Ancient Monuments Laboratory Report 47/87
TREE-RING ANALYSIS OF TIMBERS FROM BILLINGSGATE LORRY PARK, CITY OF LONDON, 1982. THE PERIOD IV
TIMBERS.
Jennifer Hillam

Abstract

AML reports are interim reports which make available the results of specialist investigations in advance of full publication They are not subject to external refereeing and their conclusions may sometimes have to be modified in the light of archaeological information that was not available at the time of the investigation. Readers are therefore asked to consult the author before citing the report in any publication and to consult the final excavation report when available.

Opinions expressed in AML reports are those of the author and are not necessarily those of the Historic Buildings and Monuments Commission for England.

Ancient Monuments Laboratory Report 47/87
TREE-RING ANALYSIS OF TIMBERS FROM
BILLINGSGATE LORRY PARK, CITY OF
LONDON, 1982. THE PERIOD IV
TIMBERS.

Jennifer Hillam
September 1986
Summary
The analysis of 137 oak timbers from the first medieval development of the site is described. Seventy timbers were dated and, because many of the samples contained bark, the dating is often very precise.

Author's address :-
Department of Archaeology \& Prehistory
University of Sheffield
Sheffield
S.Yorks S10 2TN
0742768555×6082
(c) Historic Buildings and Monuments Commission for England

Tresering analysis of timbers from Rillingsgate Lorry Parky City of London, 1982. The Period IV timbers.

Introduction

Excavations at Eillingsgate (site codes RIG'g2) by the Museum of London's Department of Urban Archaeology, directed by Steve Roskams, revealed detailed stratigraphy of Roman and medieval levels. Many of the phases contained timbers, over 500 of which were sampled for dendrochronology. The results for the Roman timbers have already been presented (Hillam j986). This report outlines the results from the first of the medieval periods.

Fol lowing the silting of the Roman levels, the bank on either side of the inlet was consolidated with timber and elay (phase IV. 1 to the west; IV. 2 to the east). After the inlet had been in use for some time (phase IV.3), a stave front was added to the west bank effectively sealing most of IV. 1 and IV. 2 levels (phase IV. 4). This phase IV. 4 revetment: is finown as the laroe stave Saxon revetment. The area was then further used and consolidated (phases IV.5, 6, 7) before a new revetment (period V) was built above the collapsed staves of $I V .4$.

Gat: timbers (Quercus spp) were uncovered from phases IV. 1 , 2, 4 and 7 , and most were sampled for tree-ring dating. A
totel of 137 samples were ewamined: 62 from phase IV. 1.53 from IV. $2, ~ 21$ from $I V_{n} 4$ and 1 from $I V, 7 . I t$ was hoped that the analysis of this relatively large number of samples would produce a detailed chmonology for period IV. (The results of the tree-rimg analysis for later periods will be presented, period by period, in separate reports.)

The timbers

The phase IV.i timbers were sub-divided into four groups:
a) timbers related to apparently primary tie-backs;
b) north-south elements in the main body of the timber and Elay bants,
(:) east-west and random timbers in the main bankig and
d) timbers from the east side of the revetment.

The phase IV.z timbers sub-divided into three groups:
a) an initial pile in the clay bank, 7576 ,
b) timber lacing in the clay bankg and
c) plant cladding on the west side of the revetment.

The phase IV. 4 timbers were all from the same revetment, although they were not all sampled for dendrochmonologu at the same time. only three of the timbers (7536, 7540, 7542) were sampled on site. The remainder were sampled at the Museum of London where they had been taken for conservation. These samples were examined in 1985 along with samples from
other afll-preserved revetments at fillingsgate, and full details of the results are qiven elsemtare (Hillam e Groves 1985).

The IV, 7 timber came from a period when the bank was again modified

The phase IV samples taken at the time of excavation were examined in 1986, and the results from these and the conservation samples are summarised below.

Methods

The samples were prepared, measured and crossdated following the method given in Hillam (1985). They were examined phase by phase in groups of about ten. Any samples with less than 40 mings were rejected, along with any that had knots obscuring the ring pattern or that $/$ ved very narrow, unreadable rings (Appendices $A_{,} C$). Usually the rings along only one radius per sample were measured, but occasionally two or even three radii were measured. This might be done if 1) the ring sequence was particularlu fnotty or difficult to measureg 2) the ring sequence was relatively short but had sapuood or bart: edgen or 3) if the sequence was undated but was considered particularly importants such as when there were only a few samples from a particular phase.

