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SUMMARY 
This report shows how it is possible to collate Geographic Information Systems (GIS) data 
for historic settlement nucleation and dispersion with a range of data on environmental 
variables in order to investigate the relationships between them. 
 
Ordinary Least Squares (OLS) regression model specification, selection and validation 
procedures, followed by further analysis using spatial regression methods, identified 
environmental variables that appear to have had the most significant influence on 
settlement organisation. The use of OLS and spatial regression and the innovative Relative 
Area Overlap (RAO) technique has enabled investigation of how relationships between 
key environmental variables and historic settlement organisation varied across England. 
Overall, the regression analyses indicate that far more of the variation in the measures of 
settlement organisation is not explained by the environmental variables than is explained 
by them. The results of the RAO analysis echo this conclusion. 
 
Using unsupervised classification, it has been possible to develop new, national-scale 
characterisations of historic settlement organisation and of key environmental variables. 
These new classifications of historic settlement organisation often broadly align with Brian 
Roberts and Stuart Wrathmell’s delineations of provinces, sub-provinces and local regions, 
but the cluster outlines and Roberts and Wrathmell’s boundaries diverge more often than 
they agree. 
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INTRODUCTION 

The nature and causes of regional variation in rural settlement organisation in England 
from the early medieval period onwards have long been subjects of study. The basic 
contrast is between areas of dispersed settlement (where houses, farms, churches and so 
on are spread widely across the landscape) and areas of nucleated settlement (where 
such structures stand in compact groups), recognising that the gradations between the 
two forms of organisation are often quite subtle. A variety of factors which can be simply, 
if rather crudely, labelled ‘environmental’ and ‘cultural’ have been offered to explain the 
variations, but no one factor can be identified as an obvious ‘prime mover’ in all times and 
in all places. Williamson (2010) gives a useful summary of the scholarly debates developed 
over the last century of study.  

One of the key points of reference for understanding the development of rural settlement 
in England and the historic character of the landscape is Roberts and Wrathmell’s An 
Atlas of Rural Settlement in England (2000). Their aim was to portray complex patterns 
of settlement organisation at a national scale. Working from nineteenth-century Ordnance 
Survey ‘Old Series’ 1:63,360 (one inch to one mile) scale maps and using a method 
involving, as they put it, ‘little science but much logic’ (Roberts and Wrathmell 2000, 13), 
they delineated a comprehensive, hierarchical set of settlement provinces, sub-provinces 
and local regions. Their ‘Central Province,’ running from south-west to north-east across 
the central part of the country, is dominated by nucleated settlement. The ‘South-Eastern’ 
and ‘Northern and Western’ provinces lying either side of the Central Province are largely 
characterised by more dispersed settlement. Sub-provinces and local regions exhibit more 
nuanced, locally-focused variations within the broad trends in each province. 

A recent study by Lambourne (2010) examines patterning in the historic landscape of 
south-western England, investigating both environmental and cultural factors, and offering 
a sustained (though not wholly negative) critique of Roberts and Wrathmell’s methods 
and the delineation of their Central Province. Investigation either side of the south-
western boundary between the Central and Northern and Western provinces has 
emphasised the significance of cultural factors in shaping settlement patterns over ‘the 
long eighth century’ (Rippon 2010; Rippon et al 2006). Jones (2010, 36-40) discusses the 
potential effects differences in topography and soils in Roberts and Wrathmell’s three 
settlement provinces might have had on the ongoing and sometimes chaotic development 
of settlement organisation in England. The importance of environmental factors in 
influencing the development of nucleated settlements in the medieval period has been 
emphasised most strongly by Tom Williamson (2003; 2005; 2010; 2013). The project 
reported on here focuses on the environmental factors highlighted by Williamson 

Previous work investigating the relationships between environmental variables and 
variation in historic settlement organisation has been regionally focused, rather 
impressionistic (particularly when done at a national scale), or both. Williamson’s model of 
the influence of environmental factors (including soils, precipitation, topography, the 
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availability of land suitable for creating meadow and so on) on patterns of medieval 
settlement organisation appears elegant and compelling, but it is not clear how well that 
model explains variation in settlement organisation across the whole of England. 
Williamson also advocates the use of digital mapping and GIS (Williamson 2013), but his 
own use of these technologies does not appear to extend beyond basic data 
management and cartography. 

In this project I took an explicitly spatial statistical approach, operating at a national scale. 
The goal was to quantify the strength of the relationships between environmental factors 
and regional variation in historic settlement organisation and show how and where those 
relationships fluctuated across England. I also sought to identify at what scales variation in 
settlement organisation is most apparent and at what scales the relationships between 
environmental factors and settlement variation are clearest. The application of 
sophisticated statistical and spatial analytical techniques is only now possible because of 
the conversion of Roberts and Wrathmell’s settlement nucleation and dispersion maps 
into geospatial data (Lowerre 2010; Lowerre et al 2011), along with the increasing 
availability of a range of GIS-ready environmental data. 

My intent was not to advocate a completely 'environmentally determinist' approach to 
understanding variation in historic settlement organisation. It was, rather, to explore the 
strength (or weakness) of the relationships between environmental factors and settlement 
organisation and how those relationships vary across the country. ‘Cultural’ factors (eg, 
farming methods, forms of land tenure, inheritance practices, the effects of human activity 
on soils and the historical contingencies of earlier settlement to name only a few) 
obviously influenced the development of settlement organisation. Consideration of such 
factors was, however, firmly outside the scope of the project. It has, however, been 
possible to identify areas where environmental factors provide a poor explanation for 
settlement variation. 

The GIS-based statistical and spatial analytical approaches deployed here have rarely been 
applied in historical settlement studies in Britain, so some justification for their use is 
perhaps necessary. It may be noted, for example, that Williamson does not present any 
maps directly overlaying soils, temperature or rainfall with those areas of England 
dominated by nucleated settlement and/or open fields in any of his works arguing the 
importance of environmental factors to variation in settlement organisation (Williamson 
2003; 2005; 2010; 2013). Readers are left to flip back and forth between maps on 
different, often widely separated pages, making it difficult to judge how strong any patterns 
in or relationships between the datasets might be. The recent work of Williamson, 
Liddiard and Partida (2013) on Northamptonshire also makes extensive use of GIS for 
data management and cartographic purposes, but they do not appear to have employed 
any of the formal spatial analytical techniques now widely available in various GIS software 
packages. Similarly, Lambourne’s (2010) study is based on a great deal of cartographic 
synthesis and evaluation but is entirely non-quantitative. 
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There is, however, a wide range of evidence indicating that human beings are not always 
successful in correctly identifying patterns or the genuine absence of pattern (Whitson 
and Galinsky 2008). MacEachren (1995, especially 435-58) discusses the extensive 
literature on the visual recognition and interpretation of patterns in maps. Klippel et al 
(2011) review more recent work and highlight the difficulties in interpreting observed 
spatial patterns with regard to randomness and statistical significance. The questions 
posed in this study cannot be answered without being able to recognise reliably genuine 
spatial patterns in the data and associations between different sets of data. Particularly 
when working with relatively high-resolution, multivariate data that are national in extent, 
there is a considerable risk that simply ‘eyeballing’ the data may suggest patterns or 
relationships that are not actually there (false positives) as well fail to recognise patterns 
and relationships that are genuinely present (false negatives) (see, inter alia, Muller 1975; 
1976; 1979; Evans 1977; Brewer and Pickle 2002). Spatial statistical analysis makes it 
possible to summarise patterns and relationships between and within datasets, to examine 
how and where those relationships vary, and to test the likelihood that any patterns or 
relationships are the result of random chance (Gregory 2008).  

The overall approach taken here has been heavily influenced by methods used in the 
fields of landscape ecology, biogeography and spatial epidemiology, examining 
distributions of plant or animal species (or different inter- and intra-species traits) or 
disease cases in relation to a range of environmental variables. In the same spirit as Bevan 
(2012), I sought to apply, and where necessary, develop robust methods for dealing with 
spatially extensive data while addressing a fundamental question about past human 
behaviour. More generally, the project aimed to address a fundamental methodological 
question posed by Bevan and Conolly (2009, 956): ‘how, ultimately, do we identify and 
make sense of the heterogeneous and often inter-dependent behaviours and processes 
responsible for apparent spatial patterns?’. 

 

PROJECT AIMS AND OBJECTIVES AND BUSINESS CASE 

The project had three aims, each with a set of supporting objectives, posed as research 
questions. 

Aim 1: To investigate the inter-relationships of environmental factors and historic 
settlement organisation, and how they are expressed as regional and local variations 

• Objective 1.1: Can GIS data for historic settlement nucleation and dispersion be 
collated with a range of data on environmental variables? 

• Objective 1.2: Which environmental variables (if any) appear to have had the 
most significant influence on regional variation in historic settlement organisation? 

• Objective 1.3: How did the relationships between the key environmental variables 
and historic settlement organisation vary across England? 
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Aim 2: Develop a new, national-scale characterisation of historic settlement organisation 
as it relates to the physical environment 

• Objective 2.1: Is it possible to create a national classification of the landscape 
based on variations in historic settlement organisation and key environmental 
variables? 

• Objective 2.2: Assuming Objective 2.1 can be met, how does the new 
classification compare with Roberts and Wrathmell’s delineation of settlement 
provinces, sub-provinces and local regions? 

Aim 3: Share the results of the project through publications and presentations and archive 
and disseminate the analytical data produced 

• Objective 3.1: Publish an article on the results of the project in a peer-reviewed 
journal and in an English Heritage Research Report Series report 

• Objective 3.2: Publish notes on the project on a project website and in Research 
News (or similar) 

• Objective 3.3: Present the results of the project at one or more relevant 
professional/academic conferences and/or workshops 

• Objective 3.4: Archive and disseminate the analytical data via the English Heritage 
Archive and the project website, as well as through the Archaeology Data Service 
(ADS) 

The project primarily contributes to the National Heritage Protection Plan’s Protection 
Result 4F1.1: Strategic guidance and assessment tools for protection through managing 
change to rural buildings and their settings (English Heritage 2011a; English Heritage 
2011b). Settlement, its organisation and environmental characteristics help form and 
inform perceptions of local distinctiveness and a ‘sense of place’. Better understanding of 
how environmental factors contributed to regional variation in historic settlement 
organisation can improve understanding of the significance of variation in rural settlement 
and their historic character, as well as the overall setting of many types of rural buildings. 

The project also uses novel approaches to the study of historic rural settlement 
organisation and so represents a significant methodological advancement. The project has 
capitalised on investment already made by English Heritage, both in the original Atlas and 
in the GIS dataset produced from it. It has begun to realise some of the enormous 
research potential embodied in the Atlas of Rural Settlement in England GIS dataset. 
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DATA SOURCES AND DATA PREPARATION 

Settlement Data 

Rather than use the boundaries of the settlement provinces, sub-provinces and local 
regions delineated by Roberts and Wrathmell as the basis for analysis, I used the building 
blocks from which they derived their boundaries: the locations of nucleated settlements of 
various sizes and the quantifications of settlement dispersion, their dispersion scores and 
hamlet counts. 

As noted above, the mid-nineteenth-century settlement nucleation and dispersion data 
are those presented in Lowerre et al (2011). The nucleation and dispersion data are 
represented as points, so a variety of methods were used to calculate values for the 
whole of England based on the locations and values of the known features (cf. Lowerre 
2010, 33-40). The basic approach is to divide the whole of England into a grid or lattice of 
regularly-spaced cells and, working from the known data, calculate a value for each cell 
based on the values of the points nearest to it. I used a grid cell size of 2 x 2km, mirroring 
the size of the sample areas Roberts and Wrathmell used when quantifying settlement 
dispersion (Roberts and Wrathmell 2000, 12-13). 

Recognising that some scholars have raised questions about the reproducibility of Roberts 
and Wrathmell’s results (Dyer 2003; Hinton 2005), I have assumed that the data on 
nucleations are (for the purposes of this study, at least) complete and correct, ie, they did 
not leave out any nucleations and all the nucleations they mapped really existed. There 
are eight nucleation and six dispersion score/hamlet count sample points which lie outside 
the current boundary of England – just over the Welsh border – in the Atlas GIS dataset. 
These points were included when generating surfaces from the settlement data, but the 
full range of environmental data for these locations was not available (see the discussion 
of environmental data below). The grid cells in which these nucleation and dispersion 
score/hamlet count points lie are not present in the final dataset used for analysis. 

Nucleations 

I calculated the simple, Euclidean distance from the nucleation points to the centre of 
each 2 x 2km grid cell to provide a measure of the concentration of nucleated settlement 
or ‘nucleatedness’. The distance was calculated for all nucleations, regardless of the size 
class (A-E) assigned by Roberts and Wrathmell. I also calculated distances for nucleations 
of each class on its own, as well as for nucleations in categories B, C or D taken together.  

Calculating the simple distance to nucleations is preferable to calculating the density of 
nucleations as a measure of the concentration of nucleations because of the problems 
caused by edge effects. The difference in the number of points along the coast and the 
borders on the one hand and the number of points in central England on the other is 
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such that the density along the ‘edges’ is profoundly suspect. Furthermore, computing 
‘density of nucleation’ as a continuous surface is arguably illogical if one assumes the 
nucleations data are complete and each nucleation should be treated as an indivisible unit.  

Dispersion Scores 

The dispersion score points in the Atlas GIS dataset represent the locations of the 2 x 
2km sample areas where Roberts and Wrathmell counted the houses, farmsteads, 
cottages and so on depicted on the Old Series Ordnance Survey maps they used as their 
source. Obtaining values for non-sampled locations from the known samples required the 
estimation or interpolation of continuous surfaces for visualisation and analysis. A wide 
range of different interpolation methods is available (Lloyd 2009, 129–54). 

Interpolating the dispersion scores as recorded by Roberts and Wrathmell was 
complicated by the numeric scale they used. Roberts and Wrathmell took counts from 
their sample areas, but then constrained the actual counts to fit the Fibonacci sequence, 
where each value in the sequence is the sum of the two preceding values (0, 1, 2, 3, 5, 8, 
13, 21, 34 and so on) (Roberts and Wrathmell 2000, 12-13). The number scale in the 
data as presented in the published Atlas and in the GIS dataset derived from it is, 
therefore, neither truly interval nor truly categorical. Most spatial interpolation methods 
assume the input data are recorded on at least an interval scale. Applying such 
interpolation methods to the dispersion score data in their ‘raw’ form would produce 
unreliable results. 

I addressed this issue by adding a random value to each observation with a score of 3 or 
greater and then interpolating from the ‘randomised’ values. The random values added to 
each point were limited to match the ‘missing’ values left out in the Fibonacci sequence. 
For example, if the value for a given point was 5, a value of 0, 1 or 2 was randomly added; 
if the recorded value was 8, a value of 0, 1, 2, 3 or 4 was randomly added. I only added 
values because of the ‘if in doubt round down’ approach taken by Roberts and Wrathmell 
when they originally compiled the counts (Roberts and Wrathmell 2000, 12). I repeated 
this process ten times to produce ten sets of randomised dispersion scores where the 
scores encompassed the full range of integers from 0 to 55. I used these ten sets as 
training data for exploring which method worked best for interpolating the dispersion 
scores. 

I applied a variety of different interpolation methods using varying parameters to the ten 
training sets, including Inverse Distance Weighting, Local Polynomial Interpolation, Kernel 
Smoothing (without barriers), Thin Plate Splines, Thin Plate Splines with Tension, 
Completely Regularised Splines, and  Multiquadric radial basis functions. I used the 
Geostatistical Analyst extension in ArcGIS 10.0 to create all the interpolated surfaces. 
Detailed descriptions of how each interpolation method works can be found in Lam 
(1983), Burrough and McDonnell (1998, 98-121), Lloyd (2010, 145-68) and Chang (2012, 
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314-324). The implementations of the interpolation methods in the ArcGIS 10 
Geostatistical Analyst are summarised in Esri’s online Help files (Esri 2011a). 

I employed cross-validation to assess how successfully each interpolated model predicted 
values at unsampled locations, as well as to compare the results from different models. 
Cross-validation works by removing one observation from the sample set and predicting 
the data value at that sample location from the remaining samples. The process is 
repeated, one sample at a time. The actual value at each sample point is subtracted from 
the predicted value to determine the prediction error, and a series of statistics are 
calculated to summarise the errors (Bailey and Gatrell 1995, 191; Chang 2012, 333-35). I 
compared the mean error, root mean squared error, and, where applicable, the mean 
prediction standard error, the mean standardised prediction error and the root mean 
squared standardised prediction error for each interpolated model. The Thin Plate Splines 
with Tension method, using a kernel parameter of 0.007634, a minimum of 4 and a 
maximum of 32 neighbours and a search radius of 24km, produced the best results. 

I then created 100 new randomised sets of dispersion scores and produced interpolated 
surfaces from each iteration, using the Thin Plate Splines with Tension method just 
described. I then converted the 100 interpolated surfaces to a 2 x 2km grid and averaged 
those surfaces to get an approximated version of a surface interpolated from ‘true’ 
counts. The interpolation process produced continuous numeric values rather than 
integers, but the dispersion scores as originally captured by Roberts and Wrathmell are 
effectively counts, that is, whole numbers. To reflect the nature of the original scores, I 
rounded the value for each grid cell to the next lowest integer value, again following 
Roberts and Wrathmell’s ‘when in doubt, round down’ approach. 

Hamlet Counts 

Interpolating the hamlet count data was, in comparison to the dispersion score data, 
much simpler. The hamlet counts are true counts, so it was possible to work directly from 
the data in the Atlas GIS dataset. I applied the Inverse Distance Weighting, Local 
Polynomial Interpolation, and Completely Regularised Splines methods, using varying 
parameters. Again, I used cross-validation statistics to assess and compare the results from 
each method. The Inverse Distance Weighted method produced the best result, using the 
simple inverse distance, a minimum of 10 and a maximum of 15 neighbours within a 
search radius of 32km. As with the dispersion scores, I converted the interpolated surface 
to a 2 x 2km2 grid and rounded the continuous numeric values to the next lowest integer. 

Combined Settlement Scores 

To allow the visualisation and analysis of all three settlement variables simultaneously, I 
derived a series of Combined Settlement Scores (CSS), based on the interpolated values 
for distance to nucleations, dispersion scores and hamlet counts. To enable the use of 
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various quantitative analytical methods, I calculated the CSS values as continuous numeric 
data, rather than as categorical data, as in earlier work (Lowerre 2010, 36, 38-40). 

The values for the distance to nucleations, dispersion score and hamlet count variables 
differ considerably in their magnitude and scale. Distances to nucleations range from 
17.9m to 26,943.2m, dispersion scores from 0 to 26, and hamlet counts from 0 to 8. To 
give each of the variables equal weight when calculating CSS values, I standardised the 
variables to a scale of 0.0 to 1.0 by subtracting the minimum from each value and then 
dividing by the value range (Milligan and Cooper 1988, 185). 

I computed the CSS value as the average of the standardised nucleation, dispersion and 
hamlet count scores for each grid cell. I calculated eight different versions of CSS, 
depending on whether the CSS value was intended to emphasise nucleation or 
dispersion, whether the distance to all nucleations was used or only the distance to B, C 
and D category nucleations, and whether hamlet counts are seen as contributing to 
greater nucleation or greater dispersion. Table 1 illustrates the different versions of CSS 
and how I calculated them. Example values for standardised nucleation, dispersion score 
and hamlet count variables are given in brackets after each column heading, and the 
resulting CSS values are given in the last column on the right. It should be noted that the 
respective N and D variants of CSS are the inverse of each other. 

Table 1: Combined Settlement Score (CSS) versions and example values 

 Nucleation 
(a = 0.158; 
b = 0.236) 

Dispersion Score 
(0.379) 

Hamlet Count 
(0.125) 

CSS Value 

Na1 Inverted Inverted Normal 0.529 
Nb1 Inverted Inverted Normal 0.503 
Na2 Inverted Inverted Inverted 0.779 
Nb2 Inverted Inverted Inverted 0.753 
Da1 Normal Normal Inverted 0.471 
Db1 Normal Normal Inverted 0.497 
Da2 Normal Normal Normal 0.221 
Db2 Normal Normal Normal 0.247 

 
N = emphasises nucleation (ie, locations closer to nucleations have a higher score) 
D = emphasises dispersion (ie, locations further away from nucleations have a higher score) 
a = uses distance to all nucleations 
b = uses distance to B, C and D nucleations 
1 = Hamlet Count contributes toward nucleation (ie, locations with a higher Hamlet Count are considered 
to be more nucleated) 
2 = Hamlet Count contributes toward dispersion (ie, locations with a higher Hamlet Count are considered 
to be more dispersed) 

The maps on the next pages illustrate the distribution of values for distance to all 
nucleations, distance to nucleations in categories B–D, and CSS variants Na2 and Nb2. In 
all four maps, I grouped the values into five classes using Jenks’s Natural Breaks method 
(Jenks and Caspall 1971; Jenks 1977) as implemented in ArcGIS (Esri 2012). 
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Figure 1: Map of distance in metres to all nucleations (categories A–E) 



© ENGLISH HERITAGE 10 72 - 2014 

 

Figure 2: Map of distance in metres to category B–D nucleations 
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Figure 3: Map of Combined Settlement Score Na2 
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Figure 4: Map of Combined Settlement Score Nb2 

 



© ENGLISH HERITAGE 13 72 - 2014 

Environmental Data 

I used data on soils, elevation, surface roughness, precipitation, temperature and solar 
radiation as environmental variables in the analysis. 

Soils 

Data on soils in England were taken from the National Soils Research Institute’s NATMAP 
Soilscapes dataset (National Soils Research Institute (NSRI) 2001; 2013). Soilscapes is a 
vector polygon dataset at a nominal scale of 1:250 000, representing in simple terms likely 
soil conditions across the country. The dataset divides soils into one of twenty-seven 
broad types. I imposed a 2 x 2km vector grid over the data and calculated the area of 
each grid cell occupied by each soil type. I also calculated for each grid cell the proportion 
of the total area of the cell covered by the soils data occupied by each soil type. I 
excluded from the dataset Soilscape types 0 (sea), 28 (water) and 29 (unclassified). 

In his discussions of the influence of soils on past people’s decisions regarding settlement 
organisation, Williamson focuses on a number of soil associations (eg, Williamson 2003, 
63-65, 124-25, 142-47; Williamson 2013, 46-51). Soil associations provide a more 
detailed and spatially refined classification of soils than that presented in the Soilscapes 
dataset. NSRI license GIS-ready data on soil associations, but these data were not 
available to this project because of cost. The Soilscapes data are, however, derived 
directly from the soils associations, and a list of the associations comprising each 
Soilscapes type is presented in Appendix 2. 

Elevation and Surface Roughness 

I used Ordnance Survey’s Landform PANORAMA 50m-resolution data (Ordnance 
Survey 2010) to construct a digital elevation model for the whole of England. The digital 
elevation model (DEM) records the elevation above sea level for each 50 x 50m grid cell. 

To explore the possible effects of relative variation in local topography (in addition to 
simple elevation above sea level), I derived several measures of topographic variability or 
surface roughness from the elevation data: the Topographic Roughness Index (TRI) (Riley 
et al 1999), surface ratio (Jenness 2004), the Vector Ruggedness Measure (VRM) 
(Sappington et al 2007), relief, and standard deviations of elevation and slope (Grohmann 
et al 2011). I calculated the VRM, relief and standard deviations of elevation and slope 
measures each using three different sizes of moving window: 3x3, 11x11 and 21x21. 

Precipitation 

Data on rainfall were obtained from the WorldClim website (http://www.worldclim.org/) 
(Hijmans et al 2005). The WorldClim data give monthly long-term averages for 

http://www.worldclim.org/
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precipitation (in mm) as well as overall annual averages, based on the period 1950-2000. 
The data are provided as a grid covering global land areas (excepting Antarctica), with a 
spatial resolution of 30 arc-seconds (approximately 0.93 x 0.93km at the equator). I also 
used data described by Perry and Hollis (2005a; 2005b) on the 1961–1990 long-term 
averages for monthly days of rain ≥ 1.0mm and 10.0mm in the United Kingdom, supplied 
by the Met Office as gridded data at a spatial resolution of 1 x 1km. The goal was to 
explore whether the frequency of episodes of heavy precipitation at particular times of 
year (rather than monthly averages for total precipitation) affected patterns of settlement 
organisation. In addition to the monthly values, I calculated moving two- and three-month 
averages for monthly days of rain and sums and averages for precipitation. The intent was 
to investigate whether trends over periods longer than a single month might have 
influenced settlement organisation. 

Temperature and Insolation 

Data on temperature were also obtained from the WorldClim website 
(http://www.worldclim.org/). Again, the WorldClim data give monthly and annual long-
term averages, based on the years 1950-2000. For clarity, I recalculated the temperature 
data to be decimal degrees Celsius, as opposed to degrees Celsius * 10 as in the raw 
data. 

I sought to mitigate the potential unsuitability of modern temperature data, in particular 
the ‘urban heat island’ effect (Oke 1982; Gallo et al 1996; Peterson and Owen 2005) 
through the use of measures of insolation rather than recorded air temperature. Insolation 
is the amount of solar radiation received by the landscape (Dubayah and Rich 1995; Fu 
and Rich 2002; McCune and Keon 2002). Using the ArcGIS Area Solar Radiation tool 
(Esri 2011b; Esri 2011d; Esri 2011e), I derived two measures of insolation from the 
elevation data discussed above: the amount of direct incoming solar radiation (in watt 
hours per m2) and the duration of direct incoming solar radiation (in hours). Amounts of 
incoming solar radiation are heavily dependent on the latitude of the region analysed—all 
other things being equal, the amount and duration of solar radiation the landscape 
somewhere in Cornwall receives will be different to the amount and duration the 
landscape around Berwick-on-Tweed receives. To account for this effect, I calculated the 
insolation across England in a series of overlapping bands running from west to east. I then 
merged the results, averaging the values in the areas of overlap, to create insolation 
surfaces for the whole country. I calculated annual and monthly values for amounts and 
duration of solar radiation.  

As with the precipitation and days of rain data, I also calculated moving two- and three-
month averages for temperature and insolation. Again, the aim was to explore the 
possible influence on settlement organisation of trends over periods longer than a single 
month. 

http://www.worldclim.org/


© ENGLISH HERITAGE 15 72 - 2014 

Discussion 

The use of modern climate data to model nineteenth-century and earlier environmental 
conditions is less than ideal, but effectively unavoidable. Addressing the questions posed 
here required data at spatial resolutions considerably higher than those available in 
current, applicable palaeoclimate reconstructions (eg, Brewer et al 2007; Büntgen et al 
2011; Bartlein et al 2011; Ljungqvist et al 2012). The development of appropriate, high-
resolution palaeoclimate models was far outside the scope of the project. Other recent 
research relating climatic variables to archaeological evidence has made use of modern 
climate data, and like, for example, Conolly et al (2012, 1002), I have assumed ‘… with 
caution that the relative differences between regions have remained stable, and thus … 
measures of differences between regions also reflect past relative differences’. 

The datasets described above come in a variety of resolutions and geographic projections. 
Where necessary, the datasets were reprojected onto the Ordnance Survey’s British 
National Grid coordinate system. Pre-processing of the data (eg, deriving measures of 
surface roughness or insolation from the elevation data) was done with the data in their 
original resolution. Once all reprojection and pre-processing was complete, all the 
environmental data layers were resampled down to a 2 x 2km resolution, calculating the 
mean value for each 2 x 2km grid cell, to match the interpolated settlement nucleation 
and dispersion data. 

Given their diverse origins, it is not surprising that the extents of the different 
environmental datasets do not align perfectly. As a result, there are locations along the 
coastline and the Welsh and Scottish borders where data for all variables are not 
available. Any grid cell for which values for all the environmental variables were not 
available was excluded from the analysis. The final dataset contains a total of 32,959 2 x 
2km grid cells. 

All data management, pre-processing and reprojection was carried out using Esri’s ArcGIS 
versions 10.0 and 10.1. 
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ANALYSIS 

I used a number of different analytical techniques to address the questions posed under 
Aims 1 and 2: non-spatial Ordinary Least-Squares (OLS) regression, spatial lag and spatial 
error regression, clustering analysis using unsupervised classification, and polygon-based 
relative area overlap analysis of the clusters produced using unsupervised classification. I 
examined four settlement variables: distance to category A–E nucleations (hereafter 
DstNclAll); distance to category B, C and D nucleations (hereafter DstNclBCD); and the 
Na2 and Nb2 Combined Settlement Scores (hereafter CSSNa2 and CSSNb2, 
respectively), that is, those in which locations closer to nucleations have a higher score 
than locations further away, and locations with a higher Hamlet Count are considered 
more dispersed.  

Non-Spatial Ordinary Least-Squares Regression 

Method 

To investigate the relationships between the data on settlement organisation and various 
combinations of environmental factors, I began by developing a series of OLS multiple 
regression models. The method seeks to analyse values for one variable (known as the 
dependant or response variable) based on the values of one or more other variables 
(known as independent or explanatory variables) (see Burt et al 2009, 172-187, 498-508; 
Lloyd 2009, 31-39). Here, the interpolated values for concentrations of nucleations and 
Combined Settlement Scores are the response variables and the various environmental 
factors are the explanatory variables. OLS regression is a non-spatial method: it does not 
take into consideration the location of the points at which the response and explanatory 
variables are measured. The goal was to develop a small set of appropriately specified 
models, that is, to include all the most meaningful explanatory variables and leave out all 
those that do not contribute materially to explaining variations in historic settlement 
organisation. 

Statistical modelling is often performed as an iterative process: the investigator fits (or 
specifies) a model to the available data, and on the basis of the results produced from that 
model, drops some variables and adds others to produce a new model, which he or she 
then inspects and uses as a basis for producing further models with yet more (or fewer) 
other variables, and so on. The investigator selects a ‘final’ model or small group of 
models that best fit the available data and bases his or her inference – in both the 
statistical and common sense meanings of the word – on the final model or models. 
There are, however, various problems with this approach – known as ‘data dredging,’ 
‘data snooping’ or ‘data mining’ (in a pejorative sense) – which are widely recognised but 
often ignored (Lo and MacKinlay 1990; Chatfield 1995; White 2000; Burnham and 
Anderson 2002, 37-41, 72-74). There is a serious risk that apparently significant results 
may simply be the product of chance. A model found after extensive data dredging may 
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fit very well the data used to create it, but that model may perform poorly when applied 
to new data. Ignoring the model specification process and basing one’s inferences only on 
the final model – in effect acting as if the final model had been known all along – renders 
those inferences highly suspect. Best practice also entails checking or validating the 
models, to examine how robust the models’ explanatory and/or predictive abilities are 
when faced with data other than those used to build the models in the first place. Ideally, 
model validation is done using new data, but acquiring new data is often not possible.  

