The Bede House, Church Lane, Lyddington, Rutland

Tree-Ring Analysis of Oak Timbers
Alison Arnold, Robert Howard, and Cathy Tyers

THE BEDE HOUSE CHURCH LANE LYDDINGTON RUTLAND

Tree-Ring Analysis of Oak Timbers

Alison Arnold, Robert Howard, and Cathy Tyers

NGR: SP 8758797005
© Historic England
ISSN 2398-3841 (Print)
ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

SUMMARY

Dendrochronological analysis was undertaken on 100 of the 113 samples obtained from this building, producing five dated site chronologies comprising 81 samples. Interpretation of the sapwood indicates a number of different phases of felling of timbers ranging from the late-twelfth/early thirteenth centuries to the lateeighteenth century. A small number of timbers have been identified that may be associated with the early development of the medieval palace of the bishops of Lincoln of which the Bede House is the sole surviving block. The majority of the dated timbers were felled during the fifteenth and early sixteenth centuries and appear likely to be associated with several different documented phases of redevelopment or remodelling of the medieval palace. The later timbers identified appear to be associated with the change of use to an almshouse and subsequent repair works or modifications.

CONTRIBUTORS

Alison Arnold. Robert Howard, and Cathy Tyers

ACKNOWLEDGEMENTS

First we would like to thank Janet McAllister and all of the on-site English Heritage staff who were very helpful and supportive at all times. We would also like to thank Tim Allen, Historic England Inspector of Ancient Monuments, for his help in arranging access to the building and his enthusiasm and support throughout the sampling programme. Finally, we would like to thank Nicola Stacey, former Senior Properties Historian at English Heritage, for requesting the dendrochronological programme and Peter Marshall and Shahina Farid (Historic England Scientific Dating Team) for commissioning and facilitating this work and for providing information and advice during sampling, analysis, and reporting.

ARCHIVE LOCATION

Leicestershire \& Rutland Historic Environment Record
Historic \& Natural Environment Team
Leicestershire County Council
County Hall
Glenfield
Leicestershire
LE3 8RA
DATE OF INVESTIGATION
2011-14

CONTACT DETAILS
Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 1FT
01159603833
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk
Cathy Tyers
Historic England
4th Floor
Cannon Bridge House
25 Dowgate Hill
London EC4R 2YA
02079733000
cathy.tyers@historicengland.org.uk

CONTENTS

Introduction 1
Sampling 2
Analysis and Results 2
Interpretation 3
Great Chamber/Presence Chamber roofs 4
East-end roof. 4
Presence Chamber ceiling (westernmost bay) 4
Bedesman room ceilings 4
West roof over small inner chamber. 5
Pentice 5
Stair treads up to attic 6
Great Chamber/Presence Chamber partition wall 6
Cupboard under stairs adjacent to porch 6
Doors 7
Attic floorboards above small inner chamber 7
Porch 8
Attic partition wall above the Great Chamber/Presence Chamber 8
Chapel/Bedeswoman rooms partition walls and stair framing 8
Presence Chamber niche (cupboard) 9
Chamber (shop) ceiling. 9
Discussion and Conclusion 9
Late-twelfth - mid-thirteenth century 9
Late-fourteenth to mid-fifteenth century 10
Later fifteenth - early sixteenth century 10
Early seventeenth - late-eighteenth century 11
Woodland Source 12
Undated timbers 13
References 14
Tables 18
Figures 28
Data of Measured Samples. 62
Appendix: Tree-Ring Dating 87
The Principles of Tree-Ring Dating 87
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 87

1. Inspecting the Building and Sampling the Timbers. 87
2. Measuring Ring Widths. 92
3. Cross-Matching and Dating the Samples 92
4. Estimating the Felling Date 93
5. Estimating the Date of Construction 94
6. Master Chronological Sequences 95
7. Ring-Width Indices 95
References 99

INTRODUCTION

The Grade 1 listed Bede House, also a Scheduled Monument, stands immediately north of the church in Lyddington (Figs 1a-c). The site and its buildings have been the subject of a number of historical and archaeological surveys (Page 1935; Thornton 2009; Woodfield and Woodfield 1983, 1988) from which the following information is summarised.

The existing early seventeenth-century almshouse has its origins as part of a medieval palace of the Bishops of Lincoln, Bishop Remegius (AD 1067-1092) having been granted the Lyddington estate towards the end of the eleventh century. Although the understanding of the early development of the site is uncertain, it is thought that a house and park were already present at the time of King John (AD 1199-1216). It was clearly in use as a major residence from at least the time of Bishop Grosseteste (AD 1235-53) with the Great Park thought to have been created at this time or possibly a little earlier in the thirteenth century. Bishop Burghersh (AD 1320-40) undertook major redevelopment and was given a licence to crenellate in AD 1336. It is thought that the extant building, the bishops private accommodation, was remodelled at this time and that the Little Park was established. There is only limited survival of architectural evidence linked with the continuation of works during the later fourteenth and early fifteenth centuries and that of the apparent remodelling of this block by Bishop Alnwick (AD 1436-49), prior to the major works carried out in the later fifteenth century by Bishop Russell (AD 1480-94) and Bishop Smith (AD 1496-1514) when the extant building began to take on its current appearance. The Lyddington estate was transferred to the crown in AD 1547 with it being granted to Gregory Cromwell in AD 1548 and then, after his death in AD 1551, to William Cecil, Lord Burghley. It lost its status as a major residence which resulted in much of the complex becoming redundant and falling into a state of decay with extensive demolition probably occurring during the latter half of the sixteenth century. Following the death of William Cecil in AD 1598, his son, Sir Thomas Cecil, $1^{\text {st }}$ Earl of Exeter, inherited the remaining buildings and it was he who is believed to have converted the bishop's residence into a hospital or almshouse. It functioned as an almshouse until the 1930s, still under the ownership of the descendants of the Cecils, and was taken into guardianship in 1954.

The north side of the extant Bede House block probably faced onto a courtyard, a timber pentice to this face probably replacing a two-storeyed gallery (Fig 2a). Doors off the pentice lead to the individual Bedesman rooms, formed by partitioning the original large ground-floor chamber. Towards the east end of the pentice, a projecting porch leads to both other ground-floor rooms and, via a stone staircase, to the Great Chamber on the first floor (Fig 2b), through which access is gained to the Presence Chamber, which retains a blocked doorway to a now lost gallery. Further west, beyond the Presence Chamber is a smaller inner chamber, perhaps an Oratory or office, as well as a garderobe. To the east of the Great Chamber are two
rooms, the inner one of which may have been a Chapel, but both of which are thought to have subsequently been Bedeswoman rooms.

The roof appears to have originally been of nine arch-braced trusses with collars, wind-braces, and moulded tiebeams (Fig 3a). A ceiling was subsequently inserted, probably in the early sixteenth century, with the attic being accessed by a set of wooden stairs. The extant roof to the east end is a post-medieval replacement (Fig 3b). Also of note are a number of plank or board doors of which some are of relatively simple construction (eg those to the Bedesman rooms), whilst others are more substantial with cross-board backing and ironwork straps and studs (Figs 4a/b).

SAMPLING

Dendrochronological analysis was requested in order to provide independent dating evidence relating to the historical development of this extant block of the medieval palace. It was hoped that this would inform understanding and significance and hence add to the research program that was being undertaken by the English Heritage Properties Historian team. Dendrochronological assessment of the potential of key areas/elements (Figs 5a-c), as identified by the Properties Historian team, was undertaken and following further discussion sampling proceeded on those key areas/elements of the building with good dendrochronological potential.

Thus, a total of 113 samples was obtained during a number of separate sampling visits, necessitated by the need to undertake some sampling outside of public access times. The majority of these samples, 92 , were obtained by coring. However, 21 from plank doors and floorboards, were obtained by in situ measurements. Whereas core samples are normally measured twice by the Nottingham Tree-ring Dating Laboratory, the in situ measurements were single-measurement series.

The locations of these samples were recorded at the time of sampling on drawings, sketch plans, or on annotated photographs (Figs 6a-20b). Each sample was given the code LYB-H (for Lyddington Bede House) and numbered 01-113 (Table 1). The trusses, frames, beams, joists, and any other appropriate elements have been numbered from east to west or south to north, with individual elements then being further identified as appropriate, apart from the door planks, stair-treads, and floorboards, which have also been located in plan or photograph (Table 1 and Figs 6a-20b).

ANALYSIS AND RESULTS

Each of the 92 core samples obtained from the Bede House was prepared by sanding and polishing. It was seen at this time that 13 samples had less than the minimum of 40 rings here deemed necessary for reliable dating and so they were
rejected from this programme of analysis. The annual growth ring widths of the remaining 79 core samples were measured, the data of these measurements, plus those of the 21 elements measured in situ, are given at the end of this report.

The data of the 100 measured series were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix). This comparative process allowed five separate groups of cross-matching samples to be formed, the samples of each respective group cross-matching with each other as shown in Figures 2125. The samples of each group combined at their indicated offset positions to form site chronologies LYBHSQ01-LYBHSQ05, these five chronologies between them accounting for a total of 81 measured samples.

Each of the five site chronologies was then compared to an extensive corpus of reference material for oak, this indicating consistent and repeated matches for each of them (Tables 2-6). Each of the five dated site chronologies was also compared to the 19 remaining measured but ungrouped samples, but there was no further satisfactory cross-matching. Each of the 19 ungrouped samples was then compared individually to the full corpus of reference data, but again there was no satisfactory cross-matching and all 19 must, therefore, remain undated.

This analysis may be summarised as follows:

Site chronology	Number of samples	Number of rings	Date span AD (where dated)
LYBHSQ01	5	137	$1085-1221$
LYBHSQ02	8	305	$1110-1414$
LYBHSQ03	49	250	$1245-1494$
LYBHSQ04	7	101	$1498-1598$
LYBHSQ05	12	131	$1623-1753$
Ungrouped	19	---	undated
Unmeasured	13	---	undated
Total	113		

INTERPRETATION

Dendrochronological analysis of a series of samples of timbers in the Bede House has produced five dated site chronologies comprising 81 of the 100 measured samples. The dated samples indicate, perhaps not unexpectedly given the history of the Bede House, that these timbers represent a number of different felling episodes related to various phases of construction/modification. To aid interpretation, the results are presented area by area below and in Figures 26a-b, with a summary of the interpretation for each area presented in Figure 27. In each case, where sapwood is not complete (ie the sample does not have the last ring produced before the tree was felled), the estimated felling date is calculated on the basis of the 95%
confidence interval for the amount of sapwood the trees are likely to have had which is $15-40$ rings.

Great Chamber/Presence Chamber roofs

Eighteen samples (LYB-H01 - LYB-H15 and LYB-H98 - LYB-H100) were obtained from these roofs (see Fig 5c). All 18 samples were measured of which 11 were dated (Figs 23 and 26a). Ten of these samples, representing a tiebeam, two collars, two archbraces, and five principal rafters, appear likely to be coeval. The date of the heartwood/sapwood boundary on those eight samples varies by only 16 years with the average boundary being dated AD 1429. Using the standard sapwood estimate gives these timbers an estimated felling date in the range AD 1444-69.

The remaining dated sample (LYB-H14) from this roof has a later heartwood/sapwood boundary, this being dated AD 1476. This, therefore, provides this timber, a tiebeam, with an estimated felling date in the range AD 1491-1516.

East-end roof

Eight samples (LYB-H16 - LYB-H23) were obtained from this roof (see Fig 5c), of which one (LYB-H23) was not measured as it contained too few rings for reliable dating. The remaining seven measured samples, representing a purlin, two collars, and four principal rafters, all dated and appear to be coeval (Figs 25 and 26a). All seven have retained the heartwood/sapwood boundary, which varies by only five years. However, four of these samples have retained complete sapwood, the outermost ring dating to AD 1744 in each case, indicating that this group of dated timbers were all likely to have been felled in AD 1744.

Presence Chamber ceiling (westernmost bay)

Five samples (LYB-H24 - LYB-H28) were obtained from the ceiling beams accessible from the attic area above the Presence Chamber (see Fig 5b). All five were measured but only one, LYB-H27, could be dated (Figs 23 and 26a). The heartwood/sapwood boundary on this sample is dated AD 1387 which, using the standard sapwood estimate, gives this ceiling joist an estimated felling date in the range AD 1402-27.

Bedesman room ceilings

Main ceiling beams were sampled in Bedesman rooms 1 and 2, as well as a series of ceiling joists in Bedesman rooms 2 and 4 (LYB-H29 - LYB-H43), the other

Bedesman rooms on the ground floor either having no exposed timbers or none that were accessible and suitable (see Fig 5a). Three of these samples were not measured as they contained too few rings for reliable dating purposes. Eight of the 12 measured series dated, indicating two distinct periods of felling (Figs 21, 23, and 26a).

