live)	2.30	157	31 C	1850	1856	1981	2012
	Great Plantation							
FFD-MI2	Tree (live)	2.85	197	35C	1810	1816	1977	2012
FFD-MI3	Tree (live)	3.60	138	24C	1850	1875	1988	2012
FFD-M14	Tree (live)	3.00	161	28C	1850	1852	1984	2012
FFD-MI5	Tree (live) (inner 65-70 rings distorted)	2.80	141	27C	1800	1872	1985	2012
FFD-M16	Tree (live)	3.50	194	35C	1800	1819	1977	2012
FFD-MI7	Tree (fallen) *	1.75	168	16	1839	1839	1990	2006
FFD-MI8	Tree (fallen) *	1.90	146	25C	1844	1844	1964	1989
	Trees at Wood Barn							
FFD-M19	Tree (live)	2.10	220	28c	1780	1786	1984	2005
FFD-M20	Tree (live)	1.90	NM	29C	------	------	------	------

NM = not measured; C = complete sapwood is retained on the sample; c = complete sapwood is found on the tree, but some rings were lost during coring; * centre of tree on sample

Table 2: Results of the cross-matching of sample FFDMSQ0I and relevant reference chronologies when the first-ring date is $A D 1786$ and the lastring date is AD 2012

Reference chronology	Span of chronology	t-value	Reference
Gloucestershire woodlands	AD $1724-1998$	12.1	(Howard I999 unpubl)
Sydenham Estate, Lewdown, Devon	AD $1741-2013$	10.9	(Arnold et a/forthcoming)
Clovelly, Devon	AD I750-198\|	9.3	(Briffa I986)
Winchester, Hampshire	AD $1635-1972$	9.2	(Barefoot I975)
Ashe House, Iddesleigh, Devon	AD $1775-2002$	8.8	(I Tyers pers comm)
Radley woods, Radley, Oxfordshire	AD I8I2-1979	8.4	(Briffa pers comm)
Bath, Avon	AD I754-1979	8,2	(Pilcher and Baillie I980)
Exeter Cathedral, Exeter, Devon	AD $1780-1921$	7.7	(Arnold et a/2003)

FIGURES

Figure Ia: Map to show the general location of Stogursey. © Crown Copyright and database right 20I5. All rights reserved. Ordnance Survey Licence number 100024900

Figure Ib: Map to show the location of Fairfield House. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure $2 a-b$: Illustrative examples of oak trees on the Fairfield estate (photographs Robert Howard)

Figure 3: Map to show the location of the three sample areas. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4a-b: Map to help locate sampled trees in Martin's Wood (top) and the Great Plantation (bottom). © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4c: Map to help locate sampled trees near Wood Barn. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 5a-e: Photographs to help identify the sampled trees (photographs Robert Howard)

FFD-M06
(Martin's Wood)
FFD-M07

Figure 5f-i: Photographs to help identify the sampled trees (photographs Robert Howard)

FFD-MIO
(Martin's Wood)
FFD-MII

Figure 5j-m: Photographs to help identify the core-sampled living trees (photographs Robert Howard)

Figure 5n-p: Photographs to help identify the core-sampled living trees (photographs Robert Howard)

Figure 5q-t: Photographs to help identify the core-sampled living trees (photographs Robert Howard)

Relative

White bars = heartwood rings; shaded bars = sapwood rings; $C=$ complete sapwood is retained on the sample; $c=$ there is complete sapwood on timber, but part has been lost in sampling; $h / s=$ heartwood/sapwood boundary; ${ }^{*}=$ fallen tree

