Codnor Castle, Castle Lane, Codnor, Derbyshire

Tree-ring Analysis of Oak Timbers from the Farmhouse and Barn

Alison Arnold and Robert Howard

Discovery, Innovation and Science in the Historic Environment

CODNOR CASTLE, CASTLE LANE, CODNOR, DERBYSHIRE

TREE-RING ANALYSIS OF OAK TIMBERS FROM THE FARMHOUSE AND BARN

Alison Arnold and Robert Howard

NGR: SK 4338249906 and SK 433674987 I
© Historic England
ISSN 0259-4453 (Online)

Abstract

The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Department of the Research Group of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

For more information write to Res.reports@historicengland.org.uk
or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

SUMMARY

Analysis undertaken on samples from timbers in the farmhouse and barn at Codnor Castle resulted in the successful dating of 36 timbers.
The floor of the primary section of the farmhouse has been dated to the late AD I530s, whilst the roof and floor of the southern extension of the farmhouse are slightly later, dating to AD 1560-85 and AD 1560-78 respectively.
The roof of the barn contains timber representing several different fellings in AD 153863 , AD I 560-85, and the late AD 1720 s, with both groups of sixteenth-century timbers thought to be reused. The floor-frame of this barn is constructed of timber felled in $A D$ 1617-39 and AD 1727, again with the earlier timbers potentially representing reused timbers. The barn thus appears to date to the early-eighteenth century.

CONTRIBUTORS

Alison Arnold and Robert Howard

ACKNOWLEDGEMENTS

The Laboratory would like to thank Charles Glenn and Rokia Brown of the Codnor Castle Trust for facilitating access. Thanks are also due to Charles Glenn for his invaluable on-site advice and the use of his drawings on which the sampled timbers have been located. Thanks are also given to Cathy Tyers and Shahina Farid of the Historic England Scientific Dating Team for commissioning this analysis and their advice and assistance throughout the production of this report.

ARCHIVE LOCATION

Derbyshire Historic Environment Record Economy Transport and Environment
Derbyshire County Council
Shand House
Dale Road South
Matlock
Derbyshire DE4 3RY

DATE OF INVESTIGATION

2014-2015

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
roberthoward@tree-ringdating.co.uk alisonarnold@tree-ringdating.co.uk

CONTENTS

Introduction 1
Farmhouse
Primary building
Southern extension I
Barn 2
Sampling 2
Analysis and Results 3
Interpretation 3
Farmhouse 4
Primary building - floor frame 4
Southern extension - roof 4
Southern extension - floor frame 5
Barn 5
Roof 5
Floor frame 6
Discussion 6
Bibliography 8
Tables 10
Figures 16
Data of Measured Samples 36
Appendix: Tree-Ring Dating 46
The Principles of Tree-Ring Dating 46
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 46
I. Inspecting the Building and Sampling the Timbers 46
2. Measuring Ring Widths 5I
3. Cross-Matching and Dating the Samples. 5I
4. Estimating the Felling Date 52
5. Estimating the Date of Construction. 53
6. Master Chronological Sequences 54
7. Ring-Width Indices 54
Reference 58

INTRODUCTION

The Codnor Castle complex, located approximately I.7km east of the village of Codnor (Figs I-2), consists of the ruinous remains of a substantial medieval residence, made up of two 'courts', with associated earthworks and is thought to date back to the eleventh century. The upper court is a Scheduled Monument and it is on the Heritage at Risk register, despite the previous owners of the site, UK Coal, having undertaken extensive consolidation works. The lower court lies outside of the scheduled area but includes a range of grade II listed buildings including the farmhouse and a barn.

Farmhouse

Located adjacent to the castle is the Grade II listed farmhouse (Fig 3). This five bay house is of two storeys, plus basement, and is built from ashlar coursed squared stone (possibly salvaged from the castle) and red brick with stone dressings. The roof is plain tiled. The oldest part, the northern section, has previously been thought to date to the seventeenth century, with the southern extension a later addition. However recent observations of the timbers have led to the suggestion that much of the timberwork may be sixteenth century. It is also believed that there are alterations dating to the eighteenth and nineteenth centuries.

Primary building

The northern section of the farmhouse is believed to represent the original, or primary, building (Fig 4). The roof over this part of the house consists of two visible principal rafter and tiebeam trusses with the southernmost one (truss 2) being closed with 'herringbone' style framing and the central one (truss I) having raking struts and king post (Fig 5). The first-floor frame is exposed at ground-floor level in the living room (Fig 6) and the entrance hall and comprises a main east-west beam from which runs a single main northsouth beam, which in turn holds the common joists.

Southern extension

The roof over this section of the farmhouse is of three trusses, with the first truss of this phase (truss 3) set immediately adjacent to truss 2 in the northern older section. All trusses have principal rafters, tiebeams, king posts, and raking struts (Fig 7). There are a single set of purlins between the trusses. The first-floor frame of the southern extension is also visible at ground-floor level. There is an east-west main beam immediately adjacent to the east-west beam of the primary building from which runs a north-south main beam which holds the common joists (Fig 8).

Barn

Situated approximately 20 m to the south-west of the farmhouse is what is believed to be a late-eighteenth century barn, comprising four bays, thought to have originally been stables with a loft above. Central steps on the west elevation give access to the upper floor. It is constructed of red brick with a plain tiled roof and rendered raised gables.

The roof comprises of two principal rafter and tiebeam trusses, two bays being separated by a wall only, with raking struts from the tiebeams to the principals. There are two purlins to each slope in the southern two bays (a single set in the northern two bays) with straight braces running from the upper purlins to the principal rafters (Fig 9). The northern two bays only have a single set of purlins though. It is noticeable that many of the timbers show clear signs of reuse. The first-floor frame is exposed at ground-floor level and comprises four east-west main beams, carrying north-south joists (Fig IO). The joists of bay 3 do not sit in the original housings.

SAMPLING

A dendrochronological survey was requested by Tim Allen, Historic England Inspector of Ancient Monuments, to enhance understanding of the historic development of this complex and hence inform significance of these two buildings located in the lower court. It was hoped that this would elucidate the relationship between the scheduled upper court and unscheduled lower court, thereby potentially supporting a review of the current designated area and securing a future for the complex.

A total of 54 timbers from the floors and roofs of the farmhouse and barn was sampled by coring. Each sample was given the code COD-C and numbered $01-54$. The location of all samples was noted at the time of sampling and has been marked on Figures II-I5. Further details relating to the samples can be found in Table I. Trusses and floor beams have been numbered from north to south in both the barn and the farmhouse, with other timbers being numbered on an east-west basis as appropriate.

Assessment of the dendrochronological potential of the timbers in the roof of the oldest northern section of the farmhouse, indicated that fast grown, young, trees had been utilised. The timbers therefore contained insufficient numbers of rings for secure analysis and so this roof was rejected and excluded from this programme of dendrochronological analysis. Additionally, although sampling would have required Scheduled Monument Consent, a single timber within the castle remains was assessed but this was also clearly unsuitable and hence excluded from this analysis.

ANALYSIS AND RESULTS

Ten samples (three from the farmhouse and seven from the barn) were, following initial preparation in the laboratory, found to have too few rings for secure analysis and so were discarded prior to measurement. The remaining 44 samples were prepared by sanding and polishing and their growth-ring widths measured; the data of these measurements are given at the end of the report. All samples were then compared with each other by the Litton/Zainodin grouping programme (see Appendix), resulting in 36 samples matching to form four groups.

Two samples from the roof over the southern section of the farmhouse matched each other and were combined at the relevant offset positions to form CODCSQ0 I, a site sequence of 123 rings (Fig 16). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to span the period AD 14301552. The evidence for this dating is given in Table 2.

Twenty-five samples from the roof and floor-frame of the southern section of the farmhouse, the floor-frame of the northern section of the farmhouse, and the roof of the barn, grouped to form CODCSQ02, a site sequence of 179 rings (Fig 17). This was compared to a series of relevant oak reference chronologies and successfully dated as spanning the period AD 138।-1559 (Table 3).

Five samples taken from the floor-frame of the barn, matched each other and were combined to form CODCSQ03, a site sequence of 109 rings (Fig I8). Attempts to date this site sequence by comparing it against the reference chronologies resulted in it being dated with a first-measured ring date of AD 1508 and a last-measured ring date of AD 1616. The evidence for this dating is given in Table 4.

