

160 King Street Great Yarmouth Norfolk

Tree-Ring Analysis of Oak Timbers and Conifer Boards

Martin Bridge and Cathy Tyers

Research Report Series no. 111-2019

Front Cover: 160 King Street, from the back, Great Yarmouth. Photograph Martin Bridge

Research Report Series 111-2019

160 KING STREET GREAT YARMOUTH NORFOLK

Tree-Ring Analysis of Oak Timbers and Conifer Boards

Martin Bridge and Cathy Tyers

NGR: TG 52516 07415

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

111-2019

SUMMARY

Fifteen oak timbers from floor-framing, wall-framing, and the roof of the building were sampled. Three series contained too few rings for further analysis. All 12 measured samples cross-matched each other and appear to form a single group of timbers felled at the same time. Precise felling dates of winter AD 1654/55 and spring AD 1655 have been obtained, indicating that construction was most likely in AD 1655, or within a year or two after this date.

Photographs were taken of the end-grain of four conifer boards, two from each of two doors in the attic. The ring width series were derived from these photographs. No cross-matching was found between the individual board series, and no acceptable consistent cross-dating was found.

CONTRIBUTORS Martin Bridge and Cathy Tyers

ACKNOWLEDGEMENTS

We are grateful to Darren Barker and Lenko Grigorov of the Great Yarmouth Preservation Trust for arranging access and for supplying drawings, and to the contractors for facilitating access and supplying a generator for fieldwork. In addition we would like to thank Shahina Farid (Historic England Scientific Dating Coordinator) for commissioning and facilitating this programme of dendrochronology.

ARCHIVE LOCATION Norfolk Historic Environment Record Norfolk Historic Environment Service Union House Gressenhall Dereham Norfolk NR20 4DR

DATE OF INVESTIGATION 2019

CONTACT DETAILS Martin Bridge Oxford Dendrochronology Laboratory Mill Farm Mapledurham Oxfordshire RG4 7TX marbrdg@aol.com

Cathy Tyers Historic England 4th Floor, Cannon Bridge House 25 Dowgate Hill London EC4R 2YA cathy.tyers@historicengland.org.uk

CONTENTS

ntroduction	1
1ethodology	1
Ascribing felling dates and date ranges	2
esults	2
nterpretation and Discussion	3
leferences	5
ables	7
igures1	0
ppendix1	5

INTRODUCTION

The building lies within the historic heart of Great Yarmouth (Fig 1) and is listed Grade II (Listing Entry Number 1246577). It is thought to be a late-sixteenth century timber-framed house, with an early nineteenth-century brick façade, and a twentieth-century shop front. A recent measured survey by the Great Yarmouth Preservation Society (Grigorov 2018) raised the possibility that some of the timber-frame could be earlier than the presumed late sixteenth-century date. Thus, dendrochronological analysis was requested by Trudi Hughes, Historic England Heritage at Risk Architect/Surveyor, to provide independent dating evidence for the primary construction, and later phases of development. This would inform a listing review and a management strategy for the future care and preservation of the building.

METHODOLOGY

An assessment of the structural timbers for dendrochronological study sought accessible oak (*Quercus* sp) timbers with more than 50 rings and where possible traces of sapwood, although slightly shorter sequences are sometimes sampled if little other material is available. Those timbers judged to be potentially useful were cored using a 16mm auger attached to an electric drill. The cores were labelled and stored for subsequent analysis. Three conifer doors in the attic were also assessed and following this two doors had the bottom of their boards cleaned by sanding with digital photographs being taken for subsequent measurement using CooRecorder 9.1 (Cybis Dendrochronology 2017), converted to data in the same format as the other measured series via CDendro 9.1 (Cybis Dendrochronology 2017) and TRiCYCLE (Brewer *et al* 2011).

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their treering sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004a). Cross-matching was attempted by a combination of visual matching and a process of qualified statistical comparison by computer. The ring-width series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences. This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-value ranges of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual

samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values, however, do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels/early wood formed, or the summer growth/late wood) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* (tpq) for felling, a felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9-41 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was incorporated into the structure or object under study.

RESULTS

The property's long axis lies SW-NE but has been taken as E-W for the purposes of this report. The assessment showed that none of the timbers in the east end of the building that were thought to be of nineteenth- and twentieth-century origin had enough rings to make them suitable for reliable dendrochronological investigation. These timbers were, therefore, not sampled. However, core samples were taken from a series of timbers in floor-frames, wall-frames, and the roof, thought to represent the primary construction phase of the building. The oak samples taken, as well as the ring series derived from photographs of the cross-sectional surface of two conifer boards from each of the two three-boarded attic doors are detailed in Table 1. The locations of the sampled oak timbers are illustrated in Figures 2 and 3, whilst one of the conifer doors investigated is shown in Figure 4, the other door being its mirror image.