Figure 6: Bar diagram of the samples in site chronology FFDMSQO I

Martin's Wood

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
FFD-M01	1	\cdots	-11	-16	-26	-23	-28	-29	-17	-25	-36	-37	3	-56	-33	-53	0	-20	-25	33	
FFD-M02	2	10.1	**	-5	-15	-12	-17	-18	-6	-14	-25	-26	14	-45	-22	-38	11	-9	-14	44	
FFD-M03	3	7.5	8.9	*	-10	-7	-12	-13	-1	-9	-20	-21	19	-40	-17	-37	16	-4	-9	49	
FFD-M04	4	6.8	5.9	5.7	+	3	-2	-3	9	1	-10	-11	29	-30	-7	-27	26	6	1	59	
FFD-M05	5	6.9	6.1	5.7	5.5	**	-5	-6	6	-2	-13	-14	26	-33	-10	42	23	3	-2	56	
FFD-M06	6	10.9	10.6	8.9	7.4	8.7	"	-1	11	3	-8	-9	31	-28	-5	-112	28	8	3	61	
FFD-M07	7	9.7	9.0	8.5	7.5	7.5	11.3	-	12	4	-7	-8	32	-27	-4	-65	29	9	4	62	
FFD-M08	8	6.4	5.6	6.7	8.2	7.5	8.1	10.0	**	-8	-19	-20	20	-39	-16	-36	17	-3	-8	50	Great Plantation
FFD-M09	9	4.9	4.7	3.7	6.8	5.9	5.4	6.1	6.8	**	-11	-12	28	-31	-8	-28	25	5	23	58	
FFD-M10	10	5.3	5.4	7.5	7.8	7.0	6.2	7.3	11.5	6.0	+	-1	39	-20	3	-17	36	16	11	69	
FFD-M11	11	6.8	7.2	10.1	6.9	7.4	8.1	9.2	9.2	4.7	11.4	**	d0	-19	4	-66	37	17	12	70	
FFD-M12	12	5.7	5.7	7.0	6.8	6.7	6.4	7.5	9.3	6.5	10.0	9.1	*	-59	-36	-79	-3	-23	-2ε	30	
FFD-M13	13	5.9	6.3	5.4	4.7	5.0	5.3	4.5	6.3	3.2	6.5	6.0	5.9	+	23	3	56	36	31	89	
FFD-M14	14	5.5	5.4	6.8	4.9	5.1	5.6	5.8	7.7	4.0	9.9	9.1	6.0	7.3	+	-20	33	13	8	66	
FFD-M15	15	3.5	3.2	3.2	3.9	3.6	2.7	3.6	3.7	4.9	5.8	3.5	4.1	4.8	5.4	+	103	33	28	-30	
FFD-M16	16	8.4	9.1	6.5	7.1	7.3	9.8	11.5	9.7	6.7	8.2	7.8	7.1	6.1	6.1	3.2	*	-20	$-2 t$	33	
FFD-M17	17	7.1	6.3	7.9	3.8	5.7	6.2	7.3	7.5	3.6	6.7	8.4	5.9	5.5	7.9	3.4	7.5	\cdots	-5	53	
FFD-M18	18	6.5	5.7	6.0	4.2	4.4	4.2	6.2	6.2	2.7	6.6	7.6	6.9	7.9			5.0		*	58	Tree at Wood Barn
FFD-M19	19	6.8	5.8	7.2	5.6	5.7	6.8	6.1	7.0	7.2	4.8	7.1	7.4	5.1	4.5	3.48	8.5	5.0	4.9	+	

Figure 7: t-value/off-set matrix of the cross-matching between the 19 dated samples

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
FFD-MOIA 150
I00 | 50 । I 782 |28 20094193303439503498348296232295 |43 25392 ।। 2 | 8492 | 33 | 50 | 7482 | 52 | 34 | \(3 \mid 224\) | \(46 \mid 25\) | \(30|50348| 59200 \mid 45238\) | 34 \(1929312312582185264200263164206|8520022| 226 \mid 62322109126209\) \(260|54| 64|47| 26||885174| 26259| 34|78233| 43|2||40| 68 \mid 009668\) \(68|33| 1898|8912| 10064745077|3465| 1483|38| 43|63| 89 \mid 68\)
```