Finally, four samples from the roof and floor-frame of the barn were grouped and combined to form CODCSQ04 (Fig 19), a site sequence of 80 rings. Following comparison with reference chronologies, this site sequence was found to span the period AD 1648-I727 (Table 5).

Attempts to match the remaining eight ungrouped samples by comparing them individually against the four site chronologies and reference chronologies were unsuccessful and thus all remain undated.

INTERPRETATION

Tree-ring analysis has resulted in the successful dating of 36 timbers from both the barn and farmhouse. To aid interpretation each area is dealt with separately below and illustrated in Figure 20. Felling date ranges have been calculated using the estimate that mature oak trees in this region have 15-40 sapwood rings (95% confidence range).

Farmhouse

Primary building - floor frame

Eight of the samples taken from the floor frame of the primary building have been dated. Two of these (COD-C06 and COD-C07) representing common joists have complete sapwood (ie the last ring of growth before felling is present) and a last-measured ring of AD I538, the felling date of the two timbers represented. Two further samples (CODC0I and COD-C02) were taken from common joists that had complete sapwood but a small number of the outermost rings were lost during the sampling procedure due to the fragile nature of sapwood. A note was made of the amount in millimetres of sapwood lost and this was then used to estimate how many rings may have been lost. Thus it appears that sample COD-C0I has lost c 3 rings and COD-C02 c 2 rings which when added to the last-measured ring dates of these samples indicates that they were felled in cAD 1539 and cAD 1537, respectively.

Sample COD-C08, also from a common joist, has a heartwood/sapwood boundary ring date of $A D$ I5 5 , giving an estimated felling date within the range $A D$ I53।-55 (allowing for this sample to have a last-measured ring date of AD 1530 with incomplete sapwood). This is clearly consistent with the timber also having been felled in the late AD 1530s.

The other three dated samples from this floor, representing two joists and the main north-south beam, do not have the heartwood/sapwood boundary ring date but with last-measured ring dates of AD 1494 (COD-CI4), AD 15 I6 (COD-C23), and AD I483 (COD-C24) these have a terminus post quem for felling of AD I509, AD I53I, and AD 1498, respectively, not inconsistent with these timbers also having been felled in, or around, AD 1538. This interpretation is supported by the overall level of similarity between the eight dated individual samples, with COD-C23 and COD-C24 matching with a t-value of 11.2 suggesting that they may be derived from the same-tree.

Southern extension - roof

Eight of the samples taken from the roof over this part of the farmhouse have been dated, six of which have the heartwood/sapwood boundary ring. In all cases this is broadly contemporary and suggestive of a single felling. The average heartwood/sapwood boundary ring date is AD 1545 , allowing an estimated felling date to be calculated for the six timbers represented (three principal rafters, two king posts, one raking strut) to within the range AD 1560-85. Although the other two samples, COD-CI5 and COD-CI6, do not have the heartwood/sapwood boundary ring date, the level of similarity seen between them and the other dated roof samples suggest these were also felled in AD 1560-85 (Table 6). Indeed, as sample COD-CI5 matches COD-C20 at a value of $t=$ 15.5, it is quite possible that these two timbers were cut from the same tree.

Southern extension - floor frame

Six of the samples, all representing commons joists in the floor of this extension have been dated, but only one of these has the heartwood/sapwood boundary. Sample CODC03 has a heartwood/sapwood boundary ring date of AD 1538 which, allowing for this sample having a last-measured ring date of AD I559, provides an estimated felling date range of AD I560-78.

The other five dated samples from this floor do not have the heartwood/sapwood boundary and so estimated felling dates cannot be calculated for them. However, with the last-measured ring dates ranging from AD 1503 (COD-C04) to AD 1542 (COD-C09), these produce a terminus post quem for felling ranging from AD I5I8 to AD I557. Again the level of similarity between the samples suggests that this is a coherent group and that all six dated common joists were probably felled in the range AD I560-78.

Barn

Roof

Eight of the roof timbers of this building have been successfully dated. Seven samples have the heartwood/sapwood boundary which suggests three separate fellings.

The earliest relates to sample COD-C34, representing a raking strut, with a heartwood/sapwood boundary of AD I523, giving an estimated felling date range of AD 1538-63. Three others, COD-C35, COD-C36 and COD-C38 representing a wall plate and two purlins, have slightly later heartwood/sapwood boundary rings, the average of which is AD I545, giving an estimated felling date range of AD I560-85. All three of these latter samples were taken from timbers which showed clear signs of reuse. The dated sample COD-C37, representing a purlin, does not have the heartwood/sapwood boundary ring date but with a last-measured ring date of AD 1493 this has a terminus post quem for felling of AD 1508, making it likely that this timber was also felled in either AD I538-63 or AD I560-85.

Two other samples (COD-C28 and COD-C29) were taken from a tiebeam and principal rafter with complete sapwood but the outer c 2 mm of sapwood was lost during the sampling procedure. As above this suggests the loss of a single ring for both samples giving them felling dates of cAD 1727 (COD-C28) and cAD 1728 (COD-C29). A third sample, COD-C40 from a tiebeam, has a similar heartwood/sapwood boundary ring to COD-C28 and COD-C29, making it likely that this timber was also felled in the late $A D$ 1720s.

Floor frame

Six of these samples have been dated, five of which have the heartwood/sapwood boundary ring which suggests two separate fellings.

The earliest of these fellings is represented by four samples (COD-C47, COD-C48, COD-C49, and COD-C52) from joists. The average heartwood/sapwood boundary ring date of AD 1599 gives an estimated felling date for these joists of AD 16|7-39. This allows for sample COD-C49 having a last-measured ring date of AD 1616 with incomplete sapwood. Sample COD-C50, also from a joist, does not have the heartwood/sapwood boundary ring and so an estimated felling date range cannot be calculated for it, except to say that with a last-measured ring date of AD 1576 the timber represented has a terminus post quem for felling of AD I591. Whilst it could in theory represent the inner section of a long-lived tree felled in AD I727 (see below), it appears far more likely that it was felled in the early-seventeenth century. This interpretation is supported by the overall level of similarity between it and the other early-seventeenth century timbers from this floor frame. Four of these dated joists are from bay 3 where the joists do not sit in the original housing in the main beam.

A final dated sample representing a main beam in this floor frame has complete sapwood and the last-measured ring date of AD I727, the felling date of the timber represented.

DISCUSSION

The earliest extant timbers identified are in the floor of the northern section of the farmhouse, thought to represent the oldest part of the farmhouse. This group of samples, representing common joists, joists and a main beam with no evidence of reuse, have been dated as being felled in the late AD I530s. This suggests that the primary construction of the farmhouse potentially occurred somewhat earlier than the seventeenth century date indicated in the listing and supports recent observations that the timberwork may have been of sixteenth century origin. It is unfortunate that the roof over this northern section of the farmhouse was unsuitable for dendrochronological analysis as the provision of independent dating evidence for this element would have provided further evidence for the sixteenth-century origins.

The southern extension of the farmhouse is now known to incorporate timbers in the floor frame that were felled in the range AD 1560-78 and in the roof that were felled in the range AD 1560-85. The similarity in the felling date ranges calculated for the floor frame and roof suggests the timber utilised in both elements was felled as part of a single felling programme in the second half of the sixteenth century. Further evidence to support this interpretation is the potential same tree match identified between a joist (COD-CII) and a principal rafter (COD-CI8); these samples match each other at a value of $t=10.3$.

Timbers dating to the sixteenth century were also identified in the roof of the barn with timbers now known to have been felled in AD I538-63 and AD I560-85, the former being broadly coeval with the primary construction of the farmhouse and the latter being broadly contemporary with the floor-frame and roof timbers in the southern extension of the farmhouse. Four of these roof timbers showed clear evidence of reuse and it appears possible that these timbers may have been reused from another building, or buildings, onsite that were of similar date to the two phases of construction identified in the farmhouse. Several common joists from the floor-frame in the barn were dated as being felled in AD 1614-39 but several of these joists did not actually sit in the original housings of their associated main beam. It is therefore suggested that these seventeenth century timbers represent a significantly later repair or modification, reusing timbers from another building. The latest dated timbers from the barn, three roof timbers and a main floor beam were felled in the late AD 1720s and it is thought likely that construction of the barn occurred very shortly after their felling. The barn has previously been stylistically dated to the late-eighteenth century but the results of this analysis suggest a slightly earlier construction, utilising a significant amount of reused sixteenth century timbers in the roof and at some point during repairs or modifications incorporating reused material in the floor-frame dating to the seventeenth century.