Three oak samples, including the only one from a wall-frame timber, were found to have ring sequences of less than 30 years and were excluded from further analysis as unsuitable for reliable dating purposes. The measured series from the remaining 12 oak samples cross-match each other (Table 2). Although sample ksgy04 was relatively short, it gave a significant match against one other sample, which was visually good and subsequently supported when it was compared individually against oak reference chronologies. The relative positions of overlap of the 12 cross-

matched series are shown in Figure 5. The 12 cross-matched oak series were combined into a 104-year long site chronology, KSGYt12. This was compared with an extensive database of oak reference chronologies where it was found to cross-date consistently to the period AD 1551–1654, some of the strongest matches being shown in Table 3.

Although one of the three conifer doors assessed was rejected as unsuitable for analysis, two boards from two of the doors were included in this analysis. The photographs taken of the boards yielded relatively short sequences for each board and they did not show any similarities with each other. Formal identification of the wood type was not undertaken as this would have required the removal of a small section from each board for microscopic analysis. They were, therefore, compared individually to a series of both pine and other conifer species reference chronologies available in the database but none of the board sequences could be reliably dated.

The raw ring-width measurements are given for all of the measured oak and conifer series in the Appendix.

INTERPRETATION AND DISCUSSION

All 12 dated samples are clearly broadly coeval and the analysis suggests that they form a coherent group most likely all felled at the same, or similar, time (Fig 5). Three samples from floor-frame timbers and two samples from roof timbers retained complete sapwood. One of these was derived from a tree felled in the winter of AD 1654/55, whilst the other four were derived from trees felled in spring AD 1655. Complete sapwood was present on another timber but the outermost 1-3 rings were lost from the core during sampling, thus producing a narrow felling date range of AD 1654–6 for this timber. Four of the remaining dated samples have some sapwood and produce felling date ranges compatible with the precise felling dates obtained. The remaining two samples have no sapwood but the analysis suggests that these are likely to be coeval and hence felled as part of the same felling event, with the joist, ksgy04, appearing to represent the trimmed down inner part of a longer-lived tree.

The dating evidence obtained for structural timbers from floor-framing and the roof suggests that construction was shortly after felling in AD 1655, or within a year or two after this date. Based on the assumption that the dated timbers are associated with the primary phase of construction, the building appears to be more recent than suggested previously, as it had been thought that the main part of the building was sixteenth century.

The oak trees from which the dated timber were derived appear likely to have grown relatively locally with the strongest cross-dating generally being with reference chronologies from the surrounding counties.

The four conifer boards analysed from the two doors could not be dated. No relative dating was established between their ring series and, thus, whether the boards are coeval can neither be confirmed nor refuted by this analysis. Although formal wood

type identification was not undertaken it is thought that the boards were most likely pine (*Pinus sylvestris* L.)

REFERENCES

Arnold, A, Howard, R, Litton, C, and Dawson, G, 2005 *The Tree-ring dating of a number of bellframes in Leicestershire*, Centre for Archaeol Rep, **5/2005**

Arnold, A, Howard, R, and Tyers, C, 2017 *Norton Hall Barn, Hall Lane, Stanton Street, Suffolk, Tree-ring Analysis of Oak Timbers*, Historic England Res Rep Ser, **35/2017**

Arnold, A, Howard, R, and Tyers, C, forthcoming *Kirby Hall, Deene, Corby, Northamptonshire, Tree-ring Analysis of Oak Timbers,* Historic England Res Rep Ser

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Brewer, P W, Murphy, D, and Jansma, E, 2011 TRiCYCLE: a universal conversion tool for digital tree-ring data, *Tree Ring Res*, **67**, 135–44

Bridge, M C, and Miles, D, 2016 Tree-Ring Date Lists, *Vernacular Architect*, **47**, 87–92

Bridge, M C, and Miles, D, 2017 Tree-Ring Date Lists, *Vernacular Architect*, **48**, 108–16

Grigorov, L, 2018 unpubl Measured survey, 160 King Street, Great Yarmouth, *Great Yarmouth Preservation Trust*, **11/2018**

Howard, R E, Laxton, R R, and Litton, C D, 2000 *Tree-ring Analysis of Timbers from the Barn and Cottage, Abbey Farm, Thetford, Norfolk*, Anc Mon Lab Rep, **48/2000**