Four samples, all from ceiling joists in room 3, appear to be coeval. The date of the heartwood/sapwood boundary on those three samples with it varies by only seven years with the average boundary being dated AD 1219. Using the standard sapwood estimate gives these timbers an estimated felling date in the range AD 1234-59.

The remaining four dated samples, representing a main ceiling between rooms 1 and 2 and ceiling joists from room 2, also appear likely to be coeval. Two of these have the heartwood/sapwood boundary present which varies by seven years and produces an average boundary date of AD 1478. This indicates that these four timbers were all probably felled in the range AD 1493-1518.

West roof over small inner chamber

A small number of timbers that looked potentially to have sufficient rings for analysis in this room (see Fig 5b) were sampled (LYB-H44 -LYB-H47). Three samples proved to have too few rings for reliable dating purposes so only one of these samples (LYB-H46) was measured. It was successfully dated and, with a heartwood/sapwood boundary date of AD 1461 , a felling date in the range AD 1476-1501 is obtained for this principal rafter (Figs 23 and 26a).

Pentice

A total of 13 samples (LYB-H48 - LYB-H53 and LYB-H89 - LYB-H95) were taken from the pentice located on the north elevation of the Bede House block (see Fig 5a). Two of these samples were not measured as they contained too few rings for reliable dating purposes and, of the 11 measured series, only one failed to date. Interpretation of the sapwood on the 10 dated samples suggests that three distinct periods of felling are represented (Figs 23-26a).

The earliest period of felling is represented by four samples, all from tiebeams, which are probably coeval. Two of these have the heartwood/sapwood boundary present which varies by 10 years, the average boundary being dated AD 1477. This gives these four timbers an estimated felling date in the range AD 1492-1517. The second period of felling is represented by two samples, one from a post and one from a tiebeam, which again appear coeval having heartwood/sapwood boundaries varying by five years. The average heartwood/sapwood boundary dates to AD 1584
and, thus, an estimated felling date in the range AD 1599-1624. The latest period of felling found in the pentice structure is again represented by four samples, all from posts, which appear to be coeval. All four have the heartwood/sapwood boundary present which varies by six years. The average heartwood/sapwood boundary on these samples is dated AD 1750 and hence, using the usual sapwood estimate, these timbers have an estimated felling date in the range $\mathrm{AD} 1765-90$.

Stair treads up to attic

Six samples (LYB-H54 - LYB-H59) were obtained from the wooden treads of the stairs leading up from the east end Bedeswoman rooms (former Chapel and adjacent room) landing to the attics above (see Fig 5b). All six samples were measured and dated (Figs 23 and 26b). In this case, because of the square-cut nature of the treads and the wear which they have undergone over the years, none of the timbers retain the heartwood/sapwood boundary. They do, however, show a very high level of similarity between the ring sequences (t-values ranging from 6.6 to 14.8) suggesting that these are derived from either a single tree or trees growing within a discrete area of woodland and are hence coeval. This means that not only are all the sapwood rings missing, but an unknown number of heartwood rings as well. It is thus not possible to provide a felling date range for the timbers. However, given that the latest ring on any sample, LYB-H59, is dated to AD 1449, and allowing for a minimum of 15 sapwood rings, felling of these six timbers is likely to have taken place after AD 1464.

Great Chamber/Presence Chamber partition wall

Four samples (LYB-H60 - LYB-H63) were obtained from the partition wall between the Great Chamber and Presence Chamber at first-floor level (see Fig 5c). All four samples dated indicating two distinct phases of felling (Figs 23 and 26b).

The earlier phase of felling is represented by one sample, representing the main post, this having a heartwood/sapwood boundary date of AD 1412, and thus an estimated felling date in the range AD 1427-52. The later phase of felling is represented by three samples that appear coeval having heartwood/sapwood boundary dates varying by 13 years. These three have an average heartwood/sapwood boundary date of AD 1473 giving these two cross-rails, and a stud, an estimated felling date in the range AD 1495-1513 allowing for the outermost measured sapwood ring present on LYB-H61.

Cupboard under stairs adjacent to porch

Four samples (LYB-H64 - LYB-H67) were obtained from joists forming the ceiling of an under-stair cupboard adjacent to the projecting north porch (see Fig 5a).

Again all four samples dated, and again indicating two distinct phases of felling (Figs 23 and 26b).

The earlier phase of felling is represented by one sample, LYB-H64, this having a heartwood/sapwood boundary date of AD 1373 , and thus an estimated felling date in the range $\mathrm{AD} 1388-1413$. The later phase of felling is represented by three samples that appear to be coeval having heartwood/sapwood boundary dates varying by eight years. These three have an average heartwood/sapwood boundary date of AD 1406 giving these joists an estimated felling date in the range AD 142146.

Doors

Fifteen planks from five different doors were measured in situ (LYB-H68 - LYBH82). Three of the doors were to Bedesman rooms, one door to the Chapel/Bedeswoman room 1, and another to Bedeswoman room 2, the room immediately adjacent to the stairs to the attic (see Figs 5a-b). All 15 samples dated (Figs 22, 23, and 26b). Again, given the square-cut and well-trimmed nature of these planks, none of them retains the heartwood/sapwood boundary. This, again, means that not only are all the sapwood rings missing, but an unknown number of heartwood rings as well. It is thus not possible to provide a felling date range for the planks.

The planks from each of the individual doors appear broadly coeval. Thus, the four dated planks from the door to Bedesman room 1 were probably felled after AD 1484, the two dated planks from the door to Bedesman room 2 were probably felled after AD 1467, and the three dated planks from the door to Bedesman room 4 were probably felled after AD 1484. The four dated planks from the Bedeswoman room 1 (former Chapel) were felled after AD 1482. The two dated planks from the Bedeswoman room 2, adjacent to the stairs, unlike the other door planks which appear to be of native origin, are derived from timbers imported from the Baltic. Thus, using the appropriate sapwood estimate of $8-24$ rings, the 95% confidence interval (Tyers 1998), they were probably felled after AD 1357.

Attic floorboards above small inner chamber

Six of the floorboards in this attic room were distinctly different to the others present and these were measured directly on site (LYB-H83 - LYB-H88). All six samples dated (Figs 22 and 26b) but again, having been heavily worked, none of the samples retains any sapwood and it is not possible to produce a felling date range for these floorboards.

Five of these floorboards have last measured heartwood ring dates ranging from AD 1391 (LYB-H84) to AD 1414 (LYB-H85). In this instance, with the floorboards being derived from timbers imported from the Baltic, allowing for the minimum number of missing sapwood rings (Tyers 1998) indicates that these timbers were all probably felled after AD 1422.

The sixth dated floorboard sample, LYB-H86, has a much earlier last measured heartwood ring, this dated to AD 1194. Allowing for the minimum likely number of sapwood rings, this timber was felled after AD 1202. It is possible that it was derived from a tree felled significantly earlier than the other floorboards. However, it crossmatches LYB-H87 with a high t-value (7.3) which, combined with the fact that its ring series starts at AD 1110 within a few rings of the very long series of LYBH83 (AD 1119) and LYB-H87 (AD 1124), suggests that it is more likely to simply represent the inner part of a longer-lived tree and hence, coeval with the five other dated floorboards.

Porch

The porch entry, projecting from the north elevation of the Bede House (see Fig 5a) and housing the steps to the Great Chamber, contains a small number of timbers in its west flanking wall of which two were considered suitable for sampling (LYB-H96 and LYB-H97). Sample LYB-H97 proved to have too few rings for reliable dating purposes but sample LYB-H96 was measured and dated (Figs 25 and 26b). It has no heartwood/sapwood boundary and has a last measured heartwood ring dating to AD 1716. Allowing for a minimum of 15 sapwood rings, this post was probably felled after AD 1731.

Attic partition wall above the Great Chamber/Presence Chamber

Three timbers from the partition wall in the attic above the Great Chamber/Presence Chamber were sampled (LYB-H101 - LYB-H103). One, containing too few rings for reliable dating, was not measured, while neither of the two measured samples could be dated.

Chapel/Bedeswoman rooms partition walls and stair framing

The partition walls between the Bedeswoman rooms (former Chapel and the adjacent room) and the timbers support and framing the wooden stairs leading up the attics (see Fig 5b), appear part of an integral structure. Eight samples (LYBH104 - LYB-H111) were obtained from these timbers although two samples were not measured as they contained too few rings for reliable dating. Five samples dated out of the six that were measured and appeared likely to be coeval (Figs 24 and 26b). The heartwood/sapwood boundary on the four samples with it varies by five
years, with the average boundary dating to AD 1581. This gives these five timbers a jamb, a newel post, two cross-rails, and a door head, a felling date in the range AD 1599-1621, allowing for the outermost measured sapwood ring on LYB-H110.

Presence Chamber niche (cupboard)

Sample LYB-H112 was obtained from an east-west timber in a niche or small cupboard to the south wall of the Presence Chamber (see Fig 5b). This sample was measured and has a last heartwood ring date of AD 1405 which, allowing for a minimum of 15 sapwood rings, indicates that it was probably felled after AD 1420 (Figs 23 and 26b).

Chamber (shop) ceiling

Finally, sample LYB-H113 was obtained from an east-west ground-floor ceiling beam to the Chamber (currently the shop; see Fig 5a). This sample was measured and has a heartwood/sapwood boundary of AD 1171 which, with the usual minimum/maximum complement of sapwood, gives the timber an estimated felling date in the range AD 1186-1211 (Figs 21 and 26b).

DISCUSSION AND CONCLUSION

The successful dating of 81 timbers has identified a series of different episodes of felling from the late-twelfth/early thirteenth century through to the late-eighteenth century (Fig 27). The complex history of this remnant of a medieval palace, and hence the possibility that timbers have been salvaged and reused from buildings elsewhere in the medieval palace complex, even in the absence of clear evidence of reuse, highlights the importance of the dendrochronological evidence being combined with detailed documentary and architectural records in order to ensure that the results are placed in an appropriate context. Thus, the following discussion, based on the episodes of felling identified during the dendrochronological analysis, should be viewed in conjunction with detailed documentary and architectural analysis.

Late-twelfth - mid-thirteenth century

The earliest timber, the ceiling beam in the shop, felled in AD 1186-1211, pre-dates the documented residency of the medieval palace by Bishop Grosseteste. Thornton (2009) states that "it is possible that the residence had already developed beyond a typical manorial establishment by later $12^{\text {th }}$ century". Hence, this timber may well be associated with the early development of the medieval palace on the site but caution over its wider interpretation is needed as it is only a single timber. However, there is a group of four ceiling joists in Bedesman room 3 that were felled in AD

1234-59 which appear most likely to coincide with Bishop Grosseteste's residency but could possibly relate to the subsequent bishops, Henry of Lexington or Richard of Gravesend.

Late-fourteenth to mid-fifteenth century

Although it is documented that Bishop Burghersh undertook major redevelopment (Thornton 2009), including the remodelling of the bishops private accommodation (the Bede House range), no timbers were identified as dating to this period. There is little architectural or documentary evidence in relation to works undertaken in the later fourteenth century or early fifteenth century but it is believed that Bishop Alnwick remodelled the Bede House range (Thornton 2009) and a series of 25 timbers have been identified as having been felled in the late-fourteenth to midfifteenth centuries.

The earliest felling date range identified, AD 1388-1413, is for a single joist in the cupboard under the stairs adjacent to the porch and the latest felling date range identified, $\mathrm{AD} 1444-69$, is for 10 timbers from the roof of the Great Chamber and Presence Chamber. Thus, some of these timbers clearly pre-date Bishop Alnwick, indicating at least limited works in the late-fourteenth and early fifteenth centuries, whilst others could be associated with Bishop Alnwick or just post-date his residency.

A number of timbers included within this group of late-fourteenth to mid-fifteenth timbers only have a terminus post quem date for felling, these being the single timber from the Presence Chamber niche (after AD 1420), as well as the two groups of timbers derived from Baltic imports, namely the two planks from the Bedeswoman room 2 door (felled after AD 1357) and the attic floorboards above the small chamber (felled after AD 1422). Although all could be felled significantly later than the terminus post quem this seems unlikely. The niche timber is a substantial timber and would have to have been trimmed very heavily, and hence derived from a very large tree, if it was to be associated with the later fifteenth- to early sixteenth-century felling episodes, whereas Baltic imports tend to be only relatively lightly trimmed to produce the relevant element, with the timbers within groups of imported material generally having outermost heartwood ring dates that are usually very similar (eg Groves 2004).

Later fifteenth - early sixteenth century

A series of 32 timbers have been identified as having been felled in the later fifteenth century to early sixteenth century, most of which appear likely to be associated with the major works that Thornton (2009) indicates were undertaken during the residencies of Bishop Russell and Bishop Smith to this Bede House range.