Site sequences $\mathrm{CODCSQ0}$ I and CODCSQ 02 can be seen to match each other at the significant value of $t=5.8$ which might suggest the same or adjacent woodland sources were utilised for the timber represented by the samples in these site sequences. It can be seen that both of these site sequences match most closely those reference chronologies from sites in the north-west and Derbyshire (Tables 2 and 3). Site sequence CODCSQ03 has low but noteworthy matches against both CODCSQ0I ($t=4.1$) and CODCSQ02 (t $=3.1$) and again can be seen to match most highly against sites in the north-west and the Midlands. Site sequence CODCSQ04 is somewhat later than the others; the reference chronologies against which it has dated most highly against are in Leicestershire and Lincolnshire (Table 5), to the south of Codnor Castle. This might suggest a change in woodland source or may simply be a result of reference chronologies held for that period. Although it is not possible to determine exactly where the woodland source/s were they are likely to have been relatively local.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring Analysis of Timbers from Teversal Manor Garages, Sutton in Ashfield, Nottinghamshire, Centre for Archaeol Rep, 40/2003

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G 2005 The Tree-ring Dating of a Number of Bellframes in Leicestershire, Centre for Archaeol Rep, 5/2005

Arnold, A J, Howard, R E, and Litton, C D, 2008a Nottingham Tree-ring Dating Laboratory, Vernacular Architect, 39, I I9-28

Arnold, A J, Howard, R E, and Litton, C D, 2008b Shenton Hall, Shenton, Leicestershire: Tree-ring Analysis of Timbers from the Dovecote, English Heritage Res Dep Rep Ser, 22/2008

Arnold, A J, and Howard, R E, 2006 unpubl Halstead Manor, Stixwold, Lincolnshire, unpubl computer file STXASQOI, NTRDL

Arnold, A J and Howard, R E, 2006 Kingsbury Hall, Kingsbury, Warwickshire: Tree-Ring Analysis of Timbers, Centre for Archaeol Rep, 53/2006

Arnold, A J and Howard, R E, 2008 St Martin's Church, Alfreton, Derbyshire: Tree-ring Analysis of Timbers from the Belfry Floor, English Heritage Res Dep Rep Ser, 45/2008

Arnold, A J, and Howard, R E, 2009 unpubl 2-4 Church Street, Leek, Staffs, unpubl computer file $\angle E K C S Q O$ I, NTRDL

Arnold, A J, and Howard, R E, 2009 Bentley Hall, Derby Lane, Hungry Bentley, Near Ashbourne, Derbyshire: Tree-ring Analysis of Timbers, English Heritage Res Dep Rep Ser, 33/2009

Arnold, A and Howard, R, 2010 St Firmin Church, Thurlby, Lincolnshire: Tree-ring Analysis of Timbers of the Bellframe and Tower, English Heritage Res Dep Rep Ser, 72/2010

Arnold, A J and Howard, R E, 2012 Tree-ring Analysis of Timbers from Crag House Farm Barn, Otley Old Road, Cookridge, Leeds, NTRDL rep

Arnold, A J and Howard, R E, 2013 Tree-Ring Analysis of Timbers from Howley Hall Farm, Morley, West Yorkshire, NTRDL rep

Arnold, A J and Howard, R E, 2014 Dandra Garth, Garsdale, Cumbria: Tree-Ring Analysis of Timbers, English Heritage Res Rep, Ser, 22/2014

Groves, C, I997 Dendrochronological Analysis of Ightfield Hall Farm Barn, Ightfield, Whitchurch, Shropshire, Anc Mon Lab Rep, 91/97

Groves, C, Locatelli, C, and Howard, R E, 2004 Tree-ring Analysis of Oak Timbers from Church Farm, Bringhurst, Leicestershire, Centre for Archaeol Rep 56/2004

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994a Nottingham University Tree-Ring Dating Laboratory Results: General list, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, I994b Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME Dendrochronological Survey 1992-93, Vernacular Architect, 25, 4I-3

Howard, R E, Laxton, R R, Litton, C D, Morrison A, Sewell, J, and Hook, R, 1996
Nottingham University Tree-Ring Dating Laboratory: Derbyshire, Peak Park and RCHME Dendrochronological Survey 1995-96, Vernacular Architect, 27, 8I-4

Howard, R E, Laxton, R R, and Litton, C D, 1999 Tree-ring Analysis of Timbers from Bretby Hall, Bretby, Derbyshire, Anc Mon Lab Rep 43/99

Howard, R E, Laxton, R R, and Litton, C D, 2000 Tree-ring Analysis of Timbers from the Buildings and Living Trees at Stoneleigh Abbey, Stoneleigh, Warwickshire, Anc Mon Lab Rep, 80/2000

Howard, R E, Laxton, R R, and Litton, C D, 2005 Tree-ring Analysis of Timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep, 40/2005

Laxton, R R, Litton, C D, Simpson, W G, and Whitley, J P, 1982 Tree-ring Dates for Some East Midlands Buildings: Table I, no.2, Transaction of the Thoroton Society of Nottinghamshire, 86, 76-7

Tyers, I, I997 Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

Tyers, I, I 999 Dendrochronological Analysis of Timbers from Black Ladies, near Brewood, Staffordshire, ARCUS Rep, 484

Tyers, I, 200 I Dendrochronological Analysis of Timbers from Headlands Hall, Liversedge, Yorkshire, ARCUS Rep, 574c

Worthington, M J, and Miles, D W H, 2004 The Tree-ring Dating of New Hall, Eaton-under-Heywood, Shropshire, Centre for Archaeol Rep, 2/2004

TABLES

Table I: Details of samples from Codnor Castle, Castle Lane, Derbyshire

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Farmhouse						
Floor - primary (or northern section)						
COD-C01	East common joist 4	111	19c(+c3 lost)	1426	1517	1536
COD-C02	East common joist 6	96	14c(+c2 lost)	1440	1521	1535
COD-C06	West common joist 4	99	13C	1440	1525	1538
COD-C07	West common joist 5	85	12 C	1454	1526	1538
COD-C08	West common joist 6	150	15	1381	1515	1530
COD-C14	North-south beam (north)	99	--	1396	----	1494
COD-C23	Entrance - Joist I	111	--	1406	----	1516
COD-C24	Entrance - Joist 2	81	--	1403	----	1483
COD-C25	Entrance - Joist 3	NM	--	----	----	----
COD-C26	Entrance - Joist 4	70	h/s	----	----	----
COD-C27	Entrance - back plate/beam	48	h/s	----	----	----
Floor - southern extension						
COD-C03	East common joist I	121	21	1439	1538	1559
COD-C04	East common joist 2	89	--	1415	----	1503
COD-C05	East common joist 5	63	--	1460	----	1522
COD-C09	West common joist I	75	--	1468	----	1542
COD-CIO	West common joist 2	98	--	1444	----	1541
COD-CII	West common joist 3	78	--	1437	----	1514
COD-CI2	West common joist 4	NM	--	----	----	----
COD-Cl3	Main east-west beam (south)	NM	--	----	----	----
Roof - southern extension						
COD-CI5	East principal rafter, truss 3	94	--	1415	----	1508
COD-C16	West principal rafter, truss 3	120	--	1411	----	1530
COD-CI7	King post, truss 3	120	h/s	1433	1552	1552
COD-Cl8	West principal rafter, truss 4	110	01	1438	1546	1547

Table I (cont)

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
COD-C19	King post, truss 4	112	h / s	1430	1541	1541
COD-C20	East principal rafter, truss 5	117	h/s	1431	1547	1547
COD-C21	West principal rafter, truss 5	120	h/s	1426	1545	1545
COD-C22	West raking strut, truss 5	81	h / s	1460	1540	1540
Barn						
Roof						
COD-C28	Tiebeam truss 1	69	$12 \mathrm{c}(+\mathrm{cl}$ lost)	1658	1714	1726
COD-C29	West principal rafter, truss I	53	$12 \mathrm{c}(+\mathrm{cl}$ lost)	1675	1715	1727
COD-C30	East principal rafter, truss I	56	13	----	----	----
COD-C31	East raking strut, truss I - reused	85	--	----	----	----
COD-C32	West principal rafter, truss 2	51	09C	----	----	----
COD-C33	East principal rafter, truss 2	NM	--	----	----	----
COD-C34	East raking strut, truss 2	69	h/s	1455	1523	1523
COD-C35	West plate - reused	73	h/s	1468	1540	1540
COD-C36	West purlin, truss I to north extension - reused	131	h/s	1422	1552	1552
COD-C37	East purlin, north extension - reused	73	--	1421	----	1493
COD-C38	East purlin, truss I to north extension - reused	133	h/s	1412	1544	1544
COD-C39	East upper purlin, truss 2 to south wall	77	h/s	----	----	----
COD-C40	Tiebeam, truss 2	66	h/s	1648	1713	1713
Floor						
COD-C4I	Beam I	72	13	----	----	----
COD-C42	Beam 2	58	11 C	1670	1716	1727
COD-C43	Beam 3	71	18C	----	----	----
COD-C44	Joist 9, bay 1	NM	--	----	----	----
COD-C45	Joist 5, bay 2	NM	--	----	----	----
COD-C46	Joist 8, bay 2	NM	--	----	----	----
COD-C47	Joist 4, bay 3	77	h/s	1528	1604	1604
COD-C48	Joist 6, bay 3	88	h/s	1509	1596	1596
COD-C49	Joist 9, bay 3	109	12	1508	1604	1616