To avoid the worst sort of data-dredging (and its attendant problems for statistical 
inference) as well as validate my models without having a comparable, completely 
independent dataset on which to test them, I employed a ‘data splitting’ strategy (Picard 
and Berk 1990). I divided the dataset into three subsets, to be used respectively for:  

1. developing the models representing a set of alternative hypotheses, a process 
known as a specification search;  

2. testing how well the models work and selecting a ‘best’ model (or small group 
of similarly well-performing models); and  

3. validating the models, by performing a very simple evaluation of the fragility of 
the models and any conclusions that might be drawn from them (Aldrich 
2006), that is, investigating whether the results using the set of alternative 
models on another sample (not used to develop the models or undertake 
model selection) produce similar results. 

I took an Information-Theoretic approach to model specification and selection, focusing 
on the use of Akaike’s Information Criterion (AIC), following Burnham and Anderson 
(2002). Practitioners in various scientific fields now use the information-theoretic 
approach, but, so far, few archaeologists have done so (see Beheim and Bell 2011; 
Manning et al 2013b; Eve and Crema 2014). Rather than seek to reject (or not) a 
particular hypothesis, the information-theoretic approach recognises that all models are 
only approximations of truth and aims to rank models based on estimates of how much 
(or how little) information the models lose about truth. The goal is to find a model or set 
of models that strike the best balance between minimising the complexity of the models 
and maximising the amount of information they reveal. 

It is well-known that increasing the number of explanatory variables in a regression model 
can appear to increase the explanatory power of the model, even when the explanatory 
variables are completely unrelated to the response variable (Freedman 1983; Burnham 
and Anderson 2002, 17-18). The principle of parsimony in statistical modelling is that a 
model should use the smallest possible number of parameters that adequately represent 
the data (Burnham and Anderson 2002, 29-35). Parsimonious models, that is, those with 
the smallest possible number of explanatory variables, are generally preferred. 

AIC (Akaike 1973; Burnham and Anderson 2002, 60-64) is a measure of model quality 
that incorporates a penalty as the number of model parameters increases, following the 
principle of parsimony. AIC provides an estimate of the relative distance between a model 
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and the unknown, true process that generated the observed data. The absolute size of 
the AIC statistic for any model is, by itself, unimportant; it is the relative difference in AIC 
values for two or more models that is useful in assessing relative model quality. In practical 
terms, one develops a set of candidate models, computes the AIC for each one, and the 
model or models with the lowest AIC values can be considered the best. AIC differences 
(referred to as ∆i) among a set of models are calculated by subtracting the lowest AIC 
value in the set from the AIC value for each model. When comparing models, differences 
in AIC values > 3 are usually held to indicate that the models with the higher values are 
considerably poorer, and models having ∆i > 10 have essentially no support compared to 
the ‘best’ model (Burnham and Anderson 2002, 70-72). 

It should be noted that ArcGIS routinely quotes the small-sample corrected version of 
AIC (abbreviated AICc), which includes a bias-correction term not present in the ‘simple’ 
version of AIC (Burnham and Anderson 2002, 66). The use of AICc is preferable when 
sample sizes are small, especially when relative to the number of parameters in a model. 
Given the large sample sizes in this study (nearly 11,000 observations in each subset), use 
of AICc is not strictly speaking necessary, even when employing a fairly large number of 
explanatory variables. As sample sizes increase, however, the difference between AIC and 
AICc for a given model becomes negligibly small (Burnham and Anderson 2004, 270). For 
the analyses presented in this section, I exclusively used AICc, rather than AIC. 

Given the considerable number of potential explanatory variables and the consequently 
huge number of potential combinations of variables, it was necessary to evaluate a large 
number of different OLS models. I did not, however, make an exhaustive search over 
every possible model, the ‘all possible subsets’ approach. The number of possible models 
is 2K, where K is the total number of explanatory variables. With 20 potential explanatory 
variables, the number of models to run would be over one million. For this study, I 
considered over 100 different potential explanatory variables, meaning the number of 
possible models is more than 38 million million million times larger than the total number 
of observations in the dataset. A brute force approach to model-building – computing 
every conceivable combination of variables – would theoretically be possible, but the 
computing power and time required were so great as to make the approach practically 
unfeasible. 

For each response variable, I began the specification search using only the soils data, trying 
all 27 Soilscape types as individual variables in a model, then collapsing different groups of 
types into single variables. I explored more than 50 different groups of soil types, based 
on similarities between the types. I ensured that, in any model, all Soilscapes types were 
included as variables, either individually or grouped with other types. I chose a set or sets 
of soils variables that had ∆i (AICc difference) values <3 for further analysis. 

Once I had a reliable enough set of soils variables, I incorporated elevation and the 
various surface roughness variables, to see which produced the best fit in conjunction with 
the soils. The aim was to limit the number of variables used later in the specification 
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search process, rather than use all fifteen of the elevation/surface roughness variables. For 
each response variable, I generated models for the set or sets of soils variables with each 
of the fifteen elevation/surface roughness variables. I selected for further analysis the 
elevation and/or surface roughness variables used in those models that had ∆i values <3. 

Having identified the sets of soils and elevation/surface roughness parameters that 
produced the best models for each response variable, I then generated models using an 
exhaustive combination of further variables for precipitation, temperature and insolation. I 
did not, however, use every possible variable for precipitation, temperature and insolation. 
Instead, I sought to address and examine rigorously a slight incongruity in Williamson’s 
model of the influence of environmental factors on development of differing forms of 
settlement organisation. Williamson (2003; 2005; 2010; 2013) uses maps of annual 
temperature and precipitation to illustrate his discussions of the influence of climatic 
variables. He considers in some detail, however, the importance of seasonal precipitation 
in relation to timing for both spring and autumn ploughing, as well as for hay-making in 
late summer, and the role of summer temperature in cereal growth. By examining annual 
as well as monthly and multi-month averages for precipitation, temperature and insolation, 
I investigated whether annual or season-specific values for each of the overall types of 
variables explain a greater amount of variation in the response variables.  

Following some preliminary exploratory work, I excluded from further analysis the 
variables for monthly days of rain ≥ 10.0mm and the amount of direct incoming solar 
radiation. The climatic variables used are listed in Table 2, and Table 3 sets out the various 
combinations of soils and other environmental variables I examined in the specification 
search and model selection process. From each group of models generated from the 
different combinations of soils and other environmental variables (listed in Table 3), I 
selected those models that had ∆i values <3 within their group for further analysis. 

The approach taken here treads arguably the fine line between exploratory data analysis 
leading to multiple hypotheses on the one hand and data dredging on the other. Given 
the lack of clear, a priori knowledge regarding the influence of environmental factors on 
variation in settlement organisation, a degree of data dredging is perhaps inevitable. 
Splitting the data into subsets for model specification, model selection and model 
validation, and, above all, explicitly acknowledging the analytical process used and the 
potential uncertainties arising from it hopefully mean that whatever data dredging I have 
done does not constitute a grievous sin (Burnham and Anderson 2002, 41). 
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Table 2: Annual and season-specific climatic variables used in the regression analysis 

Variable Group Variable Name Description 
ann p bio12 Average annual precipitation 
spr p  Spring precipitation 
 p_3 Precipitation in March 
 p_4 Precipitation in April 
 p_5 Precipitation in May 
 p_av2m34 Two-month average (March-April) for precipitation 
 p_av2m45 Two-month average (April-May) for precipitation 
 p_av3m345 Three-month average (March-May) for precipitation 
atmn p  Autumn precipitation 
 p_9 Precipitation in September 
 p_10 Precipitation in October 
 p_11 Precipitation in November 
 p_av2m910 Two-month average (September-October) for precipitation 
 p_av2m1011 Two-month average (October-November) for precipitation 
 p_av3m91011 Three-month average (September-November) for precipitation 
spr RD  Spring days of rain ≥ 1mm 
 RD1mm_3 Days in March of rain ≥ 1mm 
 RD1mm_4 Days in April of rain ≥ 1mm 
 RD1mm_5 Days in May of rain ≥ 1mm 
 RD1mm_av2m34 Two-month average (March-April) for days of rain ≥ 1mm 
 RD1mm_av2m45 Two-month average (April-May) for days of rain ≥ 1mm 
 RD1mm_av3m345 Three-month average (March-May) for days of rain ≥ 1mm 
atmn RD  Autumn days of rain ≥ 1mm 
 RD1mm_9 Days in September of rain ≥ 1mm 
 RD1mm_10 Days in October of rain ≥ 1mm 
 RD1mm_11 Days in November of rain ≥ 1mm 
 RD1mm_av2m910 Two-month average (September-October) for days of rain ≥ 1mm 
 RD1mm_av2m1011 Two-month average (October-November) for days of rain ≥ 1mm 
 RD1mm_av3m91011 Three-month average (September-November) for days of rain ≥ 1mm 
ann t bio1 Average annual temperature 
sum t  Summer temperature 
 t_6 Temperature in June 
 t_7 Temperature in July 
 t_8 Temperature in August 
 t_av2m67 Two-month average (September-October) for temperature 
 t_av2m78 Two-month average (September-October) for temperature 
 t_av3m678 Three-month average (June-August) for temperature 
ann DSR DSR_av12m Annual (twelve-month) average for duration of solar radiation 
sum DSR  Summer insolation (Duration of Solar Radiation) 
 DSR_6 Duration of solar radiation in June 
 DSR_7 Duration of solar radiation in July 
 DSR_8 Duration of solar radiation in August 
 DSR_9 Duration of solar radiation in September 
 DSR_av2m67 Two-month average (June-July) for duration of solar radiation 
 DSR_av2m78 Two-month average (July-August) for duration of solar radiation 
 DSR_av2m89 Two-month average (August-September) for duration of solar radiation 
 DSR_av3m678 Three-month average (June-August) for duration of solar radiation 
 DSR_av3m789 Three-month average (July-September) for duration of solar radiation 
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Table 3: Combinations of soils and other environmental variables used in regression 

analysis 

Soils + one other environmental variable  Soils + three other environmental variables 
S + ann p  S + spr p + atmn p + ann t 
S + spr p  S + spr p + atmn p + sum t 
S + atmn p  S + spr p + atmn p + ann DSR 
S + spr RD  S + spr p + atmn p + sum DSR 
S + atmn RD  S + spr p + atmn p + elv/srf rgh 
S + ann t  S + spr RD + atmn RD + ann t 
S + sum t  S + spr RD + atmn RD + sum t 
S + ann DSR  S + spr RD + atmn RD + ann DSR 
S + sum DSR  S + spr RD + atmn RD + sum DSR 
S + elv  S + spr RD + atmn RD + elv/srf rgh 
S + srf rgh  S + ann p + ann t + elv/srf rgh 
  S + ann p + sum t + elv/srf rgh 
Soils + two other environmental variables  S + ann p + ann DSR + elv/srf rgh 
S + ann p + ann t  S + ann p + sum DSR + elv/srf rgh 
S + ann p + sum t  S + spr p + ann t + elv/srf rgh 
S + ann p + ann DSR  S + spr p + sum t + elv/srf rgh 
S + ann p + sum DSR  S + spr p + ann DSR + elv/srf rgh 
S + ann p + elv/srf rgh  S + spr p + sum DSR + elv/srf rgh 
S + spr p + atmn p  S + atmn p + ann t + elv/srf rgh 
S + spr p + ann t  S + atmn p + sum t + elv/srf rgh 
S + spr p + sum t  S + atmn p + ann DSR + elv/srf rgh 
S + spr p + ann DSR  S + atmn p + sum DSR + elv/srf rgh 
S + spr p + sum DSR  S + spr RD + ann t + elv/srf rgh 
S + spr p + elv/srf rgh  S + spr RD + sum t + elv/srf rgh 
S + atmn p + ann t  S + spr RD + ann DSR + elv/srf rgh 
S + atmn p + sum t  S + spr RD + sum DSR + elv/srf rgh 
S + atmn p + ann DSR  S + atmn RD + ann t + elv/srf rgh 
S + atmn p + sum DSR  S + atmn RD + sum t + elv/srf rgh 
S + atmn p + elv/srf rgh  S + atmn RD + ann DSR + elv/srf rgh 
S + spr RD + atmn RD  S + atmn RD + sum DSR + elv/srf rgh 
S + spr RD + ann t   
S + spr RD + sum t  Soils + four other environmental variables 
S + spr RD + ann DSR  S + spr p + atmn p + ann t + elv/srf rgh 
S + spr RD + sum DSR  S + spr p + atmn p + sum t + elv/srf rgh 
S + spr RD + elv/srf rgh  S + spr p + atmn p + ann DSR + elv/srf rgh 
S + atmn RD + ann t  S + spr p + atmn p + sum DSR + elv/srf rgh 
S + atmn RD + sum t  S + spr RD + atmn RD + ann t + elv/srf rgh 
S + atmn RD + ann DSR  S + spr RD + atmn RD + sum t + elv/srf rgh 
S + atmn RD + sum DSR  S + spr RD + atmn RD + ann DSR + elv/srf rgh 
S + atmn RD + elv/srf rgh  S + spr RD + atmn RD + sum DSR + elv/srf rgh 
S + ann t + elv/srf rgh   
S + sum t + elv/srf rgh   
S + ann DSR + elv/srf rgh   
S + sum DSR + elv/srf rgh   

 
S: Soils elv: Elevation srf rgh: Surface roughness 
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All OLS regression was performed using ArcGIS 10.0 and 10.1. 

Results 

Model specification, selection and validation 

The specification search process outlined above identified three sets of soils variables that 
performed best, details of which are presented in Table 4. For reference, Appendix 2 lists 
the Soilscapes types and the combinations of types used in the specification search.  

Table 4: Best-performing sets of soils variables identified through specification search 

Soils Variable 
Set Soilscapes Types/Type Combinations Used 

A 
3, 6, 8, 9, 13, 17, 18, Combo 32, Combo 33, Combo 35, Combo 52, Combo 53, Combo 
57 

B 3, 5, 6, 7, 8, 9, 13, 17, 18, Combo 32, Combo 33, Combo 35, Combo 52, Combo 53 

C 
5, 6, 8, 9, 13, 17, 18, Combo 32, Combo 33, Combo 35, Combo 52, Combo 53, Combo 
54 

Table 5 summarises the results of the specification searches for the four settlement 
variables analysed using subset 1. For each response variable, the table sets out the soils 
variable set(s) and the elevation/surface roughness variables used in the best-performing 
models. The last column records how many models had within-group ∆i values <3, 
identifying them as worth analysing further in the model selection procedure. 

Table 5: Summary model specification search results 

Response 
Variable 

Soils Variable 
Set(s) Used Elevation/Surface Roughness Variables Used 

Number of Models 
Having Within-
Group ∆i <3 

DstNclAll A, B, C Elevation; VRM (3x3 window) 440 

DstNclBCD A, B, C Elevation 536 

CSS Na2 B Elevation; Relief (3x3 window); Standard Deviation of 
Elevation (3x3 window); Standard Deviation of Slope 
(3x3, 11x11 and 21x21 windows); TRI 

123 

CSS Nb2 A, B As for CSS Na2 174 

For each response variable, I then ran the models identified in the specification search on 
subset 2 of the dataset to select the best-performing model(s) overall. To validate or test 
the fragility of the results, I repeated the process for each response variable using subset 3 
of the dataset, allowing comparison of the results from subset 3 and those from subset 2. 
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The tables on the following pages set out summary information about the ten best-
performing models for each response variable and subset. The columns in each table list 
the model number (in ascending order based on the ∆i values), the specific variables 
included in the model (abbreviated to use the soils variable sets listed in Table 4), the 
adjusted R2 value, the ∆i value, and finally the Akaike weight. Adjusted R2 is the measure of 
how much variation in the response variable is accounted for by the explanatory variables, 
adjusted for the complexity of the model, ie, the number of variables used. The Akaike 
weight is a measure of the weight of evidence in favour of a particular model being the 
best for the situation, given the data and the set of models computed using those data 
(Burnham and Anderson 2002, 75). Akaike weights are calculated using the ∆i values and 
sum to 1.0 for all the models computed for a given response variable. The higher the 
Akaike weight, the greater the weight of evidence for a particular model being the best 
among all the models specified. The Akaike weights provide an useful means of 
interpreting the relative weight of evidence for each model in the set. While only the top 
ten models are listed in the tables, all the models in each set were used when calculating 
the Akaike weights. 

Table 6 sets out the results for the model selection procedure for DstNclAll (performed 
on data subset 2). The best-performing models all included elevation, the temperature in 
August, and spring and autumn precipitation treated as separate variables (precipitation 
averaged over April a May and for November, respectively). The ∆i and Akaike weight 
values indicate that the three best-performing models are clearly superior to the other 
models in the model set. There is, however, little to differentiate between the three best 
models. The Akaike weight for the model using soils set B is noticeably lower when 
compared to the weights for the top two models. The Akaike weight for the best-
performing model, however, is only slightly better than that for the next-best model. 

Table 6: Summary results of the ten best performing models for DstNclAll Subset 2 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_av2m45; p_11; t_8; Soils Set C 0.350 0.00 0.482 

2 Elevation; p_av2m45; p_11; t_8; Soils Set A 0.350 0.70 0.340 

3 Elevation; p_av2m45; p_11; t_8; Soils Set B 0.350 2.00 0.178 

4 Elevation; p_av3m345; p_11; DSR_9; Soils Set C 0.348 32.12 <0.0001 

5 Elevation; p_av3m345; p_11; DSR_9; Soils Set A 0.348 32.75 <0.0001 

6 Elevation; p_av3m345; p_11; DSR_9; Soils Set B 0.348 33.90 <0.0001 

7 Elevation; p_av2m45; p_11; bio1; Soils Set C 0.348 34.40 <0.0001 

8 Elevation; p_av2m45; p_11; bio1; Soils Set A 0.348 34.98 <0.0001 

9 VRM3x3; p_av2m45; p_11; t_8; Soils Set C 0.348 35.98 <0.0001 

10 Elevation; p_av3m345; p_11; DSR_av12m; Soils Set C 0.348 36.37 <0.0001 
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Results of the validation procedure (running all the models on data subset 3) are 
presented in Table 7. Comparison of Table 6 and Table 7 reveals that the three best-
performing models were the same, but the ranking of the top three models differed 
slightly between the model selection and validation data subsets. The models using soils 
set B ranks third in both cases, but the models using soil sets A and C swap places when 
comparing the model selection and validation data subsets. The models using soils set B 
are clearly third-best, but comparing the model selection and validation results indicate 
that the models using soils sets A and C are probably equally good. Given that the 
difference between soils sets A and C are limited, this outcome is unsurprising. 

Table 7: Summary results of the ten best performing models for DstNclAll Subset 3 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_av2m45; p_11; t_8; Soils Set A 0.349 0.00 0.487 

2 Elevation; p_av2m45; p_11; t_8; Soils Set C 0.349 0.81 0.325 

3 Elevation; p_av2m45; p_11; t_8; Soils Set B 0.349 1.91 0.188 

4 Elevation; p_av2m45; p_11; bio1; Soils Set A 0.347 37.99 <0.0001 

5 Elevation; p_av2m45; p_11; bio1; Soils Set C 0.347 38.91 <0.0001 

6 Elevation; p_av2m45; p_11; bio1; Soils Set B 0.347 39.83 <0.0001 

7 Elevation; p_av3m345; p_11; DSR_9; Soils Set A 0.345 70.95 <0.0001 

8 Elevation; p_av3m345; p_11; DSR_9; Soils Set C 0.345 71.31 <0.0001 

9 Elevation; p_av3m345; p_11; DSR_9; Soils Set B 0.345 72.89 <0.0001 

10 Elevation; p_av3m345; p_11; DSR_av12m; Soils Set A 0.344 73.39 <0.0001 

 

The model selection results for DstNclBCD are shown in Table 8. The ∆i and Akaike 
weight values indicate that the top five models are clearly superior to the rest of the set. 
The best-performing models all included the variables for elevation, the two-month 
average for precipitation from March to April, and precipitation in November. Rather than 
temperature, the best-performing models included variables for duration of solar radiation 
in July and averaged over July to August. The top two models included soil set A, followed 
by those using soils set C. The model using soils set B performed least well of the top 
models. The very close Akaike weight values among the top five models indicates that 
there is substantial uncertainty as to which of the models should be considered the best. 
The model ranked fifth overall can probably be discounted, but the performance 
differences between the top four are so small as to make them practically 
indistinguishable. As with the results for DstNclAll, the differences in the variables included 
in the best models are minor. 

Validation of the model selection outcomes for DstNclBCD produced a very different set 
of results, as can be seen in Table 9. The top three models based on the validation data 
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subset were markedly better than the rest. All three used elevation, August temperature, 
and two precipitation variables: the three-month average for March to May and the single 
month of November. The Akaike weight values indicate that the best-performing model, 
using soils set A, was noticeably but not overwhelmingly better than the second-ranked 
model, using soils set B. The best-performing models here are far more similar to those 
identified for DstNclAll than to those identified in the model selection process for 
DstNclBCD. 

Table 8: Summary results of the ten best performing models for DstNclBCD Subset 2 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_av2m34; p_11; DSR_av2m78; Soils Set A 0.333 0.00 0.273 

2 Elevation; p_av2m34; p_11; DSR_7; Soils Set A 0.333 0.18 0.250 

3 Elevation; p_av2m34; p_11; DSR_av2m78; Soils Set C 0.333 0.72 0.191 

4 Elevation; p_av2m34; p_11; DSR_7; Soils Set C 0.333 0.96 0.169 

5 Elevation; p_av2m34; p_11; DSR_7; Soils Set B 0.333 1.71 0.116 

6 Elevation; p_av3m345; p_11; t_8; Soils Set C 0.332 12.99 <0.0001 

7 Elevation; p_av3m345; p_11; t_8; Soils Set A 0.332 13.32 <0.0001 

8 Elevation; p_av3m345; p_11; t_8; Soils Set B 0.332 14.79 <0.0001 

9 Elevation; p_av2m34; p_11; DSR_av12m; Soils Set A 0.332 22.59 <0.0001 

10 Elevation; p_av2m34; p_11; DSR_av12m; Soils Set C 0.332 22.81 <0.0001 

 

Table 9: Summary results of the ten best performing models for DstNclBCD Subset 3 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_av3m345; p_11; t_8; Soils Set A 0.336 0.00 0.544 

2 Elevation; p_av3m345; p_11; t_8; Soils Set B 0.336 1.37 0.275 

3 Elevation; p_av3m345; p_11; t_8; Soils Set C 0.336 2.21 0.181 

4 Elevation; p_av2m34; p_11; DSR_av2m78; Soils Set A 0.335 19.99 <0.0001 

5 Elevation; p_av2m34; p_11; DSR_7; Soils Set A 0.335 20.19 <0.0001 

6 Elevation; p_av2m34; p_11; DSR_av2m78; Soils Set C 0.335 20.66 <0.0001 

7 Elevation; p_av2m34; p_11; DSR_7; Soils Set C 0.335 20.83 <0.0001 

8 Elevation; p_av2m34; p_11; DSR_7; Soils Set B 0.335 21.61 <0.0001 

9 Elevation; p_av2m34; p_11; Soils Set A 0.334 25.86 <0.0001 

10 Elevation; p_av2m34; p_11; bio1; Soils Set A 0.335 26.04 <0.0001 

The difference in outcomes between the model selection and validation procedures 
shows that the model selection results for DstNclBCD are extremely fragile. It is worth 
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noting that the models ranked sixth to eighth in the model selection procedure are the 
same as the top three models identified in the validation procedure. The top five models 
found in the selection procedure were ranked fourth to eighth using the validation data 
subset. There is, therefore, considerable uncertainty as to which of the models ought to 
be used as a basis for inference. One possible approach in this instance would be to 
employ formal multi-model inference (Burnham and Anderson 2002, 149-205), that is, 
using a weighted average of the results of several models. For the moment, that possibility 
must remain unexplored. There does not appear to be a reliable basis for preferring, say, 
the three-month average for spring precipitation to the two-month average, or the 
August temperature variable to the July or July–August insolation variables. What is clear, 
however, is that the best-performing models for DstNclBCD all include variables for 
elevation, spring and autumn precipitation as separate variables rather than the annual 
average, and summer temperature or insolation rather than annual values. 

Turning to the results for CSS Na2 and CSS Nb2, summarised below in Table 10 and 
Table 11 and Table 12 and Table 13 respectively, the model selection and validation 
outcomes are unequivocal. Models using the variables for elevation, precipitation in March 
and September, annual temperature, and soils set B performed best. In each case, the ∆i 
and Akaike weight values show that the support for these models being the best in their 
respective sets is overwhelming. 

Before looking closely at the best-performing models, it is worth summarising the results 
presented thus far and making a few general observations. The model specification, 
selection and validation procedures for the different response variables identified a 
number of different models that performed well. Model selection and validation for CSS 
Na2 and CSS Nb2 produced highly consistent results, indicating that one particular model 
was clearly the best of all those generated for those response variables. Model validation 
also reproduced closely (though not identically) the model selection results for DstNclAll. 
These results suggest that inference based on the best-performing models should be 
reliable. For DstNclBCD, however, there is considerable uncertainty regarding which 
model or models ought to be considered ‘best’. 

No one model was selected and validated as best for all four response variables, but 
some aspects of the range and nature of the variables used in the best-performing models 
are already apparent. Overall, the best models were those using the largest number of 
parameters. Following the principle of parsimony, simpler models are generally preferable 
to more complex ones. Here, however, the ∆i and Akaike weight values clearly indicated 
that simpler models, that is, those with fewer explanatory variables, performed 
dramatically worse than the best models. The performance of models using the surface 
roughness variables was, on the whole, poorer than that of those using simple elevation. 
Using separate variables for spring and autumn precipitation rather than a single annual 
average resulted in better-performing models for all the response variables. Models 
including the long-term averages for monthly days of rain ≥ 1.0mm generally performed 
worse than those using the averages for total monthly precipitation. There was less 
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consistency regarding the use of temperature vs insolation and summer vs annual 
averages for temperature/insolation.  

 

Table 10: Summary results of the ten best performing models for CSS Na2 Subset 2 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_3; p_9; bio1; Soils Set B 0.281 0.00 1.000 

2 Elevation; p_3; p_9; t_8; Soils Set B 0.266 218.16 <0.0001 

3 Elevation; RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.265 231.89 <0.0001 

4 Elevation; p_3; p_av2m910; t_8; Soils Set B 0.265 233.57 <0.0001 

5 Elevation; RD1mm_4; RD1mm_11; t_6; Soils Set B 0.265 242.00 <0.0001 

6 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.265 243.64 <0.0001 

7 Elevation; RD1mm_4; RD1mm_av3m91011; bio1; Soils Set B 0.264 250.99 <0.0001 

8 RD1mm_av2m45; RD1mm_av3m91011; bio1; Soils Set B 0.264 252.11 <0.0001 

9 RD1mm_4; RD1mm_av3m91011; bio1; Soils Set B 0.264 258.42 <0.0001 

10 RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.263 261.20 <0.0001 

 

 

Table 11: Summary results of the ten best performing models for CSS Na2 Subset 3 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_3; p_9; bio1; Soils Set B 0.285 0.00 1.000 

2 Elevation; p_3; p_9; t_8; Soils Set B 0.270 231.52 <0.0001 

3 Elevation; p_3; p_av2m910; t_8; Soils Set B 0.269 239.55 <0.0001 

4 Elevation; RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.269 242.34 <0.0001 

5 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.269 244.43 <0.0001 

6 RD1mm_av2m45; RD1mm_av3m91011; bio1; Soils Set B 0.268 250.06 <0.0001 

7 Elevation; RD1mm_4; RD1mm_11; t_6; Soils Set B 0.269 259.98 <0.0001 

8 Elevation;RD1mm_4; RD1mm_av3m91011; bio1; Soils Set B 0.267 263.42 <0.0001 

9 RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.267 264.40 <0.0001 

10 RD1mm_4; RD1mm_av3m91011; bio1; Soils Set B 0.267 265.25 <0.0001 
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Table 12: Summary results of the ten best performing models for CSS Nb2 Subset 2 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_3; p_9; bio1; Soils Set B 0.290 0.00 1.000 

2 Elevation; RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.275 227.97 <0.0001 

3 Elevation; RD1mm_av2m45; RD1mm_11; t_6; Soils Set A 0.275 231.01 <0.0001 

4 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.275 232.28 <0.0001 

5 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set A 0.275 236.52 <0.0001 

6 
SDSlp21x21; RD1mm_av2m45; RD1mm_av3m91011; 
bio1; Soils Set B 

0.275 237.37 <0.0001 

7 
SDSlp21x21; RD1mm_av2m45; RD1mm_11; bio1; Soils 
Set B 

0.275 239.25 <0.0001 

8 RD1mm_av2m45; RD1mm_av3m91011; bio1; Soils Set B 0.275 239.62 <0.0001 

9 RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.275 240.94 <0.0001 

10 
SDSlp21x21; RD1mm_av2m45; RD1mm_av3m91011; 
bio1; Soils Set A 

0.275 241.28 <0.0001 

 

 

Table 13 Summary results of the ten best performing models for CSS Nb2 Subset 3 

Model Explanatory Variables Adj R2 ∆i Akaike Weight 

1 Elevation; p_3; p_9; bio1; Soils Set B 0.295 0.00 1.000 

2 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.279 241.16 <0.0001 

3 
SDSlp21x21; RD1mm_av2m45; RD1mm_av3m91011; 
bio1; Soils Set B 

0.279 241.81 <0.0001 

4 
SDSlp21x21; RD1mm_av2m45; RD1mm_11; bio1; Soils 
Set B 

0.279 242.27 <0.0001 

5 Elevation; RD1mm_av2m45; RD1mm_11; bio1; Soils Set A 0.279 244.11 <0.0001 

6 
SDSlp21x21; RD1mm_av2m45; RD1mm_av3m91011; 
bio1; Soils Set A 

0.279 244.39 <0.0001 

7 
SDSlp21x21; RD1mm_av2m45; RD1mm_11; bio1; Soils 
Set A 

0.279 244.92 <0.0001 

8 Elevation; RD1mm_av2m45; RD1mm_11; t_6; Soils Set B 0.279 245.32 <0.0001 

9 RD1mm_av2m45; RD1mm_11; bio1; Soils Set B 0.279 245.83 <0.0001 

10 RD1mm_av2m45; RD1mm_av3m91011; bio1; Soils Set B 0.279 246.29 <0.0001 
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Analysis of best-performing models 

Having selected a single best model or small set of best models for each response variable 
from the set of candidate models, it is possible to examine the best models in detail. The 
tables in Appendix 3 set out the results for each model, as well as the results of a set of 
diagnostic tests, used to assess aspects of the model’s quality. A brief explanation of the 
diagnostic tests and what they measure will aid interpretation of the individual models 
(see Esri 2013). 