The medsumed rimg sequences were plotted as grephs to facilitate visual comparison, and each sequence was compared by computer uith other medieval reference chronglogies from London" At the start of the study, the three chronologies used for comparison were CITY MED - made up of tree-ring cata from the Citu of London (Hillam umpubl); SOUTHWARK -tree-ring data from Southwart: (Tyers unpubl), and BIG - the chmonology produced during the study of the Pillingsgate conservation samples (Hillam \& Groves 1985). As the wort: progressed, various working masters were constructed from the period IV samples. These were also used for dating purposes. Although the computer program (Baillie \& Pilcher 1973) was used to save time, the results were checked visually. Each ring sequence was checked against the other ring sequences as well as against the reference chronologies. A match was onlu accepted if the ring sequence crossmatched at least two others. Such careful checking prevents the inclusion of spurious matches which may occur, especially if the initial matching is done by computer.

The results were set out as a bar diagram (Fig i) to make it easier to estimate felling dates (Appendix C). It was not aluays necessary to estimate felling dates because a few of the samples had bark or bark edge, so that the felling date is exact to the year, eg 7104, or occasionally the season, eg 7119. (If the outer ring is completely formed, the tree
was felled an winter or early spring uhilst it uas dormant. Dut if there is only spring wood presenty then it was felled in late Epring or early summer, On some samples, eg 7105, the berf edge was present but the outer rings were too narnow to measure. Instead a rough count of the unmeasured rings was made, and an approximate felling date given. Where the sapwood was incomplete, a sapuood estimate of $10-55$ rings wes used to calculate the 95% confidence limits for the period of felling (Hillamet al 1986). In the total absence of sapwood, the probable temminus post quem for felling is given by adding ten years to the date of the last measured heartuood ring.

Details of the samples are provided in Appendix As whilst sketches of the cross-sections showing how the timbers were cut are illustrated in Appendix B. Full details of the results are given in Appendix C, but they are summarised in Fig 1 , and will be described belou phase by phasen The ring width data from all the measured samples are stored in the Sheffield Dendrochronalogy Laboratory.

Phase IV. 1

Thirty-four samples from phase IV. 1 were dated (Fig 1a), whilst 18 were rejected and ten remain undated. Timbers were
dated from all the four sub-groups although the majority were from group (c).
a) timbers related to primary tie-becte

Five samples from this group were dated, but only one had sapbood. This sample (7233) has 19 sapwood rings, and its outer ring dates to $A D$ i039. Its estimated felling date range therefore is AD 1039-1076. The remaining samples (7259, 7406, 6656, 6289) were felled after $944,973,975$ and 1015 respectively. All but 6282 could have been re-used.
b) the north-south timbers

Six of the seven dated timbers from this group appear contemporary. One of these (6448) was complete to the bart: edge, giving a felling date for the group of the winter or early spring of 1039/1040.

The seventh timber (6527) ends in 897 , and has no sapuood. probably
It was therefore \mathcal{L} felled some time after 907 , and could have been re-used.
(:) the east-west and random timbers
7126, 6113 and 6108 were felled after 963 , 964 and 973 respectivelu, and maty be re-used. It is noticeable that they have similar end dates to 7259,7406 and 6656 from group (a) .

The remaining 17 dated timbers are probebly contemporary. Foun of them had bart edge, although the outer rings of 7105 could not be measured. 7100 and 7119 were felled in the winter or early spring of 1039/1040; 7104 was felled in 1039 or 1040 but the season of felling could not be determined.
d) east side of the revetment

Of the two dated timbers in this group, 7634 was felled after 1014, and may be contemporary with those timbers felled in 1039/1040, 6717, however, has a heartwood-sapwood transjtion which dates to about 1087 . This indicates that it cannot have been felled before about AD 1077 because its estimated felling date/is approwimately 1097-1142. Since phase IV: 1 is sealed by phase IV.4, this timber at this east side of the revetment must be intrusive.