Table I (cont)

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
COD-C50	Joist 10, bay 3	50	--	1527	----	1576
COD-C5I	Joist 3, bay 4	NM	--	----	----	----
COD-C52	Joist 9, bay 4	70	h/s	1524	1593	1593
COD-C53	Joist 9, bay 5	NM	--	--	----	----
COD-C54	Joist 7, bay 5	NM	--	----	----	----

NM = not measured
$\mathrm{h} / \mathrm{s}=$ heartwood/sapwood boundary is the last-measured ring
$c(+c x$ lost $)=$ complete sapwood on timber, all or part lost in sampling, estimated number of lost rings in brackets
$\mathrm{C}=$ complete sapwood retained on sample, last measured ring is the felling date

Table 3: Results of the cross-matching of site sequence CODCSQ02 and relevant reference chronologies when the first-ring date is AD I38I and the last-measured ring date is AD 1559

Reference chronology	t-value	Span of chronology	Reference
Wakelyn Old Hall, Hilton, Derbyshire	$I I .5$	AD I4I5-I573	Arnold et a/2008a
Ightfield Hall Barn, Shropshire	10.9	AD I34I-I566	Groves I997
Howley Hall Farm, Morley, West Yorkshire	10.8	AD I4I5-I635	Arnold and Howard 20I3
Black Ladies, near Brewood, Staffordshire	9.5	AD I372-I67I	Tyers I999
Kingsbury Hall, Kingsbury, Warwickshire	9.4	AD I39I-I564	Arnold and Howard 2006
Sinai Park, Burton on Trent, Staffordshire	9.4	AD I227-I750	Tyers I997
Woodseats Hall Barlow, Derbyshire	9.3	AD I4I7-I535	Howard et a/ I996

Table 2: Results of the cross-matching of site sequence CODCSQOI and relevant reference chronologies when the first-ring date is $A D / 430$ and the last-measured ring date is AD 1552

Reference chronology	t-value	Span of chronology	Reference
Headlands Hall, Liversedge, West Yorkshire	6.9	AD I388-I487	Tyers 200 I
2-4 Church Street, Leek, Staffordshire	6.6	AD I406-I5I2	Arnold and Howard 2009 unpubl
Ordsall Hall, Salford, Greater Manchester	6.1	AD I385-I5I2	Howard et a/ I994a
Dandra Garth, Garsdale, Cumbria	6.0	AD I373-I635	Arnold and Howard 20 I4
Crag House Farm Barn, Cookridge, Leeds, Yorkshire	5.9	AD I4I6-I602	Arnold and Howard 20I2
Howley Hall Farm, Morley, West Yorkshire	5.9	AD I4I5-I635	Arnold and Howard 20I3
St Martin's Church, Alfreton, Derbyshire	5.8	AD I4I3-I560	Arnold and Howard 2008

Reference chronology	t-value	Span of chronology	Reference
St John the Baptist Church, Grimstone, Leicestershire	6.6	AD 1674-1754	Arnold et a/ 2005
Church Farm, Bringhurst, Leicestershire	6.0	AD 1664-1781	Groves et a/ 2004
Shenton Dovecote, Leicestershire	5.9	AD 1606-1719	Arnold et a/ 2008b
St Firmin Church, Thurlby, Lincolnshire	5.9	AD 1599-1792	Arnold and Howard 2010
New Hall, Eaton under Heywood, Shropshire	5.9	AD 1606-1752	Worthington and Miles 2004
Green's Mill, Snenton, Nottinghamshire	5.4	AD 1664-1787	Laxton et a/ I982
Bretby Hall, Derbyshire	5.1	AD 1494-1719	Howard et al 1999

Table 4: Results of the cross-matching of site sequence CODCSQ03 and relevant reference chronologies when the first-ring date is $A D I 508$ and the last-measured ring date is AD 1616

Reference chronology	t-value	Span of chronology	Reference
Stoneleigh Abbey, Stoneleigh, Warwicks	5.5	AD I398-1658	Howard et a/2000
Stubley Farm, Morley, West Yorkshire	5.4	AD I508-1662	Tyers pers comm
Teversal Manor Garages, Sutton in Ashfield, Nottinghamshire	5.2	AD I522-158।	Arnold et a/2003
Bolsover Castle (Riding House), Bolsover, Derbyshire	5.0	AD I494-1744	Howard et a/2005
Upper Hall, Hartshorne, Derbyshire	5.0	AD I448-16। I	Arnold et a/2008a
Bentley Hall, Derbyshire	5.0	AD I444-1675	Arnold et a/2009
Hipper Hall, Walton, Derbyshire	4.9	AD I478-1632	Howard et a/ I994b

Table 5: Results of the cross-matching of site sequence CODCSQ04 and relevant reference chronologies when the first-ring date is AD 1648 and the last-measured ring date is AD 1727

Table 6: Matrix to show the level of cross-matching, as indicated by the t-values, and the relevant offsets between dated samples from the farmhouse roof; values of $t=10.0+$ may represent timbers cut from the same tree; -- indicates either no overlap or a not statistically significant t value between samples

	COD-CI5	COD-Cl6	COD-CI7	COD-Cl8	COD-Cl9	COD-C20	COD-C21	COD-C22
COD-C15	$*$	4	--	-23	--	-16	-11	--
COD-CI6	10.6	$*$	--	-27	-19	-20	-15	-49
COD-CI7	--	--	$*$	--	3	--	--	--
COD-CI8	10.4	8.2	--	$*$	8	7	12	-22
COD-CI9	--	2.8	18.8	3.1	$*$	--	--	-30
COD-C20	15.5	9.9	--	9.3	--	$*$	5	--
COD-C21	6.3	6.3	--	7.1	--	5.4	$*$	--
COD-C22	--	3.3	--	5.1	--	--	$*$	

FIGURES

Figure I: Map to show the general location of Codnor, circled. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2: Map to show the general location of Codnor Castle, circled. © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 3: Map to show the location of Codnor Castle farmhouse (black hashing) and barn (red hashing). © Crown Copyright and database right 2015. All rights reserved. Ordnance Survey Licence number 100024900

Figure 4: Farmhouse, ground-floor plan, showing the primary building (outlined in blue) and southern extension (outlined in red) (after Charles Glenn)

Figure 5: Farmhouse, primary roof, truss I, photograph taken from the south (Robert Howard)

Figure 6: Farmhouse, primary floor frame (left of photograph), photograph taken from the north-west (Robert Howard)

Figure 7: Farmhouse, southern extension roof, truss 4 in foreground, photograph taken from the south (Robert Howard)

Figure 8: Farmhouse, southern extension floor frame (left of photograph), photograph taken from the south-east (Robert Howard)

Figure 9: Barn, truss 2, photograph taken from the north (Robert Howard)

Figure 10: Barn, floor frame with beam 2 and bay 3 in the foreground; it can be seen that the joists of bay 3 do not sit in the original housings, photograph taken from the north (Alison Arnold)

Figure II: Illustration of the farmhouse showing the location of samples COD-COI-I 4 (after Charles Glenn)

Figure 12: Illustration of the farmhouse showing the location of samples COD-CI5-22 (after Charles Glenn)

Figure 13: Ground-floor plan of the farmhouse, showing the location of samples COD-C23-7 (after Charles Glenn)

Figure 14: Sketch plan of the roof of the barn, showing the location of samples COD-C28-40

Figure 15: Sketch plan of the first-floor frame of the barn, showing the location of samples COD-C4I-54