The earliest felling date range identified, AD 1476-1501, is for a principal rafter from the small chamber roof and the latest felling date ranges identified all span the late AD 1490s to early AD 1510s. These latter comprise a single tiebeam from the Great Chamber/Presence Chamber roof, four tiebeams from the Pentice, four timbers from the ceiling of Bedesman rooms 1 and 2, and three timbers from the partition wall between the Great Chamber and Presence Chamber. The tiebeam from the Great Chamber/Presence Chamber roof, truss 1, is notably slightly later than the other dated timbers from this roof (felled AD 1444-69), including the tiebeam from truss 2 , and it is noticeable that neither of the principal rafters or the collar from truss 1 were successfully dated.

Again, a number of timbers included in this later fifteenth-century to early sixteenth-century group only have a terminus post quem date for felling, these being six samples from the stair treads up to the attic (felled after AD 1464), two planks from the door of Bedesman room 2 (felled after AD 1467), four planks from the door of Chapel/Bedeswoman room 1 (felled after AD 1482), four planks from the door of Bedesman room 1 (felled after AD 1484), and three planks from the door of Bedesman room 3 (felled after AD 1484). The stair treads, potentially derived from either a single tree or trees growing within a discrete area of woodland (see above), show high levels of similarity with the two long sequences derived from tiebeams in the Pentice (felled AD 1492-1517) and, thus, it seems likely that the stair treads were felled at a similar time. The planks from all four of these doors show a consistent level of cross-matching and include at least one possible same-tree derivation for three planks (LYB-H69 from Bedesman room 1/LYB-H78 and LYBH79 from the Chapel/Bedeswoman room 1, t-values ranging from 9.8 to 11.3). This indicates the all thirteen dated planks from these four doors are likely to be coeval and the overall similarity in the dates of the outermost heartwood rings suggests that most are only likely to have lost a relatively small number of heartwood rings during conversion and hence, whilst these were felled after AD 1484, it seems likely that they were felled no later than in the early decades of the sixteenth century.

Early seventeenth - late-eighteenth century

The Lyddington estate was transferred to the Crown in AD 1547 and then subsequently granted to the Cecil family with the bishops private accommodation being converted to an almshouse in AD 1601 by Thomas Cecil (Thornton 2009). A number of timbers clearly relate to the ownership of Sir Thomas Cecil, $1^{\text {st }}$ Earl of Exeter, the five dated timbers from the Chapel/Bedeswoman rooms partition walls and stair framing being felled in AD 1599-1621 and the two dated timbers (a post and a tiebeam) from the Pentice being felled in AD 1599-1624. These seven timbers cross-match consistently well and are likely to all have been felled at the same, or a very similar time, and probably relate to the conversion to an almshouse.

A series of twelve timbers have been dated to the eighteenth century during the ownership of the Bede House by Brownlow Cecil, $8^{\text {th }}$ Earl of Exeter (died AD 1754), and his son Brownlow Cecil, 9th Earl of Exeter (died AD 1793). The six dated timbers from the east-end roof were felled in AD 1744, indicating works to the almshouses being undertaken during the ownership of the 8 ${ }^{\text {th }}$ Earl of Exeter, whereas the four dated posts from the Pentice were felled in AD 1765-90, indicating works to the almshouses during the ownership of the $9^{\text {th }}$ Earl of Exeter. The remaining eighteenth-century timber is a wall plate from the porch dated as being felled after AD 1731. It is not possible to determine whether it is coeval with either of the other felling episodes identified but the fact that it cross-matches well with the posts from the Pentice suggests that it could also be related to the later eighteenth-century felling episode, although this is not proven.

Woodland Source

As may be seen from Tables 2, 4, 5, and 6, although site chronologies LYBHSQ01, LYBHSQ03, LYBHSQ04, and LYBHSQ05 have been compared with reference chronologies from every part of Britain, there is a tendency for the highest t-values (ie the greatest degrees of similarity) to be found with those from other sites in the surrounding areas, most notably Leicestershire and Northamptonshire. Although, of course, the precise woodland sources of the trees used at these reference sites are themselves not known, such matching would suggest most of the timber used at the Bede House was obtained from a similarly relatively local source.

The exception to this use of relatively local woodlands are the timbers represented by site chronology LYBHSQ02. As may be seen from Table 3, these are clearly of eastern Baltic origin, although is not possible to say exactly where due to the lack of a local network of reference data for the relevant regions.

The high level of cross-matching between various samples, furthermore, may be taken to indicate that the source trees for some timbers were growing close to each other in the same woodland and in some instances the level of similarity is such that some timbers may have been derived from the same tree. It is likely that at least some of the trees used for the trusses of the roof to the Great Chamber/Presence Chamber (LYB-H01 - LYB-H15) were growing close to each other, or at least in the same general woodland area, with a number of t-values in excess of 7 being produced between the samples, including a possible same-tree match between LYDH04 and LYD-H07 which represent principal rafters. The east-end roof timbers (LYB-H16 - LYB-H22) show strong similarity with each other, with several of the principal rafters having t-values with several of the principal rafters having t-values in excess of 8 . The ceiling joists to Bedesman room 3 (LYB-H39 - LYB-H42) also cross-match well with each other (t-values ranging from 5.1 to 10.8 , although with one exception). The stair treads (LYB-H54 - LYB-H59) produce t-values ranging from 6.6 to 14.7 which is suggestive of them being derived from the same woodland
area with some elements potentially being derived from the same-tree. Given that each tread is a relatively short length of timber, a number of pieces could be taken from a single tree. Three of the joists (LYD-H65 - LYD-H67) from the cupboard under the stairs adjacent to the porch show strong similarity (t-values ranging from 6.6 to 9.4). The planks of English origin from the doors of Bedesman rooms 1, 2, and 4 and the Chapel/Bedeswoman room 1 show good similarity with many t values in excess of 5, including possible same-tree matches between LYB-H69, LYB-H78, and LYB-H79. There are also a number of pairs of samples of possible same-tree derivation, including two of the dated Baltic origin floorboards, LYB-H83 and LYB-H87 (t-value $=10.9$) and two posts (LYB-H91 and LYB-H92) from the Pentice which match with a t-value of 11.5 .

Interestingly, with the exception of two of the doors, no possible same-tree derivations have been identified between areas. There is, however, as can be seen from the above, a coherence of woodland source within areas, or groups within areas, which is apparent throughout all of the periods of felling identified.

Undated timbers

Nineteen of the 100 measured samples remain ungrouped and undated. With some of these undated samples, though they have sufficient for reliable dating, the ring numbers are towards the lower end of the usual acceptable limits. Other undated samples, however, have higher ring numbers, the longest undated sample, LYBH24, having 100 rings. None of these samples show any particular problems such as compression or distortion which might affect their growth pattern. It is, however, a common feature in tree-ring analysis to find that some samples remain undated for no apparent reason. In this respect, the analysis at the Bede House has been successful in dating 81 out of the 100 samples obtained, thus, achieving the broadly expected success rate of 70-80\% for historic standing buildings.

REFERENCES

Arnold, A J, and Howard, R E, 2007a Tree-ring Analysis of Timbers from Polesworth Abbey Gatehouse, Centre for Archaeol Rep, 6/2007

Arnold, A J, and Howard, R E, 2007b Leicester's Gatehouse, Kenilworth Castle, Kenilworth, Warwickshire, Tree-Ring Analysis of Timbers, Centre for Archaeol Rep, 8/2007

Arnold, A J, and Howard, R E, 2008a Halesowen Abbey, Dudley, West Midlands, Tree-Ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 90/2008

Arnold, A J, and Howard, R E, 2008b St Leonard's Church, Main Street, Apethorpe, Northamptonshire, Tree-ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 85/2008

Arnold, A J, and Howard, R E, 2013 unpubl Tree-ring analysis of timbers from a number of buildings in Bingham, Nottinghamshire, Nottingham Tree-ring Dating Laboratory unpubl computer file BNGXSQ01

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G, 2005 The Tree-ring Dating of a Number of Bellframes in Leicestershire, Centre for Archaeol Rep, 5/2005

Arnold, A J, Howard, R E, and Litton, C D, 2008a Nottingham Tree-ring Dating Laboratory, additional dendrochronology dates, nos 16, 19a/b/c, Vernacular Architect, 39, 107-11

Arnold, A J, Howard, R E, and Tyers, C, 2008b Ulverscroft Priory, Ulverscroft, Charnwood Forest, Leicestershire, Tree-ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 48/2008

Arnold, A J, Howard, R E, and Tyers, C, 2008c Apethorpe Hall, Apethorpe, Northamptonshire, Tree-ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 87/2008

Arnold, A J, and Howard, R E, 2014 unpubl Brockhampton Manor, near Bromyard, Herefordshire, Tree-ring analysis of Timbers from the cross-wing range, Nottingham Tree-ring Dating Laboratory unpubl computer file BRKHSQ01

Bonde, N, and Jensen, J S, 1995 The dating of a Hanseatic cog-find in Denmark, in Shipshape, Essays for Ole Crumlin-Pedersen, (eds O Olsen, J S Madsen, and F Rieck), Vikingeskibshallen i Roskilde, 103-22

Daly, A, 2000 Niels Hemmingsensgade, Københaun, Nat Mus Denmark NNU Rep, 14.2000

Groves, C, 2004 Dendrochronological Analysis of Timbers from Bowhill, in Bowhill: the archaeological study of a building under repair in Exeter, Devon 1977 ed. S R Blaylock, Exeter Archaeology Report Series, 5, 243-67

Groves, C, Locatelli, C, and Howard, R E, 2004 Tree-ring Analysis of Oak Timbers from Church Farm, Bringhurst, Leicestershire, Centre for Archaeol Rep, 56/2004

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1990 unpubl Hadleigh Guildhall, Suffolk, Tree-ring Analysis of Timbers, Nottingham Univ Tree-ring Dating Laboratory, unpubl computer file HADLSQ01

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17, Nottingham Tree-ring Dating Laboratory, Vernacular Architect, 23, 51-6

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1993 List 48 no 8, Nottingham Univ Tree-Ring Dating Laboratory, Vernacular Architect, 24, 40-2

Howard, R E, Laxton, R R, and Litton, C D, 1999 Tree-ring Analysis of Timbers from The Manor House, Medbourne, Leicestershire, Anc Mon Lab Rep, 63/1999

Howard, R E, Laxton, R R, and Litton, C D, 2000, Tree-ring Analysis of Timbers from Stoneleigh Abbey, Stoneleigh, Warwickshire, Anc Mon Lab Rep, 80/2000

Howard, R E, Laxton, R R, and Litton, C D, 2002 Tree-ring Analysis of Timbers from Blackfriars Priory, Ladybellgate Street, Gloucester, Centre for Archaeol Rep, 43/2002

Howard, R E, Laxton, R R, and Litton, C D, 2003 Tree-ring Analysis of Timbers from Combermere Abbey, Whitchurch, Cheshire, Anc Mon Lab Rep, 83/2003

Howard, R E, 2008 unpubl, Sarehole Mill, Hall Green, Birmingham, Tree-ring Analysis of Timbers, Nottingham Univ Tree-ring Dating Laboratory unpubl computer file SARMSQ01

Hurford, M, Arnold, A J, Howard, R E, and Tyers, C, 2008 Tree-ring Analysis of Timbers from Flore's House, High Street, Oakham, Rutland, English Heritage Res Dept Rep Ser, 94/2008

Hurford, M, Howard, R E, and Tyers, C, 2010 Southview Cottage, Main Street, Norwell, Nottinghamshire: Tree-Ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 51/2010

Laxton, R R, Litton, C D, Simpson, W G, and Whitley, J P, 1982 Tree-ring Dates for some East Midlands Buildings, Table 1, no 2, Transaction of the Thoroton Society of Nottinghamshire, 86, 76-7

Laxton, R R, Litton, C D, and Simpson, W G, 1984 List 12 no 1, Nottingham University Tree-ring Dating Laboratory, Tree-ring dates for buildings in Eastern and Midland England, Vernacular Architect, 15, 65-8

Laxton, R R, Litton, C D, and Simpson, W G, 1984 unpubl Nottingham Uni Treering Dating Laboratory, unpublished computer file LEI-C1 from Leicester Castle

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

Miles, D H, and Worthington, M J, 1998 Tree-ring dates for buildings, List 90, Vernacular Architect, 29, 111-7

Page, W (ed), 1935 Victoria County History, Rutland, II
Thornton, C, 2009, Lyddington Bede House, Rutland, Historical Report, English Heritage

Tyers, I, 1995 Report on the Tree-ring Analysis of Buildings in Essex 1994, MoLAS Dendro Rep, 02/95

Tyers, I, 1996a Appendix 1 Dendrochronology of shipping from London, twelfth to seventeenth centuries, in Shipping and the Port of London; twelfth to seventeenth centuries (ed P Marsden) English Heritage Archaeological Rep, 5, 193-7

Tyers, I, 1996b Tree-ring Analysis of Six Secular Buildings from the City of Hereford, Anc Mon Lab Rep, 17/96

Tyers, I, 1998 Tree-ring analysis and wood identification of timbers excavated on the Magistrates Court Site, Kingston upon Hull, East Yorkshire, ARCUS Rep, 410