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Miles, D H and Bridge, M C, 2013 Tree Ring Dating Lists, *Vernacular Architect*, **44**, 98–102

Miles, D H, and Worthington, M J, 1998 Tree-ring dates, *Vernacular Architect*, **29**, 111–29

Tyers, I, 1995 *Tree-ring analysis of the bellframe at St Andrews, Sutton-in-the-Isle, Cambridgeshire,* Anc Mon Lab Rep, **15/95**

Tyers, I, 1997 Tree-ring analysis of seven buildings in Essex, ARCUS Rep, 292

Tyers, I, 2004a *Dendro for Windows Program Guide 3rd edn*, ARCUS Report, **500b**

Tyers, I, 2004b A report on the tree-ring analysis of properties in New Buckenham, Norfolk, ARCUS Rep, **783**

TABLES

Table 1: Details of samples taken from 160 King Street, Great Yarmouth. Roof trusses are numbered from the west end

Sample No	Location	Total	Date of	Sapwood	Mean ring	Mean	Felling date
1		number of	sequence	Ĩ	width (mm)	sensitivity	range (AD)
		rings	(AD)			·	0
Floor framin	g (oak)	_					
ksgy01	First floor ceiling beam over stair landing	72	1582-1654	24¼C	2.07	0.21	spring 1655
ksgy02	First floor east room, 4th joist from west wall	63	1592-1654	16¼C	2.27	0.20	spring 1655
ksgy03	First floor east room, 1st joist from west wall	<30	-	-	NM	-	-
ksgy04	First floor east room, 5th joist from west wall	44	1553-1596	-	2.49	0.19	after 1605
ksgy05	First floor east room, 3 rd joist from west wall	77	1551-1627	-	2.16	0.22	after 1636
ksgy06	First floor east room, 2 nd joist from west wall	70	1585–1654	20¼C	1.89	0.17	spring 1655
Wall framing	g (oak)						
ksgy07	Stud in south wall of first floor east room	<30	-	-	NM	-	-
Roof (oak)							
ksgy08	South principal rafter, truss 4	60	1594–1653	16 (+1-3C)	2.40	0.25	1654–56
ksgy09	Collar, truss 3	<30	-	-	NM	-	-
ksgy10	South principal rafter, truss 3	44	1611–1654	19C	1.76	0.18	winter 1654/55
ksgy11	North principal rafter, truss 3	63	1580-1642	2	2.84	0.17	1649-81
ksgy12	North principal rafter, truss 2	69	1586-1654	20¼C	2.17	0.15	spring 1655
ksgy13	North principal rafter, truss 1	39	1590-1628	3	2.12	0.18	1634–66
ksgy14	South principal rafter, truss 1	57	1587-1643	5	3.00	0.18	1647–79
ksgy15	North principal rafter, truss 4	54	1595-1648	9	2.93	0.22	1648-80
Door boards	(conifer)						
GYDr1M	Door 1 middle board	52	-	-	0.73	0.15	-
GYDr10	Door 1 outer board	65	-	-	0.86	0.22	-
GYDr2I	Door 2 inner board	74	-	-	1.02	0.17	-
GYDr2M	Door 2 middle board	73	-	-	1.51	0.18	-

Key: NM = not measured; ¹/₄C = complete sapwood, felled the following spring; C = complete sapwood, winter felled

 \neg

Table 2: Cross-matching between the dated samples from 160 King Street, Great Yarmouth (t-values in excess of 3.5 are considered significant)

	<i>t</i> -value (years overlap)										
Sample No	ksgy02	ksgy04	ksgy05	ksgy06	ksgy08	ksgy10	ksgy11	ksgy12	ksgy13	ksgy14	ksgy15
ksgy01	5.92 (63)	\	3.20 (45)	2.30 (70)	4.09 (60)	3.79 (44)	3.91 (60)	3.64 (69)	4.14 (39)	3.04 (57)	6.20 (54)
ksgy02		\	4.18 (36)	4.38 (63)	3.49 (60)	4.17 (44)	3.51 (51)	3.42 (63)	5.18 (37)	3.71 (52)	5.45 (54)
ksgy04			5.88 (44)	\	λ	λ	\	\	λ	λ	\
ksgy05				2.58 (43)	4.75 (34)	λ	4.15 (48)	4.09 (42)	3.58 (38)	2.84 (41)	4.78 (33)
ksgy06					3.36 (60)	8.43 (44)	3.18 (58)	6.76 (69)	2.34 (39)	5.29 (57)	4.23 (54)
ksgy08						2.65 (43)	3.93 (49)	4.46 (60)	4.04 (35)	3.99 (50)	8.35 (54)
ksgy10							3.79 (32)	3.61 (44)	λ	6.30 (33)	3.61 (38)
ksgy11								6.73 (57)	3.05 (39)	6.29 (56)	4.77 (48)
ksgy12									3.40 (39)	6.31 (57)	5.87 (54)
ksgy13										1.48 (39)	4.86 (34)
ksgy14											3.84 (49)