Figure 16: Bar diagram to show the relative position of samples in site sequence CODCSQ0 I

Figure 18: Bar diagram to show the relative position of samples in site sequence CODCSQ03

Figure 19: Bar diagram to show the relative position of samples in site sequence CODCSQ04

Figure 20: Bar diagram of all dated samples, sorted by area

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

COD-C0IA III
464429583579205234206 |25 |27 |4| ||6|39 |29 |03 |20 | 23 |48 208205 |56 |2| | 33 | | 0 | 73 | $602372 \mid 5$ | 48 | | $2|38| 57|4||2995| 22|37| 66|289| \mid 35$ 144 |47|62 |54 |4| |35 $67766875755558585|8669105| 422 \mid 3$

 86 |04 | 52 | 45 | 17 | 84 | 23 | $82|60||2| 2 \mid$
COD-C0IB II।
468438586589206220205 |29|3| | 40 ||3|42|3| $99|28||9| 59207203 \mid 56$ |24 | 20 | 20 | 66 | $652292|||5|| 2||55| 6||56| 24||4| 07|39| 54|25 ~ 87| 39$ $138|59157| 57|56| 277270707579575752638277|03| 37207$ 254334264248 |97 |7| 225273275242287223 |62|72||6 $796 \mid 105$ |37|37 179 | 1094 | 32 | 27 | $70|38| 73|60| 46|49| 83|44| 69|50| 75|36| 45|578|$ 9095 | 46 | 56 | 08 | 85 | 48 | 55 | $6 \mid$ | | | | 22
COD-C02A 96
$167218174294274188125100|17| 16|28| 52|66| 45138202|85158| 9 \mid 153$ $21518620418215|206214192219222| 9|19015| 126165254183113133 \mid 49$ $115|4810412713613816623717216013510915321222| 2 \mid 5243207142180$

COD-C02B 96

 $154100|2| 158252285$ |98 | $21|029592| 65|32| 75|58| 67|7| 235 \mid 89204$ | 57 | 69 | $7|1802| 5$ | 5 | $14720822|183| 722332 \mid 6269268222$
COD-C03A 121
209230217 |77 | 88 |99 | 58 | $3316525 \mid 233200300235220334322282199312$ 247243236 | $7 \mid 209$ |98 |76 $2062|52| 42|||54| 73| 4||5| 16|197228| 90 \mid 67$ 164217291208185199255218327221163268210228225186197275212166

4643697283677370766756497378749412110711794

148
COD-C03B 121
203235 2|। | 72 | 87 |96 | 54 | $3516724824019429|23620933432428| 188294$ $252239235175201193174200212219227150173138150150205218177|5|$
179218284209 |9| 205249220312224 |7| 275218228222 19| 197284215 | 61 19022018812367777559414255374636242930423641

 140
COD-C04A 87
$1672342|2| 7260|72| 48|42| 872453002922542572422|7237250| 402 \mid 7$
। 71 | 73 |96 169 | $8722521218225521023921020|23| 217207262223198220$ $193224195226 \mid 62245204109$ |। 3 |78 |7| | 46220224222220198203196239 $282293277216|862| 5200|78| 55203|80| 67|8| 154|29| 40|27| 27|46| 75$ 165 |564| 64544835

COD-C04B 89
I53 239 2|2 |75 49 | 75 |4| |5| $2 \mid 3260252279270244243248238254$ |35 207 I78|69 2|720| |6| $1942|4| 7325920723320|2042292| 72062592 \mid 0194220$ 202 22| | 89229 |68 $2362|3|||||0| 8| 166| 452052| 8222225 \mid 98207203244$ $26827227|2||17820| 2|6| 80|69| 88|69| 78|8||50| 42|43| 32|22| 38 \mid 64$ | 52 | 5 | 5952525750495 |
COD-C05A 63
$84574877299462721215932050936729318916320021453155429727|34|$ $33938628 \mid 248253320358460383$ |42 $648|7687| 09$ |7| $370237 \mid 74252$
 125 |78 | 33
COD-C05B 63
$8486837769896282||16| 3044744| 63|4| 83 \mid 57248239528550294260358$ 356390350319240326369498 39| | 3372827093 |। 168383235 |7| 233
$147805954859583648 \mid$ |02 99 || 5 |04 |08 ||| |09 |03 | 24 | 24 |23
134173137
COD-C06A 99
5134243624605 I। 408253362363344293246266 I79 240197272254270197
 | 22 | 34 |9| | 77208253 | 52 24| |9| | $7|3232232| 8|09| 59|74| 84|47| 49 \mid 52$
 |26|87204 20| 283 I78 $2072693303|43234943623502| 278$ | 38 | | 2 | 35 COD-C06B 99
516422377457508400262362365348285 25। 267201249204297257300206 170239258705496 |04 | 32 |72 85807786 ||3|50|36||4 7884 |02
 $15|100| 56|8422| 304275188193317306|75827| 7498102137|6| 131$ 123 |86 $2081972901722042633383 \mid 430850438335320283$ |। 9 |34 |34 COD-C07A 85
389327398279234225264245263 | 78 | $21|27138| 72|64| 52|53| 59|42| 57$ 166 |76 |4| 9496 | 30 I28 I75 $2182652262882263552772473 \mid 322917392$ ||4 |95 234 | 80 | 75 23| | 84 |29 |92 $2292793324|530| 265332379 \mid 577589$
 259 ।03 87 | 49 । 84
COD-C07B 85
 1561741509292 |l $13821|2042582192882| \mid 35526525329223517489$ $11720022217917223519712419822|28332639830327632438| 1617983$
 245 10291 126 | 30
COD-C08A 150
 29| $242254250190221187213227233197167153989910012212 \mid 98$ ||4 1209687785150666067668079566963699910885163
 ||6|23||5 |08|22|34|52|62|30|26 6| $345038729 \mid 79827982$ $120104102122|47| 34178|69| 34|19| 12|37| 6||84| 75| 95|82| 66|77| 56$ 11510613014716414410075605658667980939610412011285 ||6|32|2| | 35 | $21|32| 3|||||33| 09$
COD-C08B 150
 284243253242 | $862201902 \mid 7226237$ |97|67|4896|0399|26|2097||| ।19 $958480574664646 \mid 65867959675667$ ।। 10108166

203 | $5020 \mid 242$ | 83 | 50 | 84 | 68 | 84 | 75 | $87 \mid 29$ | 09 | $32|56| 8||62| 53||9| \mid 7$

 $1|7| 23|17| 32|28||8| 43|4298| \mid 0$
COD-C09A 75
352336 39| $28024424624439930324617822821725721 \mid 228167217232278$ 254 | 82 | 73 |6| | 35 |46 |97 $22925622||85| 8520369675987||8| 0 \mid 84$ $90|20| 03|20| 0|104| 3|12|||2|| 4|45| 42||6| 6||69| 87|64| 75 \mid 59209$ |5| | 34 | 43 | 74 | 48 | $8 \mid$ | 56 | 75 | 82 |9| $2 \mid 7200227203$ |3|
COD-C09B 75
324317387300237244246352286235 I7। 223208255225227 I7। 220228269

$9|104100123113102104119106| 12130|4511315216322916416| 14 \mid 190$

COD-CIOA 98
403292279192208 |7| | $4|28723523727823528419296| 45240160164150$ $16720317|204| 49187235206166 \mid 44193304234234$ | $8130|3| 027 \mid 196203$

$545366435959629489799494|16107108| 25|18| 5|174| 43$ $87839|93| 2|10296| 28|34||8| 33|25| 56|24| 48|07| 642 \mid 3$
COD-CIOB 98
$38629221920521316414427723 \mid 24528623028919889175234190195$ |53
155190173204167185227196163150203276239233183297310267199204
$16515714924716|12| 1228988108|07| 59173|83| 30 \mid 4892544838$
$396364475267729478809210311310010912 \mid 120160156148$
$908386|0| 10|9588| 24|24||4| 23|28| 40|29| 42||||62| 3|$
COD-CIIA 78
$25634433633430929244137038331631234731634|40340| 285338277349$

207 | 88 | $3|20| 2342342|92242402| 526|2| 8|79| 65|95| 57|9522522424|$

COD-CIIB 78
26। 350337335305292436372392318303350320338398404286337278343
$29833324930228423921221016|18819| 21018620318819017|20| 202217$
207 I 81133199238223233226234212261218185158197156198233219241