The Koenker (BP) statistic and associated probability (or p-) value evaluate whether the 
model standard errors are biased, meaning that the robust standard errors, t-statistic and 
associated p-value should be consulted for each variable, rather than the conventional 
standard errors, t-statistic and p-value. The test assesses whether the relationships 
between the explanatory and response variables are homoscedastic and stationary, that is, 
that they are numerically and spatially consistent. A relationship is homoscedastic if the 
variation between each explanatory variable and the values predicted by the regression 
does not change depending on the magnitude of the explanatory variable values. The 
opposite, heteroscedasticity, means that a model may predict well for some values of the 
dependent variable, say, the low values, but becomes unreliable for other values. A 
relationship is stationary if the variation between each explanatory variable and the values 
predicted by the regression does not change over geographical space. A non-stationary 
relationship is one where a model may predict well in one region of the study area but 
not in another. The Koenker (BP) statistics were significant in all cases, meaning the 
models’ standard errors are biased, so only the robust values are reported for the 
individual explanatory variables in each model. These results suggest that all the models 
may have problems of heteroscedasticity, non-stationarity, or both. 

The Joint Wald statistic and associated p-value assess the statistical significance of a model 
as a whole, accounting for the biased standard errors. The null hypothesis for this test is 
that the explanatory variables do not contribute to the model’s ability to predict values of 
the response variable. All the models were shown to be significant, indicating that, taken 
as a whole, the explanatory variables in each model do contribute to predicting values for 
the response variables. 

The Jarque-Bera statistic and associated p-value indicate whether a model’s residuals 
deviate from a normal distribution. Model residuals are the difference between the actual 
value recorded for each observation and the value predicted by the regression. Large 
positive residuals indicate where the regression analysis has underestimated the value for 
the response variable, and large negative residuals indicate an overestimate. Statistically 
significant Jarque-Bera results are often a sign that a model is mis-specified, that is, there 
are important explanatory variables missing from the model (Burt et al 2009, 509). 
Nonlinear relationships between the explanatory and response variables, influential 
outliers in the set of observations, or strong heteroscedasticity in the relationships can also 
produce statistically significant Jarque-Bera results. All the models had statistically significant 
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results for this test, suggesting that the models likely have a range of possible issues 
relating to mis-specification, nonlinear or heteroscedastic relationships, or influential 
outliers. 

The final diagnostic is the Moran’s Index, referred to as Moran’s I, test for spatial 
autocorrelation in the model residuals. Spatial autocorrelation is the degree to which data 
values correlate with each other depending on their spatial location (Cliff and Ord 1973; 
Mitchell 2005, 104–5). Moran’s I indicates if the data are randomly distributed, or whether 
there is positive or negative spatial autocorrelation, ie, whether the data are spatially 
random, clustered or dispersed. It has long been recognised that linear regression models 
may be mis-specified if the residuals exhibit spatial autocorrelation (Cliff and Ord 1981; 
Legendre 1993; Getis 2010) because the method assumes independently distributed 
errors. Spatial autocorrelation in the residuals suggests that: a) the model may not be 
doing as good a job explaining variation in the response variable as the R2 measure 
implies; b) there is information in the residuals about the behaviour of the response 
variable that the model does not capture; and c) some explanatory variables may not 
actually be significant at the levels the diagnostic tests suggest (Haining 2003, 352). 

I applied the Moran’s I test to the residuals for each model, using a range of distance 
bands (starting at 2,828.5m and adding 2,828.5m for each successive band up to a 
maximum of 16,971.0m, ), weighting the values based on the inverse Euclidean distance 
between the observations, and using row standardisation. I chose the distance bands 
based on the distance between the centre of a 2 x 2km grid cell and that of its diagonally 
adjacent neighbours. Using the initial distance band, some of the observations had no 
neighbours, potentially invalidating the test results. The tables in Appendix 3 report the 
Moran’s I results based on a distance band of 5,657.0m. A positive z-score for the Moran’s 
I test indicates clustering of values, while a negative z-score indicates that the values are 
dispersed. The associated p-values indicate the statistical significance of the Moran’s I 
results. All the models showed statistically significant clustering in their residuals, using all 
of the distance bands. These results also point to problems of mis-specification in all the 
models. 

Figure 5 and Figure 6 show maps of the residuals from four of the best-performing 
models, one for each response variable. The maps depict the residual values using 
standard deviations, that is, they show how far from the mean the residual for each 
observation is. The residual maps for the other models using DstNclAll and DstNclBCD 
as response variables are very similar to those presented in Figure 5. As noted previously, 
large positive residuals show where the regression has underestimated the value for the 
response variable, and large negative residuals indicate an overestimate. As would be 
expected from the Moran’s I statistics, numerous clusters of both positive and negative 
residuals can be seen in all the maps. 
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Figure 5: Maps of standardised regression residuals from DstNclAll subset 2, model 1 

(top) and DstNclBCD subset 2, model 1 (bottom) 
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Figure 6: Maps of standardised regression residuals from CSS Na2 subset 2, model 1 (top) 

and CSS Nb2 subset 2, model 1 (bottom) 



© ENGLISH HERITAGE 33 72 - 2014 

Overall, the diagnostic tests indicate that all the models have a number of issues that 
potentially render them unreliable and make any inferences based on them suspect. It 
was, of course, clear from the outset that a model (or set of similarly well-supported 
models) based only on environmental variables would be incomplete – there are a range 
of ‘cultural’ factors which almost certainly affected spatial variation in forms of settlement 
organisation. That being the case, it is no surprise that the best models identified through 
the model specification, selection and validation procedures are, very likely, still mis-
specified. This is not to say that the results of the various models are definitely incorrect. 
Rather, there is considerable uncertainty as to how reliable the results are. The discussion 
of aspects of individual models that follows must be read with this very strong caveat in 
mind. 

The tables in Appendix 3 report the coefficient, robust standard errors, t-statistics and 
associated p-values, and the Variance Inflation Factor (VIF) for each explanatory variable in 
a model. The coefficient indicates the type and strength of the relationships between the 
explanatory variable and the model’s response variable. The coefficient sign indicates 
whether the relationship is positive or negative. A positive relationship is when an increase 
in the value of the explanatory variable results in an increase in the value of the response 
variable. A negative relationship is when an increase in the explanatory variable results in a 
decrease in the response variable. The coefficient indicates how much the value of the 
response variable would be expected to change for every one-unit change in the 
associated explanatory variable, with all other variables held constant. For example, in the 
models for DstNclAll, a coefficient for the explanatory variable t_8 (August temperature) 
of -203.0 means that for every one-degree increase in temperature, it is expected that the 
distance to all nucleations would decrease by 203m, holding all other variables constant. 
The t-statistic and associated p-values for each variable show whether the variable 
coefficient is statistically significant, that is, how likely is it that the coefficient is effectively 
equal to zero and thus not contributing to explaining variation in the response variable. 

VIF measures collinearity (sometimes called multicollinearity) among the explanatory 
variables. Collinearity is the degree to which the explanatory variables are correlated with 
each other (Belsley 1991, 19-39). Collinearity can be problematic because OLS regression 
assumes that the explanatory variables are independent of one another. Collinearity 
between explanatory variables may indicate that one or the other of the variables in 
question is effectively redundant. Various rules of thumb are often used to suggest a 
maximum threshold for acceptable VIF values (Esri 2013; O'Brien 2007, note 2), usually 
ranging from 4 to 10. The most commonly suggested remedy for models with variables 
showing ‘unacceptably’ high VIF values is simply to remove the variable from the model. 
O’Brien (2007), however, notes the danger of sticking blindly to such rules of thumb for 
VIF values. He advocates a pragmatic approach of using VIF values for individual 
coefficients as a means of evaluating whether collinearity might be contributing to other 
issues, such as a coefficient being insignificant or of the ‘wrong’ sign (ie, negative when one 
would expect it to be positive). Dropping one or more variables simply because they 
produce high VIF values may do more harm than good. 
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Collinearity between the separate spring and autumn precipitation variables in the 
selected models is to be expected. Generally, areas that receive a great deal of rain in the 
spring also receive a great deal of rain in the autumn. As it turns out, the inclusion of 
separate precipitation variables for spring and autumn produced high VIF values (that is, 
higher than the common ‘rule of thumb’ threshold of 10) for those variables in all the 
models except those for DstNclAll. 

Similarly, given the nature of the soils data, a certain amount of collinearity is unavoidable. 
For example, if the proportion of a grid square covered by Soilscape type 18 is very high, 
the proportions covered by all the other Soilscape types will, by definition, be very low or 
zero. If two soil types each occupy nearly 50 per cent of a grid square, then the values for 
all the other soils types will, again, be very low or zero. Further, the soil types are not 
randomly distributed across the country – they are recorded as interdigitated but 
nonetheless discrete blocks. Soilscape type 18 covers 20 per cent of England, so it might 
be expected that there would be a higher degree of collinearity between it and the other 
soils variables than would be the case for less spatially extensive soil types. The VIF for the 
Soilscape type 18 variable is notably high (12.56 to 12.98) in all the selected models. 

Having noted the various diagnostics for the models, it is now possible to examine the 
behaviour and degree of influence of individual explanatory variables in the different 
models. The elevation variable coefficient is positive in all models for DstNclAll and 
DstNclBCD, and negative for the CSS models. This behaviour is consistent because the 
CSS variables score locations close to nucleations higher than those far away from 
nucleations. As might be expected, the models indicate that as elevation increases, and 
assuming the remaining variables are held constant, the distance to nucleation increases 
very slightly. Put another way, the higher the elevation, the lower the degree of 
‘nucleatedness’. These results agree well with the long-recognised infrequency of 
nucleated settlement in upland areas (cf Lowerre 2010, table 2). 

The summer temperature and insolation variables in the models for DstNclAll and 
DstNclBCD all show negative coefficients, suggesting that, all other things being equal, 
warmer and sunnier conditions resulted in lower distances to nucleations. This seems 
reasonable, given that some of the coolest and shadiest parts of England (eg, the Pennines 
and Lake District, the North York Moors, and Dartmoor and Exmoor in the south west) 
are known to be areas where nucleations are less common than elsewhere. That having 
been said, considerable areas of eastern and south-east England and much of lowland 
Cornwall are notably warm and sunny but are characterised by less frequent nucleated 
settlement than much of central England. Taking England as a whole, however, the 
coefficients suggest a trend for warmer and sunnier regions to have more nucleated 
settlement. For the CSS models, the coefficient for the annual temperature variable (bio1) 
is negative, indicating that, ceteris paribus, higher annual temperature produced a lower 
level of nucleated settlement. Here, the models appear to reflect the trend toward more 
dispersed settlement in the warmer areas of south-west, eastern and south-east England. 
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The contrasting results for the temperature/insolation coefficients for the models for 
nucleation variables on the one hand and the combined settlement score variables on the 
other should not be seen as contradictory. Rather, the differing results reflect the nature 
of the response variables. Looking only at nucleations, the models suggest that there was 
a tendency for nucleated settlement to avoid areas with lower summer temperature or 
insolation and prefer areas with higher summer temperature or insolation, relative to the 
country as a whole. There are, however, some relatively cool regions, for example the 
Eden valley in Cumbria and the Northumberland plain, that are characterised by low 
levels of dispersed settlement and frequent nucleations. Looking at nucleated and 
dispersed settlement together, the effect of higher annual temperature increasing the level 
of dispersed settlement (and correspondingly lowering the amount of nucleated 
settlement) appears to have been more pronounced than the effect of higher 
temperature increasing the frequency of nucleated settlement. 

Regarding the specific variables identified in the model specification and selection 
processes, Williamson (2003, 174) notes that hay-making was a time-critical activity and 
was essential for producing winter fodder for livestock: it is vital, as the saying goes, to 
make hay while the sun shines. For areas with extensive meadows, Williamson argues it 
made sense for nucleated settlement to develop, as it facilitated mobilising the large 
workforces necessary for large-scale hay-making. Based on a range Anglo-Saxon and later 
medieval sources, July was considered the usual month for hay-making (Hill 1998). It is 
perhaps unsurprising, then, that, for DstNclBCD at least, models using insolation for July 
or July and August together performed well in the model specification and selection 
procedure. August was the traditional month for harvesting cereal crops, a task which also 
required a large workforce and good weather. The same argument as for hay-making may 
have applied, and would help explain the inclusion of the variable for August temperature 
in the models for DstNclAll. 

In all of the models for DstNclAll and DstNclBCD, the coefficient for the spring 
precipitation variable is negative and that for the autumn precipitation variable is positive. 
For the CSS models, the coefficient signs are reversed. As noted for the elevation variable, 
this behaviour is consistent, given the manner in which the CSS variables were calculated. 
Essentially, all the models suggest that, ceteris paribus, higher spring precipitation resulted 
in a greater degree of ‘nucleatedness’ (that is, a lower distance to the nearest nucleation 
and lower dispersion scores), but higher autumn precipitation resulted in more dispersion 
(a higher distance to the nearest nucleation and higher dispersion scores). The alternation 
of coefficient signs is puzzling. 

Williamson (2003, 141-59; 2013, 196-201) highlights the importance of spring and 
autumn precipitation and the influence the amount and timing of rainfall could have on 
the ‘windows of opportunity’ available for ploughing, especially the ploughing of certain 
types of clay-rich soils. In the early medieval and medieval periods, heavy ploughs and, 
more importantly, the teams of oxen that drew them, were often shared among multiple 
peasant households, a practice known as co-aration. Williamson argues it made sense for 
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those households to be in close physical proximity, to be able to mobilise rapidly vital 
agricultural resources. Following this line of argument, the connection between higher 
precipitation (and correspondingly smaller windows of opportunity to plough certain soils) 
and a greater degree of nucleation makes sense, if one assumes that the most important 
episodes of ploughing occurred in spring. Banham (2010, 183-85), however, suggests that 
in the Middle Ages, wheat was primarily an autumn-sown crop and barley was usually 
sown in the spring. Assuming this generalisation is correct, and given the ever-increasing 
importance of wheat as a cereal crop through the Anglo-Saxon to the medieval periods, 
according to Williamson’s logic, one might have expected greater autumn precipitation to 
lead to more nucleation rather than less. 

Interpreting the coefficients for the spring and autumn precipitation variables is fraught 
with uncertainty. Banham’s generalisation about autumn- vs spring-sown crops could be 
wrong, but then so could Williamson’s argument about co-aration and its effects on 
settlement organisation. It may be that the alternation in coefficient signs has more to do 
with the growing cycle of a range of crops, not just wheat, than with the timing of 
ploughing. If the process or processes by which precipitation affected settlement are 
heteroscedastic and/or non-stationary, the regression equation might produce incorrect 
results. Finally, it is also possible that collinearity (reflected in the unusually high VIF values) 
may be influencing the coefficients. Further work is required to make better sense of 
these results. 

Turning now to the soils variables, Soilscape types 3 (shallow lime-rich soils over chalk or 
limestone), 5 (freely draining lime-rich loamy soils) and 7 (freely draining slightly acid but 
base-rich soils) and the soils combinations comprised of them (54 and 57) all have large 
negative coefficients in the DstNclAll and DstNclBCD models and positive coefficients in 
the CSS models. These Soilscapes types include the Barrow, Newmarket, Swaffham Prior, 
Upton and Wantage soil associations, which Williamson (2003, 124-25, 139-40) 
demonstrates were often farmed using ‘sheep-corn husbandry’ methods and tended 
toward more nucleated rather than dispersed settlement. 

Soilscape type 6 (freely draining slightly acid loamy soils) is significant in all of the 
DstNclAll and CSS models, but is only significant in the DstNclBCD models run using data 
subset 2, not the validation models based on subset 3. The coefficients are negative in the 
distance to nucleation models (in those models where the variable is significant), but, 
curiously, are also negative in the CSS models. Soilscape type 6 lies predominantly in areas 
with higher levels of dispersion, so it may be that while these soils may have contributed 
to increased nucleation in some areas, they contributed to more dispersed settlement in 
more areas. The difference in coefficient signs may, again, be due to non-stationarity. 

Soilscape types 8 (slightly acid loamy and clayey soils with impeded drainage) and 17 
(slowly permeable seasonally wet acid loamy and clayey soils) are insignificant for all the 
models using distance to nucleations as the response variable. The same variables are 
significant in the CSS models. That Soilscape types 8 and 17 do not appear to have 
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affected distance to nucleations in a meaningful fashion is somewhat surprising. They 
include a number of soil associations (Batcombe, Essendon, Flint, Hornbeam 1–3, Oak 1 
and Oxpasture) noted by Williamson (2003, 33, 64, 101, 147) as either of low fertility or 
prone to seasonal waterlogging, characteristics that he argues had a considerable effect on 
population density and settlement organisation. It is equally surprising that the coefficients 
for the two variables are negative in the CSS models, that is, they indicate that increasing 
values for either of the variables contributed to decreasing amounts of nucleation, 
assuming all other variables were held constant. The results for these variables do not 
appear to be consistent with Williamson’s explanatory model. There are a number of 
possible reasons for these outcomes. Williamson focuses his arguments on particular soil 
associations, but the Soilscapes types include more associations than just those which 
Williamson discusses. The soils data used here may be too aggregated to reflect the 
subtleties Williamson explores. There may be collinearity issues, though the VIF values for 
the variables in question are not especially high in any of the models. These results may, 
however, simply reflect the difference between an analysis encompassing the whole of 
England and explanations based, as Williamson himself admits, predominantly on evidence 
from ‘the East Midlands, East Anglia, and those parts of the Home Counties lying north of 
the Thames’ (Williamson 2013, 5). 

Soilscape type 9 (lime-rich loamy and clayey soils with impeded drainage) is significant in 
the DstNclAll and DstNclBCD models, but, somewhat surprisingly, is insignificant in the 
CSS models. This type includes the Evesham 1–3 and Hanslope associations, noted by 
Williamson (2003, 146-47) as prone to the kinds of waterlogging and puddling issues that 
may, ultimately, have contributed to the development of nucleated settlement in many 
areas. The coefficient is negative in the distance to nucleation models, suggesting that 
greater amounts of Soilscape type 9 soils led to greater nucleation. This result aligns well 
with Williamson’s arguments, but the apparent lack of meaningful influence on the CSS 
response variable does not. These soils appear to have had a statistically significant effect 
on nucleation treated in isolation but not on the more complex characterisation of 
settlement organisation that blends measures of nucleation and dispersion together. 
Precisely why this might be the case remains unclear. 

Higher amounts of the freely draining acid loamy soils over rock making up Soilscapes 
type 13 appear to contribute to a greater degree of settlement dispersion and lower 
nucleation, all other things being equal. The coefficients are negative for the CSS models 
and positive for the distance to nucleation models, and they are significant in all the 
models. 

Soilscape type 18 is significant in all the models and has negative coefficients for the 
DstNclAll and DstNclBCD response variables, but positive coefficients for the CSS 
response variables. Keeping all other parameters in the models constant, an increase in 
the value for Soilscape type 18 produces a lower distance to nucleation value, but it also 
produces a lower combined settlement score. This soils type includes several of the heavy 
clay associations (Beccles, Denchworth, Foaggathorpe, Ragdale and Wickham) on which 



© ENGLISH HERITAGE 38 72 - 2014 

Williamson notes the timing of cultivation would have been critical (2003, 146-47; 
Williamson 2010, 139, fig 7.2), leading, ultimately, via the practice of co-aration, to the 
development of nucleated settlement. The results for the distance to nucleation variables 
agree neatly with Williamson’s explanatory model, but those for the CSS variables are the 
opposite of what one would expect. As for Soilscapes types 8 and 17, there are a variety 
of possible explanations for the discrepancy between these results and Williamson’s 
explanatory model, including differences in the level of aggregation in the soils data, 
problems of collinearity among the soils variables, and differences in the geographical 
extent of the analyses. 

The coastal soils of combination 32 – including saltmarsh (Soilscape type 1), sand dunes 
(Soilscape type 4) and the loamy and clayey soils of coastal flats with naturally high 
groundwater (Soilscape type 22) – appear to lead to lower nucleation and increased 
settlement dispersion. The coefficients for this variable are significant in all the models. 
Combination 33 (loamy floodplain soils and loamy soils with naturally high groundwater) 
shows a strong tendency toward a high degree of nucleation. The coefficients are negative 
(and large) for the distance to nucleation models and positive for the CSS models. This 
results agrees well with Williamson’s arguments about meadow and its importance to the 
development of nucleated settlement (2003, 169-77). Comprised of Soilscapes types 12, 
20 and 22, this combination includes the Fladbury, Frome and Thames soil associations, 
highlighted by Williamson as soils ideal for meadow-making (ibid, 170-71). 

The variable for soils combination 35 (sandy and very acid loamy soils, except for sand 
dunes) is insignificant in the models having DstNclAll or DstNclBCD as the response 
variable, but is significant for the CSS models. The coefficients in the CSS models are 
negative, indicating that, ceteris paribus, higher values for this soils combination 
contributes to lower nucleation and higher dispersion. Williamson (2003, 124, 131) notes 
that the soil associations such as Methwold, Newport and Worlington included in soils 
combination 35 were only sparsely settled in the late Saxon and medieval periods. The 
remaining soil combinations, 52 (upland peaty soils) and 53 (lowland peaty soils plus 
restored soils), have large, positive coefficients for DstNclAll and DstNclBCD. The 
coefficients for these combinations are negative in the CSS models, but combination 53 
was not significant. It seems clear that peaty soil acted as a repulser to the development 
of nucleated settlement. 

The final aspect of the models to report is how well they actually explain the varying 
levels of ‘nucleatedness’, that is, their adjusted R2 values. As previously noted, adjusted R2 
measures how much variation in the response variable is accounted for by the 
explanatory variables, adjusted for the complexity of the model. The DstNclAll models all 
produced adjusted R2 values of 0.350. The DstNclBCD models generated from data 
subset 2 had adjusted R2 values of 0.333, while those from data subset 3 (the validation 
set) had adjusted R2 values of 0.336. The adjusted R2 value for the CSS Na2 model was 
0.281 and that for the CSS Nb2 model was 0.290. The adjusted R2 values for the best-
performing models are not especially high, suggesting they explain at most about one-
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third of the variation in the distance to nucleation response variables, and slightly less than 
that for the CSS response variables. Given the issues of spatial autocorrelation in the 
model residuals, there is a distinct possibility that the adjusted R2 values are actually 
somewhat inflated. 

Discussion 

What, then, does the extended OLS regression analysis reveal about the relationships 
between environmental factors and historic settlement organisation? The model 
specification, selection and validation procedures found a number of different models that 
performed well. No single set of explanatory variables worked well for all the response 
variables, but more complex models performed unequivocally better than simpler models. 
There is effectively no uncertainty arising from model selection and validation for CSS 
Na2 and CSS Nb2: one particular model was clearly the best of all those generated for 
those response variables. Model selection and validation produced slightly less certain 
results for DstNclAll. Two of the three best-performing models appear equally effective, 
and the last of the top three models is consistently in third place. There is little doubt that 
the models in question are the best-performing in the model sets, though numerous 
issues raised by the individual model diagnostics must also be taken into account. 

There is, however, considerable uncertainty regarding which model or models might be 
considered the best for DstNclBCD. This uncertainty is noteworthy given that it was the 
category B, C and D nucleations on which Roberts and Wrathmell particularly focused 
when developing their characterisation of England’s rural settlement into provinces, sub-
provinces and local regions (Roberts and Wrathmell 2000, 11, 15-16). Even without 
considering the issues raised by the individual models’ diagnostics, it is far from clear which 
of the fitted models provides the best basis for inference. The high level of model 
selection uncertainty in the analysis means that confidence in any interpretations of the 
effects of environmental factors on this key measure of rural settlement organisation must 
be low. This is not to say that the environmental factors investigated here did not 
influence the variation in distance to category B, C and D nucleations. Rather, it is difficult 
to be certain in this instance precisely which constellation of variables best approximates 
the actual processes by which environmental factors affected settlement organisation.  

Diagnostics indicate that all the models suffer from various issues, making inferences based 
on them potentially suspect. Given that ‘cultural’ factors were excluded from the analysis, 
it is no great surprise that even the best models are probably still mis-specified. It cannot 
be said that the results of the various models are incorrect, but their reliability is open to 
question. 

Some coefficients for individual variables in particular models appear to agree well with 
Williamson’s explanatory model, but not all. The differing coefficient signs for spring and 
autumn precipitation are especially perplexing, and further work is necessary to explain 
these results. Some of the apparent discrepancies between Williamson’s explanatory 
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model and the results presented here regarding the soils variables may relate to the level 
of aggregation in the soils data. Williamson focuses his arguments on individual soil 
associations, while the Soilscape types and combinations of types used here are 
amalgamations of multiple soil associations. It is possible that regression models 
constructed using data compiled at the level of soil associations might perform better than 
those discussed here. It may also be the case that Williamson’s explanatory model breaks 
down when applied to the whole of England, rather than just the area on which he has 
concentrated. 

In the models using distance to nucleation as the response variable, there is a strong 
tendency toward underestimating the high values, that is, the models perform poorly 
when trying to predict values at locations very far from the nearest nucleations. Many, 
though not all, such locations are in upland areas, as well as a substantial area along the 
Anglo-Scottish border. The models also do not predict well the distance to nucleations in 
valleys in upland areas, where the models appear consistently to overestimate low values. 
In the CSS models, there is a very strong tendency to overestimate the low values. Large 
negative residuals clearly cluster in areas where the CSS values show low levels of 
nucleation and high levels of dispersion. There are some areas of large positive residuals, 
for example the north-west Cumbrian coast, the Yorkshire Dales, and Exmoor and the 
area around Barnstaple in north Devon. The models’ propensity to underestimate high 
values is not nearly so marked as that to overestimate low values. 

The best-performing models explain, at most, about one-quarter to one-third of the 
variation in the settlement response variables. Given the issues of spatial autocorrelation 
in the model residuals, it is likely that the adjusted R2 values are somewhat inflated. 
Authors such as Williamson and Lambourne do not, of course, state in quantitative terms 
how much influence they believe environmental factors might have had on rural 
settlement organisation. In the absence of similar, quantitatively-based studies, it is difficult 
to ascertain whether the results set out here should be considered good, bad or 
indifferent. What does seem clear, however, is that there is considerable variation in the 
settlement variables that is not explained by the environmental variables. Environmental 
factors do appear to have had demonstrable, quantifiable effects on variation in the 
organisation of rural settlement, but overall, other factors, not investigated here, appear to 
have had more effect. 

A range of potential remedies exists for the kinds of model issues highlighted by the 
various diagnostic tests, and further work could explore these possibilities. Such remedies 
include transformations of the response and explanatory variables, the use of spatial trend 
and interaction variables, and possibly using Geographically Weighted Regression (GWR) 
(Fotheringham et al 2002), which could address potential issues of non-stationarity. The 
analyses presented here could also be undertaken using coarser-resolution grid cells. The 
spatial processes by which the environmental factors influenced nucleatedness may not 
have operated, or at least may not be reliably detected, at the resolution examined here. 
It is usually preferable to analyse data at the highest possible resolution, but aggregating 
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the data into larger grid cells might, in this case, pay dividends. At the same time, soils data 
compiled at the level of associations, rather than the more aggregated Soilscape types, 
might also serve to explain better the relationships between soils and settlement. It is also 
possible that some of the relationships between environmental factors and settlement 
organisation are not linear. Non-linear regression, or other analytical techniques that do 
not make as rigid assumptions as does OLS regression, might reveal more information 
about the relationships between environmental factors and the measures of settlement 
organisation used in this study. 

As noted at the beginning of this section, OLS regression is a non-spatial method: it does 
not take incorporate the location in geographic space of observations for the response 
and explanatory variables into the analysis. Some, though, not all, of the issues identified 
by the model diagnostics likely relate to the application of a non-spatial method to spatial 
data. There are, however, regression methods that do incorporate spatial effects. I 
explore and apply some of these methods to the environment and settlement data in the 
next section. 

Spatial Regression 

Spatial regression is a general term for a variety of methods for specifying, estimating and 
performing diagnostic checks on regression models that explicitly include the effects of 
spatial autocorrelation in the variables in the calculations (Anselin 2009). Spatial regression 
is a form of autoregressive modelling, that is, where the value of a variable for one 
observation is related to the value for the same variable at neighbouring observations 
(Anselin 1988, 33). 

Method 

Before describing spatial regression methods in detail, it is worth discussing briefly the 
general nature of the kinds of factors or processes that produce the kinds of spatial 
patterning under investigation here. This discussion is useful for understanding how 
different types of spatial regression models incorporate space into their specifications. The 
factors and processes leading to spatial patterning are of two basic types: exogenous and 
endogenous (Fortin and Dale 2005, 6-10). Exogenous factors or processes are those that 
act from outside or independently of the phenomenon or variable of interest. 
Endogenous factors or processes are those internal or inherent to the phenomenon or 
variable of interest. Two examples from ecology help illustrate the different processes. 
The dispersal of seeds from a plant is an endogenous process that affects the spatial 
distribution of that type of plant, while the combined effects of topography, soil character, 
temperature and rainfall demonstrate exogenous processes that affect the spatial 
distribution of the same plant. 
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The factors under consideration here are primarily exogenous – the goal is to understand 
how environmental factors outwith settlement organisation itself affected the distribution 
of settlement organisation. Of course, there almost certainly will have been some 
endogenous effects in some regions which, over time, may have led to changes in 
settlement organisation. For example, people living in dispersed settlements in one area 
might have noticed the relatively greater success or prosperity of people in a neighbouring 
area who had (for whatever reasons) begun to live in nucleated settlements. Using 
diagnostic checks on different forms of spatial regression models, it is possible to explore 
whether endogenous or exogenous factors appear to have had the most pronounced 
effects on the different settlement response variables. 

Spatial regression incorporates the effects of spatial autocorrelation into regression model 
specifications in two main ways: 

• spatial lag dependence, where spatial autocorrelation in the response variable is 
modelled 

• spatial error dependence, where spatial autocorrelation in the regression error term 
is modelled 

Spatial lag dependence assumes that the autoregressive process occurs only in the 
response variable. A spatial lag model would be most appropriate for explaining a pattern 
where it is expected that the process driving the observed spatial dependence in the 
response variable is endogenous. A spatial lag model can also help to address problems of 
spatial autocorrelation when the spatial scale of the phenomenon being studied and the 
scale at which it is measured do not match. Spatial error dependence is most likely 
encountered when spatial autocorrelation is not fully explained by the explanatory 
variables included in a regression model, for example when important, spatially-structured 
variables are missing from the model specification. A spatial error model would be most 
appropriate for explaining patterns where the explanatory variables do not fully capture 
the exogenous process(es) being modelled (Anselin and Bera 1998, 247-49; Anselin 
2002, 248-49, 253; Haining 2003, 313-14; Kissling and Carl 2007, 61). 

