Furness Abbey, Barrow-in-Furness, Cumbria Tree-ring analysis and radiocarbon dating of the Presbytery wall foundation raft timbers

Alison Arnold, Robert Howard, Elaine Dunbar, Cathy Tyers and Peter Marshall

Discovery, Innovation and Science in the Historic Environment

FURNESS ABBEY, BARROW-IN-FURNESS, CUMBRIA

TREE-RING ANALYSIS AND RADIOCARBON DATING OF THE PRESBYTERY WALL FOUNDATION RAFT TIMBERS

Alison Arnold, Robert Howard, Elaine Dunbar, Cathy Tyers, and Peter Marshall

NGR: SD 2176471931
(C) Historic England

ISSN 2059-4453 (Online)
The Research Report Series incorporates reports by the expert teams within the Investigation \& Analysis Division of the Heritage Protection Department of Historic England, alongside contributions from other parts of the organisation. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

For more information write to Res.reports@HistoricEngland.org.uk
or mail: Historic England, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

SUMMARY

Dendrochronological analysis was undertaken on 43 samples obtained as slices from a series of timbers used as a foundation raft for the presbytery walls at Furness Abbey, these timbers having being removed as part of emergency conservation works. This analysis produced one dated site chronology comprising 32 samples and having an overall length of 182 rings (BIFESQ01). These rings were dated as spanning the years AD 975-1156. Interpretation of the sapwood on the dated samples would suggest the likelihood that all the timbers were cut as part of a single programme of felling (though perhaps not all at exactly the same time) in the period AD 1165-90, and are thus likely to represent part of the earliest work on the extant Abbey. A second site chronology, BIFESQ02, comprising nine samples could also be created, this being 161 rings long. This site chronology could not be dated by dendrochronology, but the results of a radiocarbon wiggle match suggest it is likely that the sequence is broadly coeval with BIFESQ01. The remaining two samples were rejected from the analysis.

CONTRIBUTORS

Alison Arnold, Robert Howard, Elaine Dunbar, and Peter Marshall

ACKNOWLEDGEMENTS

The Nottingham Tree-ring Dating Laboratory would like to thank the English Heritage staff at Furness Abbey who were on site at the time of sampling both for their cooperation during the visit and their hospitality. We would also like to thank Headland Archaeology Ltd for the use of portions of their report in the introduction below, and for their plans and photographs used elsewhere in this report. Finally we would like to thank Tim Baldock, EH Project Manager, and Susan Harrison, EH Curatorial team, who asked for the work to be undertaken, and Shahina Farid and Cathy Tyers (Historic England Scientific Dating Team) for commissioning this programme of tree-ring dating and for their assistance during analysis.

ARCHIVE LOCATION

Historic Environment Service, Environment Directorate, County Offices, Kendal, Cumbria, LA9 4RQ

DATE OF INVESTIGATION

2014-20

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory, 20 Hillcrest Grove, Sherwood, Nottingham NG5 1FT
roberthoward@tree-ringdating.co.uk
alisonarnold@tree-ringdating.co.uk
Elaine Dunbar
SUERC, Radiocarbon Laboratory
Scottish Enterprise Technology Park
Rankine Avenue
East Kilbride G75 1QF
elaine.dunbar@glasgow.ac.uk
Cathy Tyers and Peter Marshall
Historic England
Cannon Bridge House
25 Dowgate Hill
London, EC4R 2YA
cathy.tyers@historicengland.org.uk
peter.marshall@historicengland.org.uk
Introduction 1
Sampling 1
Analysis and Results 2
Interpretation 3
Site chronology BIFESQ01 3
Site chronology BIFESQ02 4
Radiocarbon dating sampling and analysis 4
Radiocarbon dating 5
Calibration 5
Bayesian Wiggle-matching 6
BIFESQ02 6
Conclusion 7
Woodland sources 7
References 8
Tables 11
Figures 15
Data of Measured Samples 22
Appendix: Tree-Ring Dating 36

INTRODUCTION

Furness Abbey was originally founded by Stephen, Count of Boulogne (grandson of William the Conqueror) and King of England from AD 1135 until his death in AD 1154. The Abbey was initially established in AD 1124 at Tulketh, near Preston, in Lancashire, for the Order of Savigny, the first Savigniac monastery to be founded in England, but moved in AD 1127 to its present site in the Vale of Beckansgill just to the north of what is now Barrow-in-Furness (Fig 1). Following earlier archaeological work, as well as more recent investigation, the plan of the Savigniac church is known to have comprised an apsidal Presbytery flanked by two pairs of apsidal chapels. Elements of the Savigniac church survive at the west end of the Presbytery (Headland Archaeology Ltd 2012).

It is known from documentary sources that the church was not finished when the Scots raided and destroyed the Abbey in AD 1138, having chased off the monks. The monks returned in AD 1141, and began to rebuild the ornate church and erect more permanent buildings to create one of the great medieval English Abbeys. In AD 1147 the affiliation changed as the Savigniac Order merged with the Cistercians, and from this date Furness was a Cistercian house, the order gradually enlarging and rebuilding the original church.

During the twelfth and thirteenth centuries following the absorption of the Savigniac order by the Cistercians, the east end of the church was rebuilt with a square-ended Presbytery and three square-ended chapels opening off the north and south transepts. The majority of the current ruins date from this period. By the fifteenth century, it had been completely re-modelled and had become the second richest and most powerful Cistercian Abbeys in England, as well as one of the grandest. The Abbey was dissolved in AD 1537 on the orders of Henry VIII.

SAMPLING

The Grade 1 listed ruins are now a property in the care of English Heritage who has been carrying out emergency conservation work to stop the ruined Abbey church sinking into the soft ground. This follows earlier routine inspections which revealed serious cracks in the presbytery walls. It would appear that these walls are built up over a foundation raft of oak timbers, and that these timbers are now gradually giving way. A number of these timbers were retrieved from beneath the Presbytery during a programme of underpinning which took place in 2013 (Fig 2). This underpinning was performed by removing timbers from 'slots' beneath the walls, the slots then being filled with concrete. Initially, a number of these timbers were extracted without reference to their original locations (though they are believed to have been extracted from slots in area ' C ') (Fig 3), though the locations of timbers extracted later were so identified.

From these timbers large off-cut baulk sections were taken and stored at the Abbey site. A dendrochronological analysis of these timbers was then requested by Tim Baldock, English Heritage National Projects Team, to provide independent dating evidence for the foundation timbers. Thus from the suitable baulks available a total of 43 cross-sectional slices were obtained with a chainsaw (Figs 4a/b), these slices subsequently being further reduced to radial slices. Each sample was given the code BIF-E (for Barrow-in-Furness, site 'E') and numbered 01-43 (Table 1).

ANALYSIS AND RESULTS

Each of the 43 samples obtained from Furness Abbey was prepared by sanding and polishing and their annual growth ring widths were measured. It was seen at this time that one sample, BIF-E18, had serious distortion to its growth which thwarted attempts to obtain reliable ring-width measurements. Similar issues were encountered with BIF-E24 with bands of narrow rings proving to impossible to measure reliably. A few other samples had slightly decayed or rotted outer sections and it was not always possible to measure the annual growth ring widths of these portions of the sample. It was, however, usually possible to determine the approximate number of rings these un-measured portion of sample might contain, this information also being given in Table 1, and used to help determine the likely felling date of the timbers. The ring-width data of all measured samples are given at the end of this report.