COD-CI4A 99
26728021 । $13218729332742857 \mid 414480457530528546459568457434419$ 413459444426907723640798724795765538591609501698406289264243 290346400312465404279350324254 | 26 | $9121223517823 \mid 250183166165$ $3 \mid 0223$ | 81 | 37 |29 | 67 | $308888|0083| 62|98| 26|57| 39 \mid 80242243360$ 364324 22| 27222425 | 155 | 73 |94 |94 207269203 | 76 | 536785 | 39305 COD-CI4B 99
258283 2।। | $3020|28632944855943047646| 5255245644725394524404$ । 8 413444449428832747610866755824766538591607517677423290278242 285333413319440394274354321272133195212222174236250179162168 $296230180137121165129869610|89155194138| 5513918224625 \mid 342$ 366323222267223249 | 55 | $8218920020727 \mid 2101701577887145258$ COD-CI5A 94
252308298342187353270227320257285246348320293223294316203269 $21721|27| 25823|1772242| 331829626321023|30| 258228329217200219$ |9| $2352072|3| 50209|5||\mid 57665$ |96|25 |23 |07 ||| | 20 || 8$| 46|7| \mid 99$

228202 | 56 | 67 | 44 | $5624|2| 924|24423020| 257262224$ |77|75 |58|66|95

COD-CI5B 94
237308305352183357268228304258286271337305298227250319203272
$21621425124023818 \mid 229215319299259212239301262229327227204205$
$194233210214148215152117756419013|12| 107|16124| 27 \mid 37172194$
234202 |57 | 60 | $4|14824| 228232244243|84258258229177| 72|57| 67192$ 237266 |22 | 15 | 06 | 1260 | 0589 | | 8 । $0 \mid 1249695$
COD-CI6A 120
$37840529536541642038 \mid 48629859138235$ I 445390468386457448393406 $43|46029636630528832831924022529| 22833831730927326 \mid 292222$ 23।

 $168|54166| 60|782| 5|45| 28|40| 3262|2296| 52|25| 36|04| 27|4| \mid 32$ $147|06| 36|17||2| 208||55| 3899| 28|45| 44|49| 53|66| 78|30| \mid 29$ COD-C16B 120
38। 401302368408425372490280613363358462390467382477460385420 $42546429 \mid 358308287327322238225275236326306304257263298202238$

 |68|54|62|56|702|3|45|26|43|3077||598|47|27|35|06|28|3||40
 COD-CI7A 120
$2552523|82944| 3316348407430366408466$ |4062 |l0|40 $2162|220| 262$
196220202300248293313339446427447416166149201196197234205186
$1702322573|2| 88|34| 37|3|||5|| 3|55| 40|37| 47|94| 42|54| 66|5| 226$ 19524526321324424723612694 | 21 | 4 | | 74 | $8 \mid 190150192219193242125$ $9510710714512712313312816320318923820722321024521|20| 282275$ 255 34। 246334274188202262193183206190235224220214234243253248 COD-CI7B 120
$2482493122964|33223544204| 235344242 \mid$ |42 68 |। 0 |53 205222205258 196216204302247294310343433426444418 |63|44|8620। 195219209 | 88

 264324243333273186193266190182212185232215214222240221248241 COD-CI8A 110
34| $30427623321336|3863272672913| 3278283377367290287264294294$ $29423725|284166| 0994160|57| 37|79133| 65|44| 4||5|| 88|992| 3 \mid 97$

 $172|28| 3|160| 6||47| 75| 5||43| 74| 2||27| 47| 69|57| 67|59| 68|68| 45$ | 70 | 74 | 76 | 19 | 58 | 25 | 22 | $5 \mid$ | $56 \mid 55$
COD-CI8B IIO
3463002692382 |। 34837831426527528427228237036628427327029028 ।

168126176270207207202185189247256198 |7| 2||l77|88 200199245 |5।
145 | 72 | 6277 | 56 | 22 | $7 \mid$ | $4||88| 29| 53|8||74| 92|82| 76|59| 37|37| 5 \mid$
$184|30| 35162|52| 50|74| 60|3| 183|25127| 45|69| 56|73| 55173|62| 52$ 168 |74 | 78 | 10 | 70 | 20 | 22 | 45 | $46 \mid 65$
COD-CI9A 112
568480594333 34। 4303654 I। $3543484824 \mid 4384506562$ I7। 8393 |35 | 86 | 58 | $7821221233936546446345036|39348| 5384784092||\mid 48$ | 50 | 37 | 32
|42 |25 |34 |3| |70 207248 |26 $675965806|9990||6| 05206|87| 92$

203258 | 3097 ||4 96 |52 |36 |46 |40 |35 |89 $2672303562903063 \mid 8295258$
229283 24। 266222207283239213243307 |47
COD-C19B 112
5135065793413644253683963563494924083865105641738692128183 | 54 | $8321621234335846546645237|39848354| 4794162 \mid 6$ | 44 | 56 | 30 | 36 149 | 24 | 23 | $37167206249 \mid 2662596978669585$ ||2||6|96|87|86 $1731672592123|63373| 736|320306| 49|1| 14|17819619722917420| 2|\mid$ $2|725| 12996||4| 03| 44|3||5||48| 34202260237349289299323299259$ 23। 280244268229193279235223244305 I 50
COD-C20A 117
$2823|81982592432673| 43|724| 227246$ | 88 3।| 389296243245 29| $26 \mid 265$ 342285228282260286242205 | $6924|229| 40|10| 17363224|50| 45|4| \mid 36$ 140 | 19 | 20 | $242|4| 80|24| 49||5| 332| 3|86| 75|79| 74|52| 8||66| 74| 6 \mid$
 $17|125130| 25|3513079| 43|35| 2||27| 33| 59|36||||23| 64| 24| 0||2|$ 167 | 20 | 53 | $5322 \mid$ | 77 | $3||40| 66| 66|7||4||42| 3920||52| 55$
COD-C20B 117
277301175285226269289304231213223196319366311235238294255258 $3532892|229424930824020| 1622502|7| 4 \mid$ || 8 |09 397226 | 50 |4| | 39 | 37
 164 | 34 | 45 | 54 | $762|6| 47|27| 50|337|||593|| 5|0||23| 02|04| 28 \mid 54$ 166 | 27 | 25 | $3 \mid 135$ | $2|88| 45$ | $27|20| 28|30| 59|35||2| 25|64| 2||04| 27$ 173 ||6|50|55 225 |9| | 37 |4| | 62 | $78|69| 44|36| 43200|58| 45$ COD-C2IA 120
321362340290202229264170217166179212243208208170170293241223 $17720319321|2072641891552181902482042| 7|52186193121| 1092100$
 |6| 299357 | 66 | 38 |46 |45 | 36 | $7 \mid$ | | $57|958453524| 486060|06| 25$
 |73 |96 |37 | | 7 | 30 | 63 | $3||40| 33| 69|3||27||9| 42|56| 45|24||382| 07$ COD-C2IB 120
296340323284 | 83225245 |46 |90 | 49 | $8020822|2| 6205$ | $57|682852202| 7$

 166296352 | $7 \mid$ | 39 | 45 |4| | $37|65| 60|9275605034526266| 05 \mid 22$
 172 | 87 | 39 | 23 | $3|167||9| 4||36| 66| 27||9| 26| 55|60| 45|23||675| \mid 0$ COD-C22A 81
370355309344257274402 5।| 46735 । $2963 \mid 3187250354469434874938$ 5। $53548086|29| 23200|80| 84|87| 842052102932 \mid । 287260280352$ 3237655577373756685 | 22 | 44 | 50 | 45 | 52 |47 |42 | 36 | 68 | 85 | 89 170266263256230220 | 84233 | $30|46| 52|80| 27|60| 75|28| 32|38| 36 \mid 64$ 180
COD-C22B 81
402302317344259266430480466356294315190244358469430914336 $57525 \mid 8385$ | 36 | 18205 | 80 | 84 | 88 | $8420220828820929229028 \mid 355$ 3257554546583726289 | 23 | 48 | 55 | 45 | $47|48| 46|37| 65|84| 95$ $1662592692442332|7| 89|92| 70|4||48| 82|30| 55|78| 36|29| 43|38| 64$ 175
COD-C23A 111
355362452 59| 39| 222235 | 20 | 02 | 5 | | 87207220 | $27 \mid 75259$ | 78227 | 82 20|
$38536543|1444| 456556324943585742$ |00 |24 | 36167244 |96 ||0 $975859709|1239| 96||7| 59| 3||44| 09| 28|34| 42||883|| 7$ | 52 |99 20| $2043122|4| 248773109|39| 42|23| 35|352883| 5238297259$ 287384285242200 | 37 |70 232262292285288 |63 |90||5 8559 9| | 05 |46 935636697689 |।| | || 83799 |
COD-C23B 111
 377369435 |37 $4935614936473450695296|24| 34 \mid 75233184$
 162206 20| $20|3| 72|2| 23877|||0| 38| 44| 30|28| 342832892643 \mid 0267$ 280396309238 |97|4| | $7522826 \mid 289283290$ | 66 | 90 || $2836 \mid 9694$ |44 955246717590106 |। 3848392
COD-C24A 81
$65772346|46| 374430494350|96| 568962$ | 37 | 38 | 59 | 84 |00 | 54226 |73 26518420129228733210446574753314745708383209217197
321398296185163137156126188221183242323314196193168214172174 | 85 | $7|2342642843| 6274250239$ | 33 | 38 |5| $24|24| 170|8425823| 2942 \mid 4$ 266
COD-C24B 81