Fhase IV. 2

The three sub-groups from the east side of the inlet seem from the tree-rings to have a more complicated chronology than those of phase $I V_{0} 1$ to the west. Twenty-five timbers in all were dated, 13 were rejected and 14 remain undated. Theme is also a tentative date for another timber, which needs further checting before being accepted or rejected.
a) initial piles in clay bank

The only timber to be dated from this group was 7576. Ite 1ast measured heartwood ring dates to $A D 998,50$ that it was felled some time after 1 DOB.
b) the timber lacing

Most of the dated timbers belong to this group, and there are at least two phases of felling. There is an early group of timbers (Fig 1b: 74i2 to 7500), one of which has sapuood (7183). This has a felling date of $954-999$, but if the group is regarded as a single felling phase (see Bailiie 1982 56), the date becomes $983-990$.

7108 was felled after 1005, and mey be of similar date to 7576 from group (a).

The other six timbers are later still in date. 7167 ends in 1039, and the last ring appears to be the bark edge. This timber then is probably the same date as many of the timbers from the other side of the inlet. 7164 also has sapuood, but its outer measured ring is 1042, giving a felling date in the period $1042-1070.7163$ and 7181 were felled after about 1027 and after 1026 respectively. There is therefore no way of knowing if they were felled in $1039 / 1040$ or at the later date of $1042-1070$. The last measured heartwood ring of the remaining timbers, 7172 and 7188, is 1037. These timbers wannot have been felled in $1039 / 1040$, since the terminus
post quem for felling is 1047. They mey belong to the same phese of felling as 7164 which would give a felling date of 1047-1070 for this phase.
(.) the plank cladding

Of the five dated timbers from this group, three hed very narrow rings which were difficult to measure, so that the outer feu rings were counted rather than measured. Despite this difficultug two felling phases are indicated. The Heartubod-sapuood transition of 7218 is about 982 which gives a felling date of approximatelu 992-1037. 7220 and 7561 were felled in the period $1045-1090$, and are therefore of similar date to 7172,7188 , and possibly 7164 from the timber lacing. 722 and 7558 were felled after about 1010 and 1027 respectively, and could belong to either felling phase.

Finally 7565 has a tentative date of 1045 to about 1146 which, if correct, would give a felling date after about $A D$ 1156. This is very much later than expected for a timber from IV. $\underset{\sim}{ }$, but the date cannot be properly checked until timbers from the later periods at Billingsgate are examinedn

Phase IV. 4

Nine of the conservation samples from the large stave Sakon embankment were dated in 1785 (Hillam \& Groves 1785). A combined felling date of 1049-1071 was indicated, although

```
it was suggested that there could be two phases of felling
if there was archaeglogical evidence to supporte it: ome in
A040-1071, the other 3049-1071.
Three new timbens were examined in 1986. 7536 amd 7542
remain undated, but 7540 has a heartwood-sapwood transition
of 1030. This falle roughly in the middle of the range of
Heartwood-sapwood dates produced for the conservation
samples, and themefore the result supports the theory that
there was just one felling phase rather than two. The date
of felling is 1049-1070n
```


Phase IV. 7

The only timber to be examined from the later modification of the bank was 5976. Although the sample was dated; it contained no sapwood, and the temminus post quem for felling (AD 1ロ24) does not help with the dating of the later development of the bant:

Period IV chronology

Most of the activity in period TV accurs in the mid ifth century, but at least some of the timbers were felled in the late ioth century. The only timber with sapuood from this earlier period is 7183 which was re-used in the timber lacing on the east bank of the inlet (IV.Z). It was felled in AD 954-999, but if the other re-used timbers in the

```
lacing are grouped together, the felling date becomes
983-990. Re-used timbers, probably of the same date, were
also found in the west benk (IV.1): associated uith the
apparentlu primarg tiembacks (eg 7406), as north-south
timbers (eg 65%7), or east-west or rancom timbers (eg blb8).
On the west side of the inlet, most of the remaining timbers
were felled in the winter or early spring of 1039/1040, and
presumably used very soon afterwards. In 1049-1071, a stave
front (IV,4) was added to this part of the waterfront, and
on the east of the revetment a timber pile (7617) was added
in about 1097-1142. This last timber probably relates to a
later period of activitu.
Development along the east bank of the inlet probably took place at the same time 7167 from the timber lacing seems to have been felled in \(1039 / 1040\), whilst other timbers were felled in 1047-1070.
```


Conclusion

This stuclu demonstrates the value of sampling as many timbers as possible for not only were over 70 of the 137 oak: timbers from Billingsgate dated, but many had sapwood and several had bark or bark edge. It has therefore been possible to provide an often very precise chronology for waterfront activity in the late $10 t h$ - early ift centuries.