The data of the 41 measured samples were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), this comparative process producing two separate groups of cross-matching samples. The first group comprises 32 samples, these cross-matching with each other as shown in the bar diagram, Figure 5 . These 32 samples were combined at their indicated offset positions to form site chronology BIFESQ01, this having an overall length of 182 rings. Site chronology BIFESQ01 was then compared to the full corpus of reference material for oak cross-matching with a number of these when the date of its first ring is AD 975 and the date of its last ring is AD 1156. The evidence for this dating is given in Table 2.

The second group to form comprises the remaining nine measured samples, these cross-matching with each other as shown in the bar diagram, Figure 6. These nine samples were also combined at their indicated offset positions to form site chronology BIFESQ02, this having an overall length of 161 rings. Site chronology BIFESQ02 was also compared to the full corpus of reference material for oak but in this instance there was no conclusive cross-matching and the nine samples must, therefore, remain undated by dendrochronology.

This analysis may be summarised as below:

Site chronology	Number of samples	Number of rings	Date span AD (where dated)
BIFESQ01	32	182	$975-1156$
BIFESQ02	9	161	------
Unmeasured	2	---	-----

INTERPRETATION

Analysis by dendrochronology of the timbers of Barrow-in-Furness barn has produced a single dated site chronology comprising 32 samples, its 182 rings dated as spanning the years AD 975-1156. A further site chronology comprising nine samples has also been created, this being 161 rings long. This second site chronology, however, cannot be dated.

Site chronology BIFESQ01

None of the 32 dated samples in site chronology BIFESQ01 retains complete sapwood (the last growth ring produced by the tree before it was felled), this either having been removed by the original carpenters or decayed while the timbers were in the ground. As a result, it is not possible to indicate a precise felling date for any timber. Several of the samples do, though, retain the heartwood/sapwood boundary (this indicated by ' h / s ' in Table 1 and the bar diagram), this meaning that only the outer sapwood rings have been lost from the timbers.

The average date of the heartwood/sapwood boundary on the 11 dated samples that certainly retain it is AD 1150 . Allowing for the minimum and maximum numbers of sapwood rings the trees are likely to have had (the 95% confidence interval being 15-40 sapwood rings) this would give the timbers an estimated felling date in the range AD 1165-90. That these timbers are generally coeval, furthermore, is supported by the small difference in the position and date of the heartwood/sapwood boundary, this ranging by only 12 years from relative position 170 (AD 1144) on samples BIF-E21 and BIF-E36, to relative position 182 (AD 1156) on samples BIF-E07 and BIF-E19. Such similarity is indicative of a group of trees having been cut at a similar (though perhaps not identical) time to each other as part of a single episode of felling.

While it is very likely (allowing for estimates of unmeasured rings and the likely presence of the heartwood/sapwood boundary) that at least a few other timbers were cut as part of this later-twelfth century programme of felling, there are a number of timbers (those without the heartwood/sapwood boundary), where a likely felling date range cannot be reliably determined. The earliest possible
felling may be represented by sample BIF-E15, though, with a last heartwood ring date of AD 1064 and allowing for a minimum of 15 sapwood rings, this is unlikely to have been before AD 1079. The latest timber without a heartwood/sapwood boundary is represented by sample BIF-E39, which, with a last heartwood ring date of AD 1141 and again allowing for a minimum of 15 sapwood rings, is unlikely to have been cut before AD 1156.

However, although it is possible that one or two timbers could in theory be earlier, or indeed later, than the majority, this seems unlikely given the high level of cross-matching between the samples, with values in excess of $t=7.0$, $t=8.0$, and $t=9.0$ being seen. Indeed, given that they cross-match with particularly high values, it is likely that samples BIF-E27 and BIF-E28 ($t=16.7$), BIF-E11 and BIF-E14 ($t=17.0$) and BIF-E07 and BIF-E08 ($t=25.5$), are pairs of timbers each derived from single trees, although in this instance it is feasible that some samples may have been derived from the same timber. However the overall level of cross-matching would suggest that all the timber has been derived from trees growing close to each other in a single woodland and are thus more likely to have been felled as part of a single episode of felling, albeit, possibly over a few years as work on the Abbey proceeded.

Site chronology BIFESQ02

Likewise, none of the nine samples in the undated site chronology BIFESQ02 retains complete sapwood or indeed the heartwood/sapwood boundary. It is thus difficult to be certain that the timbers are coeval. However, given again the levels of cross-matching between samples, it is probable that that all nine sampled timbers were derived from no more than three different closely grown trees (and possibly from a single tree) from a single woodland. As such it is very likely that, if more than one tree, they were cut at the same time as each other.

Radiocarbon dating sampling and analysis

Three samples from timber BIF-E40 that formed part of the 161 year undated site sequence BIFESQ02 were submitted for dating to determine whether the nine timbers in BIFESQ02 were contemporary with those in BIFESQ01. The three radiocarbon wiggle-match samples from the undated site sequence BIFESQ02 were selected from the beginning of the sequence (Table 3) in the expectation that they would fall on the 'steep' section of the calibration curve (Fig 7), if they were contemporary with BIFESQ01, and thus provide a more precise date for the last ring of the sequence than if samples from throughout the sequence had been submitted.

The three samples dated at Scottish Universities Environmental Research Centre (SUERC) were pretreated as outlined in Dunbar et al (2016), and dated by Accelerator Mass Spectrometry (AMS) (Freeman et al 2010).

The laboratory maintains a continual programme of quality assurance procedures, in addition to participation in international inter-comparisons (Scott 2003; Scott et al 2010). These tests indicate no laboratory offsets and demonstrate the reproducibility and accuracy of these measurements.

The results are conventional radiocarbon ages (Stuiver and Polach 1977; Table 3), and are quoted in accordance with the international standard known as the Trondheim convention (Stuiver and Kra 1986).

Radiocarbon dating

Radiocarbon dating is based on the radioactive decay of carbon-14 and can be used to date organic materials, including wood. A small proportion of the carbon atoms in the atmosphere are of a radioactive form, carbon-14. Living plants and animals take up carbon from the environment, and therefore contain a constant proportion of carbon-14. Once a plant or animal dies, however, its carbon- 14 decays at a known rate. This makes it possible to calculate the date of formerly living material from the concentration of carbon-14 atoms remaining. Radiocarbon measurements, like those in Table 3 are expressed in radiocarbon years BP.

Calibration

Radiocarbon ages are not the same as calendar ages because the concentration of carbon-14 in the atmosphere has fluctuated over time. This is because, due to the fluctuations in carbon-14 in the atmosphere over time, a radiocarbon measurement has to be calibrated against an independent scale to arrive at the corresponding calendar date.

That independent scale is the IntCal13 calibration curve (Reimer et al 2013) is constructed from radiocarbon measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibrations which relate the radiocarbon measurements directly to the calendrical time scale have been calculated using IntCal13 and the computer program OxCal v4.2 (https://c14.arch.ox. ac.uk/oxcal/; Bronk Ramsey 1995; 2001; 2009). The calibrated date ranges quoted for each sample in Table 3, expressed as 'cal AD", were calculated by the maximum intercept method (Stuiver and Reimer 1986) and are rounded outwards to the nearest 10 years as recommended by Mook
(1986). The graphical distributions of the calibrated dates, shown in outline in Figure 9 are derived from the probability method (Stuiver and Reimer 1993).