``` \(24|2| 2|68| 28|24| 76|59| 462|2| 63|45306| 45|03| 2|||||62| 3276| 79\) |56 203 | 33 | 33 | | 7 |06 |08 | 76 | 32 | 37
FFD-MOIB I50
|36 |53 ||9 85 |29 |85 94 |87 30| 4|84|8525 37| 3|0 2|4 \(300 \mid 532629389\) 19294 | 35 | 5 | | \(7 \mid 84\) | 53 | 32 | \(32220|50| 32||6| 6235||57| 93|50243| 2 \mid\)
```



``` \(257|56| 74|42| 2|||490| 69| 23260| 22|97227| 53||8| 37| 50 \mid 029372\)
```



``` \(1241258|1334| 1089|8419012| 90761221277343100215166112\) \(239213|65125128| 77|551592| 2|54| 43306|4| 104|09104| 48|348| 165\)
```



```
FFD-M02A 140
|54 836883 |40 |06 |98 220 |33 |46 \(728886|20658942656| 60\) 5475 I08 266279306247298277354349343260 I7। 259457264326166245 193268 |92 |92|42 \(37522 \mid 237332376208\) |57|34|34|2396226|8| 303 | 37 \(2643|5287197173| 431041239868170204123109\) ||5 90 | 39 | 349093
```



``` 46 |28 81663333968443791077258435675 ।| 5 |27 5481 8। 7750 ।।। \(889090437|8465578| 65767 \mid 68363852\)
FFD-M02B 140
169856479 |34 \(8520 \mid 245\) |74 | 8475826989639644587650 5576109293278 3।। 257288285332343354256182250420254325176250
```



``` 262306274 | 78 | 69 | 4793 | \(349|67| 6622|||5| 09| 2385| 3|\mid 439698\) 239 |06 208 |02 | \(309|1| 0|2896| 037964645297525|7| 788 \mid\) 40 | 307870324087933784 ।09 7259465675 |। 5 |46 5683 848462 II7 89 IO। \(934386748053846573866 \mid 404553\)
FFD-M03A 116
|52 | | \(8160221174957512925912231223925820017622 \mid 226277377312\) 313328396414417422421367281328510326504373364318412406352225 520275430450457325221221205207173240200309204175259246140125 \(136|06| 35166|75202187| 1319920|137| 33|65143156174126225168| 46\)
```