Tyers, I, 1999 Dendrochronological Analysis of Timbers from Moyns Park, Birdbrook, Essex, ARCUS Rep, 471

Tyers, I, 2000 Tree-ring analysis of re-used boat timbers excavated at Chapel Lane Staith, Hull, ARCUS Rep, 570

Tyers, I, 2003 Tree-ring analysis, in The Thornham Parva Retable: Technique, conservation and context of an English medieval painting (ed A Massing) 113-21

Wazny, T, and Eckstein, D, 1991 The dendrochronological signal of oak (Quercus spp.) in Poland, Dendrochronologia, 9, 35-49

Woodfield, C, and Woodfield, P, 1983 The Palace of the Bishops of Lincoln at Lyddington, Transactions of the Leicestershire Archaeological and Historical Society, LVII, 1981-2

Woodfield, C, and Woodfield, P, 1988 Lyddington Bede House, English Heritage Guidebook

TABLES

Table 1: Details of tree-ring samples from The Bede House, Lyddington, Rutland

Sample number	Sample location (trusses/frames/beams etc usually numbered from $\mathrm{N}-\mathrm{S} \text { or } \mathrm{E}-\mathrm{W})$	Total rings	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
	Great Chamber/Presence Chamber roof					
LYB-H01	Collar, truss 3	66	6	1361	1420	1426
LYB-H02	North archbrace, truss 3	56	no h/s	1372	-----	1427
LYB-H03	South principal rafter, truss 4	55	h/s	1378	1432	1432
LYB-H04	North principal rafter, truss 4	53	h/s	1383	1435	1435
LYB-H05	South archbrace, truss 4	54	no h/s	------	------	------
LYB-H06	North archbrace, truss 4	55	no h/s	1374	----	1428
LYB-H07	South principal rafter, truss 5	54	h/s	1382	1435	1435
LYB-H08	North principal rafter, truss 5	52	h/s	------	------	------
LYB-H09	South archbrace, truss 5	54	no h/s	------	------	------
LYB-H10	Collar, truss 6	57	h/s	------	------	------
LYB-H11	South principal rafter, truss 6	50	h/s	1384	1433	1433
LYB-H12	North principal rafter, truss 6	48	h/s	1383	1430	1430
LYB-H13	Collar, truss 7 (westernmost truss)	69	h/s	1352	1420	1420
LYB-H14	Tiebeam, truss 1 (easternmost truss)	91	h/s	1386	1476	1476
LYB-H15	Tiebeam, truss 2	103	h/s	1324	1426	1426
	East-end roof					
LYB-H16	Collar, truss 1 (east truss)	63	17C	1682	1727	1744
LYB-H17	South principal rafter, truss 1	67	13c	1671	1724	1737
LYB-H18	North principal rafter, truss 1	84	21C	1661	1723	1744
LYB-H19	North purlin, truss 1-2	54	8	1682	1727	1735
LYB-H20	Collar, truss 2	64	20C	1681	1724	1744
LYB-H21	South principal rafter, truss 2	87	6	1645	1725	1731
LYB-H22	North principal rafter, truss 2	89	18C	1656	1726	1744
LYB-H23	South common rafter 1, bay 3	nm	---	----	------	------

Table 1: continued

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
	Presence Chamber ceiling					
LYB-H24	Ceiling joist 1 (from south)	100	h/s	------	------	------
LYB-H25	Ceiling joist 2	82	h/s	------	------	------
LYB-H26	Ceiling joist 3	54	h/s	------	------	------
LYB-H27	Ceiling joist 4	104	h/s	1284	1387	1387
LYB-H28	Ceiling joist 5	65	h/s	------	------	------
	Bedesman room ceilings					
LYB-H29	Main north-south ceiling beam between rooms 1 \& 2	68	h/s	1414	1481	1481
LYB-H30	Ceiling joist 3 (from south), room 2, bay 1	94	h/s	1382	1475	1475
LYB-H31	Ceiling joist 5, room 2, bay 1	87	no h/s	1367	------	1453
LYB-H32	Ceiling joist 8, room 2, bay 1	nm	---	------	------	----
LYB-H33	Main east-west ceiling beam, rooms 1 \& 2	nm	---	------	------	----
LYB-H34	Ceiling joist 1, room 2, bay 2	73	h/s	------	------	------
LYB-H35	Ceiling joist 3, room 2,bay 2	62	no h/s	1381	-------	1442
LYB-H36	Ceiling joist 5, room 2, bay 2	nm	---	------	------	------
LYB-H37	Ceiling joist 6, room 2, bay 2	66	no h/s	-------	-------	------
LYB-H38	Ceiling joist 3, room 1 / 2 lobby	83	h/s	--	------	---
LYB-H39	Ceiling joist 1 (from south), room 4	90	no h/s	1116	------	1205
LYB-H40	Ceiling joist 2, room 4	102	h/s	1114	1215	1215
LYB-H41	Ceiling joist 3, room 4	137	h/s	1085	1221	1221
LYB-H42	Ceiling joist 4, room 4	99	h/s	1123	1221	1221
LYB-H43	Ceiling joist 5, room 4	56	h/s	----	----	----
	West roof over small inner chamber					
LYB-H44	Wall post	nm	---	------	------	------
LYB-H45	Cut-off tiebeam	nm	---	------	------	------
LYB-H46	Principal rafter	120	h/s	1342	1461	1461
LYB-H47	Wall plate	nm	---	------	------	----

Table 1: continued

Table 1: continued

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
	Doors					
LYB-H68	Bedesman room1, plank 1	76	no h/s	1383	------	1458
LYB-H69	Bedesman room1, plank 2	150	no h/s	1318	------	1467
LYB-H70	Bedesman room1, plank 3	103	no h/s	1302	------	1404
LYB-H71	Bedesman room1, plank 4	99	no h/s	1371	------	1469
LYB-H72	Bedesman room 2, plank 1	73	no h/s	1356	-----	1428
LYB-H73	Bedesman room 2, plank 2	115	no h/s	1338	----	1452
LYB-H74	Bedesman room 4, plank 1	189	no h/s	1281	------	1469
LYB-H75	Bedesman room 4, plank 2	95	no h/s	1364	------	1458
LYB-H76	Bedesman room 4, plank 3	80	no h/s	1344	------	1423
LYB-H77	Chapel/Bedeswoman room 1, plank 1	116	no h/s	1352	-------	1467
LYB-H78	Chapel/Bedeswoman room 1, plank 2	118	no h/s	1332	------	1449
LYB-H79	Chapel/Bedeswoman room 1, plank 3	137	no h/s	1327	------	1463
LYB-H80	Chapel/Bedeswoman room 1, plank 4	96	no h/s	1363	------	1458
LYB-H81	Bedeswoman room 2 (adjacent to stair), plank 1	144	no h/s	1206	------	1349
LYB-H82	Bedeswoman room 2, plank 2	121	no h/s	1171	--	1291
	Attic floorboards above inner small chamber					
LYB-H83	Floor board 1	288	no h/s	1119	------	1406
LYB-H84	Floor board 2	147	no h/s	1245	------	1391
LYB-H85	Floor board 3	160	no h/s	1255	------	1414
LYB-H86	Floor board 4	85	no h/s	1110	------	1194
LYB-H87	Floor board 5	284	no h/s	1124	------	1407
LYB-H88	Floor board 6	132	no h/s	1268	------	1399

Table 1: continued

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
	Pentice (additional samples)					
LYB-H89	Rail, posts 1-2	nm	---	--	---	-
LYB-H90	Rail, posts 2-3	55	no h/s	------	------	------
LYB-H91	Post 5	55	h/s	1697	1751	1751
LYB-H92	Post 6, upper part	54	h/s	1699	1752	1752
LYB-H93	Post 8, upper part	76	h/s	1507	1582	1582
LYB-H94	Post 10, upper part	54	h/s	1694	1747	1747
LYB-H95	Post 11, upper part (westernmost)	66	4	1688	1749	1753
	Porch					
LYB-H96	West wall plate	94	no h/s	1623	------	1716
LYB-H97	West wall post	nm	---	------	------	------
	Great Chamber roof (additional samples)					
LYB-H98	South principal rafter, truss 1	54	h/s	------	---	-----
LYB-H99	North principal rafter, truss 1	55	h/s	------	------	------
LYB-H100	Collar, truss 1	52	h/s	--	------	----
	Attic partition to Great Chamber/Presence Chamber					
LYB-H101	Stud post	74	h/s	------	------	------
LYB-H102	Door jamb (hanging)	nm	---	------	------	------
LYB-H103	Top rail	61	h/s	------	--	----
	Chapel/Bedeswoman rooms partition walls/stair framing					
LYB-H104	Stair head closing jamb	54	h/s	1527	1580	1580
LYB-H105	Stair head hanging jamb	nm	---	------	------	------
LYB-H106	Stair support post	nm	---	------	-----	---
LYB-H107	Newel post	56	10	1539	1584	1594
LYB-H108	Under-stair rail	76	h/s	------	------	------

Table 1: continued

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
	Chapel/Bedeswoman rooms partition walls/stair framing					
LYB-H109	Party wall, north cross-rail	57	no h/s	1498	------	1554
LYB-H110	Party wall, south cross-rail	69	17	1530	1581	1598
LYB-H111	Corridor rail/door head	59	h/s	1522	1580	1580
	Presence Chamber niche (cupboard)					
LYB-H112	East-west beam in niche to south wall	115	no h/s	1291	------	1405
	Chamber (shop) ceiling					
LYB-H113	East - west ceiling beam	65	h/s	1107	1171	1171

$\mathrm{nm}=$ sample not measured
$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood boundary ring is the last ring on the sample
$\mathrm{c}=$ complete sapwood is found on the timber, but all or part has been lost from the sample in coring
$\mathrm{C}=$ complete sapwood is retained on the sample, but in this instance the outermost rings of CPS-B14 cannot be reliably measured

Table 2: Results of the cross-matching of site sequence LYBHSQO1 and some relevant reference chronologies when the first-ring date is $A D 1085$ and the last-ring date is $A D 1221$

Reference chronology	Span of chronology	t-value	Reference
Billingsgate (BIG82), London	AD 611-1243	9.5	(Tyers and Hillam pers comm)
Nevill Holt, Leicestershire	AD 1274-1534	8.8	(Arnold et al 2008a)
Manor House, Medbourne, Leicestershire	AD 1068-1287	8.0	(Howard et al 1999)
Southview Cottage, Norwell, Nottinghamshire	AD 1132-1306	7.7	(Hurford et al 2010)
Angel Choir, Lincoln Cathedral, Lincolnshire	AD 904-1257	7.5	(Laxton and Litton 1988)
Blackfriars Priory, Gloucester, Gloucestershire	AD 1024-1237	7.4	(Howard et al 2002)
7 Buttermarket, Thame, Oxfordshire	AD 1161-1289	7.4	(Howard et al 1993)
The Gatehouse, Polesworth Abbey, Warwickshire	AD 1095-1342	7.1	(Arnold and Howard 2007a)

Table 3: Results of the cross-matching of site sequence LYBHSQ02 and some relevant reference chronologies when the first-ring date is $A D 1110$ and the last-ring date is $A D 1414$

Reference chronology	Span of chronology	t-value	Reference
East Pomerania, Poland	AD 996-1985	8.7	(Wazny and Eckstein 1991)
Niedersaxon Nord, Germany	AD 915-1873	6.1	(Leuschener pers comm)
Neils Hemmingsensgade barrel, Copenhagen, Denmark	AD 1124-1399	12.0	(Daly 2000)
Copper wreck group 4, Gdañsk, Poland	AD 1094-1402	10.3	(Bonde and Wazny pers comm)
Vejby Skip Hanseatic cog, Denmark	AD 1109-1370	7.5	(Bonde and Jensen 1995)
Southwark boat planks (GAS88), London	AD 1052-1370	12.9	(Tyers 1996a)
Magistrates Court coffins, Hull, East Yorkshire	AD 1078-1369	11.7	(Tyers 1998)
Chapel Lane Staith boat planks, Hull, East Yorkshire	AD 1110-1393	10.7	(Tyers 2000)
St Helen's Church, Abingdon, Oxfordshire	AD 1117-1379	10.0	(Howard et al 1992)
St Lawrence's Church, Little Waddingfield, Suffolk	AD 1131-1339	9.7	(Bridge pers comm)
Thornham Parva retable, Suffolk	AD 1053-1309	8.8	(Tyers 2003)
Tadlow Granary Cambridgeshire	AD 1140-1406	8.4	(Laxton et al 1984)
The Guildhall, Hadleigh, Suffolk	AD 1157-1431	8.0	(Howard et al 1990 unpubl)

Table 4: Results of the cross-matching of site sequence LYBHSQ03 and some relevant reference chronologies when the first-ring date is $A D 1245$ and the last-ring date is $A D 1494$