Spatial dependence is incorporated into the analyses by defining a set of neighbours for 
each observation, using what is known as a spatial weights matrix. A spatial weights matrix 
is an N x N matrix (where N is the number of observations in the data set) representing 
the relationship between each observation and every other observation (Dubin 2009). If 
two observations are considered neighbours, the value in the matrix will be a positive 
number; otherwise the matrix value is zero. The accepted convention is that an 
observation is not its own neighbour, so the main diagonal of the matrix will consist 
entirely of zeroes. The weighting scheme for those observations that are neighbours can 
be either discrete or continuous. In a discrete scheme, the value in the matrix for a pair 
neighbours will be one, indicating simply that two observations are neighbours. In a 
continuous scheme, the value will indicate the strength of the relationship according to 
some numeric scale. 



© ENGLISH HERITAGE 43 72 - 2014 

There are various ways in which the relationships between observations can be defined, 
that is, the manner by which one decides whether two observations should or should not 
be considered neighbours. For polygon spatial data, contiguity or adjacency between 
polygons can be used. Other discrete weighting schemes appropriate for both point and 
polygon data include using a chosen number of nearest neighbours and using all 
observations within a specified distance limit. Commonly used continuous schemes 
include using weights that are inversely related to the distance separating observations (ie, 
the greater the distance, the lower the weight) and weights that are a negative exponent 
of the distance between observations (eg, the weight equals the square of the inverse 
distance between two observations). 

A key problem in estimating and evaluating spatial regression models is choosing an 
appropriate spatial weights matrix (Anselin 1988, 176-77). Often, it is far from clear 
exactly how the phenomena under investigation interact over space. Unless the nature of 
the spatial interactions in the data is very clear, best practice involves estimating models 
using multiple spatial weights matrices and evaluating which model type and weights 
matrix produces the best-fitting results (Anselin 2002, 259). 

The spatial lag model uses what is known as a spatially lagged response variable. For each 
observation, a weighted average value of the response variable for that observation’s 
neighbours (as defined by the spatial weights matrix) is calculated and included in the 
model as an additional explanatory variable. The spatial error model applies the spatial lag 
(again, calculated for each observation’s neighbours as defined by the spatial weights 
matrix) to the estimated regression errors. In effect, the spatial lag model aims to control 
for the spatial autocorrelation in the response variable itself, allowing proper 
interpretation of the effect of the explanatory variables. The spatial error model aims to 
control for the spatially autocorrelated errors in the model, treating them as a nuisance, 
and again enabling a more accurate interpretation of the effect of the explanatory 
variables on the response variable than is possible using a non-spatial OLS model (Anselin 
and Bera 1998, 246-51). 

I investigated only the best-performing models identified in the model specification, 
selection and validation procedures using non-spatial OLS regression, that is, those 
described in the tables in Appendix 3. Due to the complexities of interpreting the 
diagnostics and the longer computing times required relative to non-spatial OLS, it was 
not possible to undertake a comparably extensive specification search using spatial 
regression methods. This approach – performing model specification and selection using 
non-spatial OLS regression, then investigating only the selected models using other 
regression methods – may be imperfect, but is widely used in practice (Dormann 2007, 
135). The question, of course, is which type of model to use, spatial lag or spatial error? 
Given the focus on exogenous factors here, the simplest approach would be to fit only 
spatial error models. To do so would, however, ignore the possibility that endogenous 
processes might have had a substantive and detectable effect on the measures of 
settlement organisation under investigation. 
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There are a set of diagnostics tests set out by Anselin et al (1996) that can be used to 
assess which type of spatial model (if any) would be preferable to non-spatial OLS. The 
tests, known as Lagrange Multiplier or LM tests, examine whether there is statistically 
significant spatial lag or spatial error dependence in the OLS regression residuals. The LM-
Lag test compares against a null hypothesis that there is no spatial dependence in the 
lagged response variable parameter. The LM-Error test compares against a null hypothesis 
that there is no spatial dependence in the lagged error parameter. There is, of course, the 
possibility that there may be both spatial lag and spatial error dependence in a given 
model, which will bias the standard test results and make them unreliable. The robust 
tests take into account the local presence of dependence of the opposite form. That is, 
the robust LM-Lag test examines whether there is significant lag dependence given the 
local presence of error dependence, and the robust LM-Error test examines whether 
there is significant error dependence given the local presence of lag dependence. 

Anselin (2005, 198-200) helpfully summarises the step-by-step interpretation of these 
tests as a decision rule. First, the non-spatial OLS model is run and the various diagnostics 
statistics computed. If the standard (that is, non-robust) LM-Lag and LM-Error tests are 
both insignificant, then the OLS results can be considered trustworthy, and there is 
probably no need to compute a spatial model. If one LM test is significant and the other is 
not, then the spatial model corresponding to the significant test should be estimated. That 
is, if LM-Error is significant and LM-Lag is not, then one would estimate a spatial error 
model, and vice versa. If both the standard tests are significant, then comparison of the 
robust test results is necessary. If one is significant and the other not, or if one result is 
orders of magnitude more significant than the other (eg, p < 0.00001 compared to p < 
0.01), then the model corresponding to the (most) significant test should be estimated. 
When both tests are highly significant, the model corresponding to the largest test statistic 
can be estimated. In this last situation, however, it is probable that there are still 
considerable mis-specification problems, and caution is necessary. Neither form of spatial 
model can ‘cure’ all the potential problems in regression analysis of real-world data when 
important explanatory variables are missing from the models. 

I performed all the spatial regression analyses using the freely available software GeoDA 
(Anselin et al 2006), the most recent version of which is 1.6.6 (downloadable from 
https://geodacenter.asu.edu/software/downloads). Both the spatial lag and spatial error 
regression models are estimated using the maximum likelihood approach, rather than 
OLS (Anselin 1988, 57-65). It should be noted that GeoDA reports the standard version 
of AIC, that is, not the small-sample-corrected version. As previously noted, for large 
sample sizes, the difference between AIC and AICc for a given model is negligible. Where 
applicable, for the analyses presented in this section, I used AIC rather than AICc. 

 

https://geodacenter.asu.edu/software/downloads
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Results 

Spatial Regression Model Type Selection 

I used three spatial weights matrices, employing a discrete weighting scheme based on 
three different, progressively larger, cut-off distances: 5,657.1m (Weights Matrix 1), 
11,314.1m (Weights Matrix 2) and 16,971.1m (Weights Matrix 3). In effect, these spatial 
weights matrices define increasingly large areas for the neighbourhood around each 
observation. For each observation, all other observations closer than the cut-off distance 
are treated as neighbours, and those further away are not. The cut-off distances are based 
on multiples of the distance between the centre of a 2 x 2km grid cell and that of its 
diagonally adjacent neighbours, ensuring that all observations had at least one neighbour 
(cf the distance bands used in the Moran’s I test of OLS residuals above). 

For each of the models described in Appendix 3, I re-ran the OLS models using GeoDA, 
calculating the LM test diagnostics using each of the three spatial weights matrices. Both 
the standard and the robust versions of the LM-Lag and LM-Error test statistics were 
significant in every instance. Following the decision rule outlined above, the question then 
becomes, for each model, which of the robust test statistics is larger, robust LM-Lag or 
robust LM-Error? Table 14 sets out the robust LM-Lag and robust LM-Error statistics for 
each model and weights matrix. 

For DstNclAll, for all three models, the model selection decision rule indicates that spatial 
lag models would be preferred when using weights matrix 1, but spatial error models 
would be preferred if using weights matrix 2 or 3. For most of the models having 
DstNclBCD as the response variable, the model selection decision rule suggests that 
spatial error models would be preferred when using all three weights matrices. The 
Robust LM-Lag and Robust LM-Error statistic values were, however, very similar for the 
models based on data subset 2; the differences were more pronounced for the models 
based on data subset 3. For CSS Na2 and CSS Nb2, the model selection decision rule 
indicates that spatial lag models would be preferred when using weights matrix 1, but 
spatial error models would be preferred if using weights matrix 2 or 3. 

Given these results, for all the sets of parameters set out in Appendix 3, I estimated both 
spatial lag and spatial error models using weights matrix 1, but only spatial error models 
using weights matrices 2 and 3. Bearing in mind the note of caution included in the 
decision rule set out above, it is unclear how reliable the preference for a spatial lag or 
spatial error model in these circumstances actually is. Estimating both types of spatial 
model using weights matrix 1 enables a direct comparison, while recognising that neither 
type of spatial model will alleviate every potential model specification issue. 
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Table 14: OLS model diagnostics for spatial regression model selection 

Response Variable Data Subset Model Weights Matrix Robust LM-Lag Robust LM-Error 

DstNclAll 2 1 1 509.8 397.4 
DstNclAll 2 1 2 441.7 9298.1 
DstNclAll 2 1 3 321.8 20984.9 
DstNclAll 2 2 1 510.8 395.3 
DstNclAll 2 2 2 443.2 9267.4 
DstNclAll 2 2 3 323.8 20926.8 
DstNclAll 2 3 1 510.6 395.3 
DstNclAll 2 3 2 443.4 9264.3 
DstNclAll 2 3 3 324.0 20911.8 
DstNclBCD 2 1 1 450.5 452.4 
DstNclBCD 2 1 2 394.9 9408.6 
DstNclBCD 2 1 3 278.5 20737.3 
DstNclBCD 2 2 1 455.8 452.0 
DstNclBCD 2 2 2 403.0 9384.5 
DstNclBCD 2 2 3 287.8 20619.7 
DstNclBCD 2 3 1 450.6 455.9 
DstNclBCD 2 3 2 395.4 9447.8 
DstNclBCD 2 3 3 278.9 20804.1 
DstNclBCD 3 1 1 432.8 475.3 
DstNclBCD 3 1 2 380.3 10003.0 
DstNclBCD 3 1 3 251.8 22084.2 
DstNclBCD 3 2 1 389.3 469.3 
DstNclBCD 3 2 2 322.9 9606.4 
DstNclBCD 3 2 3 192.9 21224.2 
DstNclBCD 3 3 1 384.1 476.0 
DstNclBCD 3 3 2 314.2 9704.8 
DstNclBCD 3 3 3 185.2 21408.3 
CSS Na2 2 1 1 771.2 504.3 
CSS Na2 2 1 2 1198.9 20275.0 
CSS Na2 2 1 3 1270.3 61176.7 
CSS Nb2 2 1 1 782.8 520.8 
CSS Nb2 2 1 2 1194.3 20409.6 
CSS Nb2 2 1 3 1253.4 60793.6 

 

Analysis of estimated models 

Table 15 and Table 16 summarise the results and diagnostics for, respectively, the spatial 
lag and spatial error models. The first three columns in the tables record the response 
variable, data subset and model number (as listed in the tables in Appendix 3), and the 
fourth column indicates which spatial weights matrix was used. The next column, labelled 
R2, provides a measure of the goodness-of-fit for each model. This is actually a so-called 
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pseudo-R2 and is not, strictly speaking, directly comparable with the R2 values reported for 
the non-spatial OLS models (Anselin 1988, 243-45; Anselin 2005, 207, 218). 

The sixth and seventh columns set out the extent to which the spatial regression models 
improve on the non-spatial OLS models using two other measures of model 
performance, the log likelihood and AIC. In general, for the log likelihood, the higher the 
value, the better the fit of the model; for AIC (as previously noted), the lower the value, 
the better the fit. The sixth column records how much higher the log likelihood value for 
the spatial model is compared to the log likelihood value for the comparable non-spatial 
OLS model. The seventh column records the value obtained by subtracting the AIC value 
for the spatial model from the AIC value for the non-spatial OLS model. Here, the higher 
the value, the greater the improvement in AIC. 

The last three columns present statistics from three different diagnostic tests for each 
spatial model: the Wald, likelihood ratio (LR) and LM-Lag or LM-Error tests (Anselin 
1988, 65-72). Taken together, the results of these tests are useful for assessing whether 
the models are well-specified. Very simply, it is expected in a well-specified model that the 
values of the Wald, LR and LM (Lag or Error, as appropriate) tests should compare as 
follows: Wald ≥ LR ≥ LM (Lag or Error) (ibid, 72-73). When the test results do not 
conform to that pattern, it is likely that the model in question still has specification issues, 
even after incorporating spatial effects. 

 

Table 15: Summary results and diagnostics for spatial lag models 

Response 
Variable 

Data 
Subset Model 

Weights 
Matrix R2 

Log 
Likelihood 

improve 
AIC 

improve Wald LR LM-Lag 

DstNclAll 2 1 1 0.720 3802.6 7603.0 14089.7 7605.2 10253.4 
DstNclAll 2 2 1 0.720 3804.2 7606.0 14113.4 7608.4 10256.3 
DstNclAll 2 3 1 0.720 3804.0 7606.0 14113.4 7608.0 10256.0 
DstNclBCD 2 1 1 0.743 4328.2 8655.0 18784.0 8656.4 11393.6 
DstNclBCD 2 2 1 0.743 4329.1 8656.0 18782.1 8658.2 11386.4 
DstNclBCD 2 3 1 0.743 4327.9 8654.0 18767.6 8655.8 11391.6 
DstNclBCD 3 1 1 0.748 4407.0 8812.0 19282.7 8793.9 11623.5 
DstNclBCD 3 2 1 0.748 4397.5 8791.0 19274.2 8794.2 11665.2 
DstNclBCD 3 3 1 0.748 4393.4 8785.0 19259.1 8786.7 11655.9 
CSS Na2 2 1 1 0.928 11216.2 22430.4 125406.5 22432.4 23869.1 
CSS Nb2 2 1 1 0.928 11093.8 22185.7 125543.3 22187.6 23592.8 
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Table 16: Summary results and diagnostics for spatial error models 

Response 
Variable 

Data 
Subset Model 

Weights 
Matrix R2 

Log 
Likelihood 

improve 
AIC 

improve Wald LR LM-Error 

DstNclAll 2 1 1 0.721 3730.9 7462.0 16822.1 7461.7 10141.0 
DstNclAll 2 1 2 0.651 3066.3 6133.0 24964.0 6132.6 25469.5 
DstNclAll 2 1 3 0.613 2636.0 5272.0 115396.1 5272.0 35878.6 
DstNclAll 2 2 1 0.722 3732.3 7464.0 16874.0 7464.7 10141.1 
DstNclAll 2 2 2 0.651 3069.4 6138.0 25185.7 6138.8 25479.9 
DstNclAll 2 2 3 0.613 2638.6 5277.0 116964.0 5277.3 35904.4 
DstNclAll 2 3 1 0.722 3732.5 7465.0 16867.8 7465.0 10140.7 
DstNclAll 2 3 2 0.651 3069.1 6138.0 25199.4 6138.2 25468.2 
DstNclAll 2 3 3 0.980 523.5 1049.0 761721.0 32063.6 35876.1 
DstNclBCD 2 1 1 0.747 4290.7 8582.0 22781.0 8581.3 11395.5 
DstNclBCD 2 1 2 0.646 3132.6 6266.0 26227.3 6265.2 26146.5 
DstNclBCD 2 1 3 0.595 2538.1 5077.0 87336.9 5076.1 35018.8 
DstNclBCD 2 2 1 0.747 4290.5 8581.0 22857.6 8581.0 11382.7 
DstNclBCD 2 2 2 0.645 3109.9 6222.0 29991.1 6433.2 26105.2 
DstNclBCD 2 2 3 0.593 2512.8 5028.0 107523.7 5239.1 34948.7 
DstNclBCD 2 3 1 0.747 4290.8 8581.0 22753.1 8581.7 11396.9 
DstNclBCD 2 3 2 0.646 3131.8 6263.0 26127.5 6263.7 26151.6 
DstNclBCD 2 3 3 0.595 2537.1 5074.0 86526.5 5074.2 35034.5 
DstNclBCD 3 1 1 0.751 4359.9 8720.0 22922.2 8699.8 11666.1 
DstNclBCD 3 1 2 0.657 3270.9 6542.0 32231.3 6541.8 27486.6 
DstNclBCD 3 1 3 0.604 2647.6 5295.0 116917.2 5295.0 36845.6 
DstNclBCD 3 2 1 0.751 4350.2 8699.0 22921.4 8699.8 11745.2 
DstNclBCD 3 2 2 0.657 3262.6 6525.0 36114.4 6525.0 27784.1 
DstNclBCD 3 2 3 0.604 2637.5 5275.0 134835.8 5275.0 37343.2 
DstNclBCD 3 3 1 0.750 4346.4 8693.0 22821.1 8692.7 11747.8 
DstNclBCD 3 3 2 0.657 3258.7 6517.0 35480.5 6517.4 27790.9 
DstNclBCD 3 3 3 0.604 2633.2 5266.0 130736.6 5266.3 37342.7 
CSS Na2 2 1 1 0.929 11174.1 22348.1 153888.3 22348.1 23602.1 
CSS Na2 2 1 2 0.880 9360.1 18720.0 1769253.8 18720.1 83013.5 
CSS Na2 2 1 3 0.816 7271.2 14542.3 355639250.6 14542.4 136956.2 
CSS Nb2 2 1 1 0.928 11045.8 22091.6 155817.1 22091.6 23330.8 
CSS Nb2 2 1 2 0.876 9109.6 18219.2 1440578.5 18219.1 81075.6 
CSS Nb2 2 1 3 0.812 7084.1 14168.2 69643815.1 14168.1 133173.0 

 

The first overarching point that is immediately apparent from examination of the tables is 
that all the spatial models show dramatically improved performance compared to the 
corresponding non-spatial OLS models. Recalling that differences in AIC values > 10 
indicate that the model with the higher AIC value has essentially no support compared to 
the model with the lower value (Burnham and Anderson 2002, 70-72), it is clear that the 
spatial models are overwhelmingly better than the corresponding non-spatial versions. 
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Comparing the AIC values for the models estimated using spatial weights matrix 1, it also 
seems clear that the spatial lag models performed dramatically better than the spatial 
error models. Among the error models, the larger the neighbourhood defined by the 
weights matrices, the poorer the performance of the model, again based on comparison 
of the AIC values. The final general observation to be made based on the results shown 
in Table 16 and Table 15 is that it is probable that all the spatial models still have mis-
specification problems. None of the models have Wald, LR and LM test statistics that 
match the expected pattern (Wald ≥ LR ≥ LM). 

Given the poorer performance of the spatial error models using weights matrices defining 
larger neighbourhoods, I will concentrate in the remainder of this section only on the 
models estimated using weights matrix 1. The tables in Appendix 4 present the results for 
the spatial lag and spatial error models estimated using weights matrix 1, as well as the 
results of the Breusch-Pagan test for heteroscedasticity in the models’ error terms. This 
test is used to assess each model’s quality. The results of the Breusch-Pagan test were 
significant for all the spatial models. Issues of heteroscedasticity – variation between the 
explanatory variables and the values predicted by the regression change depending on the 
magnitude of the explanatory variable values – remain in all the models.  

Similar to the results for the non-spatial OLS regression models, the tables report the 
coefficient, standard errors, z-values and associated p-values for each explanatory variable 
in a model. Again, the coefficient indicates the type and strength of the relationship 
between the explanatory variable and the model’s response variable. The coefficient 
estimates – assuming all other variables are held constant – how much the value of the 
response variable would be expected to change for every one-unit change in the 
associated explanatory variable. The z-value and associated p-values for each variable 
show whether the variable coefficient is statistically significant, that is, how likely is it that 
the coefficient is effectively zero and therefore not contributing to explaining variation in 
the response variable. 

The two types of spatial model each include the autoregressive parameters as an ‘extra’ 
coefficient in addition to the explanatory variables as used in the non-spatial OLS models. 
The spatial lag models include the spatially lagged response variable, reported in the tables 
as ‘W_’ plus the name of the response variable. In the spatial error models, lambda is the 
label given to the coefficient for the spatially lagged estimated regression errors. The 
autoregressive parameters are significant in all the models, regardless of type. The 
autoregressive coefficients are quite large in all the models, indicating – as would be 
expected – that there is considerable spatial autocorrelation in, respectively, the lagged 
response variables and in the models’ errors. The extremely high values for the 
autoregressive coefficients indicate that much of the ‘explaining’ going on in the models is 
being done by the autoregressive parameters. In many, though not all, instances, the 
coefficients for the other explanatory variables are noticeably smaller in the spatial models 
than in the corresponding non-spatial OLS models. 
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Elevation is significant in all the models except the spatial error models for CSS Na2 and 
CSS Nb2. As with the non-spatial OLS models, the coefficients are positive for the 
distance to nucleation models and negative for the CSS models, though the coefficients 
are slightly lower than in the non-spatial OLS models. These results support the 
interpretation that the higher the elevation, the lower the degree of ‘nucleatedness’. Why 
the elevation variable should be insignificant in the spatial error models for CSS Na2 and 
CSS Nb2 but not in the spatial lag models is unclear. It suggests that, having controlled for 
missing explanatory variables, elevation did not have a significant effect on settlement 
organisation when nucleation and dispersion are measured on a combined scale. 

The separate spring and autumn precipitation variables are all significant in all the models. 
The same puzzling switch in coefficient signs as seen in the non-spatial OLS models is also 
present: negative for spring precipitation but positive for autumn precipitation (or vice 
versa for the CSS models). For all the DstNclAll spatial models, the coefficients for the 
spring precipitation variable are smaller than those in the non-spatial OLS models. The 
coefficients for the autumn precipitation variables are also smaller in the spatial lag models, 
but noticeably larger in the spatial error models. The same pattern applies to the spatial 
models estimated for DstNclBCD using data subset 3. In the spatial models for 
DstNclBCD estimated from data subset 2, the coefficients for both the spring and autumn 
precipitation variables are smaller than those in the corresponding OLS models. In the 
CSS models, the spring and autumn precipitation coefficients are smaller than in the OLS 
models for both types of spatial model. 

Generally, the effects of precipitation on the measures of rural settlement organisation 
appears less pronounced having controlled for spatial autocorrelation in either the 
response variables or the models’ errors. In the models for DstNclAll and those for 
DstNclBCD estimated from data subset 3 (the specifications of which are nearly 
identical), the effect of autumn precipitation appears more pronounced having controlled 
for spatial autocorrelation in the models’ error terms. Interpretation of the precipitation 
variables, as noted in the discussion of the OLS models, remains perplexing. Even having 
controlled for spatial autocorrelation effects, the regression models may still not be 
adequate to explain heteroscedastic and/or non-stationary processes by which 
precipitation affected settlement. As in the OLS models, it is also possible that collinearity 
may be affecting the coefficients. Again, more work is required to make better sense of 
these results. 

The summer temperature variable (average temperature in August) is significant in the 
error models for DstNclAll, but not in the lag models. The absolute values of the 
coefficients in the error models are somewhat larger than those in the corresponding 
OLS models, suggesting that, having controlled for spatial autocorrelation in the models’ 
error terms, summer temperature had greater effect on nucleation than the OLS models 
indicated. The summer insolation variables (the duration of solar radiation in July and 
averaged for July and August) are significant for all the spatial DstNclBCD subset 2 
models. The absolute values of the coefficients in the spatial lag models are smaller than 
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those in the OLS models, while those in the spatial error models are slightly larger. The 
differences in the magnitudes of the coefficients are, however, unlikely to be meaningful.  
August temperature is not significant for the subset 3 spatial models. Annual temperature 
is significant for all the CSS spatial models, but the absolute values of the coefficients in 
the spatial models are smaller than those in the OLS models. Overall, these results 
suggest that temperature or insolation probably did have substantive effects on rural 
settlement organisation, but those effects are difficult to summarise for the whole of 
England. Given the extent to which temperature and insolation vary spatially across the 
country, there is a distinct possibility that their effects on rural settlement organisation 
were non-stationary, that is, they varied from place to place.  

The most noteworthy results the tables in Appendix 4 reveal are that far fewer of the 
soils variables are identified as significant in the spatial models as compared to the non-
spatial OLS models. Accounting for spatial autocorrelation in either the response variables 
or the models’ error terms suggests that only a few soil types or combinations of types 
had a substantive effect on the measures of rural settlement organisation. 

Soils combination 54 (amalgamating Soilscapes types 3 and 7, shallow lime-rich soils over 
chalk or limestone and freely draining slightly acid but base-rich soils) is not significant in 
any of the models in which it appears. Soilscapes type 3 is only significant in the spatial lag 
models for the CSS variables. This is in sharp contrast to the non-spatial OLS models, 
where these variables are uniformly highly significant. Soilscapes types 6 (freely draining 
slightly acid loamy soils), 8 (slightly acid loamy and clayey soils with impeded drainage) and 
9 (lime-rich loamy and clayey soils with impeded drainage) are also insignificant in every 
spatial model. Soilscapes types 6 and 9 are significant in most of the non-spatial models, 
so the results from the spatial models are also markedly different. 

It should be noted that Soilscapes type 8 has a p-value of 0.054 in the spatial error model 
for CSS Nb2, and has p-values between 0.07 and 0.09 in the other CSS models, so it 
could be considered significant if the critical value for α is slightly relaxed from the usual 
cut-off of 0.05. As in the non-spatial CSS models, the coefficients for this soils variable are 
negative in the spatial models, that is, they indicate that an increase in Soilscapes type 8 
contributed to a decrease in the degree of nucleation, assuming all other variables are 
held constant. The slowly permeable seasonally wet acid loamy and clayey soils of 
Soilscapes type 17 are also only significant in the two spatial regression models for CSS 
Nb2, and if the critical value for α is relaxed to 0.10, also in the spatial lag model for CSS 
Na2. Again, the coefficients for this variables is negative in the CSS models, that is, they 
indicate that increasing values for Soilscapes type 17 contributed to decreasing amounts of 
nucleation, assuming all other variables are held constant. These results are similar to 
those from the non-spatial OLS models in that they do not appear to be consistent with 
Williamson’s explanatory model. 

Soilscapes type 13 (freely draining acid loamy soils over rock) is only significant at α = 
0.05 in the spatial lag models for DstNclBCD based on data subset 3. This variable is also 
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significant at α = 0.10 for the spatial error models for DstNclBCD based on data subset 3. 
In the models where it is significant, the coefficients for this variable are positive, indicating 
that, all other things being equal, higher amounts of this type of soil contributed to a 
lower degree of nucleation of Roberts and Wrathmell’s categories B, C and D. That this 
variable is significant for only a minority of the spatial models also contrasts sharply with 
the non-spatial OLS results. 

Soilscapes type 18 (slowly permeable seasonally wet slightly acid but base-rich loamy and 
clayey soils) is insignificant in the vast majority of the spatial models, a profoundly different 
result to that of the non-spatial OLS models. The only spatial model in which this variable 
is significant at α = 0.05 is the spatial error model for CSS Nb2. It is also significant at α = 
0.10 in the spatial error model for CSS Na2. In both these models, the coefficient sign is 
negative, indicating that, ceteris paribus, as the amount of this soils type increases, the 
degree of nucleation decreases. Recalling that Soilscapes type 18 includes several of the 
soil associations central to Williamson’s arguments about the importance of co-aration to 
the development of nucleated settlement, these results are entirely at odds with 
Williamson’s explanatory model. Controlling for spatial autocorrelation in either the 
response variables or the models’ errors appears to suggest that these soils did not 
contribute in any meaningful fashion to variation in distance to nucleations. Looking at the 
combined settlement scores, and having accounted for spatial autocorrelation in the 
model errors, Soilscapes type 18 soils seem to have the opposite effect to what 
Williamson contends, as was the case with the non-spatial OLS models. 

Soils combination 32 (coastal soils) is significant in nearly all the spatial models for all the 
different response variables. The only exception is in the spatial lag model for CSS Na2. 
For the distance to nucleation response variables, the coefficients are smaller in the spatial 
lag models, but larger in the spatial error models when compared to the results of the 
non-spatial models. For the CSS response variables, the absolute values of the coefficients 
are smaller in both types of spatial model compared to the OLS models. As was the case 
with the OLS models, the coefficients are positive in the distance to nucleation models 
and negative in the CSS models, indicating these soils appear to repel nucleated 
settlement. 

The coefficients for the loamy floodplain soils and loamy soils with naturally high 
groundwater of soils combination 33, which includes soils noted by Williamson as ideal 
for creating meadow, are significant and negative for all the spatial models for DstNclAll, 
as well as for the spatial lag models for DstNclBCD. They are significant and positive in 
the spatial lag models for the CSS variables. These results generally correspond to those 
from the non-spatial OLS models, and agree with Williamson’s arguments about the 
importance of meadow to the development of nucleated settlement. It is not clear why 
this variable is not significant in the spatial error models for DstNclBCD, CSS Na2 and 
CSS Nb2. It appears that, once the effects of missing variables are taken into account, this 
variable did not contribute in a substantive way to variation in three of the four measures 
of rural settlement organisation under investigation. 
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Soils type 5 (freely draining lime-rich loamy soils) is significant in most of the models in 
which it appears, as is soils combination 57, which is comprised of Soilscapes types 5 and 
7 (freely draining slightly acid but base-rich soils). These are the soils Williamson shows 
were often farmed according to ‘sheep-corn husbandry’ methods and where settlement 
gravitated more toward nucleated than dispersed forms. The exceptions are the spatial 
lag and error models 2 and 3 for DstNclBCD subset 3 and the spatial error models for 
the CSS variables. As was the case with the non-spatial OLS models, the coefficients in 
the spatial models are negative for the distance to nucleation variables and positive for the 
CSS variables. The coefficients in the spatial models are smaller in magnitude compared to 
those in the corresponding OLS models, but overall these results agree with Williamson’s 
explanatory model. It is noteworthy that Soilscapes type 3 – another of the types which 
fits with Williamson’s ‘sheep-corn husbandry’ model – is only significant in the spatial lag 
CSS models. It appears that, in most cases, controlling for spatial autocorrelation in the 
either the response variable or the models’ error terms indicates that Soilscapes type 3 
did not substantively contribute to variation in settlement organisation. 

Soils combinations 52 (upland peaty soils) and 53 (lowland peaty soils plus restored soils) 
are significant in all the distance to nucleation models, but not in the CSS models. Like the 
OLS models, the coefficients for these variables in the DstNclAll and DstNclBCD models 
are positive and large, though not as large as in the OLS models. As might be expected, 
peaty soils appear to have repulsed the creation of nucleated settlement. These variables 
do not appear to have had a meaningful impact on settlement organisation when 
measures of nucleation and dispersion are blended together. One possible explanation is 
that pockets of dispersed settlement developed in small areas of firmer soils interdigitated 
through areas of peaty soils. It must also be remembered that Roberts and Wrathmell’s 
depiction of rural settlement is based on maps drawn after the Fenland regions around 
the Wash had been drained, a long-term process that had profound effects on settlement 
and land-use in the region (Darby 1956). 