```
FFD-M03B 116
200 |।7 |7| I70 I50 6487 I29 306 |52 336234285200 । \(6 \mid 207223269367326\) 33931039242642441242437928732148333552834839332342641535324 I 49| \(2654274304673|2| 962002|5209| 8725|206284209| 8|29| 265|49| \mid 4\) |22 | 22 | 28 | \(7 \mid\) | \(6522|203||5203200| 6||34| 35| 37|45| 62|2| ~ 209|69| 59\)
```


FFD-M04A 157
310355276385307296230359432222405285 37| 24। 3I। 316326339239335 398 I73 $2792524393|42622342461934032292592563| 5$ | 87 I78|56|35 209 $155237165282|8| 187223239|962542||2| 52|2| 66|8| 172|90| 44|28| 3 \mid$ $103|02150139268185136268| 56296|9623| 227|3||2||8| 9|13090| 38$ $8|65126| 231361071057288|10| 18293184199|47| 8|136| 0789156$
 | 50 ।| 573 |। 08865106777657563866871029652887868 I20 I23 898746597744595647633038493448
FFD-M04B 157
$38534826|39| 3 \mid 7304220373362228464257257$ I9। $2892753|837| 29 \mid 355$ $4 \mid 8$ I7। 269239446296259235247193403220268256307 | 83 | 65 |54 | 48203 |53 239 | 74275 | 75 |89 240243 | $872522|22002| 9|84| 47|75206| 3||28| 34$ |l2 83 | 5 | 153268 |69 | $3726|168268| 722|4244| 40|33| 7596|2098| 34$ $7567137107146104107849296 \mid 162871871901531931438896144$ $165104948694967210810610|1| 2|3088| 83129184|441552| 3 \mid 59$ | 51 | $3778104946699641005554485990969 \mid 668483$ |। 8 | 2। $978579696 \mid 6555575543663437463750$ FFD-M05A 125
908748505677166163226233246201235393416301257333432529 285214224172200253235301226396464465337537250590695642404318 225217253214213215359266346340285195178210170221140134176198
 16285 | 56 | 40 | 43 | 39 | 53 | 98 | 43 | $37||290| 03| 36248|53| 03|53| 5087$ $9|8387| 37||2| 65| 00|2||47| 2|89| 0090|35||6| 00|07| 37|30| 4 \mid$ $133190198 \quad 175199$
FFD-M05B 125
$12583515856781671682352642262152283874|\mid 309260321382557$ 296235228183223250178294218354489520364586259571680628362279 $20522625622|2062| 23292623243|5284| 84|65202| 68|93| 40|3| 196 \mid 97$
 |6| 87 | 56 | 37 | 43 |47 | 56 | $96|34| 5||087899| 49253| 52|00| 62 \mid 4285$ $907893|2| 13|16893| 25|5710398||493| 20|||96| 34| 40| 34 \mid 46$ 135212184170213
FFD-M06A 166
210227249222199197307288431336460335419458534396238360446310 417306390364419423395254503239320368421275302256219244195303 296459244325353317234213234240350172223343358182223232175 |50 $25320721334315626217720917|15| 253174196206147230982 \mid 8104100$ 235 | 84249243337 | 83 | 32 | $30|40253222| 57289253$ |54 | 65 | $36|80240| 97$
 150285 |92 210242 |76 304 |07 |53 | 46254 | 38 | $8|27922| 3792392003433 \mid 5$
 289275 I79 | 56 I74 323
FFD-M06B 166
$22529526024221319832629440|34445736| 42247 \mid 525410232374450292$ 403302385369404439390279517229348375403287278253229246195322 $2874532463093563282172062492403751462 \mid 2335362$ |77 236222 | 84 |44
 $237|862542473| 7|87| 42|23| 2525026|148293238| 88|38| 40|762| 9207$ $238|75| 89285|72| 55|4| 1252|7| 85||7| 82| 34260|66269| 342|73| 42 \mid 0$ |72 253 | $8923 \mid 232$ | 82 27| |45 |48 |3| 206200 |9| 249225360239206346329

250286 192|46|78 348
FFD-M07A 165
$2 \mid 2$ |44 |44 193 $26937|24240631835728739432| 332307232252514234268$
21328224830234325315831812530333933417014323214313798207175
239 | 57 | $53179217|26| 7||54| 5| 264|42| 39245223|53250| 1910698 \mid 25$
$115137125106|4610915684127175143150153891288415680621| 8$

1531242251351141289612010478788294749413410013910975
 938685 ||4 |09 |03 $748|88| 60|06||8||2||8877| 668262 \mid 66$
1271006568 । 75
FFD-M07B 165
202 । 48166192247356240374316338319402310332305219232519247268 $20729523529234524817333 \mid 120296364312157146237157$ |l7|03198|78