The period IV inlet was developed on both sides im 1039/1040, or shortly afterwards, using recently felled timber plus re-tsed timbers thith were felled in the hate IDth cenutry, probably 983-990. In about 1047-1070, a stave front was added to the west side, and the east side of the bank: uas also modified.

Acknowledgements

The Sheffield Dendrochronology Laboratory is funded by the Historic Buildings and Monuments Commission for England. T am also grateful to Steve Roskams and Alan Vince for providing information about the site, to Ian Tuers for making available tree-ring data from Southwark, and to all those who collected the samples.

References

Baillie MGL 1982 Tree-ring dating and archaeglogu London: Croom Helm

Baillie MGL \& Pilcher JR 1973 A mimple crossdating prograft for tree-ring research. Tree Ring Bulletin 33 7-14

Hillam J 1985 Theoretical and applied dendrochronology: how to make a date with a tree. In P Phillips (ed), The

Archaedlogist and the Laboratory, CBA Research Report no 58 17-23

Hillam J 1986 Tree-ring analysis in the City of London. The dating of Roman timbers from Billingsgate and New Fresh Wharf: Ancient Monuments Laboratory Report Series

Hillam J \& Groves C 1985 Tree-ring dating of waterfront Structures from Eillingsgate Lorru Parkg City of London. Ancient Monuments Laboratory Report Series no 4747

Hillam J, Morgan R \& Tuerg I 1986 Sapwood estimates and the dating of short ring sequences. In RGW Ward (ed), Applications of tree-ring studies: curment research in dendrochronologu and related areas, BAR (forthcoming)

Legend to Fig 1

Fig 1: Bar diagram showing the relative positions of the dated ring sequences from a) phase IV.1. b) phase IV. 2 and c) phases IV. 4 and IV. 7 . The accession numbers are given in bracteets for the IV. 4 sequences for comparison with the diagram in Hillam \& Groves (1985).

c) $E-W$ and 7126 random timbers

d) east side of revetment

a) initial pile
b) timber

AD

PHASE IV. 4
Large stave Saxon revetment

PHASE IV. 7

Modification of 5976 bank

KEY

heartwood rings

sapwood rings
HS
heartwood-sapwood transition
$+\quad$ unmeasured rings present
e rings too narrow to measure but have been counted approximately
f felled
fw felled in winter or early spring

Appesnctix A

Metails of the tree-ring samples

Context - context number
Accn - accession number
Rings - total number of rings
Sapwood - number of sapuood rings
Av = width - Average ring width in mifm
Dimensions - meximum dimensions of cross-section in mm

BE -- bark edge

+ - rings present but not measured
4.1 - phase IV. 1

APPENDIX A - DETATLS OF SAMPLES
File: BTLLTNGSGATE
Page
Report: BTG4.SAMPLES
Gelection: PHASE is greater than 4
and PHACE is less than 5
and DENDRO js not blant:
CONTEXT ACCN PHACE RTNGS SAPWOOD