Discussion 

How, then, does the application of spatial regression techniques refine understanding of 
the relationships between environmental factors and historic settlement organisation? 
There is clear evidence of both spatial lag and spatial error dependence in the OLS 
residuals. This suggests that both endogenous processes and spatially structured missing 
variables contributed substantively to variation in the measures of rural settlement 
organisation, in addition to the environmental variables included in the various models. 
That variables not included in the non-spatial OLS models influenced variation in 
settlement organisation is entirely unsurprising. The apparent importance of endogenous 
effects, eg, the diffusion of nucleation as an approach to settlement organisation, was less 
expected. 

After estimating both spatial lag and spatial error models using a range of spatial weights, it 
is clear that the spatial models perform far better than the corresponding non-spatial 
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versions. Both the log likelihood and AIC measures of goodness-of-fit show dramatic 
improvements in fit for all the models, indicating that incorporating spatial effects into the 
modelling analysis is valuable. Comparing the spatial error models using three different 
weights matrices, those estimated using weights matrix 1, defining the smallest 
neighbourhood, performed best, based on the log likelihood and AIC measures.  

Comparing the models estimated using weights matrix 1, the spatial lag models all show a 
noticeable improvement of fit over both the non-spatial and spatial error models. It is 
tempting to infer that endogenous effects had a greater effect on variation in settlement 
organisation than did any missing variables. Given the continued mis-specification 
problems in all the models, however, this point must remain open to question. It is 
possible that a form of diffusion process influenced the development of rural settlement 
organisation over time, a simple example of which would be a process where those in 
dispersed settlements chose to mimic more successful neighbours who had (for whatever 
reasons) chosen to live and work in nucleated settlements. Without comparable 
settlement data for multiple time periods, however, there is no way to test rigorously 
whether, how and where such a diffusion process might have worked.  

 Even though the diagnostic criteria suggest that the spatial lag models offer a better fit to 
the data, it still seems more likely that the spatial error models provide the best 
explanation of the variation in measures of rural settlement organisation (cf Sparks and 
Sparks 2009, 478-79). This is not to deny the possibility that endogenous processes may 
have affected variation in rural settlement organisation. Given that it was clear from the 
outset that a range of variables would not be included in the models (the ‘cultural’ 
factors), and that such variables are likely to have been spatially structured, the method 
best suited to address issues of missing explanatory variables seems most appropriate.  

Looking at the various environmental variables in turn, elevation and the climatic variables 
generally continue to be significant variables in the spatial models, and the curious switch 
in coefficient signs between the spring and autumn precipitation variables is present as 
well. Accounting for spatial autocorrelation in either the response variables or the models’ 
error terms renders insignificant many of the variables for soil types or combinations of 
types. Many of the variables corresponding to soils types that Williamson argues strongly 
influenced the development of nucleated settlement are not significant in the spatial 
models. Upland and lowland peaty soils, coastal soils, floodplain soils amenable to the 
creation of meadow, and some soils associated with ‘sheep-corn’ husbandry appear to 
have had significant effects on distance to nucleation, results which generally agree with 
aspects of Williamson’s explanatory model. But most clayey soils with impeded drainage 
and some of the lighter soils Williamson argues encouraged nucleation do not appear to 
have had meaningful effects on the measures of nucleation used here. Looking at the 
combined settlement score response variables, some of the soils types produce 
coefficients opposite to what might be expected according to Williamson’s explanatory 
model. As noted in the discussion of the OLS results, the disagreements between these 
results and Williamson’s explanatory model may be due to differences in the soils data 
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used, or that a model developed to explain evidence from one region fails to account for 
variation across the country as a whole. 

The very large coefficients for the autoregressive parameters in all the spatial models 
confirm the presence of high levels of spatial autocorrelation in the lagged response 
variables and in the models’ errors. These coefficient values suggest that the 
autoregressive parameters account for much of the variation in the response variables. 
Generally, once one accounts for the spatial autocorrelation produced either by some 
form of diffusion process or by missing explanatory variables, the effects of the other 
explanatory variables are noticeably reduced compared to the corresponding non-spatial 
OLS models. These results echo, and arguably state even more forcefully, the conclusion 
drawn from the non-spatial OLS results: much of the variation in the measures of 
settlement organisation is not explained by the environmental variables. Some 
environmental factors did have demonstrable, quantifiable effects on variation in the 
organisation of rural settlement, but other factors seem to have had far greater influence. 

There is, of course, considerable scope for further work on this topic using spatial 
regression methods. It is worth noting that the spatial regression models used here 
assume that the intensity and direction of the spatial autocorrelation (in either the lagged 
response variable or in the model errors) are uniform, that is, they are isotropic (Fortin 
and Dale 2005, 10-11). Future work could explore the extent to which spatial 
autocorrelation in the data is isotropic or not. Additional variables accounting for trends in 
the data, transformations of the response and explanatory variables, interaction variables 
and other weights matrices could all be investigated. In addition to those applied here, 
there is a range of other methods available that take spatial autocorrelation into account 
when performing regression analysis, including methods intended to control for both 
spatial lag and spatial error dependence (Kelejian and Prucha 2007; Dormann et al 2007; 
Bini et al 2009). Further work could explore the application such methods to the 
environment and settlement data. 

Unsupervised Classification/Clustering Analysis 

Using the sets of variables identified in the OLS specification search and model selection 
procedures and examined further using spatial regression, I used unsupervised 
classification (Lillesand et al 2008, 568-572; Conolly and Lake 2006, 147-8) to find 
locations with similar values for each of the different variables and group them together 
(cf. Lowerre 2011, 34-5). This technique is, in a sense, an automated version of Roberts 
and Wrathmell’s own division of England into settlement provinces, sub-provinces and 
local regions. The results provide alternative, national-scale characterisations of historic 
settlement organisation as it relates to the physical environment, which can be compared 
to Roberts and Wrathmell’s own delineation. 
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Method 

There are numerous approaches to data clustering (Jain 2010), and a range of issues 
specific to clustering or regionalisation of spatial data (Haining 2003, 199-206; Duque et al 
2007). Because of its wide applicability, ease of use and ready availability in Esri’s ArcGIS 
software, I used unsupervised classification, employing the ISODATA algorithm (Lillesand 
et al 2008, 568-572; Ball and Hall 1965) as implemented in Esri’s Spatial Analyst extension 
(Esri 2011c). ISODATA unsupervised classification is a non-spatial approach to clustering 
(Haining 2003, 200-201). The clusters are based only on the similarity of the multivariate 
attribute values; the locations of the observations in geographic space are not considered. 
When the clustered units are mapped, the number of individual regions is usually much 
larger than the number of clusters. 

One of the main issues with many forms of data clustering – ISODATA unsupervised 
classification among them – is that the analyst must choose the number of clusters into 
which the data will be grouped without reliable prior knowledge of how many clusters are 
actually present in the dataset. There are numerous methods for determining the ‘ideal’ 
number of clusters in a dataset (eg, Milligan and Cooper 1985; Krzanowski and Lai 1988; 
Tibshirani et al 2001; Sugar and James 2003). The basic aim is to find a number of clusters 
in the data such that the amount of variation within each cluster is minimised and the 
amount of variation between the clusters is maximised. Due to its reliability and ease of 
computation, I used the ‘variance ratio criterion’ developed by Calinski and Harabasz 
(1974), often known as the CH Index. 

As when calculating the Combined Settlement Scores, I standardised the values for all the 
input variables to a scale of 0.0 to 1.0 by subtracting the minimum from each value and 
then dividing by the value range (Milligan and Cooper 1988, 185). I performed the 
ISODATA unsupervised classification on the combinations of variables using a range of 
numbers of clusters or classes (K), from a minimum of 3 to a maximum of 50. The 
maximum number of classes the ISODATA algorithm could ‘find’ varied for each set of 
input layers. I then calculated  the CH Index for each value of K. The value K with the 
absolute or local maximum value for the CH Index, or for which there is a rapid increase 
in the value compared to adjacent K, is taken to be the best number of classes. Where 
there are multiple local maxima in the CH Index values, the lowest of the corresponding 
values of K is taken to be the best number of classes (Calinski and Harabasz 1974, 12). 

I used two permutations of the data to generate the classified settlement layers. For the 
first, I used the single variables DstNclAll, DstNclBCD, CSS Na2 and CSS Nb2. For the 
second, I used separate layers for the different nucleation classes, dispersion scores and 
hamlet counts as inputs to the classification procedure. That is, to obtain a classified layer 
based on distances to all nucleations, I used five separate layers – one for the standardised 
distance to each nucleation category. To produce a classified layer comparable to CSS 
Nb2, I used individual layers recording the standardised distances to category B, C and D 
nucleations together with layers for standardised dispersion scores and hamlet counts. 
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Results 

CH Index values for the unsupervised classification of distance to all nucleations 
(DstNclAll) are shown in the top of Figure 7. An arrow indicates the first local maximum 
in the CH Index values, at K = 9, which can be considered the best number of classes for 
this variable. The bottom of Figure 7 is a map of the clusters produced by the 
unsupervised classification using K = 9. Across much of England, the mapped clusters are 
highly fragmented and do not coalesce into discrete regions. Unsupervised classification of 
distance to B, C and D category nucleations (DstNclBCD) produced a very similar 
outcome. This is almost certainly a result of ISODATA unsupervised classification being a 
non-spatial clustering method. The results for classifying the single distance to nucleation 
variables DstNclAll and DstNclBCD were clearly unenlightening, so I undertook no 
further analysis using these variables. 
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Figure 7: CH Index values for unsupervised classification of distance to all nucleations 

(top) and map of resulting clusters for K = 9 (bottom) 
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Figure 8 shows the CH Index values for clustering distance to nucleation categories A–E 
and B–D, as well as for distance to nucleation categories A–E and B–D when combined 
with dispersion scores and hamlet counts, taking each nucleation category and measure of 
settlement dispersion as an individual input layer in the classification process. Here, the 
ideal number of clusters for each set of variables was open to some interpretation. 
Arrows point out the CH Index values indicating the values of K which I took to indicate 
the best numbers of clusters. For distance to nucleation categories A–E and B–D and for 
distance to nucleation categories A–E combined with dispersion scores and hamlet 
counts, more than one value of K appeared reasonable. 

 

Figure 8: CH Index values for unsupervised classification of distance to nucleation 

categories A–E and B–D, with and without dispersion cores and hamlet counts 

The CH Index results for CSS Na2 and Nb2 were even more difficult to interpret. As can 
be seen in Figure 9, the CH Index values peak only at very high values of K (25 or 26). 
The resulting maps of clustered polygons for CSS Na2 and Nb2 where K = 25 or 26 are 
extremely fragmented, as many of the clusters do not resolve spatially into coherent 
blocks. I inspected output maps of clustered polygons for CSS Na2 and Nb2 for a range 
of values of K, comparing the maps of clusters with plots of the raw CSS values, finally 
deciding on K = 5 for both CSS Na2 and Nb2. 
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Figure 9: CH Index values for unsupervised classification of Combined Settlement Scores 

Na2 and Nb2 

Table 17 lists the sets of clustered settlement variables and the ‘best’ number of clusters 
chosen for each set. 

Table 17: Clustered settlement variables and 'best' numbers of clusters 

Clustered Settlement Variables 
‘Best’ Number of 

Clusters (K) 
Distance to category ABCDE nucleations 5, 6 
Distance to category BCD nucleations 4, 6 
Combined Settlement Score Na2 5 
Distance to category ABCDE nucleations combined with 

dispersion scores and hamlet counts 
3, 10 

Combined Settlement Score Nb2 5 
Distance to category BCD nucleations combined with 

dispersion scores and hamlet counts 
3 

 

Maps of the clustered sets of assorted settlement variables using different values for K are 
presented in Figure 10–Figure 18. As would be expected, the higher the number of target 
clusters used by the ISODATA algorithm, the more spatially fragmented the resulting 
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maps. That having been said, in all cases, the mapped clusters are considerably more 
compact and spatially coherent than those for the distance to all nucleations where K = 9 
or for CSS Na2 and Nb2 where K = 25 or 26. The mapped clusters for the distance to 
nucleation categories A–E and B–D on their own and those for nucleation categories A–E 
combined with dispersion scores and hamlet counts using K = 10 (Figure 10–Figure 13 
and Figure 17) exhibit a tendency toward ‘bull’s eyes’ around some of the source 
nucleation points. All of the maps also show a certain degree of ‘speckling,’ where single 
grid cells or very small groups of cells of one value are surrounded by cells of another 
value. The maps of the clustered CSS variables (Figure 14 and Figure 15) are particularly 
prone to this effect. This ‘speckling’ could be smoothed away (see Lillesand et al 2008, 
580-1, for methods) on the grounds that it is an artefact of the classification process. That 
may be true, but the unsmoothed maps highlight how the nature of historic settlement 
organisation could vary over fairly short distances. Reducing the amount of variability in 
the maps by smoothing away the ‘speckling’ would reduce the amount of information the 
maps contain, arguably hiding a genuine degree of local heterogeneity in settlement 
organisation. Future work could investigate the effects of smoothing or ‘de-speckling’ the 
maps of clusters. 

What is clear from all the maps is that statistically similar clusters of rural settlement 
organisation were present in widely disparate locations across England. For example, 
when classifying nucleation categories A–E, the region of eastern Kent and the isle of 
Thanet is in the same statistical cluster as, among other places, southern Lancashire, much 
of the Nene valley, and an area along the north-east coastal plain stretching from 
Tyneside to Teesside and extending into south-western county Durham (cluster 2 in 
Figure 10 and Figure 11). This is not to suggest that the nature of rural settlement in such 
statistically similar but geographically distant places was identical, rather that, on the basis 
of the measures employed here, such areas were more like each other than like adjacent 
regions. 

Figure 10–Figure 18 also show, for comparison, the clustered settlement variables overlaid 
with the outlines of Roberts and Wrathmell’s settlement provinces, sub-provinces and 
local regions. In all the maps, there are some locations where the clustered settlement 
variables agree with Roberts and Wrathmell’s boundaries but also numerous locations 
where they do not. The match between clusters for nucleation categories B–D where K 
= 4 or 6 and Roberts and Wrathmell’s boundaries is particularly poor (Figure 12 and 
Figure 13). Of all the sets of clustered variables, the clustered Combined Settlement 
Scores and nucleation categories A–E and B–D combined with dispersion scores and 
hamlet counts (Figure 14–Figure 18) correspond most closely with the provinces, sub-
provinces and local regions of the Atlas. Close inspection of the maps, however, reveals 
that even these cluster outlines and Roberts and Wrathmell’s boundaries diverge more 
often than they agree. 
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Figure 10: Maps of clusters for distance to category A–E nucleations using K = 5 (top) and 

the same overlaid with Settlement Atlas boundaries (bottom) 
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Figure 11: Maps of clusters for distance to category A–E nucleations using K = 6 (top) and 

the same overlaid with Settlement Atlas boundaries (bottom) 
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Figure 12: Maps of clusters for distance to category B–D nucleations using K = 4 (top) 

and the same overlaid with Settlement Atlas boundaries (bottom) 
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Figure 13: Maps of clusters for distance to category B–D nucleations using K = 6 (top) 

and the same overlaid with Settlement Atlas boundaries (bottom) 
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Figure 14: Maps of clusters for CSS Na2 using K = 5 (top) and the same overlaid with 

Settlement Atlas boundaries (bottom) 
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Figure 15: Maps of clusters for CSS Nb2 using K = 5 (top) and the same overlaid with 

Settlement Atlas boundaries (bottom) 
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Figure 16: Maps of clusters for distance to category A–E nucleations combined with 

dispersion scores and hamlet counts using K = 3 (top) and the same overlaid with 

Settlement Atlas boundaries (bottom) 
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Figure 17: Maps of clusters for distance to category A–E nucleations combined with 

dispersion scores and hamlet counts using K = 10 (top) and the same overlaid with 

Settlement Atlas boundaries (bottom) 
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Figure 18: Maps of clusters for distance to category B–D nucleations combined with 

dispersion scores and hamlet counts using K = 3 (top) and the same overlaid with 

Settlement Atlas boundaries (bottom) 
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I also generated classified layers based on four sets of environmental variables used in the 
best-performing models in the regression analysis. Table 18 sets out the groups of 
variables used and the corresponding settlement variable. 

Table 18: Sets of environmental variables used for unsupervised classification and ‘best’ 

numbers of clusters identified for each set 

Set Environmental Variables Used 
Based on regression 

model for 
‘Best’ Number 
of Clusters (K) 

1 

Elevation; p_av2m45; p_11; t_8; Soils Type 5; Soils Type 6; Soils 
Type 8; Soils Type 9; Soils Type 13; Soils Type 17; Soils Type 
18; Soils Combo 32; Soils Combo 33; Soils Combo 35; Soils 
Combo 52; Soils Combo 53; Soils Combo 54 

DstNclAll 5, 8 

2 

Elevation; p_av2m34; p_11; DSR_av2m78; Soils Type 3; Soils 
Type 6; Soils Type 8; Soils Type 9; Soils Type 13; Soils Type 17; 
Soils Type 18; Soils Combo 32; Soils Combo 33; Soils Combo 
35; Soils Combo 52; Soils Combo 53; Soils Combo 57 

DstNclBCD 5, 7 

3 

Elevation; p_av3m345; p_11; t_8; Soils Type 3; Soils Type 6; 
Soils Type 8; Soils Type 9; Soils Type 13; Soils Type 17; Soils 
Type 18; Soils Combo 32; Soils Combo 33; Soils Combo 35; 
Soils Combo 52; Soils Combo 53; Soils Combo 57 

DstNclBCD 5, 11 

4 

Elevation; p_3; p_9; bio1; Soils Type 3; Soils Type 5; Soils Type 
6; Soils Type 7; Soils Type 8; Soils Type 9; Soils Type 13; Soils 
Type 17; Soils Type 18; Soils Combo 32; Soils Combo 33; Soils 
Combo 35; Soils Combo 52; Soils Combo 53 

CSS Na2, 
CSS Nb2 

3, 9 

Figure 19 illustrates the CH Index values for different values of K used when classifying the 
sets of environmental variables. Again, arrows point out the CH Index values indicating 
the values of K which I took to indicate the best numbers of clusters, which are also noted 
in Table 18. For all of the sets of environmental variables, more than one value of K 
appeared reasonable. 

For comparison, Figure 20 shows Roberts and Wrathmell’s detailed terrain zones, which 
characterise the landscape based on ‘relief, drainage, country rock and drift, mountain 
peaks and escarpments, plateaux and ridges, lowland and plain, and marsh and fen’ 
(Roberts and Wrathmell 2000, 16). Maps of the clustered sets of assorted environmental 
variables using different values for K are presented in Figure 21–Figure 24. Again, higher  
numbers of target clusters used by the ISODATA algorithm produced more spatially 
fragmented maps. The same issues of ‘speckling’ in the maps made above regarding the 
clustered settlement variables also apply here. As with the settlement clusters, I 
deliberately chose not to smooth the maps of clustered environmental variables on the 
grounds that doing so would result in a loss of information. Unsurprisingly, given the use 
of quite similar sets of input variables, some of the different maps of clustered variables 
look much alike. Comparing Roberts and Wrathmell’s terrain zones with the maps of 
clustered environmental variables also reveals many broad similarities, but the 
correspondences are inexact. 
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Figure 19: CH Index values for unsupervised classification of environmental variable sets 

 

 

Figure 20: Terrain Zones from Roberts and Wrathmell's Atlas 
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Figure 21: Maps of clusters for environmental variable Set 1 using K = 5 (top) and K = 8 

(bottom) 
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Figure 22: Maps of clusters for environmental variable Set 2 using K = 5 (top) and K = 7 

(bottom) 
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Figure 23: Maps of clusters for environmental variable Set 3 using K = 5 (top) and K = 11 

(bottom) 
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Figure 24: Maps of clusters for environmental variable Set 4 using K = 3 (top) and K = 9 

(bottom) 



© ENGLISH HERITAGE 77 72 - 2014 

Discussion 

The maps of neither the clustered settlement variables nor the clustered environmental 
variables correspond closely with the boundaries of settlement regions and terrain zones 
delineated by Roberts and Wrathmell. 

The lack of precise agreement between the clustered environmental variables and 
Roberts and Wrathmell’s terrain zones is perhaps unsurprising, given the differing sources 
and methods. They defined their zones primarily on the basis of bedrock and superficial 
geology, rather than soils, and they did not consider temperature and precipitation at all. 
Of course, bedrock and superficial geology are major determinants of soil composition – 
they are so-called ‘parent materials’ (Lawley 2009) – so some resemblance between the 
maps would be expected. Roberts and Wrathmell’s sources and those used here, are, 
however, different enough to explain much of the differences in results. Additionally, 
Roberts and Wrathmell depicted 27 different terrain categories or 25 if one disregards 
inland water and terminal moraines and drumlins as not relevant or too localised to be 
meaningful when viewed at a national scale. The number of clusters used for the 
unsupervised classification ranged from 3 to 11, meaning that the resulting maps are 
inevitably simpler than Roberts and Wrathmell’s. Merging some of their zones might 
produce maps more closely resembling the maps of clustered environmental variables. 
Roberts and Wrathmell’s choices of what and how many categories of terrain to map 
were the product of much research and judgement (Roberts and Wrathmell 2000, 16-
17), but as with the settlement maps, their process was one of ‘little science but much 
logic’ (ibid, 13). The environmental variables I used were chosen based on the detailed 
model selection procedure described in the sections above. I do not claim that my results 
are inherently better, but using the data and methods described here, my results would 
be directly reproducible, which cannot be said of Roberts and Wrathmell’s maps. 

The mismatches between the maps of clustered settlement variables and Roberts and 
Wrathmell’s provinces, sub-provinces and local regions are arguably more noteworthy. 
The differences in results may simply be the products of the differing methods used to 
create the regions. The sources, however, are the same. Roberts and Wrathmell freely 
admitted subjectivity in drawing their boundaries, and allowed that a repeat of the 
mapping process they used would likely produce somewhat different results (ibid, 16). My 
results clearly demonstrate that one can group the source data in multiple – and arguably 
equally legitimate – ways. Again, I do not claim that my results are necessarily better than 
Roberts and Wrathmell’s. Future work could, however, quantify the performance of 
Roberts and Wrathmell’s regionalisation of the settlement data using the CH Index (or 
some other goodness-of-fit measure) to assess whether their division of the landscape is 
statistically better or worse than the clustered maps produced here. And as with the 
clustered environmental variables, my results would be directly reproducible using the 
data and methods set out here. 
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Having clustered and mapped the sets of settlement and environmental variables, it 
becomes possible to explore more directly the distribution of the former in relation to 
the latter. For example, Figure 25 shows, on the top, clusters for distance to category A–E 
nucleations combined with dispersion scores and hamlet counts using K = 10 and, on the 
bottom, those for environmental variable Set 4 using K = 9. Visual comparison of the two 
maps suggests the pattern of boundaries in the clustered environmental data is broadly 
similar to that in the clustered settlement data. The distribution of the settlement clusters 
labelled 1, 2 and 3 across central England roughly follows the distribution of 
environmental clusters 3 and 4. Closer inspection, however, reveals that the pattern of 
environmental factors clusters is not strongly replicated in the settlement clusters. 
Comparison is challenging, however, even when the maps of the sets of clusters are 
immediately adjacent on the page. Figure 26 shows the same clustered environmental 
variables, this time overlaid with the boundaries of the settlement clusters shown in the 
top map in Figure 25. With the two sets of clusters depicted on a single map, it is possible 
to pick out areas where the boundaries of the polygons match up, but in a large number 
of locations, they do not. 

Purely visual assessment of the relationships between the boundaries remains difficult, 
even having directly overlaid the boundaries of clusters derived from the settlement 
variables on those derived from the environmental variables. Moving beyond a fairly 
impressionistic interpretation of how the two sets of clusters match up requires setting 
out explicit methods and criteria to define the degree of match. To what extent does a 
polygon in one set of clusters need to overlap one in the other set for them to be said to 
‘agree’? On that basis (whatever it is), how many polygons do agree? How many disagree, 
ie, do not match up? If some polygons do agree and others do not, how much agreement 
is needed to enable one to conclude there was a meaningful degree of match? Perhaps 
most importantly, how likely it is that any agreement (or disagreement) between polygons 
might be the result of random chance? These questions cannot be answered in a robust 
fashion simply by ‘eyeballing’ the maps. In the next section, I discuss and present the 
results of using one possible method for investigating in a formal, comprehensive fashion 
the relationships between the clusters derived from the settlement variables and those 
derived from the environmental variables. 
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Figure 25: Maps of clusters for distance to category A–E nucleations combined with 

dispersion scores and hamlet counts using K = 10 (top) and environmental variable Set 4 

using K = 9 (bottom) 



© ENGLISH HERITAGE 80 72 - 2014 

 

Figure 26: Map of clusters for distance to category A–E nucleations combined with 

dispersion scores and hamlet counts using K = 10 overlaid on clusters for environmental 

variable Set 4 using K = 9 
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Relative Area Overlap Analysis 

As discussed earlier, regression analysis makes a number of assumptions about the 
numeric distributions of and the form of relationships between the variables, assumptions 
that the data used here do not necessarily meet. And as noted in the preceding section, 
simple, visual inspection of pairs of maps, or even single maps with the relevant features 
overlaid on one another, may not be sufficient to detect and reliably assess patterns and 
whether they match. There are, however, tests of spatial association that do not make 
rigid assumptions about the data and do explicitly look for correspondence or 
coincidence between the shapes and locations of features in sets of spatial data. The 
approach I employ here is a form of map comparison analysis (Haining 2003, 265-270), 
using a technique developed by Maruca and Jacquez (2002) for area-based tests of 
association between spatial patterns. As far as I know, this technique has not been 
incorporated into any publicly-available GIS or spatial analytical software. Where it has 
been used, investigators have implemented it using the statistical programming language R 
(eg, Sirami et al 2009; Fortin et al 2005), rather than ArcGIS, Python and ArcPy as done 
here. The technique makes use of the clustered or regionalised settlement data and 
environmental datasets discussed in the previous section, comparing the degree of 
overlap between them. 

Method 

The method aims to quantify how well two sets of polygons match, based on the Relative 
Area Overlap (RAO for short) between the individual polygons in each of the two 
partitions. Maruca and Jacquez test the significance of the amount of overlap using a 
Monte Carlo randomisation procedure. The method set out in the original paper provides 
a global RAO statistic, that is, one summarising RAO over the whole of the set of 
polygons. I have extended the method to calculate a local RAO statistic: one for each 
polygon in the set (Haining 2003, 186-7; Boots and Okabe 2007). 

The method uses two sets of polygons as inputs, referred to as Set I and Set J, both of 
which are partitions of the same geographic space. Here the assumption is that Set J 
represents some phenomenon whose delineation is thought to have influenced the 
delineation of some other phenomenon, represented by Set I. For each pair of 
overlapping polygons in I and J, one calculates the ratio of the area of intersection of the 
polygons to the area of union of the polygons. Figure 27 shows an example of pairs of 
overlapping polygons and their individual RAO values. The coloured polygons labelled A 
and B comprise one set, eg, Set J, and the hatched polygons labelled 16 and 22 comprise 
the other, eg, Set I. 
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Figure 27: An example of Relative Area Overlap for pairs of polygons.  

Overlap A : 16 = 0.05; A : 22 = 0.04; B : 16 = 0.37; B : 22 = 0.00 

Each polygon in Set I may overlap with more than one polygon in Set J, so for each 
polygon in Set I, one finds the highest value for that ratio: the maximum relative area 
overlap. The global RAO for Set I is the average of the maximum relative area overlap for 
all the polygons in Set I when compared to Set J. One can also calculate global RAO 
statistics comparing how well the polygons in Set J overlap with those in Set I, as well as 
for the bi-directional overlap between the two sets. 

To account for the possibility that the two partitions may have polygons of wildly different 
sizes, Maruca and Jacquez advocate calculating an area-weighted RAO statistic as well. 
Here, the weighting factor is the area of each polygon in Set I. It may be the case that 
many small polygons in Set I overlap closely with polygons in Set J, but many large 
polygons in Set I do not, suggesting that, overall, the correspondence between Sets I and J 
is arguably fairly low. The unweighted RAO statistic, however, may not adequately reflect 
this situation and could be misleading. The weighted RAO statistic may be a more reliable 
indicator of association in such cases. 

Having calculated the global RAO statistics comparing Sets I and J, the problem then 
becomes evaluating how likely it is that the degree of overlap seen is simply the product 
of random chance, that is, test the statistical significance of the result. This is done through 
Monte Carlo randomisation. First, one creates a set of alternative, randomly generated 
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partitions with the same number of polygons as Set I and occupying the same geographic 
space. Then one calculates the RAO statistic for each of the random partitions to 
generate a reference distribution. Large values for the RAO statistic indicate a high degree 
of overlap between the polygons in Set I and Set J, which suggests that the pattern of 
polygons in the two sets are associated. Small values for the statistic indicate little overlap, 
suggesting a lack of association. The results are ranked in ascending order, together with 
those from the original data, to obtain p-values. The p-value of each result is its rank 
divided by the total number of iterations. One can then compare the p-values to a 
particular level of statistical significance (α), say 0.05 or 0.10, to decide whether or not the 
result is unusual enough to reject the null hypothesis that there is no association between 
the sets of polygons. 

Maruca and Jacquez use randomly generated Voronoi (Thiessen) polygons for their 
alternative partitions, which is perfectly reasonable and similar to a number of other 
spatial statistical techniques. There are, however, two notable issues with this approach, 
both of which Maruca and Jacquez touch on in their paper. First, creating the alternative 
partitions in this way is predicated on a null hypothesis of complete spatial randomness 
(CSR), which is arguably not appropriate in this case. It is abundantly clear that the 
settlement data are not randomly distributed across the landscape, that is, they are 
positively spatially autocorrelated. To test data known and expected to be spatially 
autocorrelated against a null hypothesis of CSR is nonsense. The reference distribution 
must be generated from randomisations that reasonably reflect the processes that 
generated the actual data (Waller and Jacquez 1995; Fortin and Jacquez 2000). Second, 
Voronoi polygons, while widely used in a variety of applications (Okabe et al 2000), often 
do not adequately reflect the shapes of polygons mapping real spatial phenomena, so they 
can be a poor basis for comparison (see, eg, Gregory and Ell 2007, 68-70). 