Bayesian Wiggle-matching

Wiggle-matching uses information derived from tree-ring analysis, in combination with radiocarbon measurements to provide a revised understanding of the age of a timber; a review is given by Galimberti et al (2004). In this technique, the shapes of multiple radiocarbon distributions can be "matched" to the shape of the radiocarbon calibration curve. The exact interval between radiocarbon results can be derived from tree-ring analysis.

Although the technique can be done visually, Bayesian statistical analyses (including functions in the OxCal computer program) are now routinely employed. A general introduction to the Bayesian approach to interpreting archaeological data is provided by Buck et al (1996). The approach to wigglematching adopted here is described by Christen and Litton (1995).

Details of the algorithms employed in this analysis - a form of numerical integration undertaken using OxCal - are available from the on-line manual or in Bronk Ramsey (2009). Because it is possible to constrain a sequence of radiocarbon dates using this highly informative prior information (Bayliss et al 2007), model output will provide more precise posterior density estimates. These posterior density estimates are shown in black in the Figures and quoted in italic in the text.

The Acomb statistic shows how closely the dates as a whole agree with other information in the model; an acceptable threshold is reached when it is equal to or greater than An, a value based on the number of dates in the model. The A statistic shows how closely an individual date agrees with the other information in the model; an acceptable threshold is reached when it is equal to or greater than 60 .

BIFESQ02

The chronological model for the dating of site sequence BIFESQ02 shown in Figure 8 shows good agreement between the radiocarbon dates and the relative number of years between them derived from the tree-ring analysis (Acomb = 92.8; $\mathrm{An}=40.8 ; \mathrm{n}=3$). The model provides an estimate for the last ring of site sequence BIFESQ02 of cal AD 1025-1065 (73\% probability; BIFESQ02_ring_161; Fig 8) or cal AD 1075-1110 (22\% probability) and probably cal AD 1030-1055 (62\% probability) or cal AD 1085-1095 (6\% probability). Given that timber BIF-E40 along with the other timbers in site
sequence BIFESQ02 only comprised heartwood rings this estimate simply provides a terminus post quem for their felling.

A potential last ring date for BIFESQ02 suggested by dendrochronology is AD 1038; with BIFESQ02 matching against reference for Lancaster Castle, Lancashire (AD 950-1404; t=5.4); Peterborough Cathedral transepts, Cambridgeshire (AD 921-1194; $t=5.3$) and Barton Coffins, North Lincolnshire (AD 785-1134; $t=5.0$; Tyers 2001). Incorporating the potential date for the last ring into the wiggle-match (Fig 9) shows good agreement (Acomb =95.2; An = 40.8; $n=3$).

The average date (AD 1150) of the heartwood/sapwood boundary on the 11 dated samples that certainly retain it is not incompatible with the estimate for the date of the final ring of BIFESQ02 (Fig 10) and although unproven it is likely that the two sequences are broadly coeval.

CONCLUSION

It would seem very likely, therefore, that the majority of timbers examined in this programme of tree-ring and radiocarbon analysis, were cut as part of a single episode of felling in the later twelfth century specifically for the construction of the Abbey after the monks returned to the site in AD 1141 following earlier Scottish raids. Taken overall, the timbers have an estimated felling date in the range, $\mathrm{AD} 1165-90$.

Woodland sources

As may be seen from Table 2, although compared with site chronologies from all parts of England, site chronology BIFESQ01 appears to generally cross-match best with references made up of data from other sites in north-west England. This would suggest that the timbers used for the foundation rafters are from relatively local woodlands.

REFERENCES

Arnold, A J, and Howard, R E, 2013 Oakham Castle, Oakham, Rutland, Treering Analysis of Timbers, English Heritage Res Dep Rep Ser, 23/2013

Arnold, A J, Howard, R E, and Tyers, C, forthcoming Lancaster Castle, Castle Park, Lancaster, Tree-ring Analysis of Oak and Pine Timbers, Historic England Res Rep Ser,

Bayliss, A, Bronk Ramsey, C, van der Plicht, J, and Whittle, A, 2007 Bradshaw and Bayes: towards a timetable for the Neolithic, Cambridge Archaeological Journal, 17, 1-28

Bronk Ramsey, C, 1995 Radiocarbon calibration and analysis of stratigraphy, Radiocarbon, 36, 425-30

Bronk Ramsey, C, 1998 Probability and dating, Radiocarbon, 40, 461-74
Bronk Ramsey, C, 2001 Development of the radiocarbon calibration program OxCal, Radiocarbon, 43, 355-63

Bronk Ramsey, C, 2009 Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337-60

Buck, C E, Cavanagh, W G, and Litton, C D, 1996 Bayesian approach to interpreting archaeological data Chichester, John Wiley and Sons

Christen, J, and Litton, C, 1995 A Bayesian approach to wiggle-matching, Journal of Archaeological Science, 22, 719-25

Dunbar, E, Cook, G T, Naysmith, P, Tipney, B G and Xu, S 2016 AMS ${ }^{14} \mathrm{C}$ dating at the Scottish Universities Environmental Research Centre (SUERC)
Radiocarbon Dating Laboratory Radiocarbon, 58, 9-23

Freeman, S P H T, Cook, G T, Dougans, A B, Naysmith, P, Wicken, K M, and Xu, S, 2010 Improved SSAMS performance, Nucl Inst Meth B 268, 715-7

Galimberti, M, Bronk Ramsey, C, and Manning, S W, 2004 Wiggle-match dating of tree-ring sequences, Radiocarbon, 46, 917-24

Groves, C, 1990 Tree-ring analysis and dating of timbers from Annetwell Street, Carlisle, Cumbria, 1981-84, Anc Mon Lab Rep, 49/1990

Groves, C, 1992 Tree-ring analysis of timbers, in Excavations at 33-35 Eastgate, Beverley, 1983-86 (eds D H Evans and D G Tomlinson), Sheffield Excavation Report, 3, 256-65

Headland Arch Ltd, 2012 Furness Abbey, Cumbria, archaeological enabling works for masonry underpinning to the presbytery: post-excavation assessment for English Heritage, HA Job no. FABC11

Hillam, J, 1994 unpubl Bowers Row Car Park, Nantwich, Cheshire: Tree-ring Analysis, Sheffield Dendrochronology Laboratory unpubl computer file NANTBR

Mook, W G, 1986 Business meeting: recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference, Radiocarbon, 28, 799

Nicholson, R A, and Hillam, J, 1987 A dendrochronological analysis of oak timbers from Dundas Wharf, Bristol, 1982-83, Anc Mon Lab Rep, 33/1987

Reimer, P J, Bard, E, Bayliss, A, Beck, J W, Blackwell, P G, Bronk Ramsey, C, Buck, C E, Cheng H, Edwards R L, Friedrich, M, Grootes, P M, Guilderson, T P, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T J, Hoffmann, D L, Hogg, A G, Hughen, K A, Kaiser, K F, Kromer, B, Manning, S W, Niu, M, Reimer, R W, Richards, D A, Scott, E M, Southon, J R, Staff, R A, Turney, C S M, and van der Plicht, J, 2013 Intcal 13 and marine13 radiocarbon age calibration curves 0 50,000 years cal BP, Radiocarbon, 55, 1869-87

Scott, E M, 2003 The third international radiocarbon intercomparison (TIRI) and the fourth international radiocarbon intercomparison (FIRI) 1990-2002: results, analyses, and conclusions, Radiocarbon, 45, 135-408

Scott, E. M, Cook G, and Naysmith, P, 2010 The fifth international radiocarbon intercomparison (VIRI): an assessment of laboratory performance in stage 3, Radiocarbon, 53, 859-65