Reference chronology	Span of chronology	t-value	Reference
Halesowen Abbey, Dudley, West Midlands	AD 1310-1535	12.1	(Arnold and Howard 2008a)
Leicester Castle, Leicester, Leicestershire	AD 1353-1482	10.5	(Laxton et al 1984 unpubl)
Cathedral Barn, Hereford, Herefordshire	AD 1359-1491	10.1	(Tyers 1996b)
Ulverscroft Priory, Charnwood, Leicestershire	AD 1219-1463	9.9	(Arnold et al 2008b)
Combermere Abbey, Combermere, Cheshire	AD 1363-1564	9.8	(Howard et al 2003)
Lower Brockhampton Manor, Brockhampton, Herefordshire	AD 1304-1543	9.8	(Arnold and Howard 2014 unpubl)
Apethorpe Hall, Apethorpe, Northamptonshire	AD 1292-1740	9.7	(Arnold et al 2008c)
St Leonard's Church, Apethorpe, Northamptonshire	AD 1211-1403	8.9	(Arnold and Howard 2008b)

Table 5: Results of the cross-matching of site sequence LYBHSQ04 and some relevant reference chronologies when the first-ring date is $A D 1498$ and the last-ring date is $A D 1598$

Reference chronology	Span of chronology	t-value	Reference
Apethorpe Hall, Apethorpe, Northamptonshire	AD 1292-1740	11.3	(Arnold et al 2008c)
Flore's House, Oakham, Rutland	AD 1173-1392	11.1	(Hurford et al 2008)
Church of St Nicholas, Bringhurst, Leicestershire	AD 1502-1687	8.7	(Arnold et al 2005)
St Leonard's Church, Apethorpe, Northamptonshire	AD 1211-1403	8.6	(Arnold and Howard 2008b)
Cressing Temple farmhouse, Essex	AD 1514-1608	8.1	(Tyers 1995)
Manor Farm, Stanton St John, Oxfordshire	AD 1480-1646	7.9	(Miles and Worthington 1998)
Moyns Park, Birdbrook, Essex	AD 1431-1606	7.9	(Tyers 1999)
Church of St Andrew, Welham, Leicestershire	AD 1443-1633	7.8	(Arnold et al 2005)

Table 6: Results of the cross-matching of site sequence LYBHSQ05 and some relevant reference chronologies when the first-ring date is $A D 1623$ and the last-ring date is $A D 1753$

Reference chronology	Span of chronology	t-value	Reference
Apethorpe Hall, Apethorpe, Northamptonshire	AD 1292-1740	9.2	(Arnold et al 2008c)
Stoneleigh Abbey, Stoneleigh, Warwickshire	AD 1646-1813	9.0	(Howard et al 2000)
Sarehole Mill, Hall Green, Birmingham	AD 1677-1767	8.6	(Howard 2008 unpubl)
Church Farm, Bringhurst, Leicestershire	AD 1664-1781	8.4	(Groves et al 2004)
Bingham, Nottinghamshire	AD 1445-1752	8.3	(Arnold and Howard 2013 unpubl)
Quenby Hall, Quenby Leicestershire	AD 1648-1765	8.0	(Arnold et al 2008a)
Green's Mill, Sneinton, Nottingham, Nottinghamshire	AD 1664-1787	7.9	(Laxton et al 1982)
The Gatehouse, Kenilworth Castle, Warwickshire	AD 1623-1727	7.4	(Arnold and Howard 2007b)

FIGURES

Figure 1a: Map to show the general location of Lyddington © Crown Copyright and database right 2018. All rights reserved. Ordnance Survey Licence number 100024900

Figure 1b: Map to show the general location of the Bede House, Lyddington © Crown Copyright and database right 2018. All rights reserved. Ordnance Survey Licence number 100024900

Figure 1c: Map to show the detailed location of the Bede House, Lyddington © Crown Copyright and database right 2018. All rights reserved. Ordnance Survey Licence number 100024900

Figure 2a/b: The Pentice to the north wall of the Bede House (top) and the Great Chamber, with Presence Chamber and small chamber beyond (bottom) (photographs Robert Howard)

Figure 3a/b: The roof above the Great Chamber looking east (top) and the roof at the east end of the Bede House (bottom) (photographs Robert Howard)

Figure 4a/b: Examples of the wooden doors to the Chapel/Bedeswoman rooms landing (L) and Great Chamber (R) (top) and to Bedesman room 5 (bottom) (photographs Robert Howard)

Figure 5a: Ground-floor plan of the Bede House (after HBMC 1986)

Figure 5b: First-floor plan of the Bede House (after HBMC 1986)

Figure 5c: Second-floor plan of the Bede House (after HBMC 1986)

Figure 6a-c: Roof trusses above the Great Chamber and Presence Chamber to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 6d-f: Roof trusses above the Great Chamber and Presence Chamber to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 6g: Roof truss above the Great Chamber and Presence Chamber to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure $7 a / b$: Sections through the east-end roof to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 8: Plan at attic-floor level to locate sampled ceiling timbers (after HBMC 1986)

Figure 9: Ground-floor plan to locate samples from the Bedesman rooms and the under-stair cupboard (after HBMC 1986)

Figure 10: View of the west-end roof above the small chamber to locate sampled timbers (photograph Robert Howard)

Figure 11a-c: Section through the Pentice to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 11d-f: Section through the Pentice to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 11g-i: Section through the Pentice to locate sampled timbers (after Ministry of Works Ancient Monuments Branch 1954)

Figure 12: Plan to locate stair tread samples (after HBMC 1986)

Figure 13: Great Chamber/Presence Chamber partition wall to locate sampled timbers (photograph Robert Howard)

Figure 14a-c: Bedesman room doors to locate sampled timbers (photographs Robert Howard)

Figure 15a/b: Chapel/Bedeswoman room 1 door (top) and Bedeswoman room 2 door (bottom) to locate sampled timbers (photographs Robert Howard)

Figure 16: View of the floorboards to the west roof attic space to locate sampled timbers (photograph Robert Howard)

Figure 17: View of the porch to locate sampled timbers (photograph Robert Howard)

Figure 18a/b: Views of the partition wall and ceiling at the west end of the roof above the Great Chamber/Presence Chamber to help locate sampled timbers (photographs Robert Howard)

Figure 19a/b: Views of the Bedeswoman room 2 partition walls and stair framing to help locate sampled timbers (photographs Robert Howard)

Figure 19c/d: Views of the partition walls to the Chapel/Bedeswoman rooms 2 and 1 to help locate sampled timbers (photographs Robert Howard)

Figure 20a/b: View of the niche (cupboard) in the south wall of the Presence Chamber (top) and the ground-floor ceiling beam in the Chamber (currently the shop), to help locate sampled timbers (photographs Robert Howard)

Figure 21: Bar diagram of the samples in site chronology LYBHSQ01. White bars = heartwood rings; $h / s=$ heartwood/sapwood boundary

Figure 22: Bar diagram of the samples in site chronology LYBHSQ02. White bars = heartwood rings; $h / s=$ heartwood/sapwood boundary

Figure 23: Bar diagram of the samples in site chronology LYBHSQ03. White bars = heartwood rings; red bars = sapwood rings; $h / s=$ heartwood/sapwood boundary

Figure 24: Bar diagram of the samples in site chronology LYBHSQ04. White bars = heartwood rings; red bars = sapwood rings; $h / s=$ heartwood/sapwood boundary

Figure 25: Bar diagram of the samples in site chronology LYBHSQ05. White bars = heartwood rings; red bars = sapwood rings; h/s = heartwood/sapwood boundary; $C=$ complete sapwood is retained on the sample, the last measured ring date is the felling of the tree represented

Figure 26a: Bar diagram showing the dated samples area by area with associated felling dates / felling date ranges / felled after dates. White bars = heartwood rings; red bars = sapwood rings

Figure 26b: Bar diagram showing the dated samples area by area with associated felling dates / felling date ranges / felled after dates. White bars = heartwood rings; red bars = sapwood rings

Figure 27: Summary of the felling dates / felling date ranges / felled after dates for the associated groups of timbers from each area in date order

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

LYB-H01A 66
339376340456265341241320343304252311290301186256303314365319 317361258249244315376369274260322164304202124171136132178160 168191253212202173137138132110105150154120140169150143107147 116134124159172171

LYB-H01B 66
321390320434278321263300352265246328289285196234296293389338 294377273226247317368380284268315148326187124176118128189156 177187252231184180149148126105122144155107152166145145111136 123130132142169166

LYB-H02A 56
468342361299461304382417299340539439505465535585592519608740 534549433478346406338339362610628748488605528474426405340349 356208251269295340275249403244244338243275311328

LYB-H02B 56
462329356300450310370406300340508445501413528540639510557764 541545425497357404342309368615648747511632484470439407344335 372214236273308330295243398249236331251284281341

LYB-H03A 55
206314105140212256185193374424392306313375331296338334395333 361394355375399359413380364301253359350322356323315256274219 275220347293324335356259212292327272252253283

LYB-H03B 55
143304116134208261168198377444392314309374321294339335399342 346405342380400361403384340338254366359314361318305269270212 280210360287311340346287200275334285222266277

LYB-H04A 53
245180191369429388300311252328315356369455481536547508448509 663667554431373303390239270278258299297273233220259404292313 366369247245340303343291329360329280285

LYB-H04B 53

239176181358418378299310223322313354382444491527513472440529 657653548432357315376266261281265290305268219274262370266324 330377306215344326330300324364301306297

LYB-H05A 54
381437539421511398471360364326428319383434289150233268330316 323303386408344337538499468438391301422296346340313300269277 238304282274270258277405573492578420560311

LYB-H05B 54
402422500445502374472338358316459314376426306129252288316319 323286385395343333540528452443364291430340342324332293261343 214287254308267274285425560478559422560300

LYB-H06A 55
359319431322376429290148228272327311319479340420472604417705 491630621576749765647707714801625629714562866742572623853625 616560656492660326866436373540372414278321450

LYB-H06B 55
350311419312377418281139220261320308311483350433443606320715 507634620581780806603707702830643603714564847744559623872612 630574661496655315843455343558385368298318461

LYB-H07A 54
208260178190369420389300311370328300396358434454503506464425 516628666561455413311390271295309297314321311244260255436297 301390364288255345361320310330369325301339

LYB-H07B 54
210249180179354415378306310366321290365367436451504507457432 504638671567445410330388272313286300308341314204270251446272 343370368304225362366304323313376303303336

LYB-H08A 52
500618643542446314240296388350400315282264202225174232325388 414461369283425343328403511382397387320316357335220212168133 161173176156171252327160117136343329

LYB-H08B 52
503609633529440323243302366374434318350236200232168242310396 394462349294393361298363532364425352329315367313215232158120 163188173158167212328166113161297310

LYB-H09A 54
104118281398391345368423247211403368480376584303295271296467 391254258272145173256266311216194297237261349257223187335324 234213237229333238273198234261217189271267

LYB-H09B 54
101112273400378352359407258206400435502403542315311262320459 416260258276154165262264312226198296223250348285211174322336 248245204234295234276198226250225170280269

LYB-H10A 57
322494247247411386576439635548537183240324362317324390492567 572350343342195163255204217212299308321290297391466311219196 12015315010294111148133891086759142172189187206

LYB-H10B 57
314493268246415387560443616550529187227330337323332376498562 585355351338233125246181175222275299306288292382450339217168 12515913811876135131121861027263133157212173201

LYB-H11A 50
100122278400387355370418253215408387409403438537491492513590 524459404382358416326329384352351283252241255188272287237393 296244247366364262285297389281

LYB-H11B 50
104128273389378349366411246209394390419408442522494504499588 527459407343328398342335344351354276239260237201276277259385 284243258351351247286305422298

LYB-H12A 48
16693118282416398360366420249220266211250286296346317273380 453443431389305285302288241274295289221230202259206359279209 311294258179277283233242

LYB-H12B 48
11677127260435395361361422248212282224256296310345316284350 446418418422263290316287228296283299245231226245216331277209 298281263181283296237240

LYB-H13A 69
105155140162185158217227208157263188189146212203182256227183 151151201155240178220157177159218173111147203181173122109151 66141101821297810712411010890128121132140118123133119107 15610811113516010310782103

LYB-H13B 69
94165147159183234224240202156265193197151217185182244247177 15815619015324218421917217315621617298146202171165143118126 6314110085128861001361109194126118142137115135138109112 1831131111391571029793106

LYB-H14A 91
706710453465596465497521399423487485402431539503219582364446 34028020633214318415525446841532522220596213220184199163190 98151167195183171216196981131531711511561601291108910372 1108414311112717514718917519518816612912093124128132126129 1661238986155104151154122162136

LYB-H14B 91
695722463460538517447522434422465511397417538508206591383415 32428621131913517516628449236931122020699224221193192160210 91173167180186169213194100124148187172133167121110959477 1107514312410417912517116522118416513211388132126129132145 1691279489150107157158131157146