To address these issues, and simultaneously enable the calculation of local RAO statistics 
and p-values, I have taken a different approach to creating the alternative polygon 
partitions. I began by spatially ‘shuffling’ the polygons in Set I, randomly moving each 
polygon to the centroid of another polygon. I then cleaned and flattened the shuffled 
polygons to match the footprint of the original set, eliminated ‘sliver’ polygons, and then 
copied the unique IDs from the original set onto the cleaned and flattened ‘shuffled’ 
polygons. The process is akin to taking the pieces of a jigsaw puzzle and randomly 
squashing them into place until the extent of the puzzle is filled, but paying no attention to 
whether the pieces actually fit together. Figure 28 illustrates a simulated source set of 
polygons on the left and one example of a randomly shuffled, cleaned and flattened set 
on the right. Close comparison of the two sets can reveal which shuffled polygon is 
derived from which source polygon. For example, shuffled polygon 3 is derived from 
source polygon 12, shuffled polygon 28 from source polygon 23, and shuffled polygon 26 
from source polygon 20. Of course, the shapes of many of the shuffled polygons are 
considerably different from those in the source set. Overall, however, the similarity 
between the shuffled and source polygons is considerably greater than would be the case 
if comparing completely randomised Voronoi polygons and the source set. 
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Figure 28: A simulated source set of polygons (left), and an example randomly shuffled, 

cleaned and flattened set (right) 

Re-using the source polygons means the randomised shapes more realistically reflect the 
varying sizes and shapes of the real data than would Voronoi polygons. Focusing each 
shuffled polygon on the centroid of a source polygon means that each randomised 
polygon will correspond to a polygon in the original Set I. The RAO values for each 
polygon in Set I are ranked along with the RAO values for the corresponding polygons in 
the randomised partitions, producing a reference distribution for each polygon in turn. 
One then calculates p-values for each polygon in Set I as described above, dividing the 
rank by the total number of iterations. As with the global analysis, one compares the p-
values for each polygon in Set I to, say α = 0.05 or α = 0.10, to evaluate whether or not 
the result is unusual enough to reject the null hypothesis that there is no association 
between that polygon and those in Set J with which it overlaps. 

Results 

I applied the RAO analysis to the clustered settlement and environmental variables 
discussed in the preceding section. I compared each set of polygons created from 
clustering the settlement data with the polygons generated from clustering the sets of 
environmental variables chosen through the regression model selection process. For both 
the global and local RAO tests of significance, I calculated p-values against a reference 
distribution of N = 499 randomisations of the clustered settlement polygons, giving a total 
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of 500 iterations. Table 19 sets out the results of the global RAO analyses, listing the 
clustered settlement variables, the clustered environmental variables to which the 
settlement clusters were compared, and the unweighted and area-weighted RAO 
statistics and their corresponding p-values. 

Table 19: Results of global RAO analyses 

Clustered Settlement 
Variables 

Clustered Environmental 
Variables 

Unweighted 
RAO Value p-value 

Weighted 
RAO value p-value 

ABCDE (K5) EnvS1 (K5) 0.137 0.002 0.162 0.306 
ABCDE (K6) EnvS1 (K5) 0.126 0.002 0.152 0.154 
ABCDE (K5) EnvS1 (K8) 0.167 0.002 0.151 0.250 
ABCDE (K6) EnvS1 (K8) 0.143 0.002 0.153 0.050 

BCD (K4) EnvS2 (K5) 0.130 0.002 0.166 0.134 
BCD (K6) EnvS2 (K5) 0.121 0.002 0.145 0.242 
BCD (K4) EnvS2 (K7) 0.153 0.002 0.135 0.336 
BCD (K6) EnvS2 (K7) 0.149 0.002 0.142 0.242 
BCD (K4) EnvS3 (K5) 0.128 0.002 0.169 0.098 
BCD (K6) EnvS3 (K5) 0.120 0.002 0.147 0.180 
BCD (K4) EnvS3 (K11) 0.174 0.002 0.135 0.150 
BCD (K6) EnvS3 (K11) 0.181 0.002 0.150 0.088 

CSSNa2 (K5) EnvS4 (K3) 0.076 0.002 0.192 0.058 
ABCDEDspHC (K3) EnvS4 (K3) 0.109 0.002 0.319 0.062 
ABCDEDspHC (K10) EnvS4 (K3) 0.077 0.002 0.119 0.978 

CSSNa2 (K5) EnvS4 (K9) 0.149 0.002 0.163 0.100 
ABCDEDspHC (K3) EnvS4 (K9) 0.178 0.002 0.190 0.032 
ABCDEDspHC (K10) EnvS4 (K9) 0.160 0.002 0.177 0.054 

CSSNb2 (K5) EnvS4 (K3) 0.080 0.002 0.188 0.072 
BCDDspHC (K3) EnvS4 (K3) 0.100 0.002 0.326 0.092 

CSSNb2 (K5) EnvS4 (K9) 0.142 0.002 0.153 0.252 
BCDDspHC (K3) EnvS4 (K9) 0.172 0.002 0.173 0.138 

 
P-values in bold are significant at α = 0.05; p-values in italic are significant at α = 0.10 

In all cases, the settlement clusters had the highest average amount of unweighted overlap 
with their corresponding sets of environmental clusters, giving p-values of 0.002. The 
unweighted RAO values themselves, however, were all fairly low, averaging 0.135, and 
none were higher than 0.181. The results for the area-weighted RAO values were more 
varied. Only two of the 22 analyses showed weighted RAO values significant at α = 0.05, 
and eight more were significant at α = 0.10. The weighted RAO values were generally 
somewhat higher than the unweighted values, averaging 0.173, but in several cases, the 
weighted RAO values were lower than the unweighted ones. Two cases produced 
notably higher values, around 0.32: the comparisons of clusters for distance to category 
A–E and category B–D nucleations combined with dispersion scores and hamlet counts 
using K = 3  to clusters for environmental variable Set 4 using K = 3. Both cases were 
significant at α = 0.10 but not at α = 0.05. 
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Figure 29–Figure 39 illustrate the results of the local RAO analyses. The polygons of each 
set of settlement clusters are shaded according to their RAO values, that is, the maximum 
relative area overlap when compared to the relevant set of clustered environmental 
variables. For all the maps, I grouped the values into five classes using Jenks’s Natural 
Breaks method (Jenks and Caspall 1971; Jenks 1977) as implemented in ArcGIS (Esri 
2012). To aid comparison of the maps, I standardised the legend values across the maps 
by taking the averages of the cut-off values for the five legend classes. Individual polygons 
significant at α = 0.05 (ie, their p-values are ≤ 0.05) are highlighted in red; those significant 
at α = 0.10 are highlighted in orange. These are the polygons whose RAO values were in 
the top 5 or 10 per cent when compared to the RAO values for the corresponding 
polygons in the randomised iterations. Polygons highlighted in dark grey are those whose 
p-values are higher than 0.95, indicating that the corresponding polygons in more than 95 
per cent of the random iterations had an RAO value higher than that found for the 
original polygon. 
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Figure 29: Local RAO results comparing ABCDE (K = 5) to EnvSet 1 (K = 5) (top) and 

EnvSet 1 (K = 8) (bottom) 
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Figure 30: Local RAO results comparing ABCDE (K = 6) to EnvSet 1 (K = 5) (top) and 

EnvSet 1 (K = 8) (bottom) 
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Figure 31: Local RAO results comparing BCD (K4) to EnvSet 2 (K5) (top) and EnvSet 2 

(K7) (bottom) 
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Figure 32: Local RAO results comparing BCD (K = 6) to EnvSet 2 (K = 5) (top) and 

EnvSet 2 (K = 7) (bottom) 
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Figure 33: Local RAO results comparing BCD (K = 4) to EnvSet 3 (K = 5) (top) and 

EnvSet 3 (K = 11) (bottom) 
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Figure 34: Local RAO results comparing BCD (K = 6) to EnvSet 3 (K = 5) (top) and 

EnvSet 3 (K = 11) (bottom) 
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Figure 35: Local RAO results comparing CSS Na2 (K = 5) to EnvSet 4 (K = 3) (top) and 

EnvSet 4 (K = 9) (bottom) 
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Figure 36: Local RAO results comparing ABCDE DspHC (K = 3) to EnvSet 4 (K = 3) 

(top) and EnvSet 4 (K = 9) (bottom) 
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Figure 37: Local RAO results comparing ABCDE DspHC (K = 10) to EnvSet 4 (K = 3) 

(top) and EnvSet 4 (K = 9) (bottom) 
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Figure 38: Local RAO results comparing CSS Nb2 (K = 5) to EnvSet 4 (K = 3) (top) and 

EnvSet 4 (K = 9) (bottom) 



© ENGLISH HERITAGE 97 72 - 2014 

 

Figure 39: Local RAO results comparing BCD DspHC (K = 3) to EnvSet 4 (K = 3) (top) 

and EnvSet 4 (K = 9) (bottom) 
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Discussion 

Using both global and local RAO analysis has made it possible to assess in a robust fashion 
the association or ‘degree of match’ between clusters derived from the settlement 
variables on those derived from the environmental variables. 

All of the unweighted global RAO values are significant, but these results are almost 
certainly misleading, most likely due to the inherent limitations of the unweighted statistics 
relative to the area-weighted statistics (Maruca and Jacquez 2002, 73). As noted above, all 
the RAO values are fairly low, indicating that even the highest average amount of overlap 
was quite small. The polygons in the respective partitions are of drastically different sizes, 
and in all the partitions, there are fairly large numbers of very small polygons, some 
constituting only a single 2 x 2km cell. The unweighted RAO statistic treats the overlap 
between a pair of 2 x 2km cells the same as that between a pair of polygons each 
hundreds of square kilometres in size. For the datasets analysed here, the unweighted 
statistics give a spuriously optimistic view of the degree of match between the respective 
sets of polygons. 

With two exceptions, the area-weighted global RAO values are also fairly low. When 
compared to the clusters for environmental variable Set 4 where K = 3 (top of Figure 23), 
the clusters for distance to category A–E nucleations combined with dispersion scores 
and hamlet counts also generated using K = 3 (top of Figure 16) had an area-weighted 
average overlap of 0.319, with a p-value of 0.062. The clusters for distance to category B–
D nucleations combined with dispersion scores and hamlet counts using K = 3 (top of 
Figure 18), similarly compared to those for environmental variable Set 4 where K = 3, had 
a weighted RAO value of 0.326 with a p-value of 0.092. The weighted RAO values for 
both these instances are clearly higher than those for any of the other analysed pairs of 
settlement and environmental clusters, indicating an average amount of maximum area-
weighted overlap of about one-third. The p-values are significant at α = 0.10, meaning 
there is about a 1 in 10 chance that rejecting the null hypothesis of no association 
between the sets of polygons would be an error. 

Only two cases produced p-values significant at α = 0.05: the comparisons of clusters for 
distance to category A–E nucleations using K = 6 (top of Figure 11) to environmental 
variable Set 1 clustered using K = 8 (bottom of Figure 21) and that of, again, clusters for 
distance to category A–E nucleations combined with dispersion scores and hamlet counts 
generated using K = 3 (top of Figure 16) to environmental variables set 4 clustered using 
K = 9 (bottom of Figure 24). The weighted RAO values for both these cases were, 
however, fairly low: respectively 0.153 and 0.190. The average maximum area-weighted 
overlap in these cases was highly unusual when compared to randomised data, but the 
amount of overlap was only about one-sixth to one-fifth – hardly indicative of a close 
match. 
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It is worth comparing these results with those Maruca and Jacquez produced as part of 
their development of the RAO technique using simulated data. The best weighted RAO 
values for the settlement and environment data are only slightly higher than the weighted 
RAO value (0.310) for Maruca and Jacquez’s test polygons meant to simulate maximal 
offset between sets, that is, where the boundaries avoid each other as much as possible. 
The weighted RAO values for three other analyses simulating varying cases of  ‘good’ 
overlap ranged from 0.444 to 0.833 (Maruca and Jacquez 2002, 78). That having been 
said, in their the ‘real-world’ example, Maruca and Jacquez considered that a weighted 
RAO value of 0.369 (with a corresponding p-value of ≤ 0.002) indicated that partitions 
overlapped very well (ibid, 80). Other than the two best results, the weighted RAO 
values for the pairs of settlement and environment polygon sets appear extremely low. In 
the absence of a more fully-developed range of simulated results to which to compare, it 
is difficult to say confidently whether the best results from my analyses represent overlap 
that is good, bad or indifferent. It does seem clear, however, that the overlap between 
most of the pairs of polygon partitions is poor. 

Taking England as a whole, only the simplest partitionings of the settlement nucleation and 
dispersion data match up reasonably, though not overwhelmingly, well with the simplest 
partitioning of one set of the environmental factors data. The degree of match seems 
moderately reliable, though the results are not so unusual as to rule out the possibility 
that they could simply be the product of chance. Clusters derived from just the nucleation 
data as well as the more complex partitionings (that is, with higher values for K) of the 
combined nucleation and dispersion data matched poorly with the corresponding clusters 
derived from the environmental variables. Even when the results were highly unusual 
compared to randomised data, the degree of match between the polygon sets was low. 

Turning to the local results, in general, few individual settlement cluster polygons were 
found to be significant at either α = 0.05 or 0.10. That is, only a small fraction of the 
settlement polygons show an exceptional degree of overlap with the environmental 
factors polygons when compared to the randomised sets. There is almost no consistency 
in the locations of settlement polygons showing statistically significant degrees of overlap 
across the sets of results. With very few exceptions, those settlement polygons that do 
show statistically significant overlap are relatively small and their RAO values are toward 
the lower end of the spectrum. Only a few of the settlement polygons show a statistically 
significant high degree of overlap with the environmental factors polygons. Polygons with 
extremely high p-values (≥ 0.95) were much more common and covered a substantially 
higher proportion of the country than did those with very low p-values. In other words, 
randomly generated settlement polygons matched up well with the environmental factors 
polygons far more often than did the original settlement clusters. Many of the individual 
polygons with high RAO values also have extremely high p-values. Even where the degree 
of local overlap is good, such results appear, more often than not, to be the product of 
chance. This suggests that there is not a meaningful, causative association in those 
locations between the environmental factors and settlement organisation. 
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Looking at the maps of the local statistics in turn, a few points are particularly noteworthy. 
None of the polygons in the clusters for distance to category B–D nucleations using K = 4 
were individually significant at α = 0.05 when compared against those for environmental 
Set 2 using K = 5 or 7 (Figure 31), and only a handful were individually significant at α = 
0.10. In Figure 33, there is one very large polygon extending across much of central and 
southern England that is significant at α = 0.05, but its RAO value is quite low (0.052 to 
be precise). The p-value for that polygon appears statistically significant not because it 
overlaps especially well with an environmental polygon, but because the overlap in most 
of the randomised sets is far worse. The local results for the best-performing cases in the 
global analysis (category A–E and category B–D nucleations combined with dispersion 
scores and hamlet counts using K = 3 compared to clusters for environmental variable Set 
4 using K = 3) are illuminating. The degree of overlap between the extensive settlement 
polygons covering large swathes of central and southern England (top of Figure 36 and 
Figure 39) is good (≥ 0.646). The p-values for these polygons, however, are also very high 
(≥ 0.95), indicating that overlap with the environmental polygons is better in the 
overwhelming majority of corresponding polygons in the randomised sets. The degree of 
overlap is quite good, but it appears highly likely that rejecting the null hypothesis of no 
association would be an error. 

It must be noted, however, that the local statistics presented here are unweighted, and so 
may suffer from similar issues as the unweighted global statistics. Again, the unweighted 
RAO statistic treats the overlap between a pair of 2 x 2km cells the same as that 
between a pair of much larger polygons. A good match between a large settlement 
polygon in the original data and an environmental polygon should, arguably, carry more 
interpretative weight than a match between a small randomised settlement polygon and 
an overlapping environmental polygon. The settlement polygons in the randomised sets 
means can be of varying sizes when compared to the corresponding polygons in the 
original source set. That is, a polygon in the original set with the unique ID 101 might have 
an area of 45.67km2. In a randomised set, the polygon with unique ID 101 might only 
have an area of 4.56km2, and in another randomised set, polygon 101 might have an area 
of 456.78km2.  A good, but less than perfect, degree of overlap between the original 
settlement polygon and its best match in the environmental set ought to be given greater 
statistical weight than 100% overlap between the much smaller polygon 101 in the first 
randomised set and its best match environmental polygon. And, of course, a good 
amount of overlap using the much larger polygon in the second hypothetical random set 
ought to count for even more than the overlap found using the original source polygon. 
Without area-weighting, the statistics computed here do not reflect these possibilities. It 
may be the case that the unweighted local statistics give an unduly pessimistic view of the 
degree of match between the individual polygons in the respective sets. Further work to 
implement an area-weighted version of the local statistics is clearly required. 

On a global level, then, the broadest patterns discerned in the settlement nucleation and 
dispersion data seem to follow, roughly, the broadest patterns derived from one set of 
environmental variables. This general correspondence has long been recognised, and, 
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indeed, it would be somewhat surprising if the results of the global RAO analysis did not 
reflect it. Beyond the general trend, however, the association between settlement and 
environmental patterns breaks down. More complex patterns extracted from the 
settlement data do not appear to match up well with those apparent in the 
environmental variables. Purely visual comparison of the maps of settlement and 
environmental clusters suggests that in some cases, the boundaries – that is the lines 
dividing one polygon from another – in the settlement data match up with some of the 
boundaries in the environmental data, but the areas of the clusters, on the whole, do not. 

From a methodological standpoint, it is clear that Maruca and Jacquez’s RAO technique 
can be a useful tool for evaluating associations between phenomena represented as 
polygons. The local version of RAO can show where overlaps are good and where they 
are not, providing greater insight into patterns of association than do the global statistics. 
Further work is, however, required to develop an area-weighted version of the local 
statistics. Having used this method, the association between the clustered environmental 
factors and the clustered historic settlement data appears weak. These results do not 
suggest that patterns of soils, precipitation, temperature and elevation strongly influenced 
patterns of historic settlement organisation across England. 

 

CONCLUSIONS 

The first – admittedly rather pedestrian – point to be made is that the work presented 
here demonstrates that the project’s research aims and objectives have successfully been 
met. It is possible to collate GIS data for historic settlement nucleation and dispersion with 
a range of data on environmental variables. The regression model specification, selection 
and validation processes, followed by further analysis using spatial regression methods, 
identified environmental variables that appear to have had the most significant influence 
on regional variation in historic settlement organisation. The use of both non-spatial and 
spatial regression and the Relative Area Overlap Analysis has enabled investigation of how 
relationships between key environmental variables and historic settlement organisation 
varied across England. Using the unsupervised classification clustering technique, it has 
been possible to develop new, national-scale characterisations of historic settlement 
organisation and of key environmental variables. These new classifications of historic 
settlement organisation often broadly align with Roberts and Wrathmell’s delineations of 
provinces, sub-provinces and local regions, but the cluster outlines and Roberts and 
Wrathmell’s boundaries diverge more often than they agree. 

The kinds of rigorous spatial statistical analysis presented here have only been possible 
because of the conversion of Roberts and Wrathmell’s maps to GIS data, along with the 
large, and ever-growing, range of GIS-ready environmental data. This work has also 
demonstrated that GIS and related quantitative spatial analytical tools can be used to 
investigate a key topic in English landscape history and archaeology in sophisticated ways, 
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moving well beyond using GIS for simple data management and map production. This 
research has built on English Heritage’s investment in both the original Atlas and in the 
GIS dataset produced from it and demonstrates the potential embodied in the Atlas of 
Rural Settlement in England GIS dataset. 

What, then, has this study revealed about the relationships between environmental 
factors and rural settlement organisation? The analyses have centred on testing 
Williamson’s explanatory model for the development of settlement nucleation, a model 
which focuses on the influence of environmental factors such as soils, precipitation, 
topography and the availability of land suitable for creating meadow. The OLS regression 
model specification, selection and validation processes identified a number of different 
sets of environmental variables that fit the data well, but there is a degree of uncertainty 
as to which model specifications perform best. It is noteworthy that the more complex 
models performed unequivocally better than simpler models. Some, but by no means all, 
of the coefficients in the OLS models agree with Williamson’s explanatory model. 

Incorporating spatial effects using spatial regression methods dramatically improves the 
performance of the best models. The results suggest that both endogenous processes, eg, 
the diffusion of nucleation as an approach to settlement organisation, and spatially 
structured missing variables contributed substantively to variation in rural settlement 
organisation, in addition to the environmental factors specified in the models. Having 
controlled for spatial autocorrelation in either the response variables or the models’ error 
terms, many of the soils variables – including several that Williamson argues were 
influential in the development of nucleated settlement – become insignificant. Much of the 
variation in the settlement variables is accounted for by the spatially autoregressive 
parameters, not by the environmental variables. 

Overall, the regression analyses indicate that far more of the variation in the measures of 
settlement organisation is not explained by the environmental variables than is explained 
by them. The results of the RAO analysis echo this conclusion. At best, the broad spatial 
patterns extracted from the settlement data roughly follow the broad spatial patterns 
derived from the environmental variables, but beyond the general trend, the association 
between settlement and environmental patterns appears weak. 

This is not to say that Williamson is wrong to highlight the importance of environmental 
influences on the development of rural settlement and land-use. Williamson’s efforts in 
trying to pull the pendulum of interpretation back from its pronounced swing in the 
‘cultural’ direction are undoubtedly worthwhile. The goal here has been to illuminate the 
importance of environmental factors relative to other, unspecified factors, which are 
assumed – largely for convenience’s sake – to be ‘cultural’ in nature. Environmental data 
amenable to quantitative analysis together with the settlement data are readily available; 
data on likely ‘cultural’ factors generally are not, or at least not on a national scale.  

There are, of course, unresolved issues in the models, which make any conclusions based 
on them open to question. The diagnostics for both the non-spatial and spatial regression 
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models indicate problems of mis-specification, problems which are, on one level, to be 
expected. It might be argued that, given the imperfect nature of the regression results, the 
outcomes of the clustering analyses are flawed because they are based on unreliable sets 
of environmental variables. Continuing the argument, the RAO test results may also be 
flawed because they use the clustered environmental and settlement data as inputs. Such 
critique may well be valid. My conclusions should not be taken as definitive, but rather a 
further, contestable contribution to scholarship on the nature and causes of variation in 
rural settlement organisation in England. Further work, to improve and refine the methods 
and results set out here, is very much desirable. 

I will make two further points of reflexive critique. First, I recognise that I have used very 
simple – even crude – measures of rural settlement organisation, which do not capture 
the true richness of variability in rural settlement form and function. The landscape of 
nucleated settlement in Durham is not identical to the landscape of nucleated settlement 
in Dorset. Likewise, highly dispersed settlement in Cumbria is not the same as highly 
dispersed settlement in Cornwall. This highlights the problem of equifinality – different 
processes or sets of variables in different places can produce what is measured as the 
same outcome, whether distance to nearest nucleation or combined settlement score. 
The only way to address this issue, however, would be to collect better, more detailed 
data on historic rural settlement. 

Second, it is clear that this has been an analysis of data depicting nineteenth-century 
settlement organisation, based on a snapshot of a specific moment in the long (and on-
going) process of rural settlement evolution. I do not claim to have analysed directly the 
development over time of medieval and later rural settlement. This point draws attention 
to one of the basic challenges of any cross-sectional analysis: inferring and interpreting 
complex processes that operated over both time and space from a single ‘snapshot’ of 
data is fraught with difficulty. There is no easy solution to this problem, but it is one with 
which all archaeologists and historians are familiar. Roberts and Wrathmell were confident 
that the patterns in rural settlement they detected in the nineteenth-century mapping 
could, in broad terms, be projected further back into the past (Roberts and Wrathmell 
2000, 27-37). Their arguments for the antiquity of such patterns suggest that the results of 
the analyses presented here can also be projected back in time, but there can be no 
genuine certainty as to their validity. Only more work, based on data depicting rural 
settlement in earlier time periods than Roberts and Wrathmell’s, could address this issue 
directly. 

Turning to the future, as noted in the individual analysis sections, there are numerous 
possibilities for further work, building upon the data and methods presented here. This 
study has focused exclusively on investigating relationships between measures of 
settlement organisation and environmental influences, but field systems and land-use are, 
arguably, equally important aspects of landscape character. There are, to my knowledge, 
no freely-available data that are national in scope on historic field systems and land-use 
covering the same period as Roberts and Wrathmell’s settlement data. Historic Landscape 
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Characterisation (HLC) data on fieldscapes and land-use (Turner 2006) might be used to 
add greater depth and complexity to the measures of settlement organisation. HLC data 
are not without their own issues (Williamson 2007), and coverage of England is not yet 
complete. The potential of comprehensive HLC data for England to enhance a study like 
this one appears tantalising, but remains, as yet, unexplored. 

Other data sources for soils could prove more amenable to the kinds of analysis 
attempted here. Possible alternatives to the Soilscapes data include the full National Soil 
Map of England and Wales (National Soils Research Institute (NSRI) 2014a) and the 
National Soils Inventory (National Soils Research Institute (NSRI) 2014b), as well as the 
British Geological Survey (BGS) Soil Parent Material database (Lawley 2009). These 
datasets are not freely available to all parties, so any possible future work using these data 
would carry serious, potentially prohibitive, cost implications. Future work could also 
explore the influence of the underlying bedrock geology and on superficial deposits (also 
known as ‘drift geology’), for example using BGS’s DiGMapGB-625 dataset (British 
Geological Survey 2008; 2003). These data are relative low-resolution (a nominal scale of 
1:625 000), but they are freely available. Whether bedrock and superficial geology might 
augment or supplant soils data for analyses such as those presented here must remain an 
open question. 

It is well known that ‘the greater the level of spatial detail the higher the level of noise 
there is likely to be in the data and the greater the need to draw on methods that 
distinguish between “noise” and “signal” in pattern analysis and in the analysis of 
relationships’ (Haining 2003, 42). The fine ‘grain’ of the data used here (2 x 2km grid 
squares) may contain a great deal of ‘noise’ which could be obscuring meaningful 
relationships operating over larger areas. It would be technically straightforward, if time-
consuming, to resample all the data used in this study to coarser resolutions, eg, 5 x 5, 10 
x 10 or 20 x 20km squares, and apply the same analytical approaches described above. 
Doing so would allow investigation of whether environmental factors influenced 
settlement organisation at lower levels of granularity and, even more intriguingly, whether 
different factors may have operated at spatial resolutions. 

Further work could explore potential remedies for the kinds of regression model issues 
highlighted by the various diagnostic tests, such as transformations of the response and 
explanatory variables, and the use of spatial trend and interaction variables, as well as 
additional spatial regression methods. Given the problems involved in regression analysis 
(both aspatial and spatial), it would also be worth exploring alternative methods to 
explore associations between environmental factors and settlement organisation, methods 
less restricted by rigid assumptions about the data.  

Geographically Weighted Regression (GWR) (Fotheringham et al 2002) could be used to 
investigate the spatial variation in the strength of the relationships between those 
environmental variables identified as meaningful using OLS and spatial regression and 
historic settlement nucleation and dispersion. GWR models the extent to which statistical 
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relationships may differ from place to place, rather than assuming that relationships 
between variables were constant across the whole area studied, as do OLS and spatial 
regression. GWR is specifically designed to explore relationships which are non-stationary. 
It is clear that the models selected using OLS and spatial regression are mis-specified, that 
is, there are explanatory variables that have not been included, so it is unclear whether 
GWR would produce reliable results. Given how GWR works, collinear data can cause 
both computational and interpretative problems (Wheeler 2007; Wheeler and Calder 
2007; Wheeler and Tiefelsdorf 2005), and there are not, as yet, any straightforward ways 
to deal with the issues (Brunsdon et al 2012). Many of the variables used in this study – 
those for soils especially – are highly collinear, so the application of GWR could be 
problematic. 

Another issue with the regression analyses performed here, as well as with GWR, is that 
all these techniques assume that the relationships between the explanatory and response 
variables are linear. A recently-developed method, the Local Entropy Map (Guo 2010), 
could be useful, in that it does not assume that relationships between variables are all 
linear, and it explicitly considers the spatial location of observations when analysing 
multivariate relationships. 

Turning to the clustering analysis, generalising or smoothing the clusters produced by the 
ISODATA unsupervised classification would reduce the spatial fragmentation – the 
‘speckled’ appearance – of the spatial outputs of the process (Lillesand et al 2008, 580-1). 
There are other approaches to clustering both the settlement data and the various 
environmental datasets, in particular methods that explicitly incorporate the spatial 
locations of the observations being clustered, which would very likely produce 
meaningfully different results. Spatial clustering or region-building algorithms such as 
SKATER (Assunçao et al 2006), REDCAP (Guo 2008; Guo and Wang 2011) and Max-p 
(Duque et al 2012), as well as multivariate clustering and geovisualisation methods built 
using Self-Organising Maps (SOM) (Kohonen 2001; Guo et al 2005; Guo et al 2006; 
Gonçalves et al 2008) would appear to hold the most promise. It would also be possible 
to incorporate uncertainty into the classification/clustering process using fuzzy logic 
(Burrough and McDonnell 1998, 265-91), recognising that boundaries in data are not 
always crisp and membership of groups is not always clear-cut.  

Employing alternative approaches to clustering or classifying both the environmental and 
settlement data, of course, has implications for using the RAO method. Different sets of 
clusters will obviously produce different results when they are overlapped. As noted 
above, using an area-weighted version of the local RAO statistics could account for the 
widely varying sizes of the clustered polygons.   

Formal analysis of the overlap of boundaries – zones of rapid change in the intensity of 
variables over geographic space – could also help illuminate associations between 
environmental factors and settlement organisation. A variety of boundary detection 
techniques exist (Oden et al 1993; Csillag et al 2001; Fortin and Dale 2005, 184-202), and 
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the boundary overlap tests developed by Jacquez (1995) have been used in ecological 
and epidemiological studies to evaluate relationships between distributions of species or 
disease incidence and an array of environmental variables (Fortin et al 1996; Jacquez et al 
2008; Jacquez 2010). Comparing the boundaries detected in the settlement and 
environmental data could complement the analysis of the overlap of clustered areas 
presented here. 