Stuiver, M, and Polach, H A, 1977 Reporting of ${ }^{14} \mathrm{C}$ data, Radiocarbon, 19, 355-63

Stuiver, M and Kra, R S 1986 Editorial comment, Radiocarbon, 28
Stuiver, M, and Reimer, P J, 1986 A computer program for radiocarbon age calculation Radiocarbon 28 1022-30

Stuiver, M, and Reimer, P J, 1993 Extended ${ }^{14} \mathrm{C}$ data base and revised CALIB $3.0{ }^{14} \mathrm{C}$ age calibration program, Radiocarbon, 35, 215-30

Tyers, I, 1999 Tree-ring analysis of oak timber from Peterborough Cathedral, Peterborough, Cambridgeshire: Structural timbers from the Nave Roof and North-West Portico, Anc Mon Lab Rep, 9/1999

Tyers, I 2001 The tree-ring analysis of coffin timbers excavated at the Church of St Peter, Baron on Humber, North Lincolnshire, CfA report 48/2001

Tyers, I, 2004a Dendrochronological spot-dates of samples from the Lamb Hotel (site 11000), Nantwich, Cheshire, ARCUS Rep, 573v

Tyers, I, 2004b Tree-ring analysis of oak boards and structural timbers from the Transepts, Presbytery, and Tower of Peterborough Cathedral, City of Peterborough, Anc Mon Lab Rep, 9/1999

Tyers, I, 2005 Dendrochronological spot-dates of samples from Second Wood Street (site E696), Nantwich, Cheshire, ARCUS Rep, 573w

TABLES

Table 1: Details of tree-ring samples from Furness Abbey, Barrow-in-Furness, Cumbria

Sample number	Sample location	```Total rings (+ estimate of unmeasured rings)```	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
BIF-E01	Beam	105 (+60 nm to ? h / s)	no h/s	986	------	1090
BIF-E02	Beam	96 (+30 nm)	no h/s	985	------	1080
BIF-E03	Beam	166	h/s	988	1153	1153
BIF-E04	Beam	120 (+40 nm to ?h/s)	no h/s	988	-----	1107
BIF-E05	Beam	80 (+80 nm to ? h / s)	no h/s	992	------	1071
BIF-E06	Beam	93 (+60 nm)	no h/s	976	------	1068
BIF-E07	Beam	170	h/s	987	1156	1156
BIF-E08	Beam	169	h/s	987	1155	1155
BIF-E09	Beam	153	h/s	997	1149	1149
BIF-E10	Beam	164	h/s	985	1148	1148
BIF-E11	Beam	170	h/s	976	1145	1145
BIF-E12	Beam	80 (+40 nm)	no h/s	984	-----	1063
BIF-E13	Beam	137	no h/s	995	------	1131
BIF-E14	Beam	140	no h/s	995	------	1134
BIF-E15	Beam	70	no h/s	995	------	1064
BIF-E16	Beam	137 (+30 nm)	no h/s	975	---	1111
BIF-E17	Beam	148	no h/s	992	-----	1139
BIF-E18	Beam	nm	---	------	------	------
BIF-E19	Beam	174	h/s	983	1156	1156
BIF-E20	Beam D5 B	132	no h/s	989	------	1120
BIF-E21	Beam D7 B	144	h/s	1001	1144	1144
BIF-E22	Beam D3 C	122	no h/s	998	------	1119
BIF-E23	Beam D8 C	106	no h/s	------	------	------
BIF-E24	Beam D4 B	nm	---	------	------	------

Table 1: Details of tree-ring samples from Furness Abbey, Barrow-in-Furness, Cumbria

Sample number	Sample location	Total rings (+ estimate of unmeasured rings)	Sapwood rings	First measured ring date AD	Last heartwood ring date AD	Last measured ring date AD
BIF-E25	Beam D18 B	102	no h/s	------	---	------
BIF-E26	Beam D7 C	140	no h/s	988	------	1127
BIF-E27	Beam D3 D	108	no h/s	------	----	------
BIF-E28	Beam D9 A 1/3	116	no h/s	1014	------	1129
BIF-E29	Beam D22 1/16	114	no h/s	1025	------	1138
BIF-E30	Beam D6 C	128	no h/s	997	------	1124
BIF-E31	Beam D7 D	114	no h/s	------	------	------
BIF-E32	Beam D8 A	130	no h/s	998	------	1127
BIF-E33	Beam D5 C	168	h/s	985	1152	1152
BIF-E34	Beam D8 B	145	no h/s	986	------	1130
BIF-E35	Beam slot ' X ' E	164	h/s	986	1149	1149
BIF-E36	Beam D A9 A 2/3	156	h/s	989	1144	1144
BIF-E37	Beam D6 D	110	no h/s	-----	-----	-----
BIF-E38	Beam D17 E 2 pcs	144	no h/s	996	--	1139
BIF-E39	Beam D	92	no h/s	1050	--	1141
BIF-E40	Beam slot 'X' D	156	no h/s	------	------	------
BIF-E41	Beam D4 D	103	no h/s	------	------	------
BIF-E42	Beam D9 A 3/3	158	no h/s	----	------	------
BIF-E43	Beam slot 'X' C	108	no h/s	------	------	------

$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample
$\mathrm{nm}=$ rings not measured

Table 2: Results of the cross-matching of site sequence BIFESQ01 and relevant reference chronologies when the first-ring date is $A D 975$ and the last-ring date is $A D 1156$

Reference chronology	Span of chronology	t-value	Reference
Eastgate, Beverley, Yorkshire	AD 858-1310	7.5	Groves 1992
Lamb Hotel, Nantwich, Cheshire	AD 941-1276	7.1	Tyers 2004a
Second Wood Street, Nantwich, Cheshire	AD 932-1509	6.8	Tyers 2005
Annetwell Street, Carlisle, Cumbria	AD 930-1219	6.6	Groves 1990
Dundas Wharf, Bristol	AD 770-1202	6.6	Nicholson and Hillam 1987
Bowers Row, Nantwich, Cheshire	AD 920-1244	6.2	Hillam 1994 unpubl
Peterborough Cathedral nave, Cambridgeshire	AD 887-1225	6.2	Tyers 1999
Peterborough Cathedral transepts, Cambridgeshire	AD 921-1194	6.2	Tyers 2004b
Lancaster Castle, Lancashire	AD 950-1404	5.9	Arnold et al forthcoming
Oakham Castle, Oakham, Rutland	AD 923-1153	5.8	Arnold and Howard 2011

Table 3: Furness Abbey timber BIF-E40 part of sequence BIFESQ02- radiocarbon results

Laboratory number	Sample reference	Material \& context	$\begin{gathered} \delta^{13} \mathrm{C}_{\text {IRMS }} \\ (\% \mathrm{o}) \end{gathered}$	Radiocarbon Age (BP)	Calibrated date cal AD (95\% confidence)	Posterior Density Estimate -cal AD (95\% probability)
SUERC-58596	$\begin{aligned} & \text { BIF-E40, } \\ & \text { rings 1-5 } \end{aligned}$	Quercus sp. heartwood, relative years 1-5 of chronology BIFESQ02, from BIF-E40 a waterlogged timber offcut from the Presbytery foundation raft	-26.3 ± 0.2	1178 ± 29	770-960	$\begin{gathered} \text { 865-905 (73\%) or } \\ 920-950(22 \%) \end{gathered}$
SUERC-58597	$\begin{aligned} & \text { BIF-E40, } \\ & \text { rings 20-24 } \end{aligned}$	Quercus sp. heartwood, relative years 20-24 of chronology BIFESQ02, from BIF-E40 a waterlogged timber offcut from the Presbytery foundation raft	-25.6 ± 0.2	1081 ± 28	890-1020	$\begin{gathered} \text { 885-925 (73\%) or } \\ 940-970(22 \%) \end{gathered}$
SUERC-58598	$\begin{aligned} & \text { BIF-E40, } \\ & \text { rings 36-40 } \end{aligned}$	Quercus sp. heartwood, relative years 36-40 of chronology BIFESQ02, from BIF-E40 a waterlogged timber offcut from the Presbytery foundation raft	-24.5 ± 0.2	1127 ± 29	770-990	$\begin{gathered} \text { 900-940 (73\%) or } \\ 955-985(22 \%) \end{gathered}$

FIGURES

Figure 1: Map to show the location of Barrow-in-Furness and Furness Abbey (after Headland Archaeology Ltd) © Crown Copyright and database right 2014. All rights reserved. Ordnance Survey Licence number 100024900.