© HISTORIC ENGLAND

 \setminus = overlap less than 30 years, no *t*-value calculated

Source region	Chronology:	Publication reference:	Filename:	Span of	Overlap	<i>t</i> -value
				chronology (AD)	(years)	
Northamptonshire	Kirby Hall, Deene, Corby	(Arnold <i>et al</i> forthcoming)	KRBHSQ01	1378-1795	104	9.0
Suffolk	Norton Hall Barn, Stanton Street	(Arnold <i>et al</i> 2017)	NRTNSQ02	1519–1626	76	7.9
Oxfordshire	84 St Aldates, Oxford	(Miles and Bridge 2013)	ALDATES2	1529-1636	86	7.4
London	Kew Palace roof	(Bridge and Miles 2017)	KEWx1	1547-1630	80	6.8
Oxfordshire	Manor Farm, Stanton St John	(Miles and Worthington 1998)	STNSTJN3	1533-1637	87	6.6
Norfolk	Burrage House/Old Post Office, New	(Tyers 2004b)	NBBP_T3	1543-1683	104	6.5
	Buckenham					
Essex	New House, Cressing Temple	(Tyers 1997)	NEWHOUSE	1560-1633	74	6.5
Cambridgeshire	Sutton-in-the-Isle	(Tyers 1995)	SUTTON	1508-1615	65	6.4
Norfolk	Abbey Farm, Thetford	(Howard <i>et al</i> 2000)	THTASQ03	1556-1628	73	6.3
Norfolk	Pinchpot, New Buckenham	(Tyers 2004b)	NBPP_T5	1530-1687	104	6.3
Leicestershire	St Nicholas' Church, Bringhurst	(Arnold <i>et al</i> 2005)	LBFFSQ01	1502-1687	104	6.3
London	Queen's House, Greenwich	(Bridge and Miles 2016)	GRNWICH	1516-1633	83	6.3

Table 3: Dating evidence for the site chronology KSGYt12, AD 1551–1654

FIGURES

Figure 1: Maps to show the location of 160 Kings Street in Great Yarmouth, circled. Scale: top right 1:5000; bottom 1:1250. © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey Licence number 100024900. © British Crown and SeaZone Solutions Ltd 2020. All rights reserved. Licence number 102006.006. © Historic England.

Figure 2: First-floor plan showing the approximate positions of timbers sampled for dendrochronology (after Grigorov 2018)

111-2019

Figure 4: Ex situ door 1, the inner (hinge side) and middle boards were measured (photo Martin Bridge)

Figure 5: Bar diagram showing the relative positions of overlap of the dated samples, along with their actual or likely felling date ranges. White bars represent heartwood, yellow bars represent sapwood, narrow yellow bars represent additional unmeasured rings

APPENDIX

Ring width values (0.01mm) for the sequences measured

ksgy0	1								
368	382	358	321	305	236	316	123	235	247
219	285	325	378	360	410	442	443	398	317
385	371	221	343	234	160	126	113	216	240
286	149	127	122	147	166	178	161	207	247
186	140	204	153	155	127	122	105	112	150
168	128	149	150	167	194	149	145	125	91
98	156	196	174	120	140	116	82	69	56
53	79								
	-								
ksgy0	2	0.40	0.40	0.4.4	0.40		001	~~-	~~-
159	236	349	248	366	363	370	286	335	327
365	375	317	205	251	255	227	191	209	260
367	321	255	182	157	174	195	156	243	234
272	250	195	257	232	268	189	128	94	78
82	121	90	116	126	174	314	308	256	214
145	141	204	320	274	263	269	212	147	158
127	124	162							
ksgv0	4								
155	120	144	136	140	222	266	274	257	262
240	195	168	172	218	315	366	374	310	217
167	201	185	179	176	165	155	265	198	110
126	187	218	373	321	240	266	302	411	355
512	510	484	305	0=1		_00	001		000
	010		000						
ksgy0	5								
169	123	235	120	157	130	122	299	310	187
189	209	158	134	113	174	205	249	355	365
274	165	185	197	254	243	214	173	185	238
201	132	145	201	234	302	315	283	250	182
216	216	281	326	275	249	182	169	137	166
131	161	214	203	176	250	312	258	211	140
204	357	349	309	253	154	107	154	162	258
269	294	202	200	242	235	271			
kamıO	6								
rsgyu 240	266	220	200	260	107	159	174	220	<u>1</u> 41
100	300 917	000 001	290	209	107	100	1/4	239	242
190	217	221	350	243	295	293	323 250	2/3	200
100	207	239	200	214	220	1/0	208	217	200
14/	14/	185	1/1	1//	207	231	238	230	103
109	145	169	1/8	105	123	96	140	114	120
119	151	121	168	123	141	112	106	149	110
152	157	142	171	134	103	111	84	81	108
ksgy0	8								
467	436	364	332	391	366	314	202	232	248
264	179	300	319	262	160	154	192	222	270
211	163	176	164	244	252	322	275	353	226