LYB-H15A 103
18612885176212331200127118150168270229252202286272240216194 14626126530534243121333223319822713513113899114124132210284 3562202261749712915215314814090979910514814213111081103 1251351381721521209710785113801031271081291161219396124 1611261339711397108101791119392798211599127102100183 173108138

LYB-H15B 103
18612784176209276178143121145177269230240198294272237222186 128262277310329431206300212240238150129133103119122138191293 360217224172103127153133114110101881061061471421371097995 12514113917614011710110283116771051221061341201099996134 1561281339910598109909011396728678113104114116100180 173108137

LYB-H16A 63
41437529722138134233929421433022825826724624521516979156174 20526719714023314916822816417415392797698145107106133179 126971601511321771461027112913516412122314717015011312071 888975

LYB-H16B 63
40836631222835731534229120632323226526424023222616087155181 1862551931452371331712271621911539180739215097114125165 117911891421291771511175712613715913920817315616312911168 909377

LYB-H17A 67
616361352218185150392347318402230431212210179203142211257243 301204302172237179227221129159157187289228149195163131187165 177234241189265213195141130158182181151251195128168177183156 182227246156221124139

LYB-H17B 67
595368360215192140399346324393223424221237181214127228257254 274208299175252186228218129163146194288213151186167130185157 178257242202255228189149120162194177158249190123161194183147 195224230160194123125

LYB-H18A 84
236251306291233281225349351419494323301232209153293324396361 289493320234303303227299309298290241304192224224238230164184 154160261262134171182136218157179211219155183223170128119174 149183126201225131164203169119174171188129236157140224199159 156146148153

LYB-H18B 84
228251318278236269256359352404490324305235192159324332403389 316509330239315297221298330275294250301187231222232238161175 150162274256134169185151205153183207217169158227173127122173 149177135208221132163206154138158166195131246156140235180160 142160146154

LYB-H19A 54
476384228145194207321274253366287262225248181193157658279 10023534316719627019415077148166225155172199161141163187247 264179289214262308216273168263282305257259

LYB-H19B 54
466378212146198211317268241370264279213234197189160677589 8627236717820127820919979118139238176167196154132169171257 250171239189305311223267167243257301236282

LYB-H20A 64
23338424832728148429422728520727819929826533330029219190141 145113180244169287155165195130257282232133117106110111116153 205169134191111107165119113801671771931722359710612611690 49608986

LYB-H20B 64
18439525632825149330223024820726520831025533531329118392141 153107180244171284162169186137259283239135107111107101132137 1871631221731171131641111139517116820117321410011112412774 506875110

LYB-H21A 87
30729119629016622019617013191221167261364332456344343295290 231222201170224321393262192178186155324314216257173299269217 191295245269343235316177223207210128161188137133159162248189 113147140138235151197178168871791411438492134147159106183 140126166179163186181

LYB-H21B 87
28830619228915822119917512885191157248417340466350325297289 226236210149232310382280189177188149327310238251182306286222 180291244282337243308202201203207137155184143142153160251179 1111551431512041561821811649718014012810091144154164111186 134110159167167181198

LYB-H22A 89
235370356283328261231290252241290265224323411494368303204164 123238278336347212399271233163215135204314215218142280163209 155184245169182188225303224163183123105186185191165160136162 1951609685102140182116189175131207220185142160218197199243 136111229231205150160184150

LYB-H22B 89
259361369276331251245279257237294255241320404491362301219162 122247291346345226390272225158209142214296166260155294174196 147202233171173204230284225151191136107170181191170169120171 18315610281122121185131173169117202236176126164222210188235 114129245232196121161181138

6762394158625310081705020253411716415451121155 1035330192135417183128854572799566701427661 37717393127123185714853568584889887931217253 651302151461167989107182173130194250106113103177151291151 1541171397990195149150120886968516891140149233182134

LYB-H24B 100
565845484477518893586025262712016415451119174
974743272325338276137815369809165701437564 5655699313411219073435361739972107821001187253 75120216128113818511017817111920324981119114170154278149 1661101288389174145161124877558528086153141228189202

LYB-H25A 82
42244736850932821727615817918820616613920614912612695145217 185264344349209292277200142114141113171297236184176171126121 122144138145120755043628572624859425064738172 1061049612377881248513210312217414217012514513676108111 107115

LYB-H25B 82
38444237850634721126417418419917917912219916512913295141209 199284336327229271276199139116144140169287243189173170108123 111153144142130643759576876604460474865697864 9110710113878931129012812212016614417413414812984105136 90131

LYB-H26A 54
23453168239216228279336352237190186256266258269218229209220 2062712632732411721622031772262241922141147414515015480131 151187216931211155710695100103978859

LYB-H26B 54
26758174238217226281333349233199168268263265264223225220215 2112762542622441721621941982192221632141177914315516072132 16517921796115123561039298100928353

LYB-H27A 104
1881251418910616015716010912711396529011510510914013684 93821231499613015995101121106848265586075595767 3244446960807454628869876357797655455733
50736473778358835848756999104204140136137186113 109595372536861416070956470651089899837584 6480120145

19913114381116153160154111131105102441021129712614112391 71851031459811417696106114119857554685963554854 3648395756817368549374826256728452464641 606958796869659645498071101107193144127129198101 10164585664736742587293737766999594886688 6272114138

LYB-H28A 65

253182182223227276215150136202198279186181198204172141137132 106121133124871099813616213215180857390112124109133132 1231511321321241231161451201008971778191100108105104108 931009696134

LYB-H28B 65
232181188224234283206126133197200277194166192207169126120133 120129131138909512314115613614586827190115128113131130 12114513612512912611615311998100767581831079996106111 10482100112149

LYB-H29A 68
394332463409769355612376244335356216173297431301314386610317 276360461464324196251367272552512243196222331316329472317343 412364406264297304427265260297239321239373376530432290239234 346398258270251297273412

LYB-H29B 68
391332460399778352612376236342348214168289411332336444610319 278348446488333192233368264542515251207222342311320481324341 416362398276288304424281255300232322241373380515429298250233 324406279260247324254421

LYB-H30A 94
3092672693313303053501641692082201675371120128245219176168 3051791631151757319520214297158193137139868414467233136 13820217510613010414716310612511411266159116190126193134158 158194163145101132151176157172122113126123117107126115147134 9298891161291431331091169871746291

LYB-H30B 94
3222452813353412863621521792122311556177102137242213166168 32418218111117781184181148107167194133131828414272229131 1432041721081361011501559214810510878157120175141187128160 15621016515910311916117614416012711310613112094129132153132 951039111811514113012011011068665780

LYB-H31A 87
356348170281246387299483274336335274260376171326175231214257 204220189288247222183144146200150248264132164239177250111178 951431761461221801419910579641197317510313313812092107 901091519118714992124120188125149123167165166206146139108 103123150137160119131

LYB-H31B 87
361339165264243370297496250338325260269375168319175230220253 189217192292248242184133141194142265257127160244170229130171 11013417415011317614210710967691196817210813114112398108 861131351041861509312812421912814410017516315520214211998 102115156144145123136

LYB-H34A 73
267183161179167146149166153107160935554608080101101114 6453787480188245235214295209326290337253222295223221289 259314283368240312304310275400275207285233260262269234328222 152165250304389250255240204162224304285

LYB-H34B 73
26118116418315915015317616010714994425861818710010894 7652766979189247248210290191341302345240230276234214289 285296287348256296316290279397276233266251233288260224329190 124187234304400254252246195166225267245

LYB-H35A 62
249346403345430482388465376352330314253251246353240249363523 285304321257312249186367331361242226153144184100759880114 85721117550415667113152294561323304336385565456268388 302268

LYB-H35B 62 293356409332387485403443379350337321250248251365231260349511 299305332260303249183369331367243230158148179105729574104 89701127738355777113139308616307299298334580450262382 302272

LYB-H37A 66
2871772952651932359284889214912014414011810366104121147 349432543260336256460410364250360325236303308287325208364292 308360273266288252238290350282399443382470335230334376506627 403345281300204393

LYB-H37B 66
252181266257183224898893931551281371411219577104113156 348426554264329270431400360222349335225318286306326208354262 313368281260302277233286345299391447372515326209335394509620 439361294304217372

LYB-H38A 83
506248234233314481457561751658482252446764859492266235162206 15954363135262646353843304741322738605861 876849544095156161110121250191310337209196126193169204 1881701541471361441299994108138175185866172122158165171 263262173

LYB-H38B 83
484259245227317502458566770644488254440758842521277238159218 15643353037311840413942284343333035495958 966849524292147159109129244191304329224181140189164202 17216816015014014612910184118134171197787265123154162171 267266177

LYB-H39A 90
1831862061592191321682022792462742311871652812201631428589 3648514710018510078526064791051488994111187163182 1211251071792271541741401191451641281371492141108965102142 1781471492131291361281098099801277975166117831016786 8210378666487111115130171

LYB-H39B 90
2012002041572191341562082712582722041981742852051621319368 3853504810418712177534867751101459293111187152181 1141311041732331571641491141581541441111582161289858105141 1761511412181211381341018596681228783155119831007183 7710072726888101124132177

LYB-H40A 102
222278310316203171318194203301305258244142223184289203160134 18418510463841061913071331236611112697165120105127103196 19312710714113416216516311393739015012014823617217012190 1301731771401862421541632361651021551632011107711311577145 86571041108977758710615112415112013316714611112897102 11191

LYB-H40B 102
325283310307198169309209199294311261235152227182294206167136 1841889879759719831212212767109128106172124110116114204 187121108132123166164161122104728613712114222515915812195 1281841751391932311461682401611001491742141067911011378148 83601091079076748710515210316812313317114110513788111 10794

LYB-H41A 137
25416698217230139140199192106104136187233149151104125158134 164160147146999158581401381071071351217312469140162217 122141911069812811776599111455508387154165896643 76676767906273751308265641019410810671576265 14289958915211997927011610011167116137869814010056 435310343527568757847728061606563126869753 7352469870619461143544945627572104109

LYB-H41B 137
26315311220724111412719319411294145166234159149125140155138 14914614815310591686113913096991281115511172112163193 120134951039213310666647210768518184159176736748 66687068876964761508755541118911411480645576 1177884102157132911027810910810264120143761061428554 47481114246767473102443480635355651269710776 63495910567848369120744849697076102108

LYB-H42A 99

36432816716210318215722022214013112921011499187118274239165 11085201218179139182139165179236190112190211152195209175118 11710315915614415323514916113385173168195105151101102140198 163811041332401197814711410714810795147142146134112143172 15389127156121137104138142145150163109148129141172164160

LYB-H42B 99
37132716613911017915622621714113312821510693199115275246166 11897189199185132175135155172233173128210192146199239192107 117102156168137144249167152128102175169182104154106109133204 16180961222331239014611211515710498141132154119112138154 174103119152101130107136155128178158116130135158175160157

LYB-H43A 56
41729136437739050536534923725725636438939734017216098109146 187122100226194200219233225234885477657911214814715884 8265344246574461939387848488173274

LYB-H43B 56
42227939635038451235635624526724135439338631418015096120141 190112102232191206215209228220796672597012014715215484 8460384147564859949384828988174272

LYB-H46A 120
891081301941541121355646709913614017416017485675184 13517014112786121163186163111140128209105178190201146228203 15513110312418517114087828689841309112186164144144116 901011168610867681268164668982938610811910197109 13318112158467263881089389505853677072455177 5878996756698280747876836361566139555050

LYB-H46B 120
991121721891401031165449689013413718817017784655090 12816813912496110128172168105138136200112186218199153228219 16812710312818415715683819910376134899285178143142108 921021258610759691259980808874979191108110102113 1381811216350666784999994545455676363495477 54851096660738176738469737371555342604849

LYB-H48A 102
816997715074495073656756404260791069112680 129124124111112909910812210810110719012319114684121162127 12514212519319614511994888289936389979389738087 1018511910481668887999289445861784546556284 706971567086791237010786104120158151158120142135144 138195

LYB-H48B 102
6178948150495854617762524954468195105100102 12110912012810184921211251029511819412119415188119158127
127134119196184143124948786919071879210278788687 978611511374619382998774526252625449486986 757066487986871127510490107121153150164119147130137 144170

LYB-H49A 59
211309275307311194184341396394414460196201134322418417227110 207343149183122182277343287202311257226236288329171222163161 304193143163138141140129264197131204289170174169186302604

LYB-H49B 59
236277270332318225190373367403415471188200126318420427222105 212354143179124187282342299190310244220247290331159238158161 292198144163143142154143218215116201277178185161189271659

LYB-H50A 58
426434300428254311369388442344197185292359356357273395176142 100112122186218233272222273332252194217277239257277190195205 2362031651792081841481541491131108112413181124130147

LYB-H50B 58
388480291439276318350393415344178184273354362369279404166150 100113123172236221267226292328263174226275261240275188196189 243194191177201179155151144113979511912689117136141