 $11315214497132118137102120178|40136| 6292|4080| 438676 \mid 15$ $1281068612078705478165107100182122104|1| 92|27| 62 \mid 65193$ |28||6 204 | 57 | $2 \mid 12596$ |2| |03 $7|878| 10068|00| 25||2| 37| 0678$ |20|60938653|00776653|32|8| |47||5|59|8| |37|3| |90|27 96 989690 | 20 | $0 \mid 103768288$ | 59 || $6|2| 99||4907| 668465| 62$
133957762168
FFD-M08A 177
| 32 |03 85 ।00 9694 |। 8 |47 |08 |35 $23027633027 \mid 275257229339228245$
372424250510475553427266417575343379250334281284334341285519

$137162135123178162100|151008| 628|10312| 8997|13| 36|88| 12$
$1212061179210274114125138117968097|10851| 8 \mid 237579$ || 8
$174167100154154116|33| 18|4224019816799122153| 4 \mid 123123139212$ $16420218613|19217| 139226202185157167200165104125106178105106$ $8921023722|250| 54|82| 50|492332| 3|8320| 193|5| 26222|258| 39 \mid 44$ |64 |96|75 |68|38|37|48|3||45 204 | 35 | $84237|28| 0478 \mid 99$
FFD-M08B 177
I2| |04 89929697 ||8|48||5 |34 24| $2683|627828926| 2453 \mid 8228257$
368439257518469555438254423546348389263340278285329341289542 273293342332224 |54 | 32 | $20 \mid 65$ | 65 | $84|2||46| 05|0||53| 65|22| 27|\mid 2$ 125 |66|40 | $27172164100|18| 00826886|06| 198387||4| 3| 190123$ 1272061189210370112129142115967894112841241069372109 $180|6810| 152|54| 12|34||4| 52229|99| 59|16| 09|65| 4|||9| 17| 42209$ 17819419013518216814722319816416016021216411012810717697110 $822||243204243| 50| 75|43| 392362|2| 8220|187| 572762 \mid 5235$ |48|53
 FFD-M09A 169
267259194198259235219264260291259388314288275329500407450403 339498292417264427380370354392320460256376440339305353272219 255272 33। 252284259350393321303383335327343325299390406353358 337362322418300362446259446332348273327313165220226 I8। 253268 $665198197228221239234188|4816612917| 192155$ |l6|55 230230196203 189268313225273200214164189158223265170137264187214198168245 226220259204100106981011951651067868121165215225274229235 142353335382476268219340249297259223175222201183170209216196 226227 I28 282303 | 94 | 39 | 64296
FFD-M09B 169
250253217219259233275258269310247406353325299378448424435385

34550127640330345 I 31938936036432 I 468266375419354310371303224 267279315256265269353389318310349334308356316326391399370358 375345335370343368450268415312375259326297200225236153273272 $30723|2| 22|722023025| 177|52| 6||4|| 64|83| 56|25| 7|243| 9020|\mid 84$ $198254318232265199210|75182158248248| 47|5| 270189203179165259$ $22220926521210|101106114167184106927| 1|41622152342642| 8246$ 144320346401475262223336253297233218225203190196165213209193 222237 I2। 298297 I 84 | 37183290
FFD-MIOA 158
357398408352494361437316192361392259394270354301297375388320 $5503003555033943 \mid 8220229$ |74 226 | 89223200242210 | 62265294 | 55 |48
 |90|29 | 88 | 43 |0| | $559|146| 49203205|40| 662|||93| 5390| 87| 50|\mid 2$ 147254 |78|40 $2092|7| 87|45| 36|43| 9|245224| 58|73| 76|74| 67|52| 73$ 225142140142173159160180279318168185168247195135173169180106 13| $108234273244142138194164146196262168|4920916622| 16520|2| \mid$ | 56 | 32 || 4212206226254 | 69 | $64|90| 8||482| 72| 8|57| 2 \mid 93308$ FFD-MIOB 158
$34045943437245638040|32521731039| 3|340331834| 32229237740 \mid 309$ 564308353521380331225238179206176216189250212168266309146189 197 | $512|7| 92|87267322| 84|52246| 82|40| 65|25| 77|28||02| 72701203$

 $1369|23327| 232|64| 32|92| 46|4| 2|4260| 6|160| 75|64240| 86|952| 5$ |34|3| 109 20| $2402032432|4| 46|92| 84|552| 3234|32| 07 \mid 29250$ FFD-MIIA 157