Figure 2: Views of a timber in-situ (photograph Historic England)

Figure 3: Plan of the Presbytery to show location of the underpinning slots (after Headland Archaeology Ltd) (after Headland Archaeology Ltd)

Figure 4a/b: Views of the timbers being sliced (photographs Robert Howard)

White bars = heartwood rings, shaded bars = estimate of rings not measured (nm); h/s = heartwood/sapwood boundary

Figure 5: Bar diagram of the samples in site chronology BIFESQ01

Relative

White bars = heartwood rings

Figure 6: Bar diagram of the samples in site chronology BIFESQ02

Figure 7: Radiocarbon calibration curve (Reimer et al 2013) for the period covered by the dated site sequence BIFESQ01 (975-1156 AD), illustrating why the three radiocarbon wiggle match samples from the undated site sequence BIFESQ02 were selected from the beginning of the sequence in the expectation that they would fall on the 'steep' section of the calibration curve

Figure 8: Probability distributions of dates from Furness Abbey site sequence BIFESQ02. Each distribution represents the relative probability that an event occurs at a particular time. For each of the dates two distributions have been plotted: one in outline, which is the simple radiocarbon calibration, and a solid one, based on the wiggle-match sequence. The large square brackets down the left-hand side along with the OxCal keywords define the overall model exactly

Figure 9: Probability distributions of dates from Furness Abbey site sequence BIFESQ02, incorporating the potential tree-ring date for the final ring of the sequence - $A D$ 1038. The format is identical to Figure 9

Figure 10: Summary of dating evidence for site sequences BIFESQ01 (average h / s boundary date) and BIFESQ02

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

BIF-E01A 105
2542191812001891522191681311611631612091321321761421366938 559012613315519017411811710375808982868267153132132 16114819116416096115118146198172257243210190233196875966 811217910612610696121768968114971181501311201289660 10910373661169710475761791231231481359253464048101 14514610014791

BIF-E01B 105
2592311762051921711921821501551571651891441321791441346444 519313113914618017613210010074789171948767157139128 15715219115517887117107162187170234251225187220193896765 98116107129150107110112738560108991151511341071179372 114107616311411110083118158142132127126955347566896 13415010915296

BIF-E02A 96
196228163108138144142132134106169156187221192184257202154139 614560117107107139120122968046536146989393116149 107150102174841146510570104153112264325309246320209104105 8816416095162230182209207114128101162196199153170151135142 851661705973125134150132176271218240178126139

BIF-E02B 96

169200154109134141151172149111173189201242205178237176140122 6045611171021071281221271089645586056818486125146 11314412615511411075831081001621092593142932373202129596 9817016096158231184209200114128100157203198165169146140139 761601696768120150164115190284212223232103134

BIF-E03A 166
212224208174184205230246228207168179216189146167108655875
99129838115611789825242464596767511660485753
6264694541497145565371656077493954264354 4812110082951065664325962465759675677374244 2335425639324556455046453522253529423450 6443483545435340524543434075935065624042 40363339373985123767839393568706782797063 373050305665135106713237436481876293838453 455173121109107

BIF-E03B 166

185232230184179229227238235209194164203186136164119674684 107125918216111192855342434992826612160465359 5364704242567047505968606573463957284551 49118113751001095956405364465762606271324836

 34372637454579131807830403464836982796565

373051315856135104783135435985895990908345
495569128110103
BIF-E04A 120
2251721952384163902423891641391481301341492282771551115982 1351001461409713912512367103114627147531008410795108 1011211371048551988767841101071231001106098925065 506570708210698139891731321171671261149810070129112 848170897161122128140136157688283674653546046 4566475374734868525858737045911369411510463

BIF-E04B 120
2161672042363933842603551911641361321311491982701651135685 135100139146921351211226410211167743953998510097104 941241379986609295628596109122931066992895460 51627269811039013995168128112156135121959389127111 819076757361117129134135154568281674350546242 456543606573457064485153636237981311009399

BIF-E05A 80
326344399660432560194154162173144152102726975134189186138
1831459711764138152116756485107155192175164173173236167 115140162173109113153196131851207982878457103128122135 13617711720315518722316419217112581887615417695109109156

BIF-E05B 80
300340376663435569177148164171157155100676287140171203138 1821359614069136150124785685107139185184169162181235153 110134164175112107167192125851158185828459107119123135 12618711120415916722817118216414290717915416010793103168

BIF-E06A 93
420363343317221210244397296401397373373378409234278299253382 3923732322172862281421215354356287667875115887895
5043454356621001421161281409279891176071707681 75131151110123151167924553486264114148154164163103111 871631751341642111221381349611514679

BIF-E06B 93
423372339339199205269389317391394346344369385257270295244389
3903842262122792321371374950396087718275115857680
354848457051981541151141218284901347560707583
86125147123117143164844136505964123139175172159100102
781631721311612081131351337911514280
BIF-E07A 170
42428323234133039638642341032526925517114517510780594738

4246415160563451585671706456373533293228
50371541701901772351311769814819321529013711086944868
$\begin{array}{lllllllllllllllllllllllll}57 & 57 & 59 & 68 & 84 & 81 & 78 & 81 & 89 & 98 & 95 & 80 & 52 & 52 & 56 & 46 & 37 & 46 & 59 & 76\end{array}$
6268685748656558757051435054406813281142110
8990466861949093181149107995663811121061348796

101625310981130105128196159846910111313410314013985133 1158484135165155175134200237

BIF-E07B 170
32625726531639743940441140832827425019214916711071554250
$\begin{array}{lllllllllllllll}56 & 86 & 86 & 73 & 60 & 92 & 70 & 73 & 60 & 46 & 42 & 34 & 34 & 44 & 42 \\ 57 & 79 & 85 & 93 & 99\end{array}$
6644466257625051535976687864394531232137
465014219018717921810717311715720524828513110985955185
6557657081807682899593855153544832506069
5866705753626457756750425650457312585142115
798352726590888518614810710157678112310212593112
1145553105831311091152091508963931091289715714282138 1188188147147134165170182181

BIF-E08A 169
18825817926830836244240745338726424618213616210557564636 5193816767867269603942303143395879968289 3542284550443542554460645346293434232331 4250132126164164265151178140143198184240160123981035683 5465626578846578978784785356484240485665 5065704846505642755948434750416014271122107 577951736578918516315210510867578612110112799111 11056591019513111312717415086719312712110214813896176 1178493122159179171192201