LYB-H52A 76
533317242232172199154225143168166144132137185207213258244182 190215200214220215183151164174190268257191255233197239280234 191155176217160193203207247200203208195206197164154171137123 99210224213203219164138196274189138167245209241

LYB-H52B 76
489319245233170196168172162169164144132138185204216248239200 175222201214212226177169152160177266263192245245188237285221 185166171212163204197212246198202228193205189173152171138129 108216221201217208181155183277192139163244209239

144145186177105100941001071081281351326410570119988883 795467535566625660686379709779895814410990
93545689971311101151121171111131279392919093110104 9716511913511486861149695798814114798114108778869 90617761787889811179286103987358701161099764 574461625758626382686472618913113316995128138 14511217217117413116212816415014812113919614810173117119124 9992146899010211112314812311711712020016411192107128109 801612071209886799086110126100109125

LYB-H53B 174
126150183179971009310510610611713311766977314710382106 656567527252716048686869878286718113110795 845662741071249614190128122102117106859588103100100 96160106157113741009995105977714114189113104607396 777680688562798210210589104887657851101099278 5448557049595953956472676690142131155104115146 1441081801701701361411331541481531121361971348782123105117 998913397911131071161491241191251371971809393103132104 79153205129949384898896125107107123

LYB-H54A 135
83133165121134143117797262521451771661291311071044476 1161156710512373105778586607410677413571678676 7662455236322032584236474532312731395646 41403639495773454528335879893835100150115134 10698106948211969641287980997614411812311612178140 183206151248162129146155190223221214205213166118135160200219 182113135129998674101113179202177190178179

LYB-H54B 135
8913217211512815211474806151147176165135131124994965 12810769991307010180898561729884423771717685
7659505134302132544538473833332836365944
37443940455971414036405378864740108143118122
113981068189117687011777901018413512412411710774128 173218158264172129141143185247219227196208163134136161201206 19211014512687947493106184196179183178181

LYB-H55A 149
1771731021171541631451501501401511371671161401081448686153 127130164123756896681017311512011381465611011414385
52709966609311314394108131140116120577081118128107
84857091631366655597494889755487711811710498 741059010913564431056874909014116614310887647096 11790174102113101151174211185184202178174142158163194227219 153160121119119108150140208189164207184188190174205154158173 134134216195145149121129160

```
LYB-H55B 149
177149 92124163158144150144137168151159117129118158 67 91 141
13112416512267717577926911112010971565611411313286
5176947262881061401021141371351061195276 72120121100
83 8170 87 7012768605368103848949 37 8311810611895
77 99 831121357542102717797941351761391028155 69108
11393161114106104158185207181180205186172143164160201225218
148162119128113113142142206189159218186198189177192155166 170
138133207197144141131125153
LYB-H56A 126
76 8490605880 9910713010315285 979710714615219297129
181114621147510210377 7510064 55 61 37 3196 97100 105 80
7161 3140 89 83 63 81 89 57 67 59 66 60 52 70 88 56 37 37
36475474634946554441 32527260 624645 3847 35
41557971605450526063 89 575755 525269 87 61 65
119159150166160118167124202227123164123112111128120195157140
151138108181239297
LYB-H56B 126
    89 741035758 83 93104141911569287105106139150197102131
1881027110487 951067676 95 70 52 63 41 27 97103100 99 81
6952 39 37 88 91 6874 8462664553704175 95 564541
3049605553534955 6241 28 45 6953 534344 54 55 55
56517878606745597556 85 615852466264 89 67 61
115164149171156124169123202230127145118106108115121173157126
154133101185248302
LYB-H57A 155
112981191351651381321329010296 99 9854 92120 86 6841 24
23 29 3843 31 2045 37 27 28 31434946 38 27 34 39 2940
4173664648544146 6271435441 364753 51 41 41 64
127108979994125 8977110546363514366 567211011474
7651126125180150166120101100112118129148157154140147113127
156193210160 9977 85 655877124108125120101133143154123168
1571418471656399120 9310968829411514012413417614797
80103111150147171181144117127138188183167176
```


LYB-H57B 155

```
126105119134160141129139761111039184607913480763525 3433432924263433232435494836343238453633 5565615453524451516945373443606057372971 1101068677981119168118536272534752578010510580 84531191201811531721269995113121112158140156137149124122 162189203159101728475497113611313211898128140155126165 1581458365616499121961086981100117136129131176148102 6191119151148162187146121138134186176171179
```

12914213492688283107111856165739445671121128977 8480656759637012511669755576747310575525579 898210265508613814512612210613581891407054686754 7685127149112114746410215018014819613793135142156191182 17615615413211213213017919216287998282737591106143124 118149147139136126125116105134108931641661121159399133113 172131154205209114106121141149147153179

LYB-H58B 133
12613414790748079112115955862587670549511711177 8882686455736212510875696570678010375566172 85891115748891121481291229414089911416162636465 7287120163107111855711014118314419913695131151145171187 180161150135110131139185191178809286827670105104149112 123142146141137123123118107136106981661681061258696138125 159129160214211108107126159138142151180

LYB-H59A 129
84647558698514010810786829110892142103756193125 14212210259117160146188140142224127186180124105120986994 11118715415314711456137176192138217160133130156193208163222 16116315914813317421822718514112799101100119133117171144131 1521661881701391539797118101791341421151139281112109147 12214719114283871001081261191381281068897119133140112109 110871181198982777978

LYB-H59B 129
7976605569791561088610076949511413792856793109 13114876671031561511741581412091271741951301011329174102 10619216214715710858121160196128228137112126157187221172217 1741591581441621712242241811451179695105116139120182141123 159172189183132150100104105100971391501111229475110107152 11815018814890881011041281291391201238695129130128105122 1001001141199770768586

LYB-H60A 94
39313543425446404041514640616271111697974 9574100103142150224181138895354655775116133101133153 18016613112716615213312612715415710083117107169151131137173 1971631109254474040413837405668105123123636150 6192103102931029213891169159138152123

LYB-H60B 94
36223047514249465333475630525770103706982 887793111136108172177136876036606668111127107129155 16816513112117514814011713014614711881121104156132135138168 20016211011258445146374335464473101102131705763 68106115111112988113299163159133151121

LYB-H61A 101
664478489485474422400268387445446350348191269248203170251268 190217177178188170434373309459330203180267292304178341443235 255210264247191236186236232248208129115180227258211239190200 15921715415212116019219693146124151184156259136197179137151 186229173141176267260271236184192214189273235210191230158159 201

LYB-H61B 101
605481493471477413401275391445440351338198249259204171229269 161217203157180190418368309445336193180280281298176338446220 264198268249207238188256240212198125103189244295222240196182 168212171136113175189181106136126154174169246152178183139153 197219172141187264228262238171205217209281231222186221172180 197

LYB-H62A 62
417369415319188187195289214218172147180297346332299368380263 295322366376230320390191310211277252286336225313273263282200 133204204255249262213216191234199189169187190217124175135186 219205

LYB-H62B 62
425335400307180193182284203213176139188298354331297368363260 293351359391233324385192303212281234293356232295264279243198 154175215267229262218222204231231200160189181210135178149161 233189

LYB-H63A 90
139190193164291211205197169166204158154144188210173179127144 11220315117816316815412572108107186126137213178106112185174 182162159209159134126155134117118178233189226180121113110131 1481591191441339312111412411382109112117111143116156184144 107112133987989133191171109

LYB-H63B 90
135186209153302198201209163163196151126129187220174182125147 129197154152165182159125809612417013915523817011098180188 175164167222147140128158135117128164220201236174122120108140 14315113613912410712111411912987106110123111141121147161148 1231091281089192112192173111

LYB-H64A 94
135192244210215296262202440360239219143146704430384542
4454453241525247616568656561526053444436
5154454144574955607161534158658560657396
6778917592845847374138455052756439486570
4655496952446360465754636888
LYB-H64B 94
152182238225210295273186448360227215151144695326404548
3849503139485059477073596266496153424747
50543842466255546082554253606510167778094

6792889081815959513940535540726644546654 6055476452486658516049666887

LYB-H65A 90
3114583143512532273062602353197610497153133165134676697 1501641238510113312510410812213618210614411512513422413396 1331207313014211911795108172163827685112123869197124 6774711231121149610910110411612718215715610511215298118 10482778810412212812593105

LYB-H65B 90
310448292344252242306268235325849899162120168128677192 155161127809912411710011812314417510515011313813721613389 140110721191291271089911015716163100811131178790101114 64836912010610010210610399107149188157142127117163100112 118727484105119132120105112

LYB-H66A 94

27625034925020916410211011117420910313912317415621615897115 152199245201125176274313212302266392419274244247269294436237 150198201192193220166173161321222255148115109148143124122136 172958482152105118135131110146184215213217189149151212105 128126119140139141201217214291235333280236

LYB-H66B 94

272268343240204175106125107185211961319516817520816593117 145217247195134168275312219279313381418258237248273304424246 158190195195189220166166172314231226160117117145140136101144 161968084145112115142133105156164209221221188144152204109 141123130127144134199200210291226335284227

LYB-H67A 73
320409437292436340324377232271302429337650297227371302281285 284261189214369272283177173176249207184158163156103124107182 193187209988486151204264307295178150244122167140137163182 213214302236215279308257271223202300266

LYB-H67B 73
323436433304429335329381244250303421338650290232354311303285 285249199200370287280171179155243206189159165164100117104187 1922021971129794139214267306294180149266128154140121171175 207210307224216266305226297201196306256

LYB-H68A 76
270200230270200210220180230200200150120210180200210250210200 270230180200220230200210210200220200220170170140130230240200 330250240220150160180250200250200200250200180240160200180170 170150150130200160170200210200180170190220160150

LYB-H69A 150
250260200250260220220170200200160170180130150190110230180170 170150200130140150150280170170170180140160140190160160120150 190150110130170170190150190160120200180150140130180150130150 15019019014017010015012015013012010090140100110130140140150 140160160150100150140140150140160180150140150110150120150140 150100150160120140130120100120140120160150160100120180110120 110100130130100120150140110120130130140150110120150130150120 110130130160150140120100120150

LYB-H70A 103
200240180170230220250240230220280300330270250300240250280310 300270230200180220180140190180230220140230190180180190140160 160190170230200180170230200250140130120170130190160180140120 120220210180210190140170120160180190160150150140150240200150 140180130120170140150150130140120150120130170150150160170160 130170150

LYB-H71A 99

200150120200180160130170210160150150200170150170120130140130 150140130130130150150160150180150120180150140120130170190200 140160140160170150150140100150130150130140130120140130190160 140180150160170140150130120140130150150160160130170150160120 200170140150120150150160150160160120150100130130150130120

LYB-H72A 73
250230150190140150250250200150230160130180120140200180280170 200170140200200120150130190140150130130170110170120140110120 150120140200150200150180160180120140170230200150160150160160 13015010070150130150180180190180170170

LYB-H73A 115
200170140150100130120250200170150130110140130150160150160150 150150120150120150150130150120130140110120100110140150200120 1502201401101001201101101201001201101001101001108080110110 120110130120110150130140130120110170150120130110120140110100 110100120130110120130120100120100140150150240150150200150160 220120110100130100150130130180140160130160120

LYB-H74A 189
120170180160130130110120110150130110110140150160150130120120 150170120140160140170130110120130120100110130140140120170130 150170140150130100150130120807090908018012090130140100 110120100110130130100140150120110701201301201207012010070 901701301309011090100130140120908011010010090130140150 10014013012010010011090120100120809070901307090100170 808013014014090801301201309010060130110130908070110 1301101801101201109013011014010017011011010080100130120130 12070120110100100801001008013011011013090120100110110120 14013012011090140130140150

LYB-H75A 95

250150170140120180110120150130170180130140150250220130180170 130120180180170200180200190150170150250170160140200140150180 170150160160230230170100200180170190130120150130220180190230 20023015014019027014010015010010012015015025015017015012090 150110110140150180150150130140150130140120130

LYB-H76A 80
120130100110120130130100110110100100909080808070150110 150100110805090907090801208090809011010010011070 10080809090906010080806060110801001007010050100 908090709010070601005050606050606080110100170

LYB-H77A 116
200140180120130170140110100150140130100120180180120170200100 1501001201501501301401401409013010012010014013010010060100 801001009010011013012014012080110100120110110120130100110 1108011010011010013070100110901209080801101001109060 801109011010090806010010010090130110809010010090110 8010080801209090801209090100507011080

LYB-H78A 118

170180100150180160200150160160140150150160150140140200140140 1201401501301101201501501009014017018015018016090130120120 1301501701401301201501601301001101001201101401301008070100 809010011013015015013012014010015015015016012013016014090 1005013012013014012080130140120150130130110100130130130100 1501001101601301001009011010080100130120120100130110