26| 338347410464503489390387457296457322459387383446407275482 $27840|49543| 300|98225| 79|86| 852|7| 7|182| 4|1032| 4264|70| 79 \mid 98$ 176243 |7| | 78202202 |5| | 33 | 46 | 22 | 53 | 54 | 23 | $90|46| 08|46| 78|73| 37$ |57 |46 |2| |25 |03 |05 |40 74 | 50 || 568 ||9 |5| | 59 |2| ||| |43 78958 |

 FFD-MIIB 157
301 379338429484543503417455476309455314447378376475398285514 $25|365498435304| 8|248| 84167177208|48200| 35105222256|82| 59192$ $19023|187168206202| 44|50| 56|3| 167|54| 3||7|| 62|05| 5||7|| 75 \mid 42$ |58|45 ||9|2| |2| $93|4380| 42||278| 25| 50|62||8| 20 \mid 38728798$ 109 |03 93 | 38 |43 $757 \mid 68$ |04 |60 | 83 | 336398 |08 || 5659873 |50

 95 |04 |43 |2| |06 ||6|45 7593 |00 || 8 | 56 |43 |06 8088 |43 FFD-MI2A 197
340 |46 | 30 | 5486 |93 |67 |09 8360 ||2 |36 |2| $20022929229328 \mid 370200$ $16720524422515023321224|126| 85$ |44 $16723925422 \mid 196229319180233$ 18733431044255845644338528 I 34828 । $36625924022529235629327 \mid 479$ $25 \mid 30345$ | $43726220919323722823734727|46825737| 35836229428 \mid 356$ 264370223246288378289264280303231344614543487244389481360287 $31|37628| 3|9340| 7|2641963| 2260|44| 552362532|72| 0207|36| 40 \mid 37$
 |57 | 2098 ||2 |39 |23 |42 225 | 83 ||7|43|22 ||3 |05 $79687 \mid 724668$
$7|||0| 70| 48||28493||4||0| 2||43| 20837| 6479827 \mid 6562$ $5972505 \mathrm{I} 433750374 \mid 5638465 \mathrm{I} 394043$ I06
FFD-MI2B 197
394 |47 |26 |56 87208 |4| |00 976787 |4| |28 |98 239283285289364203
189203250205162234217235 | 28 | 75 | $321742392462262002373 \mid 4$ | 1237
| $8133331445653747|44738328434628435326023823729137128724| 499$ 26228544242624721520321924823533527746525437236535229328735 । 256386221244281395296246267284254351590574482259390472363277 $3293802873 \mid 8329$ |72 265 |96 322253 |66|68 225259234 |92|85 |54 | 25 | 38
 | 56 |07 |03 90 |45 |25 | 38223 | 89 ||2 |40 |23 ||7 |00 $8 \mid 7068675662$
 60575653453948325045435241423556100
FFD-MI3A 138
444466618683541707566407459567478676419570457689776734500439 $31524032627|27| 34643|30034539630827328| 258282328223289263325$ $236256290414352306221|8520330829217319819319312| 15|19416| \mid 10$
 322240213248208399276344470389364434326470254266296256329224

FFD-MI3B I38
$4 \mid 3471629730550656559410465564468676407573457679784723529443$ $29227932027725037|4| 8296359374313271250264290315219280237344$
 $10420017810618022815312420319027|246285209159210| 44127|9| 16 \mid$ 321 236221236213404275341483385363428325488253257295249339221 196|67243 339245332 |53 | 85 |53 | 85 |84 $2752702673464843653532 \mid 4$ | 87
 FFD-MI4A 161
37। 595364330300340332371465561414250220364382421318615494527 507620412786303510746609786412312255323237453199306284269496 $45240027741225|36| 29330638335 \mid 167204313223190262203215140208$ $1372|3| 93|35| 40|82307262| 77|502098||2||59| 18|28| 76|56| 09 \mid 46$ 206143103121278217220324317262175152245290293254180358175215 $15620420224616412215021022|26620234926625| 350|532572| 7183283$ 223270179235 |l4 264243278226153214123134200179189140220179243 |7| | 55 204|62|4| | $85223|84| 57253|45| 6220|199| 17|5||84| 29|20| 2 \mid$ 336
FFD-MI4B 161
319575346361293356307364459568428246216351414385310587476561 508614410781303521744614803403312250318224445206287275251510 $49639428438|24931629727039631818020330| 212186256193212140190$
 200142104 |l7 297209204330344225167210246307273228189361182213 |54 | 8 | |97 276 I7| | | 9 |67 |96 $21622325|34626| 2253091952502|8| 89307$ $228290185187|40254278282206126206| 40 \mid 45225$ |93 | $18|17| 2|42| \mid 253$ |4| | 53 | 88 | $6 \mid$ | 75 | $8|237| 7||5923| 193| 53202|80| 26|93| 59|4590| 85$ 234
FFD-MI5A 141