174	219	302	238	225	252	181	107	208	296
147	203	276	234	226	292	267	166	119	216
168	307	190	217	193	181	259	241	153	105
ksgy1	0								
233	386	339	273	191	159	213	175	169	223
234	250	244	180	177	185	221	221	195	156
135	186	151	123	174	169	143	196	169	161
132	117	130	123	151	162	123	171	125	102
101	65	82	116						
. .									
ksgy1	1								
543	427	288	297	342	398	419	478	423	381
253	234	233	224	258	382	415	340	366	329
293	201	199	225	261	183	264	297	276	195
222	192	285	317	310	261	213	245	160	163
311	317	471	266	210	267	214	264	251	236
194	186	237	251	240	240	249	231	312	329
314	261	221							
1 1	0								
KSgy1	2	450	401	000	0(1	000	005	0(0	070
483	510	456	421	230	261	293	325	368	3/8
396	334	391	324	300	2/1	286	263	236	227
310	347	306	232	238	176	223	227	201	1/9
149	185	202	179	261	265	293	208	169	182
160	158	146	158	119	87	138	113	124	127
136	100	152	141	149	110	104	121	121	129
162	143	133	125	107	101	121	90	93	
konv1	2								
120	ບ່າງງາງ	214	205	າາາ	227	320	376	300	304
247	210	214	203	270	227	329 314	352	250	102
$\frac{2\pi}{149}$	200	228	176	150	$\frac{230}{125}$	100	102 102	136	136
190	147	206	176	130	202	152	170	156	100
109	14/	200	170	139	202	152	1/9	150	
ksgy1	4								
327	372	354	237	207	262	354	416	458	554
497	503	386	384	299	334	380	472	310	384
390	338	260	320	241	412	651	489	296	225
293	262	238	338	312	329	254	195	190	211
299	251	246	192	156	202	189	184	184	219
184	198	188	199	167	141	187	-	-	
ksgy1	5								
509	499	446	501	356	343	202	220	228	233
170	316	376	322	202	189	232	293	348	215
207	193	193	346	231	300	288	441	301	252
332	312	326	319	343	284	267	430	374	241
290	011	238	298	354	288	207	136	268	251
	211								
352	211 249	296	230						
352	211 249	296	230						
352 GYDr	211 249 ·1M	296	230	70	00	60	75	50	60

68 118 53	72 82 56	77 82 63	99 67 70	91 45 68	85 52 34	95 43 47	97 37 59	99 57 59	128 42 64
84	89	74	81	76	78	78	85	84	101
97	130	, -	01	, .	, c	, c		0.	101
GYDr	10								
134	114	108	111	89	99	72	79	98	119
83	98	85	66	89	84	109	131	116	88
107	63	85	94	106	97	85	108	93	100
135	133	111	90	65	62	57	63	57	73
77	69	98	100	71	83	63	90	65	58
93	80	69	58	54	41	29	82	52	35
61	55	104	104	141					
GYDr	21								
58	59	69	55	53	50	49	65	89	133
144	174	168	139	124	118	116	114	135	112
104	122	127	117	140	148	158	180	107	89
91	84	86	89	99	107	155	146	173	147
183	140	110	86	56	33	46	46	56	64
84	79	92	127	135	153	107	104	84	85
107	140	87	104	64	80	61	71	64	91
92	91	89	72						
GYDr	2M								
79	104	83	99	125	88	99	92	70	67
124	134	125	136	196	221	196	186	234	206
266	200	209	219	228	209	291	193	193	228
146	108	111	114	108	111	124	212	206	231
215	215	197	177	124	98	111	51	70	75
114	98	101	184	231	228	174	123	184	166
155	161	155	141	118	105	120	98	121	124
146	117	174							

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.