BIF-E08B 169
18226018826030233642546240536926424518215316510766575332 5185736161987470504840303044435779947692 4136304752473645524661635546283235262032 374613712916012224312517616215622721428715612596945076 5649567167786579907984705157505637506061 4357714341505545705955474455426313573125106 759254756287929217815490112597378121100130108107 118526111185135106111196145846510311613994144134107167 1097781121143171179165240

BIF-E09A 152
1291432192131882071361011141611287567789614473766237 4741425762697157566149715061554646573953 46674977707743694668607175918285965810182 1259810812167566462346770476580968475129117143 10912080795946515070767611411497819378688594 6567706576132142911047057927246598110177135117 130121895581918382911059212610188119106107139232195 1688198871017711213414582135228

BIF-E09B 153
118157209216196204130941171491237863848610774616355 3956506665648771515550674656405055574748 48735064716247614958637183857792935210196 10910110912663606157536067466978938568142117134 11711578747032395671827211810789898789739081 73608075661231341001047857906557468510682140123

13111575717392897692100991259695115101111135219143 12910489777890109153130137130151189

BIF-E10A 164
32641439330840240732335537937434036032825321920717311714092 62488213515410610118412379813432313964605811265
5670606252664546717159536776625650523240
264245348111287901004545344860504264594855
3350423232465762356175505446483020253125

607243642843464256541091108265373143567481
5169504032533831446471576831365148798257
62687183

BIF-E10B 164
40730541228445140035334636537334436031326022620617512513598
5753761351501109818412279783927353465665311465
5668606459693547717556486584626357482645
314149288010993891125044374362394859634668
4047422940405460345768525346392820262531
32553359705434293730504135375141336810668
627035533457314648491001127775352937647575
6266564246422937445581517142403852689056
57706390

BIF-E11A 170
313355204350337182387359234311211306186191254186140189178186 1781851381551671471301491188445599811680991351468279 424542316253649671561018211289925957746567 78851321039371735375606078711832091241251256091 72791007179768279112546573396664838454104128 1081107656743640654690117901561389159467856108 9094817162491041186190673960375438506765115 1531068846494978981221591078675496054417754137 96754434375052466287

BIF-E11B 170
246332235315343213351355237291216277198190265181162188184186 18219112816116914712814611798596410911778961461397478 564040405954531047855998711091857459645482 798212910193716948816762657917318213410611271107 5977104677584817911847855448676482855897131 11210884547639406147841151011771419262526760107 8493818063461001216498704353345643446276116 1531069638405575103115172879378466857397256127 103784634454459565677

BIF-E12A 80
141303382359463444446448405485490420421368335250314293231151
879876842071661571391531231268260644637766876115
11210390735364591095360931071001091018066505945
3229355181145100142153170108898512216398195153118146

BIF-E12B 80
154274393340459444444468396478471432379405328229354268242175
8810566732171651561341531211428757713940726579121
1011148571536759115466489114106113918164506239
28344046841451041501421711218787109160114135143114150

BIF-E13A 137

285173249208166279225276214146173110171269301200182345268238 211106107151117202133185349257242206142157184181179121143187 1621961902702432311651377512410813916016615019315413915486 1187914612811817115713214522910913615968871128112179140 1311231541256875523186958411471901187696627653 15281485651454165624356464647504340465863 658110012950597812813516017016592757965105

BIF-E13B 137
294171229211171282219276185146179109176274300210192335272232 231107102143120194132192341257240200156146177200176114148182 162164142296201171164118841049311410917417219015116815379 1207514812513716215413513720910913415657829612811681134 151140157143596353548384889868841066373548077 11271485948623365555987594350483639505278 591049013853518415115915217211911784627580

BIF-E14A 140
55249238338733034328014917616610385103185203148121214167108 1395539413475646213465799297116868350527896 71738313075834872506858495255128130839810751
6441475546535357608142536729534964603979
927783734470465452787189781181106754476047
93635355664635761167476714569344633435953
93118698334374269858978603929254329305634
BIF-E14B 140
5344904074023003212781391761679788106186207146139190190103 1425341343577617512771719294113767457498699
691165811082815467467557465754126132939010963
6636515648535159518845595435534862634571
957687714873393454427287711141236743566260
82706062574240791327475604766233436366065
87978467423430651018779573932233731404145
BIF-E15A 70
283387398515343418333346285189160110242274247203121245225192
1671159417914714810016516519214316813715513012810811081129
10313712618118110993112871107614512312515914514011512085
96841141181279087109101112
BIF-E15B 70
241430400505335437376360262214165104226288221202145214215192 1751081231781641431061561811731451821401371231421328584124 12610913118919595104106781309114211813215914614711910387 8788131109121909212982126

BIF-E16A 137

204154185856056117129280329293496435473415478499279339367 27833531331228719521024013111066645864646565797868 9332433329425210310510810414770103859179577958 5556791101219013714064343437424171100118959748 6243929311898111908210185818155425850375369 10010113313410393723773691181281411591181068289112114 9391112126119695089847084767375818142

BIF-E16B 137

179154181906154118134252302255476434448430506536330411516 35739634839839621520626714310770768184925671968176 1152942293442581051271011011507582849387756767 64519010710995123123822331373551531009410210053 45468490115101117858410484797950435451375371 96109131131105936352638010915412915811010093878736 7891113121121724297966188874782816578

BIF-E17A 146

39437528732029328221421221721416719415295767712114392109 146151931104642403962606387806994941181068559
5460598564901251039693885675715475100186184126 11611568896292956868849310012967878350677393 966710613414511510367101393964548412910815013210067 529271124959295896452143142971021115457454047 516578143199111118374355951101281621319881397856 438175190184187

BIF-E17B 148

405402295316301277218214230232182209138107808913113996117 142148911194639403960607182827489971201059059 485362787089134106939382548377507899180188137 118107658965929665718485104128659281427368101 1007111413413511911068924146654297142951481439575 439062126103988885656713514898109966059405346 526176115214112121503759731091391711347795418648 50708218711317593122

BIF-E19A 174

14176438996266202276275326303310321253303229167146157105
70575327811541321218312989836437433739795766 11881867545354459634133445358687949454043 31282652424212312813812813960785181841041159775 6810237706459516881957997119117129108741067160 58651181048810811672727595545561454251644298 143871098763715860475170811341298584455271128 90115112907681505756937569563134466372109124 1209311814369104155193177159171160278158

BIF-E19B 174
147794311113525316426226033633230932525527627813812316496 6353553490149135103103126104805940443957646578

12085797545455062564937435161578158403451 34282942573512113212612413166825176921011139878 7198466473654965781098596118115138102611127054 615812410888114118717675104555956404345624197 146861098884625259535868811371248481515469131 921181171007885525960928657613335477468101123 12110112013270109152190186154170159269152

BIF-E20A 132
38034028028441538943642138834424029320017520511416089128227 246201145217206210150717013810014882126246211177198164190 2011921481211792061621932072371922031281417211689112126150 165193156150139761347511910310410011295951498410011362 9410811711589114143128146162719849577679100142103154 1521361501381371341611438799100103591071218797787081 6681596379711011161111677596

BIF-E20B 132
335336235292403437443407341341279333206203221128182116180266 2842181512352091961647310410310614079131242209176206151208 1941941601101852001871762082432142031061377512178126104157 16019216014814178129701279611210411887921577812111261 81109118109100113129125152159788754508078103137108156 14713714813414112017812612487102936310612681106785878 8770477872731031101181577095