Finally, it is worth noting the point made by the statistician George Box that ‘all models 
are wrong; the practical question is how wrong do they have to be to not be useful’ (Box 
and Draper 1987, 74). Are the models described here so wrong as to not be useful? I do 
not believe they are. Starting from Williamson’s explanatory, prose-and-map-based model, 
I have shown how it is possible to bring together a range of spatial data and quantitative 
techniques to explore relationships between environmental factors and rural settlement. 
The models developed here enable the systematic evaluation of a range of hypotheses 
about those relationships, and to assess the extent to which Williamson’s model holds 
when applied to the whole of England. There is great scope for improvement on the data, 
methods and models used here, but this study has, I think, demonstrated the potential of 
GIS-based statistical and spatial analytical approaches in the study of historic settlement 
studies in England. My hope is that future research on variation in historic settlement 
organisation in England, building on the work described here, may be able to ‘disentangle 
the relative effects of ecological vs cultural factors’ (Manning et al 2013a, 1046) in a 
comprehensive, rigorous fashion. 
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APPENDIX 1: GLOSSARY OF ABBREVIATIONS 

ADS: Archaeology Data Service 

AIC: Akaike’s Information Criterion 

AICc: Small-sample corrected version of Akaike’s Information Criterion 

BGS: British Geological Survey 

CSS: Combined Settlement Score 

CSR: Complete Spatial Randomness 

DEM: Digital Elevation Model 

GIS: Geographic Information System(s) 

GWR: Geographically Weighted Regression 

HLC: Historic Landscape Characterisation 

NSRI: National Soils Research Institute 

OLS: Ordinary Least-Squares (regression) 

OS: Ordnance Survey 

RAO: Relative Area Overlap 

TRI: Topographic Roughness Index 

VIF: Variance Inflation Factor 

VRM: Vector Ruggedness Measure 
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APPENDIX 2: SOILSCAPE TYPES/TYPE COMBINATIONS AND CONSTITUENT SOIL ASSOCIATIONS 

 

Soilscape 
ID 

Combination 
ID Description Soil Associations 

1 32 Saltmarsh soils Saline 1 

2 52 Shallow very acid peaty soils over rock Bangor; Revidge; Skiddaw 

3 54 
Shallow lime-rich soils over chalk or 

limestone 
Andover 1; Andover 2; Elmton 1; Elmton 2; Elmton 3; Icknield; Marcham; Newmarket 1; Newmarket 2; Reach; Sherborne; Upton 1; Upton 2; Wantage 1; Wantage 2; Wetton 1 

4 32 Sand dune soils Sandwich 

5 57 Freely draining lime-rich loamy soils Aberford; Aswarby; Badsey 1; Badsey 2; Blewbury; Block; Coombe 1; Coombe 2; Grove; Landbeach; Milton; Moreton; Panholes; Ruskington; Stretham; Swaffham Prior 

6  Freely draining slightly acid loamy soils 
Ardington; Barrow; Barton; Bearsted 1; Bearsted 2; Bromsgrove; Carstens; Charity 1; Crediton; Denbigh 1; Denbigh 2; Eardiston 1; Eardiston 2; East Keswick 1; East Keswick 2; 

Efford 1; Efford 2; Ellerbeck; Escrick 1; Escrick 2; Fyfield 1; Fyfield 2; Fyfield 3; Fyfield 4; Hamble 1; Hamble 2; Harwell; Hucklesbrook; Ludford; Marlow; Milford; Munslow; Neath; 
Newbiggin; Newnham; Oglethorpe; Rheidol; Rivington 1; Rivington 2; Rowton; Sonning 1; Sonning 2; South Petherton; Stone Street; Waterstock; Wick 1; Wick 2; Wick 3 

7 54, 57 
Freely draining slightly acid but base-rich 

soils 
Banbury; Charity 2; Crwbin; East Keswick 3; Frilsham; Hunstanton; Malham 2; Malling; Melford; Moulton; Nordrach; Ston Easton; Sutton 1; Sutton 2; Tathwell; Trusham; Waltham 

8  
Slightly acid loamy and clayey soils with 

impeded drainage 
Ashley; Batcombe; Bignor; Bishampton 1; Bishampton 2; Bromyard; Burlingham 1; Burlingham 2; Burlingham 3; Bursledon; Curtisden; Dunnington Heath; Flint; Halstow; Hodnet; 

Hornbeam 1; Hornbeam 2; Hornbeam 3; Middleton; Nercwys; Oxpasture; Ratsborough; Salwick; Stow; Tendring; Whimple 1; Whimple 2; Whimple 3; Wix; Worcester; Yeld 

9  
Lime-rich loamy and clayey soils with 

impeded drainage 
Cannamore; Evesham 1; Evesham 2; Evesham 3; Hanslope 

10 35 Freely draining slightly acid sandy soils Bridgnorth; Cuckney 1; Cuckney 2; Downham; Frilford; Kexby; Newport 1; Newport 2; Newport 3; Newport 4; Ollerton 

11 35 Freely draining sandy Breckland soils Methwold; Worlington 

12 33 Freely draining floodplain soils Alun; Lugwardine; Teme; Wharfe 

13  Freely draining acid loamy soils over rock Dunwell; Malvern; Manod; Moor Gate; Moretonhampstead; Parc; Powys; Withnell 1; Withnell 2 

14 35 
Freely draining very acid sandy and loamy 

soils 
Anglezarke; Crannymoor; Delamere; Goldstone; Larkbarrow; Shirrell Heath 1; Shirrell Heath 2; Southampton 

15 35 
Naturally wet very acid sandy and loamy 

soils 
Blackwood; Bolderwood; Everingham; Felthorpe; Holidays Hill; Holme Moor; Poundgate; Sollom 1; Sollom 2 

16 52 
Very acid loamy upland soils with a wet 

peaty surface 
Belmont; Earle; Gelligaer; Hafren; Hense; Hexworthy; Lydcott; Malham 1; Maw; Wetton 2 

17  
Slowly permeable seasonally wet acid loamy 

and clayey soils 
Bardsey; Brickfield 1; Brickfield 2; Brickfield 3; Cegin; Claverley; Croft Pascoe; Dale; Dunkeswell; Essendon; Fforest; Gresham; Hallsworth 1; Hallsworth 2; Oak 1; Pinder; Sportsmans; 

Stanway; Vernolds 

18  
Slowly permeable seasonally wet slightly 

acid but base-rich loamy and clayey soils 
Beccles 1; Beccles 2; Beccles 3; Brockhurst 1; Brockhurst 2; Clifton; Crewe; Denchworth; Dunkeswick; Foggathorpe 1; Foggathorpe 2; Holderness; Kingston; Martock; Oak 2; 

Ragdale; Rufford; Salop; Wickham 1; Wickham 2; Wickham 3; Wickham 4; Wickham 5; Windsor 

19 52 
Slowly permeable wet very acid upland soils 

with a peaty surface 
Laployd; Onecote; Princetown; Wenallt; Wilcocks 1; Wilcocks 2 

20 33 
Loamy and clayey floodplain soils with 

naturally high groundwater 
Compton; Conway; Enborne; Fladbury 1; Fladbury 2; Fladbury 3; Frome; Hollington; Midelney; Thames 

21 32 
Loamy and clayey soils of coastal flats with 

naturally high groundwater 
Agney; Blacktoft; Dowels; Newchurch 1; Newchurch 2; Normoor; Rockcliffe; Romney; Tanvats; Wallasea 1; Wallasea 2; Wisbech 

22 33 Loamy soils with naturally high groundwater Arrow; Curdridge; Hurst; Kelmscot; Park Gate; Sessay; Shabbington; Swanwick; Wigton Moor; Yeollandpark 

23 53 
Loamy and sandy soils with naturally high 

groundwater and a peaty surface 
Clayhythe; Downholland 1; Downholland 2; Downholland 3; Hanworth; Ireton; Isleham 1; Isleham 2; Peacock 
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Soilscape 
ID 

Combination 
ID Description Soil Associations 

24 53 
Restored soils mostly from quarry and 

opencast spoil 
Fly Restored Ironstone; Neutral Restored Opencast; Raw China Clay Spoil; Raw Slate Quarry Rubble; Restored Coprolite 

25 52 Blanket bog peat soils Crowdy 1; Crowdy 2; Winter Hill 

26 53 Raised bog peat soils Longmoss; Turbary Moor 

27 53 Fen peat soils Adventurers' 1; Adventurers' 2; Adventurers' 3; Altcar 1; Altcar 2; Mendham; Willingham 

 

 

Combination ID Constituent Soilscape IDs Description 

32 1, 4, 21 Coastal soils 

33 12, 20, 22 Loamy floodplain soils and loamy soils with naturally high groundwater 

35 10, 11, 14, 15 Sandy and very acid loamy soils (except for sand dunes [4]) 

52 2, 16, 19, 25 Upland peaty soils 

53 23, 24, 26, 27 Lowland peaty soils plus restored soils 

54 3, 7 Shallow lime-rich soils over chalk or limestone and freely draining slightly acid but base-rich soils 

57 5, 7 Freely draining lime-rich loamy and slightly acid but base-rich soils 

Soilscape descriptions and the lists of related soil Associations are derived from NSRI’s ‘The Soils Guide’ web page (www.landis.org.uk). 

 

 

http://www.landis.org.uk/
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APPENDIX 3: OLS BEST MODEL DETAILS 

In the following tables, p-values in bold are significant at α = 0.01; p-values in italic are 
significant at α = 0.05. 

Table 20: Regression results and diagnostics for DstNclAll Subset 2, model 1 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7141.7 604.43 11.82 0.0000 ----- 

Elevation 3.0 0.36 8.15 0.0000 5.74 

p_av2m45 -69.3 4.76 -14.56 0.0000 9.56 

p_11 19.3 1.35 14.30 0.0000 6.62 

t_8 -203.0 27.21 -7.46 0.0000 2.55 

Soils Type 5 -733.9 135.55 -5.41 0.0000 3.26 

Soils Type 6 -329.6 133.03 -2.48 0.0132 9.61 

Soils Type 8 -195.4 130.63 -1.50 0.1347 7.15 

Soils Type 9 -608.6 127.76 -4.76 0.0000 4.83 

Soils Type 13 386.9 178.99 2.16 0.0306 3.12 

Soils Type 17 -200.8 143.80 -1.40 0.1627 5.89 

Soils Type 18 -317.7 129.71 -2.45 0.0143 12.98 

Soils Combo 32 582.1 142.56 4.08 0.0001 4.95 

Soils Combo 33 -969.2 161.47 -6.00 0.0000 2.27 

Soils Combo 35 73.8 138.90 0.53 0.5951 5.04 

Soils Combo 52 3246.2 247.06 13.14 0.0000 9.18 

Soils Combo 53 897.3 167.90 5.34 0.0000 2.84 

Soils Combo 54 -619.6 131.44 -4.71 0.0000 7.51 

 

Response Variable DstNclAll Number of Observations 10,986 

R2 0.351 Adjusted R2 0.350 

Joint Wald statistic 2222.8 P-value 0.0000 

Koenker (BP) statistic 1004.9 P-value 0.0000 

Jarque-Bera statistic 408173.9 P-value 0.0000 

Moran’s I z-score 100.9 P-value 0.0000 
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Table 21: Regression results and diagnostics for DstNclAll Subset 2, model 2 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7125.3 604.24 11.79 0.0000 ----- 

Elevation 3.0 0.36 8.26 0.0000 5.72 

p_av2m45 -69.3 4.79 -14.45 0.0000 9.62 

p_11 19.4 1.36 14.29 0.0000 6.61 

t_8 -202.4 27.18 -7.45 0.0000 2.55 

Soils Type 3 -626.8 133.20 -4.71 0.0000 5.82 

Soils Type 6 -330.5 133.03 -2.48 0.0130 9.61 

Soils Type 8 -194.8 130.65 -1.49 0.1359 7.15 

Soils Type 9 -608.0 127.77 -4.76 0.0000 4.83 

Soils Type 13 381.7 178.80 2.13 0.0328 3.12 

Soils Type 17 -203.1 143.74 -1.41 0.1577 5.89 

Soils Type 18 -316.9 129.73 -2.44 0.0146 12.98 

Soils Combo 32 584.1 142.53 4.10 0.0000 4.95 

Soils Combo 33 -968.6 161.48 -6.00 0.0000 2.27 

Soils Combo 35 74.4 138.89 0.54 0.5922 5.04 

Soils Combo 52 3237.8 245.96 13.16 0.0000 9.16 

Soils Combo 53 899.5 167.80 5.36 0.0000 2.84 

Soils Combo 57 -678.7 132.02 -5.14 0.0000 5.00 

 

Response Variable DstNclAll Number of Observations 10,986 

R2 0.351 Adjusted R2 0.350 

Joint Wald statistic 2225.5 P-value 0.0000 

Koenker (BP) statistic 1004.6 P-value 0.0000 

Jarque-Bera statistic 408504.7 P-value 0.0000 

Moran’s I z-score 100.9 P-value 0.0000 
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Table 22: Regression results and diagnostics for DstNclAll Subset 2, model 3 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7143.9 606.57 11.78 0.0000 ----- 

Elevation 3.0 0.36 8.16 0.0000 5.75 

p_av2m45 -69.3 4.80 -14.45 0.0000 9.62 

p_11 19.3 1.35 14.26 0.0000 6.63 

t_8 -203.0 27.26 -7.45 0.0000 2.55 

Soils Type 3 -623.1 133.25 -4.68 0.0000 5.82 

Soils Type 5 -733.6 135.50 -5.41 0.0000 3.26 

Soils Type 6 -329.6 133.03 -2.48 0.0132 9.61 

Soils Type 7 -610.5 146.50 -4.17 0.0000 2.81 

Soils Type 8 -195.4 130.64 -1.50 0.1347 7.15 

Soils Type 9 -608.7 127.77 -4.76 0.0000 4.83 

Soils Type 13 387.0 178.99 2.16 0.0306 3.12 

Soils Type 17 -200.7 143.80 -1.40 0.1628 5.89 

Soils Type 18 -317.8 129.73 -2.45 0.0143 12.98 

Soils Combo 32 582.0 142.58 4.08 0.0001 4.95 

Soils Combo 33 -969.3 161.49 -6.00 0.0000 2.27 

Soils Combo 35 73.8 138.90 0.53 0.5950 5.04 

Soils Combo 52 3246.4 247.16 13.13 0.0000 9.18 

Soils Combo 53 897.3 167.90 5.34 0.0000 2.84 

 

Response Variable DstNclAll Number of Observations 10,986 

R2 0.351 Adjusted R2 0.350 

Joint Wald statistic 2228.5 P-value 0.0000 

Koenker (BP) statistic 1005.6 P-value 0.0000 

Jarque-Bera statistic 408129.8 P-value 0.0000 

Moran’s I z-score 100.9 P-value 0.0000 
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Table 23: Regression results and diagnostics for DstNclBCD Subset 2, model 1 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7942.6 1115.70 7.12 0.0000 ----- 

Elevation 5.5 0.45 12.27 0.0000 5.06 

p_av2m34 -85.3 5.52 -15.44 0.0000 19.44 

p_11 42.0 2.51 16.74 0.0000 13.77 

DSR_av2m78 -9.8 2.26 -4.33 0.0000 2.13 

Soils Type 3 -1118.2 169.38 -6.60 0.0000 5.84 

Soils Type 6 -370.8 170.52 -2.17 0.0297 9.62 

Soils Type 8 -176.2 167.05 -1.05 0.2915 7.15 

Soils Type 9 -848.1 162.09 -5.23 0.0000 4.82 

Soils Type 13 657.2 233.92 2.81 0.0050 3.18 

Soils Type 17 -89.8 180.02 -0.50 0.6177 5.75 

Soils Type 18 -418.6 163.25 -2.56 0.0104 12.88 

Soils Combo 32 751.5 178.55 4.21 0.0000 4.94 

Soils Combo 33 -1105.6 201.46 -5.49 0.0000 2.23 

Soils Combo 35 122.5 174.01 0.70 0.4816 5.00 

Soils Combo 52 3396.0 303.17 11.20 0.0000 8.99 

Soils Combo 53 964.2 198.69 4.85 0.0000 2.81 

Soils Combo 57 -1015.9 167.94 -6.05 0.0000 4.98 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.334 Adjusted R2 0.333 

Joint Wald statistic 2424.2 P-value 0.0000 

Koenker (BP) statistic 1069.2 P-value 0.0000 

Jarque-Bera statistic 140527.4 P-value 0.0000 

Moran’s I z-score 106.9 P-value 0.0000 
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Table 24: Regression results and diagnostics for DstNclBCD Subset 2, model 2 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7781.9 1056.90 7.36 0.0000 ----- 

Elevation 5.5 0.44 12.44 0.0000 5.03 

p_av2m34 -85.3 5.52 -15.46 0.0000 19.45 

p_11 42.0 2.51 16.72 0.0000 13.78 

DSR_7 -8.9 2.02 -4.42 0.0000 2.07 

Soils Type 3 -1120.1 169.40 -6.61 0.0000 5.84 

Soils Type 6 -370.4 170.54 -2.17 0.0299 9.62 

Soils Type 8 -174.9 167.05 -1.05 0.2953 7.15 

Soils Type 9 -846.9 162.09 -5.22 0.0000 4.82 

Soils Type 13 666.7 233.20 2.86 0.0043 3.17 

Soils Type 17 -81.7 180.19 -0.45 0.6502 5.76 

Soils Type 18 -415.8 163.27 -2.55 0.0109 12.88 

Soils Combo 32 754.4 178.57 4.23 0.0000 4.94 

Soils Combo 33 -1101.3 201.48 -5.47 0.0000 2.23 

Soils Combo 35 127.2 174.01 0.73 0.4649 5.00 

Soils Combo 52 3404.0 303.12 11.23 0.0000 9.00 

Soils Combo 53 965.7 198.65 4.86 0.0000 2.81 

Soils Combo 57 -1013.2 167.95 -6.03 0.0000 4.98 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.334 Adjusted R2 0.333 

Joint Wald statistic 2432.8 P-value 0.0000 

Koenker (BP) statistic 1063.6 P-value 0.0000 

Jarque-Bera statistic 141141.2 P-value 0.0000 

Moran’s I z-score 106.8 P-value 0.0000 
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Table 25: Regression results and diagnostics for DstNclBCD Subset 2, model 3 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 7888.6 1113.41 7.09 0.0000 ----- 

Elevation 5.5 0.45 12.18 0.0000 5.05 

p_av2m34 -84.7 5.45 -15.54 0.0000 19.11 

p_11 41.7 2.48 16.81 0.0000 13.62 

DSR_av2m78 -9.7 2.26 -4.29 0.0000 2.13 

Soils Type 5 -1073.3 171.00 -6.28 0.0000 3.25 

Soils Type 6 -369.1 170.53 -2.16 0.0304 9.62 

Soils Type 8 -175.2 167.02 -1.05 0.2941 7.15 

Soils Type 9 -847.4 162.06 -5.23 0.0000 4.82 

Soils Type 13 663.5 234.36 2.83 0.0047 3.19 

Soils Type 17 -88.4 180.16 -0.49 0.6236 5.75 

Soils Type 18 -417.3 163.22 -2.56 0.0106 12.88 

Soils Combo 32 751.0 178.57 4.21 0.0000 4.94 

Soils Combo 33 -1103.7 201.41 -5.48 0.0000 2.23 

Soils Combo 35 122.5 173.99 0.70 0.4814 5.00 

Soils Combo 52 3400.2 304.47 11.17 0.0000 9.02 

Soils Combo 53 962.7 198.74 4.84 0.0000 2.81 

Soils Combo 54 -1067.7 167.72 -6.37 0.0000 7.52 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.334 Adjusted R2 0.333 

Joint Wald statistic 2439.4 P-value 0.0000 

Koenker (BP) statistic 1067.7 P-value 0.0000 

Jarque-Bera statistic 140623.8 P-value 0.0000 

Moran’s I z-score 106.9 P-value 0.0000 
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Table 26: Regression results and diagnostics for DstNclBCD Subset 3, model 1 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 6682.5 638.44 10.47 0.0000 ----- 

Elevation 6.1 0.46 13.19 0.0000 6.05 

p_av3m345 -88.5 5.47 -16.18 0.0000 16.45 

p_11 36.3 2.21 16.37 0.0000 11.58 

t_8 -168.1 30.46 -5.52 0.0000 2.53 

Soils Type 3 -999.4 170.21 -5.87 0.0000 5.71 

Soils Type 6 -257.5 172.01 -1.50 0.1344 9.36 

Soils Type 8 -165.4 169.17 -0.98 0.3281 7.07 

Soils Type 9 -885.7 164.09 -5.40 0.0000 4.60 

Soils Type 13 1039.7 247.40 4.20 0.0000 2.93 

Soils Type 17 -299.4 188.33 -1.59 0.1120 5.72 

Soils Type 18 -440.1 167.68 -2.62 0.0087 12.56 

Soils Combo 32 728.9 181.51 4.02 0.0001 4.82 

Soils Combo 33 -946.4 204.73 -4.62 0.0000 2.18 

Soils Combo 35 89.0 175.80 0.51 0.6126 5.00 

Soils Combo 52 2829.2 293.05 9.65 0.0000 8.98 

Soils Combo 53 887.5 197.66 4.49 0.0000 2.89 

Soils Combo 57 -1181.8 169.26 -6.98 0.0000 4.96 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.337 Adjusted R2 0.336 

Joint Wald statistic 2600.7 P-value 0.0000 

Koenker (BP) statistic 1099.2 P-value 0.0000 

Jarque-Bera statistic 154871.3 P-value 0.0000 

Moran’s I z-score 108.5 P-value 0.0000 
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Table 27: Regression results and diagnostics for DstNclBCD Subset 3, model 2 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 6659.1 641.24 10.38 0.0000 ----- 

Elevation 6.1 0.47 13.15 0.0000 6.07 

p_av3m345 -88.3 5.48 -16.11 0.0000 16.48 

p_11 36.3 2.21 16.38 0.0000 11.58 

t_8 -167.4 30.54 -5.48 0.0000 2.54 

Soils Type 3 -1002.1 170.30 -5.88 0.0000 5.71 

Soils Type 5 -1120.8 173.06 -6.48 0.0000 3.31 

Soils Type 6 -257.4 172.01 -1.50 0.1346 9.36 

Soils Type 7 -1260.8 183.12 -6.89 0.0000 2.72 

Soils Type 8 -164.5 169.16 -0.97 0.3308 7.07 

Soils Type 9 -884.6 164.09 -5.39 0.0000 4.60 

Soils Type 13 1034.3 247.67 4.18 0.0000 2.93 

Soils Type 17 -301.3 188.40 -1.60 0.1098 5.72 

Soils Type 18 -438.3 167.70 -2.61 0.0090 12.56 

Soils Combo 32 732.1 181.61 4.03 0.0001 4.82 

Soils Combo 33 -943.7 204.78 -4.61 0.0000 2.18 

Soils Combo 35 90.1 175.81 0.51 0.6083 5.00 

Soils Combo 52 2820.7 294.27 9.59 0.0000 9.00 

Soils Combo 53 890.5 197.77 4.50 0.0000 2.89 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.337 Adjusted R2 0.336 

Joint Wald statistic 2608.8 P-value 0.0000 

Koenker (BP) statistic 1099.5 P-value 0.0000 

Jarque-Bera statistic 155054.5 P-value 0.0000 

Moran’s I z-score 108.5 P-value 0.0000 
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Table 28: Regression results and diagnostics for DstNclBCD Subset 3, model 3 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 6697.6 639.67 10.47 0.0000 ----- 

Elevation 6.2 0.47 13.20 0.0000 6.06 

p_av3m345 -89.3 5.43 -16.45 0.0000 16.30 

p_11 36.6 2.20 16.62 0.0000 11.51 

t_8 -168.2 30.51 -5.51 0.0000 2.53 

Soils Type 5 -1114.8 173.05 -6.44 0.0000 3.31 

Soils Type 6 -257.3 172.03 -1.50 0.1348 9.36 

Soils Type 8 -163.5 169.17 -0.97 0.3337 7.07 

Soils Type 9 -884.8 164.10 -5.39 0.0000 4.60 

Soils Type 13 1036.4 247.66 4.18 0.0000 2.93 

Soils Type 17 -299.6 188.41 -1.59 0.1119 5.72 

Soils Type 18 -439.7 167.70 -2.62 0.0087 12.56 

Soils Combo 32 730.6 181.60 4.02 0.0001 4.82 

Soils Combo 33 -947.8 204.77 -4.63 0.0000 2.18 

Soils Combo 35 91.2 175.83 0.52 0.6041 5.00 

Soils Combo 52 2824.6 294.17 9.60 0.0000 9.00 

Soils Combo 53 891.2 197.75 4.51 0.0000 2.89 

Soils Combo 54 -1071.2 168.66 -6.35 0.0000 7.33 

 

Response Variable DstNclBCD Number of Observations 10,986 

R2 0.337 Adjusted R2 0.336 

Joint Wald statistic 2594.0 P-value 0.0000 

Koenker (BP) statistic 1099.2 P-value 0.0000 

Jarque-Bera statistic 154657.2 P-value 0.0000 

Moran’s I z-score 108.5 P-value 0.0000 
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Table 29: Regression results and diagnostics for CSS Na2 Subset 2, model 1 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 1.494 0.0197 75.85 0.0000 ----- 

Elevation < -0.001 0.0000 -15.43 0.0000 7.97 

p_3 0.003 0.0002 15.43 0.0000 15.35 

p_9 -0.004 0.0002 -23.91 0.0000 10.21 

bio1 -0.052 0.0018 -29.66 0.0000 4.49 

Soils Type 3 0.070 0.0063 11.20 0.0000 5.77 

Soils Type 5 0.048 0.0069 6.99 0.0000 3.26 

Soils Type 6 -0.032 0.0066 -4.86 0.0000 9.52 

Soils Type 7 0.021 0.0075 2.76 0.0057 2.82 

Soils Type 8 -0.052 0.0066 -7.90 0.0000 7.14 

Soils Type 9 0.007 0.0067 1.05 0.2915 4.83 

Soils Type 13 -0.042 0.0094 -4.49 0.0000 3.06 

Soils Type 17 -0.081 0.0073 -11.19 0.0000 5.86 

Soils Type 18 -0.028 0.0064 -4.44 0.0000 12.96 

Soils Combo 32 -0.037 0.0073 -5.01 0.0000 4.97 

Soils Combo 33 0.028 0.0088 3.14 0.0017 2.26 

Soils Combo 35 -0.021 0.0068 -3.08 0.0021 5.04 

Soils Combo 52 -0.074 0.0088 -8.40 0.0000 9.15 

Soils Combo 53 -0.007 0.0075 -0.93 0.3513 2.85 

 

Response Variable CSS Na2 Number of Observations 10,986 

R2 0.282 Adjusted R2 0.281 

Joint Wald statistic 6263.3 P-value 0.0000 

Koenker (BP) statistic 445.4 P-value 0.0000 

Jarque-Bera statistic 3699.9 P-value 0.0000 

Moran’s I z-score 153.7 P-value 0.0000 
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Table 30: Regression results and diagnostics for CSS Nb2 Subset 2, model 1 

Variable Coefficient Robust Standard Error Robust t-statistic Robust P-value VIF 

Intercept 1.512 0.0199 76.18 0.0000 ----- 

Elevation < -0.001 0.0000 -16.74 0.0000 7.97 

p_3 0.003 0.0002 15.80 0.0000 15.35 

p_9 -0.004 0.0002 -24.41 0.0000 10.21 

bio1 -0.054 0.0018 -30.53 0.0000 4.49 

Soils Type 3 0.075 0.0065 11.46 0.0000 5.77 

Soils Type 5 0.052 0.0071 7.30 0.0000 3.26 

Soils Type 6 -0.033 0.0068 -4.81 0.0000 9.52 

Soils Type 7 0.025 0.0078 3.25 0.0012 2.82 

Soils Type 8 -0.053 0.0068 -7.82 0.0000 7.14 

Soils Type 9 0.010 0.0070 1.45 0.1478 4.83 

Soils Type 13 -0.048 0.0096 -4.97 0.0000 3.06 

Soils Type 17 -0.082 0.0075 -10.94 0.0000 5.86 

Soils Type 18 -0.027 0.0066 -4.16 0.0000 12.96 

Soils Combo 32 -0.039 0.0076 -5.11 0.0000 4.97 

Soils Combo 33 0.028 0.0090 3.13 0.0017 2.26 

Soils Combo 35 -0.022 0.0071 -3.12 0.0018 5.04 

Soils Combo 52 -0.072 0.0090 -7.94 0.0000 9.15 

Soils Combo 53 -0.007 0.0076 -0.94 0.3447 2.85 

 

Response Variable CSS Nb2 Number of Observations 10,986 

R2 0.292 Adjusted R2 0.290 

Joint Wald statistic 6599.1 P-value 0.0000 

Koenker (BP) statistic 430.3 P-value 0.0000 

Jarque-Bera statistic 3052.6 P-value 0.0000 

Moran’s I z-score 152.8 P-value 0.0000 
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APPENDIX 4: SPATIAL REGRESSION MODEL DETAILS 

In the following tables, p-values in bold are significant at α = 0.01; p-values in italic are 
significant at α = 0.05. 