256 । 8119628330030793474360503250555365105210221194

|7| | 74236264279323303225220 |36 | $21 \mid 43240238163$ |77 $2722 \mid 7294223$
261
COD-C26A 70
$\begin{array}{llllllllllllllll}185 & 86 & 63 & 50 & 58 & 48 & 51 & 51 & 59 & 68 & 81 & 82 & 103 & 67 & 86 & 72 \\ 54 & 63 & 38 & 56\end{array}$
$6976584642457299232254 \mid 40199257237155$ | 35 | $05150123 \mid 40$
| 85 | $8|143| 2295$ | 33 | 22 | $36||7||||29| 56| 84|45| 77|39| 42|682||\mid 49$
|43 | 23 |07 |08 | 67 || 8 | 26 | 26 | || 88
COD-C26B 70
I9। 726951524757435268838210366857761543860
$677|59464| 5783|03| 98249|44208257237| 59|29| 06|54| 24 \mid 25$
| 56 | 79 | 42 | 2799 | 32 | 25 | $3|||7|| 4| 22|56| 86|58| 54|42| 57|54205| 50$ 139 |26 |09 |05 |65 |23 |2| | 20 |079|
COD-C27A 48
405309260197196168249188180249278285214267216 | 85 |2। $21|197| 86$ 253299347250122 |। $521024426818522029732621727945936636 \mid 24381$
154 170169225 226292343370
COD-C27B 48
$42329725520119816722317017625226229 \mid 213266220177$ |।| 207201 | 84 257296333256 | 36 | 26195240268 | 88220302322 2| 828 | $46337637226 \mid 72$ 165 | 88 ।49 232227298344393
COD-C28A 69
533579488541724759425287380417516448757670513556541292413550
$54562657243569960538327 \mid 449477469451216277254255203208$ | 87 | 65
$16017316217615422831315620222 \mid 295266180267229353207258236279$
193272212168132125188208250
COD-C28B 69
5095494585197067374 ।। 28537241349643874665352855 । 538256405531 $53062158743068860538|25| 45248 \mid 458447207284254254203201$ 191 । 71 | 59 | 66 | 66 | 68 | $6|2323| 9|482032| 9294265$ |7| $2762503282 \mid 3205285287$ 206267207 | 74 | 27 |03 | 85200 24।
COD-C29A 53
$4374396055895656|541757| 4674324 \mid 5583636533458335530335287426$ 323 30| 257234 | 73 | 35 | $832342584 \mid 3222285348$ |97 |93 || 288 |42 230 | 83 |।7||8|27|09|49|39222 $2642|3363| 79286217$
COD-C29B 53
448431609593561610443560446431425580630531458341536326284425 $3|4298266219| 78 \mid 24195236250425222284366$ |95 |94 ||| $88|4| 23 \mid 189$

COD-C30A 56
572486531541502483524514533646452531495394288521547410301317 $4|423227| 2582||2432| 4203| 57|5520| 185203224|80| 9526524 \mid 208$ |56 $2 \mid 720325788468570637980$ | 35 | 24 | $3 \mid$ | $6 \mid$ | 30253
COD-C30B 56
54248552854 I 49848 I 53352352664544753650 I $39630 \mid 520545409307306$
 $2|5| 8926687478268687584$ |3| |26|34|6| | $3325 \mid$
COD-C3IA 85
$95|75104124| 3012|99655674100| 30||511688| 2| 122106649 \mid$
$90727684588|1| 695|83| 3|100| 3966|24| 20|8| \mid 66799984$
758592 |09 | $20|00| 5|157| 0|929| 4|608| 83|43| \mid 2935564$
70747771981019188796341566646596069706772
6160674458
COD-C3IB 85
|09 |78 ||| ||3 |32 |26 |0| $7259879 \mid$ |4| ||5 ||2 98 || | |20 996098
896973886574 ||2 98 | $8|139| 04|3060||6||9| 50 \mid 80807282$
6894831211249315316392908646678990154144985363
$72707580929795818767306261525658 \quad 68717167$
5271644464
COD-C32A 51
42933329637923349438836527642656041949555367040385607195
80 I 5 । 17825036933544654 । 299244439290254246393400464292258363
319342399456556521290398369476280
COD-C32B 5 I
427353300398248504392349308434535426484535 68। 391 85776898
85 । 43 । 8525037033444454530025945228024924639239244530626 । 359
339349409 47। 552500347393332486237
COD-C34A 69

| 56 | 52 | 40 |। 3168158215286233250233145344245263257243240243289
$26444926921623825420319520926 \mid 2072471931231058077497381$
7377 l05 |6| | 25 | 24 | 72 | 59 | 33
COD-C34B 69
200244227 | 87 |4| | 69 |95 | 85 | 39 | 39 | $741922262|0244| 98|226| 8 \mid 87$
| 59 | 55 | 33 ||2 |69 |58 $2|427923325| 230|5035024| 26425024423525 \mid 284$
$27|45| 2652|8236257| 83193209269199239202$ | 28 |07 8377586988 7475 |06|55 | 33 | $20|63| 68 \mid 48$
COD-C35A 73
529592463406492456500538405398289452336361222255255425235477
446 |60 89929 | 132 |77 $45568052938754747|29| 446398452650502296$
$31039 \mid 358323297280259$ |99 | 67 |34 | 45 || 99767653749504065
444741424349405370687410964
COD-C35B 73
529605476416489467497529395403271455343366238254275423260490 454 | 449 | 99 |02 | 30 I79 456689524393542496287457392458640508284

304 39| $3483 \mid 7296280254$ |99 |7| |28 |48 |25 8674623448464854 484347394653364967707110563
COD-C36A 71
$2764|03| 4|8||82| 78266352|85272| 89|75| 47|50| 2||52| 23| 26|74| 97$

179158166149244265332198156167219219285390335170204215236267
$21622 \mid 220276240255$ | 62 | 37 | 48 |09 | 36
COD-C36B 84
212 | $3419825123528441034617323222524526822021|22228323727| 167$
|48 |40 ||6|43|0074 46 53 565066535552696773687065
77765341715963707683776110790657759648299
$10364494248635359786978|10129709| 929487107108$
|39 |24 |28 ||3
COD-C37A 73
$2642|1346308224195158225220129285157165173148| 46|40160126| 65$
$20317419321622518422822020817029926821225622124217516 \mid 146193$
195190210185234256350325254202183178164153238231176150124 | 82
|98|65 |87|9| | 70 | 82288 | 68 | 33 | 39 || $8 \mid 4389$
COD-C37B 73
$2622|43393| 42|3| 95|5| 224218|35298| 52|69| 75|5||42| 47|56| 24 \mid 72$

 $190 \mid 65$ | 80 | 94 | 75 | $8|277| 7||27| 43||8| 3988$
COD-C38A 133
386316253269280203204 | $55289257 \mid 83278$ |9| $26926 \mid 225243207299307$
24913412494152100185195237229153275293235164192226183165319
$26714526|256300248237179207| 6919523|15210273| 09|38| 17||8|| 8$
 $8893|49| 80|50| 7085$ | $03139|25| 28|09||5| 6||30|| 990|03| 35 \mid 27$ $133110881091065238525|7978699| 87|17| 2994859697$ 11855525973637698112100887373
COD-C38B I33
$3823 \mid 3250268299204$ |99 | 5 | 278252 | $8726 \mid 200268256$ 2|| $24520 \mid 295299$ 23812512897147100177199230233155270293228167188227182169310