LYB-H79A 137

200150130150120150140110180190170150160160130150130120140120 13015015010010011016014013012019015013080100110150150110160 130100130120120110110130120110120130180140100110100100100150 1108090701007070809010010010011014011070120120140140 11013015014010015011014013012015013070150140120180140150110 14017015012013017012011018013010010080100120100120150130100 100100110100120110100130130150120140120150130140150

LYB-H80A 96
80100801201007090808080701009090100901201007060 6060608050404050606050607070809070707060 708080707070808070606070807010010070809070 100807070608080706070607010080807060607080 701008070601008010011070606070405050

```
LYB-H81A 144
    70 80 80 80 90 100 70 120100 70 80 90 100 80 90 70 70 80 60 80
    508080707070 80 601006080120110 9011080 70 90 70 80
    90100100 90120110150130130150140150100110 90 80 110110120120
    110100 110110110170100140120150100120100110100120110120130130
    130100100100150150150140150110120150140130110100 90 80 70 100
    7060100120110 90110120120130160110110110130130140130100120
    130140140130120120100110130130130130100 90 80 110 90 70 80 70
    70 807060
LYB-H82A 121
    120110110130140140110100130120 130120140110120120150100100180
    14012011012013012011012013012012011013012080 70 90 70 80 100
    1001101008070 80 90 8011070 80 80 90 60 80 70 100 90 100120
    8010080100 80 701007010070706010060 90 100 100 100 110 100
120801308015080130100110100100110110150120120 90 120100 100
70100 801101207010070100 90 100 70 70 80 110100100 90 90 80
1 1 0
LYB-H83A 288
    6070100701109010090 80 80 70100 90 90 6070 80 6070100
    70701006070 90 80 70 8010010080 80 60100 90 100 70 80 90
    9010070100 90100 90 80 70 100 70 80 70 80 6070 60 70 70 80
    60704050 90 50 6070 70 60 70 6050 304050605070 80
    1001108090 90 70 70 70 70 80 8010080 90 90 100 80100 90 80
    100807070 90 60 80 70 607011070 80 80 70 90 70 50 80 50
    605050407050706060 80 90 100 110 90 100 80100 100 70 60
    7010070708080908080100100 8012080 90 70 100 80 80 70
    80 80 8070 80 70 80 90 70 70 70 70 100 70 60100 70 100 70 70
    100 100100 90 120 60 80 50 70 70 90 90 80 120 100 90 100 100 90 80
    100100100110 90 70 100 110 80 70 80 80 80 70 70 50 60 60 80 80
    8070808070606060100 90 90 80 90 80 80 80 100 100 90 80
    801108010010070130 90 100 90 110100 100 80 100 80 130 90 120150
    10011013011013080100 100110 80 130 90100 90 100 80 70 80 80 70
    9010090 80 70 70 60 80
LYB-H84A 147
    405040404050607070100701006011070 110 60 70 90 70
    708080120100110130130100100 110100120100 110 100 100 90 80 70
    808070 90 90 100 130100 80 100 80 90 70 100 120100 80 15012080
    8050120100 1107070100 90 70 70 120 80 80 100 80 70 90 90 80
    80 80 80100 80 80 70 80 606070707080 80 90 80 80 60 50
    8070605070 70 70 80 60100 90 80 70 90 100 100 80 90 100 70
11011090100 80 100 80100 90 80 100 70 90 140120 130 100 70 90 70
100707060100 80 90
```

LYB-H85A 160
130100807090706080801009011080130110100100120120100 110801007090100907070701008050706050807040120 10012090100130909010010070806050100110901009010080 90150801009070801008060707010080807070405040 5040606080701001001209090801001007012013012013090 110120140100110120801209060100809080508070609060 11080901007012012011010080807060901008080906070 708050808080701008030408012010010090601009070

LYB-H86A 85
1401101701501201101001702301401701501408015070801009050 11010080609090100809070809070809013090120110100
90607010011080709013013013080901001001201308012080 120110120901001301009010010010010010012090110100908050 7080705080

LYB-H87A 284
807080808060120100907010080707010060801007070
80707080908080709011010080708080100100709090 1008010080110608080706070808070708060707080 6070708070706060505060707080701101007010090 708060701008010080909010070901007012060708090 70100808070901001009080100706090508060706080 607070807080100608010011010011070708080708070 908010080908080120809090807090707080807060 701008060707070807060110601007060100909010090 80707070801001009015090100100100909010090100100100 7010010090801009080608060707070609070806050 80707080708070801009080901009090809070100100 1001209080901001001109090100120100130150100130130100110 90120801008010060110100100807080609010090908070 708090100

LYB-H88A 132
1001001009017080120100100908011012011010060100807070 8090801109080807010070110120110110130130807080100 901008070809010060100809070608010080907010070 8080806070806070706070808060706060706060 5060607070801001009080901001207070706010011080 1001001008010090809080901501001101208010080907080 80100809010070806080708060

LYB-H90A 55

302261262298334206179242222202222319229156240229292210217294 258326314336295219223251259194205199156153340224167215290238 288302264215176209191170233215174218158220233

LYB-H90B 55

212295265303326210175240208197235304227166242242275206225303
276307321327291203229253273189208198146155363225180198303222 294282278223168219171173251217178217145199234

LYB-H91A 55
259339292349290264406477289383337448253150176295398214495372 519452330394374331201287343244386215273270195251215303306198 161180210151161216196138227226278240263156268

LYB-H91B 55
249333300339287260407465293387331449257150185308398219493363 539436338379373324204299346231378224272297196260205310329200 178184206162162220197142223235273251251160269

LYB-H92A 54
29140139123123945532739129045620492125224302171365255408320 244338308304190272314218352235301333218276202268288275179243 255178202264274238319303266264265182319350

LYB-H92B 54
303398373227251463334380291464214108123217291184360244413325 244339308295198271305225351227310330228272199266288274173255 244183197264282234315300284267269201303355

LYB-H93A 76
465337316382374475373275331311229265388267242266263211174173 2421831991511491059797194144152163223135160157223206260142
71138198112116105143166201205101158161172220271260204202171 1842422162262431961519015521413499134212155148

LYB-H93B 76
490330325375366468371275322313229264393262236283252233155174 23718120115314410210292195148156157219137158169210209271157 7014418412011311114816718620998169143181226265272187190174 1882532152292501931438615220812799132204165141

LYB-H94A 54
169220263255344289396382236242318331359331296277225382400346 329343372456353266224305272236289259275271200225171178241295 299310226231274295217160129152156169212156

LYB-H94B 54
160220273251321303400377223249317314361348290276214390402343 327338380443350278214303264245299256246284193231161188240301 286327217238274293222158131151151168212161

LYB-H95A 66
151231209193153209210177174220216205234252179281204234257226 249258180328309353297388366434264212201262218188209198281252 215195164170163155115155109126187176146140136123157118196142 165150128153136134

LYB-H95B 66
114241222202150193203172163232213219251259169291198243257227 248240192336317349294387362440264206216247223180215209286256 210184168156159159131153120134191197139138134139151119198152 15515813014013386

LYB-H96A 94
83106194252288274326339183244248192203215262364251260313125 8811018816012515515411495455778179148109100727894101 1059611413811918518629533624624119411092138133153164125292 300167147239227242173114138888972606710815887131132123 225254171189144144221177209203143121174133

LYB-H96B 94
96101201245298267316344186236242199196218245375251270290139 88121186165131150141121865055831991601089075699992 959911613010720017928232822925218911590135138155169128308 297176147227225244183120134928770597310515893129127122 229246181188141136217171213202155132167106

LYB-H98A 54
311365279423264413406395295303335257379299310261473306232184 290221204245246240184279410275412412378291312345266362327316 380307323327266371291324268431291204222227

LYB-H98B 54
337370272427302406406392299344335231404304306257419301253178 263222215229224271166309411260411413395300327332246392314311 386295327334232400304308259417270211217237

LYB-H99A 55
332345368366262347376411321241472415345396355532550542420343 315330255301445376347258373199311225408233273306262242361386 440416329377364501547589289351275440385342256

LYB-H99B 55
329364365368266352386394317262460421333378348510544546421331 321340255283430385349248366195331227406250257273286261355383 445398350371342511546573292354268439387354252

LYBH100A 52
239265183302205254284361484526371372456312362589666553436496 202258415338220280225259295335191305358422343282176195233221 225265264204208129166182179383265244

LYBH100B 52
241267183296207260287373483524351376449291357573648552445521 170253400339229254233277305341198293399434331284154183244214 229258275200208118174178165387287214

LYBH101A 74
1291181121024810417513612510212690901311356875357590 1651571121261491071029816020526423418717870160117907689 149172283314485564337178153195247299123769375107166215206 138138115112112851401186369140226315379

LYBH101B 74

1261161031045110517116711198131941011241417073377094 16416011211315610094921501982502381681811591691141017398 141165296309484569342171164198235289132739470107169213202 144134110124112891311097363127248303361

LYBH103A 61
1661561618210616318022014515215213113611114995110103117128 1199912714020916512010410691101128153134166168176201187190 18518116621519115114612111511312814515814911512110795116127 152

LYBH103B 61
15516215978103160197214158147155124134118133107100104122133 1141061251432011981288610378105127136146162162177199190178 2031721622121921441401261179914714516714010312411499109118 156

LYBH104A 54
305467368340450343336281404311323320294190272176238290285225 163306308227256187211198255218166193237265217265222188172190 241303218196173178238185217247191185229251

LYBH104B 54
300465404331452345338278404301324291313194279163249282312231 156326292226255198204194256206168208247258237250219178164201 259296219191169180245200236210240186230252

LYBH107A 56
365261240252335325331259187388406235334285290256389208160214 269341236337277254282414580266167189136121247380277293300244 301365275262221331417372353247420220227289288315

LYBH107B 56
374251269235314330334271177396392253319277288258409184168241 266386264282275243275411565253166183135105253393286278311232 303371271251210336445347335243412239219293305310

LYBH108A 76
38917374798711082729011611213812912612215516714599115
84601296549691136273535345222962738111911062
6310563818413913576801347411212569132142136172110124
100737110263124113139120114157129621077795
LYBH108B 76
363154908092109767487120106160108126119150163149101117 64811186158731116175535052282857698411510565 538773758014314585771287511012071134147145167115117 9063661115911911314112112114012060937096

LYBH109A 57
297436366417506343292332397308305468444481496507315239303157 295295196132250210304157195184229187180255160173213280237178 239203143121135175146332112109172227190154221390221

LYBH109B 57
296427350402504315306335401304287473449481484492309241314145 291307183141243218310165195182239190173272151172222255255186 237194133145126165158325108115194220183147216397208

LYBH110A 69
284366236202255365338240297212126187128224193324140145163268 203241408510423621532275469535469430377393296245200347366310 347231202233313158192162151174306122212175167329287213251219 166217201244280234166124221

LYBH110B 69
289366233202260365335236303210133156131241191363123137197270 203230401516408615534311446536454440373376260263237328356291 352217198239299160207162142171312121218164183318287169249159 175210225244259253138136228

LYBH111A 59
125121219127294305303260216395273299280267303253228327252248 233373266324206203362424265341320296196368223187269318311248 249255194267254255269232268244234226230187235193226244299

LYBH111B 59
128125229129269306296234201394275315322255311271257323249248 223348263289235202364399260368326294225332252197288329324255 253254202247271256261236277232229224243192238208219260273

LYBH112A 115
374379383346320392258219307313377304238204316227261263301250 26725927128836539731318715519832428825317413398198183149209 9885140107173132134971251471651141227512517317825815486 1218493838267907283797014419917897821098295100 83755911375991231771481821681991161561371351961549484 781021041079410513415982895884154152135

LYBH112B 115
378370370345319387237230297312373310237216309241270263301250 255264280279374398311182159199320291248168145110202182155200 10098132110176137127981301671871121257612816118624516480 12090101788168857180748415219617495821078995103 8175679881951381731481901691921211681341222111409587 85889510996116115155957850110150176125

LYBH113A 65
423548434299280327447457481449441346263287182153200298232306 230185122219257186149146179156871301163343261961327975103 1391652141681551301892132021651571581772141581041189190111 133156200167199

LYBH113B 65
426589434297282328500473463398434365271301177141205310226298
21619512522824218616812916617379141122326328185131827798
1441702301621421341952161991731621471752141641041219386115 132154205174200

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Buildings (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see
how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The crosssection of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about 8-10 samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

[^0]

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that,
although the sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0, is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08 , and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the $t-$ value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the
widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C04, then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons.
Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a
maximum of 41 (=50-9). If the last ring of CRO-A06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of 6 (=15-9) and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H/S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 50-5). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of
the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 345 , where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which crossmatch with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two
corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.
t-value/offset Matrix

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6. The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths
The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6.

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, PACT, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London Rackham, O, 1976 Trees and Woodland in the British Landscape, London

Historic England Research and the Historic Environment
We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside Historic England up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Report Series incorporates reports by the expert teams within the Research Group of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series

[^0]: Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