 

 



© ENGLISH HERITAGE 133 72 - 2014 

Table 31: Spatial lag regression results and diagnostics for DstNclAll Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclAll 0.80 0.01 118.68 0.0000  Response Variable DstNclAll 
Intercept 818.35 292.41 2.80 0.0051  Num of Observations 10,986 
Elevation 1.10 0.21 5.20 0.0000  Pseudo-R2 0.720 
p_av2m45 -13.79 3.01 -4.58 0.0000  Breusch-Pagan statistic 948.6 
p_11 3.48 1.02 3.40 0.0007  P-value 0.0000 
t_8 -6.06 14.41 -0.42 0.6738    
Soils Type 5 -228.09 114.91 -1.99 0.0472    
Soils Type 6 -138.60 102.33 -1.35 0.1756    
Soils Type 8 17.59 101.90 0.17 0.8630    
Soils Type 9 -88.94 106.06 -0.84 0.4017    
Soils Type 13 124.95 127.12 0.98 0.3256    
Soils Type 17 -102.93 107.71 -0.96 0.3393    
Soils Type 18 6.83 100.40 0.07 0.9458    
Soils Combo 32 358.94 107.08 3.35 0.0008    
Soils Combo 33 -515.74 141.37 -3.65 0.0003    
Soils Combo 35 122.65 107.27 1.14 0.2529    
Soils Combo 52 982.34 123.31 7.97 0.0000    
Soils Combo 53 394.57 118.17 3.34 0.0008    
Soils Combo 54 -82.65 102.83 -0.80 0.4215    

Table 32: Spatial error regression results and diagnostics for DstNclAll Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 6519.24 1351.76 4.82 0.0000  Response Variable DstNclAll 
Elevation 2.77 0.60 4.62 0.0000  Num of Observations 10,986 
p_av2m45 -46.32 13.74 -3.37 0.0008  Pseudo-R2 0.721 
p_11 25.25 5.07 4.98 0.0000  Breusch-Pagan statistic 1108.2 
t_8 -272.19 74.06 -3.68 0.0002  P-value 0.0000 
Soils Type 5 -394.69 152.77 -2.58 0.0098    
Soils Type 6 -230.71 129.62 -1.78 0.0751    
Soils Type 8 -22.54 132.99 -0.17 0.8654    
Soils Type 9 -108.05 148.13 -0.73 0.4658    
Soils Type 13 172.48 168.33 1.03 0.3055    
Soils Type 17 -65.10 141.97 -0.46 0.6466    
Soils Type 18 86.66 126.94 0.68 0.4948    
Soils Combo 32 838.44 151.49 5.54 0.0000    
Soils Combo 33 -410.18 165.68 -2.48 0.0133    
Soils Combo 35 153.87 138.20 1.11 0.2656    
Soils Combo 52 805.10 161.31 4.99 0.0000    
Soils Combo 53 439.63 160.87 2.73 0.0063    
Soils Combo 54 -131.89 135.80 -0.97 0.3314    
Lambda 0.84 0.01 129.72 0.0000    
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Table 33: Spatial lag regression results and diagnostics for DstNclAll Subset 2, model 2, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclAll 0.80 0.01 118.76 0.000  Response Variable DstNclAll 
Intercept 784.26 292.36 2.68 0.007  Num of Observations 10,986 
Elevation 1.10 0.21 5.19 0.000  Pseudo-R2 0.720 
p_av2m45 -13.35 3.02 -4.42 0.000  Breusch-Pagan statistic 950.3 
p_11 3.44 1.02 3.37 0.001  P-value 0.0000 
t_8 -5.17 14.40 -0.36 0.720    
Soils Type 3 -45.79 105.30 -0.44 0.664    
Soils Type 6 -139.01 102.31 -1.36 0.174    
Soils Type 8 18.19 101.88 0.18 0.858    
Soils Type 9 -87.75 106.04 -0.83 0.408    
Soils Type 13 122.11 127.03 0.96 0.336    
Soils Type 17 -104.71 107.68 -0.97 0.331    
Soils Type 18 8.31 100.38 0.08 0.934    
Soils Combo 32 360.74 107.05 3.37 0.001    
Soils Combo 33 -514.21 141.35 -3.64 0.000    
Soils Combo 35 122.66 107.25 1.14 0.253    
Soils Combo 52 976.21 123.11 7.93 0.000    
Soils Combo 53 395.66 118.14 3.35 0.001    
Soils Combo 57 -209.57 106.61 -1.97 0.049    

Table 34: Spatial error regression results and diagnostics for DstNclAll Subset 2, model 2, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 6474.78 1352.94 4.79 0.0000  Response Variable DstNclAll 
Elevation 2.72 0.60 4.52 0.0000  Num of Observations 10,986 
p_av2m45 -45.52 13.75 -3.31 0.0009  Pseudo-R2 0.722 
p_11 25.33 5.08 4.99 0.0000  Breusch-Pagan statistic 1108.9 
t_8 -272.54 74.13 -3.68 0.0002  P-value 0.0000 
Soils Type 3 -40.61 143.67 -0.28 0.7774    
Soils Type 6 -230.68 129.60 -1.78 0.0751    
Soils Type 8 -18.14 132.96 -0.14 0.8915    
Soils Type 9 -107.02 148.10 -0.72 0.4699    
Soils Type 13 164.11 168.29 0.98 0.3295    
Soils Type 17 -68.58 141.95 -0.48 0.6290    
Soils Type 18 94.53 126.93 0.75 0.4564    
Soils Combo 32 840.46 151.47 5.55 0.0000    
Soils Combo 33 -401.27 165.65 -2.42 0.0154    
Soils Combo 35 161.98 138.18 1.17 0.2411    
Soils Combo 52 801.42 161.23 4.97 0.0000    
Soils Combo 53 448.84 160.85 2.79 0.0053    
Soils Combo 57 -319.00 138.63 -2.30 0.0214    
Lambda 0.84 0.01 129.86 0.0000    



© ENGLISH HERITAGE 135 72 - 2014 

Table 35: Spatial lag regression results and diagnostics for DstNclAll Subset 2, model 3, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
W_DstNclAll 0.80 0.01 118.75 0.0000  Response Variable DstNclAll 
Intercept 791.80 292.75 2.71 0.0068  Num of Observations 10,986 
Elevation 1.09 0.21 5.15 0.0000  Pseudo-R2 0.720 
p_av2m45 -13.37 3.02 -4.43 0.0000  Breusch-Pagan statistic 950.5 
p_11 3.41 1.02 3.34 0.0008  P-value 0.0000 
t_8 -5.42 14.41 -0.38 0.7070    
Soils Type 3 -44.36 105.34 -0.42 0.6737    
Soils Type 5 -231.34 114.91 -2.01 0.0441    
Soils Type 6 -138.68 102.31 -1.36 0.1753    
Soils Type 7 -182.54 119.14 -1.53 0.1255    
Soils Type 8 17.95 101.88 0.18 0.8602    
Soils Type 9 -88.04 106.04 -0.83 0.4064    
Soils Type 13 124.22 127.10 0.98 0.3284    
Soils Type 17 -103.77 107.69 -0.96 0.3353    
Soils Type 18 7.96 100.38 0.08 0.9368    
Soils Combo 32 359.93 107.06 3.36 0.0008    
Soils Combo 33 -514.49 141.35 -3.64 0.0003    
Soils Combo 35 122.44 107.25 1.14 0.2536    
Soils Combo 52 979.65 123.30 7.95 0.0000    
Soils Combo 53 394.79 118.15 3.34 0.0008    

Table 36: Spatial error regression results and diagnostics for DstNclAll Subset 2, model 3, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
Intercept 6488.46 1353.09 4.80 0.0000  Response Variable DstNclAll 
Elevation 2.71 0.60 4.51 0.0000  Num of Observations 10,986 
p_av2m45 -45.56 13.75 -3.31 0.0009  Pseudo-R2 0.722 
p_11 25.25 5.08 4.97 0.0000  Breusch-Pagan statistic 1109.2 
t_8 -272.72 74.13 -3.68 0.0002  P-value 0.0000 
Soils Type 3 -46.03 143.77 -0.32 0.7488    
Soils Type 5 -383.48 152.86 -2.51 0.0121    
Soils Type 6 -230.40 129.59 -1.78 0.0754    
Soils Type 7 -256.20 152.15 -1.68 0.0922    
Soils Type 8 -20.21 132.97 -0.15 0.8792    
Soils Type 9 -108.87 148.11 -0.74 0.4623    
Soils Type 13 167.87 168.32 1.00 0.3186    
Soils Type 17 -67.51 141.95 -0.48 0.6344    
Soils Type 18 91.94 126.95 0.72 0.4689    
Soils Combo 32 839.30 151.47 5.54 0.0000    
Soils Combo 33 -404.78 165.67 -2.44 0.0146    
Soils Combo 35 158.90 138.20 1.15 0.2503    
Soils Combo 52 805.74 161.28 5.00 0.0000    
Soils Combo 53 445.44 160.88 2.77 0.0056    
Lambda 0.84 0.01 129.88 0.0000    
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Table 37: Spatial lag regression results and diagnostics for DstNclBCD Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclBCD 0.83 0.01 137.05 0.0000  Response Variable DstNclBCD 
Intercept 1976.78 532.51 3.71 0.0002  Num of Observations 10,986 
Elevation 1.37 0.23 6.06 0.0000  Pseudo-R2 0.743 
p_av2m34 -16.46 3.24 -5.08 0.0000  Breusch-Pagan statistic 570.0 
p_11 7.06 1.66 4.26 0.0000  P-value 0.0000 
DSR_av2m78 -2.98 1.07 -2.79 0.0053    
Soils Type 3 -126.36 118.48 -1.07 0.2862    
Soils Type 6 -155.41 114.90 -1.35 0.1762    
Soils Type 8 21.39 114.35 0.19 0.8516    
Soils Type 9 -118.60 118.94 -1.00 0.3187    
Soils Type 13 177.27 143.97 1.23 0.2182    
Soils Type 17 -78.16 119.47 -0.65 0.5130    
Soils Type 18 5.89 112.22 0.05 0.9581    
Soils Combo 32 437.50 120.10 3.64 0.0003    
Soils Combo 33 -507.91 157.25 -3.23 0.0012    
Soils Combo 35 154.30 119.93 1.29 0.1982    
Soils Combo 52 889.18 136.89 6.50 0.0000    
Soils Combo 53 380.40 132.07 2.88 0.0040    
Soils Combo 57 -255.44 119.49 -2.14 0.0325    

Table 38: Spatial error regression results and diagnostics for DstNclBCD Subset 2, model 

1, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 6321.36 826.28 7.65 0.0000  Response Variable DstNclBCD 
Elevation 4.15 0.61 6.87 0.0000  Num of Observations 10,986 
p_av2m34 -37.79 15.42 -2.45 0.0142  Pseudo-R2 0.747 
p_11 36.01 9.08 3.97 0.0001  Breusch-Pagan statistic 643.4 
DSR_av2m78 -10.99 1.62 -6.80 0.0000  P-value 0.0000 
Soils Type 3 -136.20 162.19 -0.84 0.4011    
Soils Type 6 -229.50 145.57 -1.58 0.1149    
Soils Type 8 10.66 149.32 0.07 0.9431    
Soils Type 9 -122.94 166.58 -0.74 0.4605    
Soils Type 13 117.43 191.18 0.61 0.5391    
Soils Type 17 48.08 159.37 0.30 0.7629    
Soils Type 18 184.75 142.38 1.30 0.1944    
Soils Combo 32 1076.98 170.64 6.31 0.0000    
Soils Combo 33 -250.88 185.51 -1.35 0.1762    
Soils Combo 35 300.93 155.14 1.94 0.0524    
Soils Combo 52 805.77 181.30 4.44 0.0000    
Soils Combo 53 512.26 180.72 2.84 0.0046    
Soils Combo 57 -324.45 155.78 -2.08 0.0373    
Lambda 0.87 0.01 150.93 0.0000    



© ENGLISH HERITAGE 137 72 - 2014 

Table 39: Spatial lag regression results and diagnostics for DstNclBCD Subset 2, model 2, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclBCD 0.84 0.01 137.05 0.0000  Response Variable DstNclBCD 
Intercept 2073.77 516.54 4.02 0.0001  Num of Observations 10,986 
Elevation 1.37 0.23 6.08 0.0000  Pseudo-R2 0.743 
p_av2m34 -16.54 3.24 -5.11 0.0000  Breusch-Pagan statistic 557.9 
p_11 7.03 1.66 4.23 0.0000  P-value 0.0000 
DSR_7 -3.01 0.98 -3.08 0.0021    
Soils Type 3 -128.97 118.48 -1.09 0.2764    
Soils Type 6 -157.27 114.89 -1.37 0.1710    
Soils Type 8 20.23 114.34 0.18 0.8595    
Soils Type 9 -118.76 118.93 -1.00 0.3180    
Soils Type 13 173.00 143.80 1.20 0.2290    
Soils Type 17 -73.73 119.51 -0.62 0.5373    
Soils Type 18 7.85 112.23 0.07 0.9443    
Soils Combo 32 439.92 120.11 3.66 0.0003    
Soils Combo 33 -506.77 157.24 -3.22 0.0013    
Soils Combo 35 156.51 119.93 1.31 0.1919    
Soils Combo 52 895.26 136.95 6.54 0.0000    
Soils Combo 53 382.84 132.07 2.90 0.0038    
Soils Combo 57 -255.14 119.48 -2.14 0.0327    

Table 40: Spatial error regression results and diagnostics for DstNclBCD Subset 2, model 

2, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 6092.85 799.93 7.62 0.0000  Response Variable DstNclBCD 
Elevation 4.07 0.61 6.72 0.0000  Num of Observations 10,986 
p_av2m34 -35.22 15.48 -2.28 0.0228  Pseudo-R2 0.747 
p_11 35.08 9.11 3.85 0.0001  Breusch-Pagan statistic 631.5 
DSR_7 -10.08 1.49 -6.76 0.0000  P-value 0.0000 
Soils Type 3 -129.97 162.13 -0.80 0.4228  Moran’s I statistic -0.0351 
Soils Type 6 -225.32 145.53 -1.55 0.1216    
Soils Type 8 15.27 149.29 0.10 0.9185    
Soils Type 9 -118.95 166.57 -0.71 0.4752    
Soils Type 13 125.31 191.02 0.66 0.5118    
Soils Type 17 49.62 159.36 0.31 0.7555    
Soils Type 18 187.11 142.37 1.31 0.1887    
Soils Combo 32 1078.26 170.64 6.32 0.0000    
Soils Combo 33 -250.06 185.49 -1.35 0.1776    
Soils Combo 35 305.94 155.12 1.97 0.0486    
Soils Combo 52 802.50 181.28 4.43 0.0000    
Soils Combo 53 512.66 180.71 2.84 0.0046    
Soils Combo 57 -320.29 155.75 -2.06 0.0397    
Lambda 0.87 0.01 151.19 0.0000    
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Table 41: Spatial lag regression results and diagnostics for DstNclBCD Subset 2, model 3, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclBCD 0.84 0.01 137.00 0.0000  Response Variable DstNclBCD 
Intercept 2002.85 532.14 3.76 0.0002  Num of Observations 10,986 
Elevation 1.38 0.23 6.13 0.0000  Pseudo-R2 0.743 
p_av2m34 -17.08 3.21 -5.32 0.0000  Breusch-Pagan statistic 568.9 
p_11 7.29 1.65 4.42 0.0000  P-value 0.0000 
DSR_av2m78 -3.00 1.07 -2.81 0.0049    
Soils Type 5 -268.51 128.80 -2.09 0.0371    
Soils Type 6 -155.62 114.92 -1.35 0.1757    
Soils Type 8 20.23 114.36 0.18 0.8596    
Soils Type 9 -119.87 118.95 -1.01 0.3136    
Soils Type 13 179.22 144.10 1.24 0.2136    
Soils Type 17 -76.64 119.51 -0.64 0.5214    
Soils Type 18 3.91 112.23 0.04 0.9722    
Soils Combo 32 435.74 120.13 3.63 0.0003    
Soils Combo 33 -509.33 157.27 -3.24 0.0012    
Soils Combo 35 153.67 119.94 1.28 0.2001    
Soils Combo 52 895.12 137.10 6.53 0.0000    
Soils Combo 53 379.34 132.10 2.87 0.0041    
Soils Combo 54 -157.06 115.49 -1.36 0.1739    

Table 42: Spatial error regression results and diagnostics for DstNclBCD Subset 2, model 

3, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 6368.67 824.94 7.72 0.0000  Response Variable DstNclBCD 
Elevation 4.19 0.60 6.95 0.0000  Num of Observations 10,986 
p_av2m34 -38.65 15.39 -2.51 0.0120  Pseudo-R2 0.747 
p_11 36.22 9.07 3.99 0.0001  Breusch-Pagan statistic 642.9 
DSR_av2m78 -11.02 1.62 -6.83 0.0000  P-value 0.0000 
Soils Type 5 -388.79 171.71 -2.26 0.0236    
Soils Type 6 -229.78 145.57 -1.58 0.1145    
Soils Type 8 7.11 149.34 0.05 0.9621    
Soils Type 9 -124.25 166.60 -0.75 0.4558    
Soils Type 13 122.85 191.24 0.64 0.5206    
Soils Type 17 50.26 159.37 0.32 0.7525    
Soils Type 18 179.03 142.37 1.26 0.2086    
Soils Combo 32 1075.51 170.65 6.30 0.0000    
Soils Combo 33 -257.50 185.53 -1.39 0.1652    
Soils Combo 35 294.79 155.15 1.90 0.0574    
Soils Combo 52 809.49 181.37 4.46 0.0000    
Soils Combo 53 505.50 180.72 2.80 0.0052    
Soils Combo 54 -194.68 152.95 -1.27 0.2031    
Lambda 0.87 0.01 150.84 0.0000    
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Table 43: Spatial lag regression results and diagnostics for DstNclBCD Subset 3, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclBCD 0.84 0.01 138.86 0.0000  Response Variable DstNclBCD 
Intercept 271.87 306.97 0.89 0.3758  Num of Observations 10,986 
Elevation 1.88 0.24 7.66 0.0000  Pseudo-R2 0.748 
p_av3m345 -16.97 3.44 -4.94 0.0000  Breusch-Pagan statistic 497.2 
p_11 6.25 1.52 4.10 0.0000  P-value 0.0000 
t_8 20.88 15.99 1.31 0.1916    
Soils Type 3 -30.98 116.78 -0.27 0.7908    
Soils Type 6 -54.76 113.68 -0.48 0.6300    
Soils Type 8 59.86 113.24 0.53 0.5971    
Soils Type 9 -77.79 118.59 -0.66 0.5119    
Soils Type 13 344.77 143.45 2.40 0.0162    
Soils Type 17 -55.98 119.74 -0.47 0.6402    
Soils Type 18 52.15 111.37 0.47 0.6396    
Soils Combo 32 430.13 119.42 3.60 0.0003    
Soils Combo 33 -474.23 157.50 -3.01 0.0026    
Soils Combo 35 212.43 118.51 1.79 0.0731    
Soils Combo 52 821.69 136.71 6.01 0.0000    
Soils Combo 53 494.72 130.21 3.80 0.0002    
Soils Combo 57 -278.01 118.76 -2.34 0.0192    

Table 44: Spatial error regression results and diagnostics for DstNclBCD Subset 3, model 

1, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 5043.17 1679.46 3.00 0.0027  Response Variable DstNclBCD 
Elevation 4.50 0.76 5.95 0.0000  Num of Observations 10,986 
p_av3m345 -79.31 16.81 -4.72 0.0000  Pseudo-R2 0.751 
p_11 51.80 8.47 6.11 0.0000  Breusch-Pagan statistic 571.1 
t_8 -170.98 96.89 -1.76 0.0776  P-value 0.0000 
Soils Type 3 11.90 156.06 0.08 0.9392  Moran’s I statistic -0.0352 
Soils Type 6 -129.50 139.09 -0.93 0.3518    
Soils Type 8 -38.21 143.11 -0.27 0.7895    
Soils Type 9 -98.78 162.16 -0.61 0.5424    
Soils Type 13 321.51 186.74 1.72 0.0851    
Soils Type 17 13.06 154.21 0.08 0.9325    
Soils Type 18 135.97 135.39 1.00 0.3152    
Soils Combo 32 817.40 165.18 4.95 0.0000    
Soils Combo 33 -291.85 180.77 -1.61 0.1064    
Soils Combo 35 259.03 147.81 1.75 0.0797    
Soils Combo 52 750.67 175.82 4.27 0.0000    
Soils Combo 53 669.66 173.24 3.87 0.0001    
Soils Combo 57 -344.95 150.68 -2.29 0.0221    
Lambda 0.87 0.01 151.40 0.0000    
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Table 45: Spatial lag regression results and diagnostics for DstNclBCD Subset 3, model 2, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
W_DstNclBCD 0.84 0.01 138.83 0.0000  Response Variable DstNclBCD 
Intercept 254.03 307.48 0.83 0.4087  Num of Observations 10,986 
Elevation 1.89 0.25 7.71 0.0000  Pseudo-R2 0.748 
p_av3m345 -16.85 3.44 -4.90 0.0000  Breusch-Pagan statistic 497.4 
p_11 6.26 1.52 4.10 0.0000  P-value 0.0000 
t_8 21.45 16.00 1.34 0.1801    
Soils Type 3 -33.04 116.79 -0.28 0.7773    
Soils Type 5 -231.52 127.67 -1.81 0.0698    
Soils Type 6 -54.66 113.67 -0.48 0.6307    
Soils Type 7 -338.37 133.44 -2.54 0.0112    
Soils Type 8 60.56 113.24 0.53 0.5928    
Soils Type 9 -76.90 118.59 -0.65 0.5167    
Soils Type 13 340.58 143.50 2.37 0.0176    
Soils Type 17 -57.46 119.75 -0.48 0.6313    
Soils Type 18 53.51 111.37 0.48 0.6309    
Soils Combo 32 432.59 119.44 3.62 0.0003    
Soils Combo 33 -472.15 157.50 -3.00 0.0027    
Soils Combo 35 213.26 118.51 1.80 0.0719    
Soils Combo 52 815.15 136.87 5.96 0.0000    
Soils Combo 53 497.00 130.23 3.82 0.0001    

Table 46: Spatial error regression results and diagnostics for DstNclBCD Subset 3, model 

2, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
Intercept 5030.68 1679.47 3.00 0.0027  Response Variable DstNclBCD 
Elevation 4.51 0.76 5.97 0.0000  Num of Observations 10,986 
p_av3m345 -79.34 16.81 -4.72 0.0000  Pseudo-R2 0.751 
p_11 51.88 8.47 6.12 0.0000  Breusch-Pagan statistic 571.5 
t_8 -170.61 96.88 -1.76 0.0783  P-value 0.0000 
Soils Type 3 16.68 156.18 0.11 0.9150  Moran’s I statistic -0.0353 
Soils Type 5 -292.06 165.17 -1.77 0.0770    
Soils Type 6 -130.05 139.09 -0.94 0.3498    
Soils Type 7 -405.43 169.38 -2.39 0.0167    
Soils Type 8 -37.99 143.10 -0.27 0.7907    
Soils Type 9 -97.56 162.16 -0.60 0.5474    
Soils Type 13 318.46 186.77 1.71 0.0882    
Soils Type 17 11.78 154.22 0.08 0.9391    
Soils Type 18 137.10 135.39 1.01 0.3112    
Soils Combo 32 819.70 165.20 4.96 0.0000    
Soils Combo 33 -288.99 180.80 -1.60 0.1100    
Soils Combo 35 259.47 147.80 1.76 0.0792    
Soils Combo 52 746.13 175.91 4.24 0.0000    
Soils Combo 53 672.05 173.26 3.88 0.0001    
Lambda 0.87 0.01 151.40 0.0000    
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Table 47: Spatial lag regression results and diagnostics for DstNclBCD Subset 3, model 3, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

W_DstNclBCD 0.84 0.01 138.78 0.0000  Response Variable DstNclBCD 
Intercept 300.81 307.32 0.98 0.3277  Num of Observations 10,986 
Elevation 1.92 0.25 7.82 0.0000  Pseudo-R2 0.748 
p_av3m345 -17.98 3.43 -5.25 0.0000  Breusch-Pagan statistic 495.4 
p_11 6.63 1.52 4.36 0.0000  P-value 0.0000 
t_8 20.38 16.00 1.27 0.2029    
Soils Type 5 -224.51 127.73 -1.76 0.0788    
Soils Type 6 -54.56 113.73 -0.48 0.6315    
Soils Type 8 61.66 113.30 0.54 0.5863    
Soils Type 9 -77.39 118.65 -0.65 0.5142    
Soils Type 13 343.23 143.58 2.39 0.0168    
Soils Type 17 -55.46 119.81 -0.46 0.6434    
Soils Type 18 51.77 111.43 0.46 0.6422    
Soils Combo 32 430.79 119.51 3.60 0.0003    
Soils Combo 33 -477.13 157.58 -3.03 0.0025    
Soils Combo 35 214.49 118.57 1.81 0.0705    
Soils Combo 52 820.23 136.93 5.99 0.0000    
Soils Combo 53 497.87 130.29 3.82 0.0001    
Soils Combo 54 -114.82 114.11 -1.01 0.3143    

Table 48: Spatial error regression results and diagnostics for DstNclBCD Subset 3, model 

3, spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    

Intercept 5123.11 1676.62 3.06 0.0023  Response Variable DstNclBCD 
Elevation 4.61 0.75 6.10 0.0000  Num of Observations 10,986 
p_av3m345 -81.01 16.78 -4.83 0.0000  Pseudo-R2 0.750 
p_11 52.14 8.46 6.16 0.0000  Breusch-Pagan statistic 570.1 
t_8 -172.26 96.72 -1.78 0.0749  P-value 0.0000 
Soils Type 5 -315.53 165.09 -1.91 0.0560    
Soils Type 6 -128.94 139.17 -0.93 0.3542    
Soils Type 8 -36.69 143.18 -0.26 0.7978    
Soils Type 9 -91.96 162.24 -0.57 0.5708    
Soils Type 13 326.77 186.86 1.75 0.0803    
Soils Type 17 17.68 154.29 0.11 0.9088    
Soils Type 18 133.08 135.46 0.98 0.3259    
Soils Combo 32 818.42 165.28 4.95 0.0000    
Soils Combo 33 -300.14 180.87 -1.66 0.0970    
Soils Combo 35 257.51 147.89 1.74 0.0816    
Soils Combo 52 749.30 176.00 4.26 0.0000    
Soils Combo 53 667.74 173.35 3.85 0.0001    
Soils Combo 54 -144.29 147.71 -0.98 0.3287    
Lambda 0.87 0.01 151.07 0.0000    
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Table 49: Spatial lag regression results and diagnostics for CSS Na2 Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
W_CSSNa2 0.9593 0.0027 354.13 0.0000  Response Variable CSS Na2 
Intercept 0.0692 0.0073 9.51 0.0000  Num of Observations 10,986 
Elevation < -0.0001 0.0000 -2.83 0.0047  Pseudo-R2 0.928 
p_3 0.0001 0.0000 2.73 0.0063  Breusch-Pagan statistic 337.3 
p_9 -0.0002 0.0000 -4.06 0.0001  P-value 0.0000 
bio1 -0.0030 0.0006 -5.44 0.0000    
Soils Type 3 0.0058 0.0025 2.38 0.0175    
Soils Type 5 0.0065 0.0027 2.44 0.0149    
Soils Type 6 0.0005 0.0024 0.21 0.8348    
Soils Type 7 0.0057 0.0028 2.05 0.0400    
Soils Type 8 -0.0040 0.0024 -1.69 0.0905    
Soils Type 9 0.0019 0.0025 0.77 0.4442    
Soils Type 13 -0.0018 0.0029 -0.62 0.5362    
Soils Type 17 -0.0049 0.0025 -1.95 0.0510    
Soils Type 18 -0.0026 0.0023 -1.13 0.2595    
Soils Combo 32 -0.0040 0.0025 -1.60 0.1092    
Soils Combo 33 0.0086 0.0033 2.61 0.0090    
Soils Combo 35 0.0024 0.0025 0.95 0.3422    
Soils Combo 52 -0.0046 0.0029 -1.60 0.1105    
Soils Combo 53 0.0007 0.0028 0.25 0.8045    

Table 50: Spatial error regression results and diagnostics for CSS Na2 Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
Intercept 1.0881 0.0546 19.91 0.0000  Response Variable CSS Na2 
Elevation < -0.0001 0.0000 -1.46 0.1454  Num of Observations 10,986 
p_3 0.0013 0.0003 3.79 0.0002  Pseudo-R2 0.929 
p_9 -0.0028 0.0005 -5.40 0.0000  Breusch-Pagan statistic 329.2 
bio1 -0.0108 0.0050 -2.17 0.0303  P-value 0.0000 
Soils Type 3 0.0022 0.0034 0.64 0.5238    
Soils Type 5 0.0055 0.0036 1.53 0.1265    
Soils Type 6 0.0002 0.0031 0.06 0.9501    
Soils Type 7 0.0039 0.0036 1.10 0.2732    
Soils Type 8 -0.0054 0.0031 -1.74 0.0823    
Soils Type 9 0.0029 0.0035 0.83 0.4066    
Soils Type 13 -0.0013 0.0040 -0.33 0.7447    
Soils Type 17 -0.0052 0.0034 -1.54 0.1225    
Soils Type 18 -0.0050 0.0030 -1.69 0.0916    
Soils Combo 32 -0.0106 0.0036 -2.93 0.0034    
Soils Combo 33 0.0056 0.0039 1.43 0.1524    
Soils Combo 35 0.0009 0.0033 0.27 0.7865    
Soils Combo 52 -0.0058 0.0038 -1.51 0.1319    
Soils Combo 53 0.0003 0.0038 0.07 0.9419    
Lambda 0.9680 0.0025 392.29 0.0000    



© ENGLISH HERITAGE 143 72 - 2014 

Table 51: Spatial lag regression results and diagnostics for CSS Nb2 Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
W_CSSNb2 0.9591 0.0027 354.32 0.0000  Response Variable CSS Nb2 
Intercept 0.0720 0.0075 9.63 0.0000  Num of Observations 10,986 
Elevation < -0.0001 0.0000 -3.43 0.0006  Pseudo-R2 0.928 
p_3 0.0001 0.0000 2.88 0.0040  Breusch-Pagan statistic 326.9 
p_9 -0.0002 0.0000 -4.06 0.0001  P-value 0.0000 
bio1 -0.0033 0.0006 -5.71 0.0000    
Soils Type 3 0.0059 0.0025 2.33 0.0200    
Soils Type 5 0.0064 0.0028 2.31 0.0210    
Soils Type 6 0.0003 0.0025 0.13 0.8967    
Soils Type 7 0.0059 0.0029 2.04 0.0416    
Soils Type 8 -0.0044 0.0025 -1.78 0.0744    
Soils Type 9 0.0019 0.0026 0.75 0.4520    
Soils Type 13 -0.0032 0.0030 -1.06 0.2876    
Soils Type 17 -0.0057 0.0026 -2.18 0.0290    
Soils Type 18 -0.0031 0.0024 -1.30 0.1934    
Soils Combo 32 -0.0052 0.0026 -2.03 0.0425    
Soils Combo 33 0.0077 0.0034 2.28 0.0229    
Soils Combo 35 0.0015 0.0026 0.59 0.5539    
Soils Combo 52 -0.0047 0.0029 -1.60 0.1089    
Soils Combo 53 0.0002 0.0029 0.08 0.9324    

Table 52: Spatial error regression results and diagnostics for CSS Nb2 Subset 2, model 1, 

spatial weights matrix 1 

Variable Coefficient Std Error z-value Probability    
Intercept 1.0759 0.0566 19.01 0.0000  Response Variable CSS Nb2 
Elevation -0.0001 0.0000 -1.76 0.0790  Num of Observations 10,986 
p_3 0.0013 0.0003 3.73 0.0002  Pseudo-R2 0.928 
p_9 -0.0026 0.0005 -4.99 0.0000  Breusch-Pagan statistic 319.4 
bio1 -0.0108 0.0051 -2.10 0.0359  P-value 0.0000 
Soils Type 3 0.0019 0.0035 0.55 0.5840    
Soils Type 5 0.0045 0.0037 1.21 0.2259    
Soils Type 6 -0.0006 0.0032 -0.20 0.8377    
Soils Type 7 0.0030 0.0037 0.82 0.4112    
Soils Type 8 -0.0062 0.0032 -1.92 0.0544    
Soils Type 9 0.0027 0.0036 0.74 0.4570    
Soils Type 13 -0.0031 0.0041 -0.75 0.4550    
Soils Type 17 -0.0068 0.0035 -1.96 0.0500    
Soils Type 18 -0.0063 0.0031 -2.03 0.0421    
Soils Combo 32 -0.0134 0.0037 -3.58 0.0004    
Soils Combo 33 0.0033 0.0040 0.83 0.4057    
Soils Combo 35 -0.0013 0.0034 -0.39 0.6963    
Soils Combo 52 -0.0058 0.0039 -1.46 0.1445    
Soils Combo 53 -0.0009 0.0039 -0.22 0.8290    
Lambda 0.9683 0.0025 394.74 0.0000    
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author(s) and are not necessarily those of Historic England.

The Research Report Series incorporates reports by the expert teams within the 
Research Group of Historic England, alongside contributions from other parts of the 
organisation. It replaces the former Centre for Archaeology Reports Series, the 
Archaeological Investigation Report Series, the Architectural Investigation Report 
Series, and the Research Department Report Series

We are the public body that looks after England’s historic environment.
We champion historic places, helping people understand, value and care 
for them.
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