 $8576|53| 79|5| 17785105134127|27| 09|18| 6||32| 1472| 23|33| 29$ 1301099410710354384754768168938411713693859692 11947546567676910411496897272

COD-C39A 77

|77 $2 \mid 4297265308245$ |99 | 87 | $8|174207| 90|58||3| 8722|26| 29927 \mid 242$ 218225347294228262 | 85 I $56 \mid 89242242280278$ I 84205228200 I9| $24 \mid 223$ 199239 |95 | 46 | $23929 \mid$ | 35 | $3||26| 08| 06||||43|| 7| 25| 40||4| 27| 25$ 106899510476848959485549545256796267 COD-C39B 77
 $21921834129322925818716 \mid 190236240281284193200226196196235217$ $196229|87| 45|248897| 33|25| 3||04| 04||2| 36|27||3| 49|09| 3|\mid 28$ 93998811085868159574351614262715884 COD-C40A 66
258 | 29208 |08 | $88 \mid 70284225$ |02 | 35 | $42|4393| 44|67| 56|26| 0872 \mid 08$ 93 |0| | 36 |4| | | 5 | 56 |02 60 |06 226 | 69 | $80|||||7247| 62| 60| 07| 55222$ $264274|26| 7993|24737697| 26|37| 24|47| 85|492352591662| 3279$

447437196285275280
COD-C40B 66
259 |40 202 |0| | 73 | $89270200|08| 33|40| 3392|27| 47|50| 35$ |06 68 |00

44। 433197289297268
COD-C4IA 72
|2297|93 |62 | 55 |87 243339 | $8|873564686| 8668452604429603482543$ 620347565490333279495392333579268650312251245351493559462309 $5 \mid 3395$ | 6485 | 4796 | $56|5| 146||7| 5| 106|33| 33|34| 3||54| 80228| 3 \mid$ 198 | 87 |45 |34 |65 $2 \mid 7298229$ |9| 422669202
COD-C4IB 72
| | 5 I02 | 83 | 62 | 56 I72 $2 \mid 4335$ I $859035946362864745 \mid 607433602480542$ $63634|55949434227849539| 32257926664031 \mid 1252236337498555448288$ $48438016087|1996| 47|32| 33|07| 5097|26| 4||29| 37| 44|82232| 29$ 196 | 89 | 40 | 39 |58 223286232 |92 423666200
COD-C42A 58
356664600620368207194258285354434537825538563398399439481468 $3655254122963573473753203982512242772593243312 \mid 3258$ 28। 28। 270 |4416925427021628025227। 190190260298242244382227354315
COD-C42B 58
35 I 64358361637620219325928737746955 I 815540579401396440487465
366535404301360352378320398254227271259303335221258285270263
| 47 | 73244274207286252 27। | 90 |9| 255292239237375233 34| 3।3
COD-C43A 71
|26|83 249294323 |9| | 76 | 88 |84 239323229234235233 |7| 204232205265 242250232250264237255201 | 79 | 57 |। 4 |48 $24030038948|48| 4|\mid 450333$ $28026|22329947634233439| 2|0| 86209|59| 4||56| 4||49| 2799|60| 58$ $2|9| 37 \mid 45$ | $429 \mid 78706972$ ||3 | 22
COD-C43B 71
199 | $7|25226| 3342|6| 86|85| 8625230923423823|239| 52209232208258$ 256242 24| $24227222924920 \mid 170$ | 54 | | 2 | 5 | 237297388475497403453355
 224 |3| | 44 | 309378695880 |। 9 ||6
COD-C47B 77
1356463 |। $01301982|2| 5|1922302372| 9302192748565126|37| 54$ $24219021833733237326739027315892989510512210710010 \mid 206260$ $20516423025023023212585170|73124| 40239|17| 25$ | $24|678| 6342$

COD-C47B 77
|4| 6573 |03 |29 $2022|9| 3|17423| 2282||288| 8883878| 102|57| 64$
 $208|392302292| 8234|3078| 79|68||6| 37257||7|| 6|37| 56855639$ 50336893 ||7|3| |09 | $2955739 \mid$ | 33 | 56 | 87 |22 | $662 \mid 2$

COD-C48A 88

424600598546495550240308243 |9| 239235343 34| 279 29| |47 |94 226 |27
57358064636343871062151259974671109214382 |l6|l3
$106|13| 62|5| 192108|279382778985102| 15102979884109$ | 32
|0| | 208796957672 |।| | 68 | $32|37| 88|28| 25|26| 4666504547$
3437324450726770
COD-C48B 88
$45660959454649655 \mid 247304243$ |9| $2362473 \mid 5325278288$ । 5 । 189233 |26 $5440746257605887\|\|229|27997066| 1396 \mid 3395\| 3\| 2$
|0| ||6|59 |5| |90||| |24988| $689086|0|||598999478| 04| 27$
I0| | 369489 |00 8279 |07 |60 | 30 | 38 | 90 | 30 |2| |2| | $5870554|5|$
4334414344736675
COD-C49A 109
2062183274672971056354658987 |।| | 26315259 |42 253 |48 |93 340 1046255 । $39128145200981932 \mid 822017317911959775799103126$ $14|89| 2920|23025| 194223|56| 1694107|24| 09|37| 428766|30| 5 \mid$ 127 |08 220 | 89 | 57 | 34 |00 73 ||3|42 99 | $6426||29| 39| 58 \mid 98997648$ $475 \mid 75$ ||| | 23 |00 96 |2| $597 \mid$ ||| |2| |09 |09 $76|32| 63|||\mid 46225$ |4| | 46 | 66 ||6|23 8289 |3| |06
COD-C49B 109
$2|72263| 2462308$ || $875457 \mid 7993$ |। | |3| $3|9260| 40259$ |44 |94 349 976956 | 33 | 30 |5| 200 |0| |99 208234 | 67 | 82 || 5 5| $756|\mid 02$ || 8 |2| 14892 | 29 |9| $2232542|02| 8|62||292||4||8||8| 4||508666| 30| 44$ |29 |03 2|4 | 86 |6| |23 |00 76 ||5 |53 97 |6| 264 | 28 | 35 |60 200897349
 $1431431781081238796 \mid 2896$
COD-C50A 50
350 । 42 । 0382194247332445240338275248313480353103104104108 |93 $27|52238643| 3735 \mid 8455280362276228$ |00|73223|30|03937|77|7| $2582 \mid 988$ | 87 | 47236 | 87 | 5 | | 24 | 65
COD-C50B 50
353 |3| |03 87 |65 $26229044722335527523632253036 \mid 96$ |02 |02 ||5 209 $278547444379399566430260338204|40| 0|183198| 64871056670169$ 282 |96|2| | 72 | 27223 |9| | 72 | 29 ||2
COD-C52A 70
$259|5| 1863||96597098| 0484| 19722|2| 85196|53209| 3460102$ | 10 | 35 | 20 | | $8 \mid 4785$ |3| | $28|43| 79|54| 54|62| 43539394|07| 27 \mid 38$
 326 ।44 9367545274 । 00 | $4 \mid$ | 26
COD-C52B 70

 |02 82 ||9 |65 |55 |26 |92 |74 |59 |63 ||3 |||| | | 259225252289209 |96 240 324 |49 8| $6959547 \mid$ | 05 | 35 | 30

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master TreeRing Chronology and its uses for Dating Vernacular Buildings (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI , then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer
rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure AI: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H/S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the
sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Figure A5 if the widths shown are 0.8 mm for $C 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C04, then the corresponding width of the site
sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 199।; Laxton et al I988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of $4 \mid(=50-9)$. If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I 506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it
when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 200 I) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526 , a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full complement of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.

5. Estimating the Date of Construction. There is a considerable body of evidence

 collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 505). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, Fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to crossmatch it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to I981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et a/ I988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in I835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

Bar Diagram

0	1	1	1	1	1	1	1	1	1	1	
0	20	30	40	50	60	70	80	90	100	110	

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-AOI and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences.

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely.

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, I 998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I 992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 5I-6.

Laxton, R R, Litton, C D, and Zainodin, H J, I988 An objective method for forming a master ring-width sequence, $P A C T, 22,25-35$

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 200 I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7
Litton, C D, and Zainodin, H J, I99। Statistical models of dendrochronology, / Archaeol Sci, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, I 995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

Historic England Research and the Historic Environment
We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside Historic England up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Report Series incorporates reports by the expert teams within the Investigation\& Analysis Division of the Heritage Protection Department of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series