284280249205174233352257207 |96|89|442|7|48|7599|25|2||50|3| 135 ||72|0|98|50|68|2||45|68|579695|35||0898388||09990

109956279 | 56 | 59 ||4 |09 |39 |00 $60||5| 64209| 34|53| 26|5| 209 \mid 95$
 $195206133162|28216250234196203203167| 15|44| 622|2257| 88|2822|$ $2|8| 18178175$ | $591301931421091921782|8| 9 \mid 17590284234300179163$ 221
FFD-MI5B 141

 $139103159193|59173198| 899270|242| 3272|26| 64|43| 27|59122| 4$
 206 | 36 | 59 | 67 | $67 \mid 19$ | 74 | $34|00203| 662|9| 9||6| 10926522| 309|97| 5 \mid$ 182
FFD-MI6A 194
365229233410497400291349552522696462368306364408185348320244 $38221422|28| 334|9| 17822|183300245179193| 44|72| 3 \mid 296209295168$ 212225256 | 8 | | 49 | $461942082461682342532 \mid 2265$ | 8 | | $3632 \mid 203205290$ 253 |68 |56 | 83 |45 |74 |40 203206284224257226293263275290278337245

 308283225244202234357332325205183240178133160175212253167 | 82 $13522922625126322920017617625021020020519723219213482 \mid 57204$ | 59 | 76 | 21225 | 67 | $7|237263| 64|95| 40|99| 46|28| 3||57| 2| ~ 93|32| 24$ ||4|07||| 106 ||5 || $490692|5| 7010688107303$
FFD-MI6B 194
342252219409506401234373559532689456385311370406 I7। 357357234 $35322620125333116822519018 \mid 284265167193153199120276225287168$ 215225253 | $861501531882 \mid 2262167249258218262190130320212193277$

 $14723517328428|22320| 16517922520920320718520|2| 513979175$ |93
 95103104871091079776187184968995333
FFD-MI7A 168
$127156140214297202267203196176|7816216916421017| 227203339196$ 207178205207176164185 | 56183192235206192204265215253201226301 248 |93 | 37 | 50206 | 89 | 53 | $7 \mid$ | 82 | $8||54| 20| 87|8||23| 03|23| 23||8| 28$

102105981049398 I2। |24|56939310987829297|49|007282
||| | 34 |03 | 33 | 48 | 26 | 23 | $64 \mid 59$ | $90|7|||4| 46| 62|93| 59|34| 45209294$
$29325022130926522 \mid 328310312375296250293244248241229212310216$
$26225226822|2072| 8 \mid 62$ | 51
FFD-MI7B 168
$130147|44203312199249203197178| 8215718815922|1852| 923 \mid 314182$ 199187201214170167162174190164237221177220251227258195234298 $250|93| 37|35202| 96|40| 64|8||62| 64|26| 8||77|| 9|09| 09|09| 30 \mid 27$ |44 | 38 | 58 | | 7 | 42 | 78 | 03 | | $7|2|||2| 00| 44|3||30| 4||6296|| 9|69| 32$ |43 |05 |2| ||0 6799 |06 $888999926 \mid 10799$ |02 84 |00 ||4 $9 \mid 85$ 92 |00 |03 |029688|32|2| | $5|8780| 249|849397| 36928973$
||4 | 32 |06 |3| |5| |28 |2| |59 | 50 | 70 |79 | 25 |40 |60 206 |37 |34 |42 220295 291 245226310253233335275335367282237309250246228225221286254 234266250217200228 |48।65
FFD-MI8A 146
। 35 |065952 324427 |9 59 |। 862 । 00189295420564532566485322
$31333547667044537947059471|80358373124052766| 431458353405365$ 336275392109247204213402375255243293231318237269327379257309 $3|523823| 2|5| 87|97| 85|40| 62|69203||8| 65|7| 225|62| 39|06| 37 \mid 04$
 68106100897794109967988697178636994767285105
|l9 688374 |0| ||| |0| |07 85 |07 73 9| 5| ||9 |49 |45 |2| ||3 7565
9812411710996128
FFD-MI8B I46
|47 |0| $64464049212562126629619530 \mid 416380475523501373$
304332517736468392451571720793581721242503671420485356384373
328259385106246217190406372246244299246306234262336387243310
$32|243230209193175196| 43|48| 58|90| 3|175| 7|2| 5|68| 39|08| 38|3|$
| 35 | 65 | 30 | 46 | 05 | 3773 | 55 | $639|7066| 47 \mid 3389$ | $26|2095847|$
73 |। 101958692959666104597884479283946758102
$10875807|85||4||5| 1782|07679250| 30|48| 38 \mid 27898258$
95 | 12 | 20 |07 | $4 \mid 125$
FFD-MI9A 220