6054	4032	4.1	68	17	1. 11	$155 \% 140$?felled winter
6098	4053	4×1	103	17	1. 4.2	155×80	-
6102	4233	4.1	37	1	-	150×95	--"
6106	4704	4.1	120	--	1. 05	130×85	-
6108	4365	4.1	97	-	1.13	130×105	\cdots
6109	4.300	4.1	64	46	0.74	1.20x 200	felled - ?uinter
6113	4348	4.1	$+83$	-	1.72	175×70	-
6114	4761	4.1	96	-	2.08	185×100	-
6117	4644	4.1	95	-	1.25	210 $\times 150$	\cdots
6234	4966	4.1	$67+619$	-	1. 41.	225×175	-
6235	4294	4.1	33	-	-	75×55	\cdots
6236	4703	4.1	45	-	-	170×110	-
6282	4927	4.1	121	-	$1 . \square 8$	145×50	-
6448	4402	4.1	1.38	21	0.89	135×75	felled winter
6452	4416	4.1	+71	-	1.31	230×150	very knotty
6454	4295	4.1	65	-	1.03	75×75	-
6492	4298	4.1	89+	23	0.67	135×70	$6-10$ rings to BE
6493	4603	4.1	116	28-33	-	245×45	-
6522	4647	4.1	75	16	2.37	185×40	\cdots
6527	4613	4.1	$+87$	-	1.18	180×110	-
6528	3376	4.1	c110	E17	0.66	175×80	felled winter
6656	4404	4.1	69	-	1.37	85×65	-
6658	4275	4.1	67	34	1. 14	130×100	felled summer
6750	4364	4.1	33	14	-	210×150	felled summer
7100	4438	4.1	98	29	2.00	230×105	felled winter
7101	4917	4.1	-	21	-	300×95	rings too narrow
7104	4433	4.1	$+82$	30	0.65	180×120	felled
7105	4439	4.1	$80+$	17+	1.46	230×180	ciz rings to BE
7108	4362	4.1	141	-	0.83	310×125	-
7108 P	4417	4.1	-	-	-	185×110	knotty
7109	4428	4.1	35	9	-	155×125	-
7111	4925	4.1	+188	-	1.13	260 $\times 140$	-
7113	4427	4.1	55	25	1.52	150×95	-
7114	4451	4.1	33	7	-	155×150	felled winter
7115	4280	4.1	75	-	1.73	170×75	-
7115 B	4431	4.1	-	yes	-	180×170	narrow rings
7116	4274	4.1	53	-	2.79	170×80	-
7117	4446	4.1	55	-	1.67	105×50	-
7119	4443	4.1	95	32	1.65	180×110	felled winter
7121	4369	$4=1$	-	yes	-	165×75	rings unreadable
7122	4287	4.1	$+7.3$	12	0.63	155×105	-
7123	4273	4.1	231	-	0.70	170×60	-
7124	4445	4.1	81	-	1.77	165×70	--
7125	4396	4.1	102	1	0.74	150×75	-
7126	4394	4.1	165	-	1.41	245×75	\cdots
7127	4430	4.1	-	-	-	90 $\times 65$?	broken

APPENDIX A - DETATLS OF SAMPLES
File: BILLINGSGATE
Page
Feport: BIG4.SAFPLES
Selection: PHASE is greater than 4
and PHASE is less than 5
and DENDRO is not blank

CONTEXT	ACCN	PHASE	RINGS	SAPWOOD	AV.WIDTH	DIMENSIONS	COMMENTS
7128	4434	$4 \ldots 1$	-	-	-	$180 \times 50 \%$	braken
7129	44097	4.1	29	-	-	140×115	-
7130	44.14	4.1	27	12	-	1808×180	-
7133	4400	4.1	97	9	1.60	165×45	-
7134	4427	4.1	-	바통	-	130×70	narrow ring
7136	4479	4.1	84	20-26	1.26	110×60	-
7154	4931	4.1	44	10-20	-	110×70	\cdots
7233	4423	4.1	55	19	2.71	160×80	-
7:35	4458	4×1	39	9	-	115×60	--
7239	4239	4.1	29	--	-	100×65	-
7240	4256	4.1	60	--	1.82	120×50	.-."
7259	4952	4.1	$+120$	-	1.91	300×100	-
7406	4259	4.1	87	-	2.70	360 $\times 120$	-
7611	4399	4*1	90	-	2.24	250×230	-
7617	4889	4.1	$200+$	나읃	0.96	215×90	\cdots
7634	4896	4.1	78	-	1.63	250×225	-
6760	4908	4.27	70	14	1.39	130×120	not 4. ${ }^{\text {a }}$
7156	4421	4.2	92	-	1.07	110×85	-
7157	4252	4.2	-	-	-	240×170	knotty
7158	4457	4.2	128	-	1.07	145×50	-
7159	4418	4.2	-	-	-	250×140	narrow rings
7160	4926	4.2	26	8	\cdots	150×1.15	-
71.60	4963	4.2	20	6	-	130×125	--
7163	4436	4.2	$54+$	비오	1.43	135×35	-
7164	4382	4.2	63	28	1.65	105×55	\cdots
7166	4397	4.2	+91	-	0.77	125×75	-
7167	4432	4.2	90	23	2. 14	215×165	?felled
7168	4902	4.2	152	--	1.10	385×285	-
7167	4466	4.2	53	9	$2 . \emptyset \square$	160×115	--
7170	4413	4.2	34	7	-	205×205	-
7171	4498	4.2	-	-	-	135×110	knotty/narrow ring
7172	4255	4.2	53	-	1.75	100×40	-
7174	3812	4.2	--	-	-	170×60	narrow bands
7175	4407	4.2	-	--	-	155×85	narrow band
7176	4408	4.2	92	-	1.25	130×90	-
7177	4281	4.2	48	15	1.30	140×120	-
71.78	4462	4.2	55	6-16	0.80	80×80	\cdots
7179	4453	4.2	79	-	1.24	110×65	-
7180	4483	4.2	-40	-	-	70×60	---
7181	4401	4.2	54	-	1.28	75×50	-
7182	427b	4.2	35	-	-	85×80	\cdots
7183	4424	4.2	81	6	0.77	150×105	-
7187	4444	4.2	68	-	1.37	195×75	--
7188	4405	4.2	85	-	0.81	125×125	-
7189	4464	4.2	51	-	1.59	145×90	\cdots
7190	4282	4.2	78	-	0.75	125×65	-