BIF-E21A 144
2962501911921771841002311911991731441341849512683125100137 12814614210392757811382861188513415210182125115107135 8512414910367124166147185217133156143108186115165173129167 10416514016810912113915016224021413096159187180162175117125 1256096106156136182283181150179100134119246203183200181149 1032232271251781939513716413811212112810415018621615912982 99178246193177178122137156171184124152171236143116133112128 12310796167

BIF-E21B 144
2952341832061831821122301912141571461281751231177011194117 1411501331089610566927898928112414010310394123124102 117124156936013317514619321414815016292189114160168135159 146145139164112142143110167238208143103144182194126187109132 1176784112173142175292206139182114143101234199181195170154 822352521312031959014214614311813112411214516820618210697 1211882151961621891461001502142101121471352341169991116122 9487110150

BIF-E22A 122
235226184244277246205106911642212752131481531921551175573 49293829708913117221418522019121510232398410796125 1521551091171025142491409878989397878479783880 70899392961048252120127559610512613992200267196259 1811122391607456731121681701901847711810115089125112135 1379010043133144114159846779107755353788514813790

9087

BIF-E22B 122

219215180238297247212111971662252742071391611981281076367 53323937578113216921417320418721511043339011389134 14515710111110745485114498681079396789376753582 65959695931047650104148509711312312992229262203271 192110248162765462129147156162179879611414279125117137 136106925612314012513611262771031055046738616214296 9586

BIF-E23A 106 1531098779455054334087150224836497123209235302217 209142132817792182155185194196160175228246279218160205125 96107218273273199198231156110143210278233246215203192160126 165198129143217223217121110148200125160154184209115858785 12315287957859506512113713714914610611662497187134 131253236149151231

BIF-E23B 106
1391268184554850324091149195576389134162270301233 157167126757987165176169187200157167225249307195165202136 85136214268278194199229153115150221269234245232171187178132 1751921401641871972261291121561901421561511811961148910578 1181559084575954591151561181451319612859596981131 121255240154155231

BIF-E25A 102
123140126118131169174178170153133995073135200164225189146 147798110313210315118326122515212916112788133124158158159 58605810598716948383945891161141591371181107357 6790120121171143110129129110117125132929968605374117 90131156106131129131791121219813213111084109142170137155 157195

BIF-E25B 102
120142134125117161169168181145133877668120193169206189147 12869899412512315317525022712713315713983132123169144150 5368599698716550424243981081131501351121167360 78931201341481511041141211311061251378110782515679103 99146139113134129131681111219813512710681110139162147125 157209

BIF-A26A 140
4072502392181762293031893982623212572001662152411848578124 13411112211019515713211577856055606198132134125160139 17592151546874104871231841751841782091821076492115145 10611811013712816813715410096869513711515310112585132150 47705267935481116145107927699694648568510095 1281131121031141471391381241137988103751121569313110998 96871188187112831501431095964516168153113182178110

BIF-A26B 140

3012002382301952652372053823141743532311601652251846282132 1259810813917714812911889887242575898126123138156150 15212113374627885114123167196189168210188957385129149 86125109128143170127146981031067612013113710812185142139 65565770855385121137106787010668496951649984 1311211041041131491341341251408885112561291381091348796 819312896958590147143121103937681121131174156100102

BIF-E27A 108

37617275100167299375484217155155117676951423785166236 82568515111515020816611712963324651100109107125139107 103147145178134116104706567114193178182134143796589129 189199231200164107929612014010796135268204166158167134123 16713916518718186139118114639546645465100140151234214 14313812692139170197278

BIF-E27B 108
35215784104175293364471239151137119836248334689160262 8556711411351501941551371366452425492117114135124111 10714713918915010690717362120178126171140146817684134 1911842371851651211019010213594101153306227153154120151130 1571401711921818515712912073845356516797138167221227 15615612993146171209272

BIF-E28A 116
140202108196102100109217207229186150146106128130169214149191 205212131185196210228185157162135101201248211235222160181235 1262231341202412082062101812012321451571759111121226815996 13923121517824512924513979109160210238191315203205218166171 12526525222622527024015729325715325518596187174204141209219 166225177228160128132103177223175196217192175243

BIF-E28B 116

18521213117315087129223198236191164146100135154201210116194 217209136181203203238168149182121103217255191215214181190248 15322513513123121019522017621724212915617187118220269188110 15423121719023413423514388106164219275158309207218246155182 131245246245246256264134301253160218195143175196210217155201 18922319017818913298112132244159199203206203262

BIF-E29A 113
2651961181671211871351171009113310016518926519123821414280 861171018311613517413918013114188110135122126117139157176 10114812871596569706792117151149140123148104826780 11011710315318212315011713211413111713278989368100131100 9010339488779816174956213113590985174676482 10310196755746885657546778107

BIF-E29B 114
260186116171118185138116957612310417118226220124221714189 9611811093105125198125183133125101107134102115115134150182 1201341177958677373569313214515315112313699857074 971091151491671131531251241011371181159293101669413099

11789434581798764819458129128100867650647384 10110010979715062655361757589104

BIF-E30A 128
36328525421023413016016017896153219197148127183224117162117 16613584108166207217162152121107143151151189126176168179135 201173186236168150144140118215243194180217175181187146263176 11922717122516016317319411817819296139234251177113155189210 1441581161529054689817525722126018817120090150147216205 1941912021831492762461312281981651231601109290181170188134 1731648189104168175201

BIF-E30B 128
321282250222225137157171169103166221215166162212232147185124 15314689107158191229138121157118146125170183130193159165134 214168184234184151139159107196239218182220167159203150272163 1422291762231671521972101111812158515120923115995131192221 151136115169906371103178221207229186166178109156158219180 2181761962021532692311491882051931061651128790184162168150 17415710389103156190221

BIF-E31A 114
12414016630117117314279555990171214184257219141100216185 25017514416711766101155228235182151150824956119160160189 1671461371098210411693101137161165969595104959296108 138955662757479436550523957851049013712093121 51467984125125156170107112134137189150173134115939089 9518214015917513619311812065557882130

BIF-E31B 114
11715017324320716415282537276173228185217217135108217216 21219014016810689831542272251751561591015965111192175191 1971621261238990137891031061731841039295106858993134 103996665706967576150484259821039214311390121 605070901181201591501131261321431901421691191281039087 9517014516816911920211811284567880112

BIF-E32A 130
103258167192243280169159841691722931631371461891531215471 86772132929712113417617318516421012141398385135111 1921671001199828375312276671188810691111841106075 89143125115981049670143167598711013514092184279192246 204103223164666359124150133150166781018914581120122132 11712210682901381251461137668839162507710315516896 1053557448575115141178132

BIF-E32B 130
110242206200280240189144981711873011501551781591481156071 1005725349092124150170175184167214102364282103122108 185169100117944638471267968115789296109821045368 99151129123103109100711631705182100143131104195273176246 19811522816470486510915613513915381909613684123129132 11211111575951371261361207168849950508111215015999

```
BIF-E33A 168
324426224300268 366 253 335439348468383331303266240269230192180
14912217917516413110913213996 98 87107924879110156135123
110937998104100135 87129140110 99153123128201124163165131
90141209215196203139168159121220134184165131203159171184218
119190181109150235254175110163162181146209109140100537493
149145157250167171159 93121138179204160178140124 91 205 225117
16816852109128112104121128109166171172156 84 76 81147 169 145
155140128148115176190141189157222 95 87 71 62100 92 86 79 90
1851569898109115157173
```