$3745223795583582234533163926573543863304413 \mid 5400543421464393$ 298360410395221507321356198195270195192279223249201260289228 207321335312228193184231171199251255282313167215201225134196 $206202250175159198215245137|56| 65184|42| 84274233228176 \mid 47200$ $17922817|2501733153252961704| 2226279307150132132|26| 4|142| 50$ 185 | I 0 $23717922230929927|29| 318245328206275284363326274339217$ 208234157160182125201178170120154190210162190128210153281218
 302153934474636892 |। 5 | 65 | 50 | $6|232| 8729325729032 \mid 255290$
296237214208158233225206196169180190290340423290265292257262 355207208 । 32 | 28 | 2989 |03 788353 8। 9| 93 |09 $56907 \mid 8759$
FFD-MI9B 220
397509345596344237416344412653377372346448326383595392490384 $31538139638527 \mid 473332342209220242231178268215254184296254226$ 203327324318254165186228187198246256282325162197212220139211 210194279158190176193245150166164185130153250237228175149209 174229178258159329328335155428203287290168127174142106140146 175146215173227286283272289312250337226259262354344287294213
 $16720616818 \mid 210215190156145197217193152175236177239218224360$ $317 \mid 45825567666890$ । $0 \mid 183165159228158300250306320246293$
300 20। 206190178255237229206227166190275326414284267285237283 34| 28| 22| | 32 |20 | 35 IO| 96907864989080967899748465

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master TreeRing Chronology and its uses for dating Vernacular Buildings (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last I000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building

 historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a uniqueposition within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the
sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Figure A5 if the widths shown are 0.8 mm for $C 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C04, then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between I5 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I 506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it
when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 200 I) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526 , a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full complement of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.

5. Estimating the Date of Construction. There is a considerable body of evidence

 collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, Fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to I981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et a/ I988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in I835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

0	1	1	1	1	1	1	1	1	1	1	
0	20	30	40	50	60	70	80	90	100	110	

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely.

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, I 998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I 992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 5I-6.

Laxton, R R, Litton, C D, and Zainodin, H J, I988 An objective method for forming a master ring-width sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200 I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7
Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, / Archaeol Sci, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, I 995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

Historic England Research and the Historic Environment
We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside Historic England up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Report Series incorporates reports by the expert teams within the Investigation\& Analysis Division of the Heritage Protection Department of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series