APPENDIX A - DETATLS OF SAMPLES
File: PILLTNGSEATE
Page
Report: BIG4. SAMPLES
Selection: PHASE is greater than 4
and PHASE is less than 5
and DENDRO is mot blant:

CONTEXT	ACCN	PHASE	RINGS	SAPWOOD	AV. WIDTH	DIMENSIONS	COMMENTS
7171	4403	4.2	-	-	-	75×85	narrow rings
7792	4437	4.2	61	-	1.29	120×75	--
7195	4426	4.2	59	-	1. 1.0	115×70	--"
7196	4258	4.2	$+127$	-	1.12	165×115	-
7218	4973	4.2	$+136+$	yes	-	215×205	\cdots
7221	4936	4.2	+80+	-	D. 71	100×85	-
722	4886	4.2	32	6	-	160×150	\cdots
7223	4887	4.2	90	-	1.27	240×215	-
7225	4897	4.2	74	-	1.64	220×200	--
$72 \% 6$	4985	4.2	24	8	--	185×170	-
7228	4890	4.2	174	5	1.31	500×135	\cdots
7412	4289	4.2	98	-	1.22	260×150	-
7419	4463	4.2	138	-	0.71	130×85	-
7422	4367	4.2	39	15	2. 24	115×95	felled winter
7424	4398	4.2	129	-	0.79	100×85	-
7426	4465	4.2	55	-	1.75	100×65	-
7469	4984	4.2	+75+	-	1.00	175×130	\cdots
7500	4975	4.2	70	-	2.62	270×225	-
7558	4882	4.2	+172+	-	-	310×35	--
7561	4885	4.2	95	$1 ?$	1.73	185×50	-
7565	4978	4.2	$86+$	-	1.52	145×80	-
7573	4879	4.2	49	1	1.74	140×115	-
7576P	4876	4.2	76	-	1.49	205×1.95	\cdots
757b	4906	4. 2	64	-	1.19	180×165	-
7536	4953	4.4	82	-	2.77	305×90	-
7540	4950	4.4	105	15	1.47	335×115	-
7542	4942	4.4	125	-	1.75	370×155	\cdots
5976	4628	4.7	132	-	0.80	100×90	-

Appencix 8

Cress-sectional stetches

These are not drawn to scale, and are intended as a rough guide to the way in which the timbers were cut or splita

Sapuood is represented by shading.

Phase IV. 1

6054		6527	
6098		6528	
6102		6656	
6106		6658	
6108		6750	
6109		7100	
6113		7101	
6114	(ग)	7104	
6.117	\Rightarrow	7105	
6234	(\%)	7108	
6235	mom	7108B	(f)
6236		7109	
6282	(71.11	
6448		7113	
6452		7114	
6454	\pm	7115	
6492		7115 B	
6493		7116	
6522		7117	䢁

7119		7259	
7121		74.06	
7122		7611	
7123		7617	
7124		7634	
7125			
7126	井		
7127			
7128			
7129			
7130			
7133			
7134			
7136			
7154			
7233			
7235			
7239			
7240	(2)]		

Phase IV. 2

Phase IV. 4 (see also Hillam \& Groves 1985)

7536
7542

7540

Phase IV. 7

5976

Appenclix C

Results

Context - - context number

Acen - accession number

BE -- bart edge

+ - rings present but not measured
$4.2-p h a s e$ IV. 2

Dates of heartwood-sapwood transitions, where present, are given in bracteets. 95% confidence limits for the felling date range can be obtained by adding $10-55$ rings to this date. In the absence of sapwood, add 10 to the date of the last measured heartwood ring to obtain the probable terminus post querf for felling. (Note that one in twenty samples are 1ifely to have either more than 55 or less than 10 sapuood rings - see Hillam et al 1986 for further details on sapwood estimates).

Where bark or bark edge $i s$ present, the felling date is tnown exact to the year, and does not have to be estimated.

APPENDIX C - RESULTS
File: FILLINGSGATE
Page 1
Report: PIG4. RESULTS
9/24/86
Selection: FHASE is greater than 4
and PHASE $i s$ less than 5
and DENDRO is mot blank

CONTEXT	ACCN	PHASE	RESULT 1	RESULT 2	COMMENTS
6054	4033	4.1	undated	-	?felled winter
6098	4053	4.1	dated	935-1037(1021)	-
6102	42.33	4.1	rejerted	-	\cdots
6106	4704	4.1	dated	985-1004	-
6108	4365	4.1	dated	8.57-763	\cdots
6109	43000	4.1	undated	64	felled - ? - inter
6113	4349	4.1	dated	$+872-954$	--
6114	4761	4.1	undeted	-	-
6117	4644	4.1	dated	913-1007	\cdots
6234	4966	4.1	undated	-	-
6235	4294	4.1.	rejected	-	\cdots
6236	4703	4.1	rejected	-	-
6282	4927	4.1	dated	885-1005	--
6448	4402	4.1	dated	902-1039(1019)	felled winter
6452	4416	4.1	undated	-	very knotty
6454	4295	4.1	dated	$9400-1004$	-
6492	4278	4.1	undated	--	b-10 rings to BE
6493	4603	4.1	dated	721-1036(1004-8)	-
6522	4647	4.1	dated	961-1035 (1020)	\cdots
6527	4613	4.1	dated	811-897	-
6528	3376	4.1	dated	927-1036 (1020)	felled winter
6656	4404	4.1	dated	897-965	-
6658	4275	4.1	undated	-	felled summer
6750	4364	4.1	rejected	-	felled summer
7100	4438	4.1	dated	942-1039(1011)	felled winter
7101	4917	4.1	rejected	--	rings too narrow
7104	4433	4.1	dated	+958-1039(1010)	felled
7105	4439	4.1	dated	946-1025 (1009)+	ciz rings to BE
7108	4362	4.1	dated	849-989	-
7108 B	4417	4.1	mejected	-	knotty
7109	4428	4. 1	rejected	-	-
7111	4925	4.1	dated	$+850-1037(1020)$	-
7113	4427	4:1	undated	-	\cdots
7114	4451	4.1	rejected	-	felled winter
7115	4280	4.1	dated	917-991	-
7115 P	4431	4.1	rejected	-	narrow rings
7116	4274	4.1	dated	752-1004	-
7117	4446	4.1	dated	947-1001	--
7119	4443	4.1	dated	945-1039 (1008)	felled winter
7121	4369	4.1	rejected	-	rings unreadable
7122	4287	4.1	dated	965-1037(1026)	--
7123	4273	4.1	dated	779-1009	-
7124	4445	4.1	dated	928-1008	--
7125	4396	4×1	dated	+920-1021 (1021)	-
7126	4394	4.1	dated	789-953	-
7127	4430	4.1	rejected	-	broken

AFPENDIX C - RESULTS
File: BILLINGSGATE
Page 2
Report: RIG4.RESULTS
Selection: PHASE is greater than 4
and PHASE is less than 5
and DENDRO is mot blank

CONTEXT	ACCN	PHASE	RESULT 1	RESULT 2	COMMENTS
7128	4434	4.1	rejected	-	broken
7129	4409	4.1	rejected	-	-
7130	4414	4:1	rejected	-	\cdots
7133	4400	4.1	dated	916-1012(1004)	-
7134	4429	4.1	rejected	-	narrour ringe
7136	4479	4.1	dated	755-1038(1013-19)	-
7154	4931	4.1	rejected	-	\cdots
7233	4423	4.1	dated	985-1039(1021)	-
7235	4458	4.1	rejected	-	-
7239	4239	4.1	rejected	-	-
7240	4256	4.1	undated	-	\cdots
7259	4952	4.1	dated	+815-934	-
7406	4259	4.1	dated	877-963	\cdots
7611	4397	4.1	undated	-	-
7617	4889	4.1	dated	873-1072 (c1087)	---
7634	4896	4.1	dated	927-1004	--
6760	49088	4.2?	dated	1037-1106 (1093)	not 4.
7156	4421	4.2	dated	856-947	-
71.57	4252	4.2	rejected	- .	knotty
7158	4457	4:2	undated	-	-
7159	4418	4.2	rejected	-	narrow rings
7160	4726	4.2	rejected	-	-
7160	4963	4.2	rejected	-	\cdots
7163	4436	4.2	dated	936-989(c1018)	-
7164	4382	4.2	dated	980-1042(1015)	\cdots
7166	4397	4.2	dated	+874-964	-
7167	4432	4.2	dated	950-1039(1017)	?felled
7168	4902	4.2	dated	844-995	-
7169	4466	4.2	undated	-	\cdots
7170	4413	4.2	rejected	-	-
7171	4498	4.2	rejected	-	knotty/narrow rings
7172	4255	4.2	dated	985-1037	-
7174	3812	4.2	rejected	-	narrow bands
7175	4407	4.2	rejected	-	narrow band
7176	4408	4.2	dated	845-936	-
7177	4281	4×2	undated	-	-
7178	4462	4.2	undated	-	--
7179	4453	4×2	dated	881-759	-
7180	4483	4.2	rejected	-	$\cdots-$
7181	4401	4.2	dated	963-1016	-
7182	4276	4.2	rejected	-	-
7183	4424	4.2	dated	869-949(944)	-
7187	4444	4.2	dated	874-941	--
7188	4405	4.2	dated	953-1037	-
7189	4464	4.2	undated	-	--
7190	4282	4.2	dated	858-935	-

APPENDIX C - RESULTS
File: EILLINGSGATE
Page 3
Report: EIG4. RESULTS
gelection: PHASE is greater than 4
and PHASE is less than 5
and DENDRO is not blank:

CONTEXT	ACCN	PHASE	RESULT 1	RESULT 2	COMMENTS
7191	4403	4:2	rejected	-	narrow rings
7192	4437	4.2	dated	881-941	-
7195	4426	4.2	undeted	-	---
7196	4258	4.2	dated	+841-967	-
7218	4973	4.2	dated	+797-932 (6982)	--
7221	4936	4.2	dated	$+901-980+c 20$	-
722	4886	4:2	rejected	-	---
7223	4587	4.2	undated	-	-
7225	4897	4.2	undated	--	\cdots
7226	4985	4.2	mejected	-	-
7228	4890	4.2	dated	866-1039 (1035)	---
7412	4289	4.2	dated	804-901	\cdots
7419	4463	4.2	undated	-	-
7422	4367	4.2	undated	-	felled winter
7424	4398	4.	dated	836-964	-
7426	4465	4.2	undated	-	-
7467	4984	4.2	undated	-	\cdots
7500	4975	4.2	dated	904-973	-
7558	4882	4.2	dated	+771-942+c75	\cdots
7561	4885	4.2	dated	938-1032(?1033)	-
7565	4978	4.3	dated?	1045-1130+16?	--
7573	4879	4.2	undated	-	-
7576 P	4876	4.2	dated	923-978	--
7576	4906	4.2	undated	-	-
7536	4953	4.4	undated	-	--
7540	4950	4.4	dated	940-1044(1030)	-
7542	4942	4.4	undated	-	-
5976	4628	4.7	dated	983-1014	-