BIF-E33B 168
300400218290247372253351403391476383362296268246264214207180 1581171921681671311211331331009672105826182104154141102 1011037311094951238412815310182152125127185142145160131 87121204217202201159163157115198108163171157204146159187214 1281861939015023026118810017517418814019912312590498693 1341501452571891641419215310620020418715614314975187209134 15816273102137100125101148112196124176148848495120178143 19011613814210817918515817015622513082765510776898087 18814197113104109161185

BIF-E34A 145
484385312259261227239362314378289307211239226202153169147178 14419818519214612616818711812191116106627811914216410992 848187799898821071549170118117128148961061409862 112139154159221165143157104150101145155121134129154146149103 1411461091592382031378214115519613820111413093621018190 93125215132136150102115921921601902281671427819622494148 173861131651068011213692144177196209153100131218221125124 123155137183231

BIF-E34B 145
475350322296245229243372291373316297207235246219177175159192 142204197186152132149169126126901091046785135124167107101 958786909590811101159678109125121154112971248958 11215714017319313916414898156118163154112156159135178157109 1501481101372031841497412316719916318611216711168788598 9313220914314114411814011519317419022917614394184231112146 17710210717811493108125101126178265223178100156247209125143 128158131196250

BIF-E35A 164
39717745925824723431336234145936646044435124740630823017594 719211813810612015316511710892747648705680132125120 1141391371141429273628195921271421351121571681127390 98134106128135153139156146185103135112107159173169166187131 1821749375971061228712016815911016010010911282597584 10610615415112513116519613417716616815512513389134142109144 118577571877168937813312816210771566576109104136 147967552898956689010193104106112137145156106118118

BIF-E35B 164

36221229043819723532938930748535748140333723838831724616492 80821241281221241501691219079917653735779118126128 12113913510415110460678396851241451351251571601108287 981261041251461501501321621849014084113167189166168187112 216183656881112119841321581591141629811811893665687 1201131571561251401622031471621871621401151399612915896156 96637865877556108651501391321046968697812899121 139978755811005768629077107110118129132163126115113 110108143175

BIF-E36A 156
21924323925435028826438039833520014821622516289424232135 11211211818316610311985846270457182136139124164149160 7016475766010692121151190188186214171100788711515894 116123132143132126163751108989107120132103128811649860 458162715986981289281758479465345799684119 1029594102159131137137106788496781101679315010493112 94127948910281138162121120616066681361251881679574 60113877054931972021741427596118179153131

BIF-E36B 156

25422022924037930620542653036221018321721017178405643115 1111171191921381429774786750477086152121128157137134 132148606757104100129166197182166206179897387121151118 1111211211431371391638711287851061341351091318212811064 7167726960769010910779599376514848739480112 11583881091561271311329610381908011815611410811886109 9611598739090128168106105725470671251311891499575 5612575506510120318716211593123110185150143

BIF-E37A 110
1541331381571882231331841121176870112164246226257266248220 305251264177181207187120164279304262211247260189107120225279 24327924617116713293139200116172218215203139126130184176154 1732102621699510776112125606486683779117137116143145 111101684763791229118317114612616110310695145877868 565567109130106104161156162

BIF-E37B 110
129100130165200192175173100117787598155223226230245250223
27825727819517423516510614732728225322021527017395123234267 25026522617917513192140173126143200196214133139208113183161 1462032701488711089123104786881645375109128130141137 9610553576493118125157203130122131106110121136976562 656668106106162146141129157

BIF-E38A 144

459443418417320213325285180150921078012016111010510412481
805567664446447189107851037895649652323761
80527688786072746370826657846990981079095
627675737993121134133801048545644876575770114

112109967010673494348768189144135911161107595118 819887828968761211048590658171876764815178 109143997463537583122150140935653777859506090 82113106132

BIF-E38B 144
4554374084253122162282011871508982781361679214615510578
807176423741537477100829183927410057424450
77597494727475696066756759827911785988395 6880116625699128127160489010250477082644070118 1061158967121585533557986851481061141071178491106 10096828592568710988112847865687556737167103 1011291016864627487131162901066455716371506289 8310590109

BIF-E39A 92
144211170170162194871011181261541441161211671051321166066 637074851161641281171319610883656080728586121110 771058789869085776378826478100848978676489 505995100791251327888606469878595106951066068 89674876699210682829067107

BIF-E39B 92

1311641751841351671051091411171441321101311591161281106466
75758285961691441291329310792607171729975117110
821039885791007582718079507992839183526170
8968741147612012590106766275628193981079389106
12574657368938789849076129

BIF-E40A 156
521347336292401314366360264114675050123161175194133121128 6957575055741281669261641211101392091441631248957 46681261621371671571171461951912151901511531037567184234 188225173185106629116221721425020917015612393114139107134 154295243144133141144110135131178159159676859105856865 5440445680871091571581311028659759096128149155144 128137112138130124951207262567110611514616884134138106 751201188413215810991118138159171125154171238

BIF-E40B 156
475359354388402319407383259126574453129153177192143119129 6755535250781291678568661251131352101451671259363 5364118151142175140115131203170220139154157968583150256 210210179164996410315721820626421516416810693104143109132 166281242125146144140109129138170163141776559102906265 434140538010913114714012810469668590100122168162118 1151401121411361099112465736271112105137146106140132127 8310610510314515311590106135167169125162172228

BIF-E41A 103
16620813812111183606182120199163161162127137223201243204 1271158867781712072101941701751026485146214214219192171 145117859515410113517526821013920418416312913411517617698

78907012811277876848536810414015421518216612611290 134157165170232254134151168190163144179102146115647786103 181171206

BIF-E41B 103
1561941291409790577472142167163185169133117207217244210 1191129165811712032031921671781096478160201192227205167 13911586107154112118165279260170170185156129157140178190153 87100741121237184575652759613515324117914814995102 12813517717621228513317116417115915815912015193797376154 177171202

BIF-E42A 158

18232921512213417310350766889140141117108116112585540 414877140182716249107135179203157171138103606470183 20919716920114516124623730024017816411780100206290240210192 206106688415621418124020121418912084110160120129159250225 16817115914611713915716319114175655781835245495039 62721031071581601461426477100103131156208209142140172140 1381931581181318671578113312815018410214315012978103129 9414615398901121381711701461291591868183102134234

BIF-E42B 158
27031022911813716510764566785117148167112107110624648 4645761451696053489815315121716916615495756492153 2102211591921511552422432852351791701109496203290233213192 203117658416521017920624619217011879121135120125171281218 1651701601609214815616218513984735287874551435043 519310411515115014013291609896126160214206141131181146 16514315911914378686810214611116117512711716413770103121 10814315398841151351761591401401411907587105139229

BIF-E43A 108
1201351414277688715822110113613517522231820521215111082 719617419117918517714515924426025319716720714186128235291 287231214258158115129221284251267229225220150135142209131155 1772212251451181561951571901721902291259211010611516375102 1156655721001201311971631461748295119115181181287245232 158184123196125150106152

BIF-E43B 108
1171331444075607714922310514313317624530321420914910887 839416620116817817116615724128026022815021012989136221306 30622619826017599121228281251271219175199130109143214128164 22623425917314718422616717318921522515612315411715318196116 968150669812413418117515518796105106118168163298279209 165162114189152144107159

APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Nottingham Tree-ring Dating Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1998). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure A1 where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure A1, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

1. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can
sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CROA06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A1: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis
Figure A4: Three cores from timbers in a building. They come from trees growing at the same time. Notice that, although the sequences of widths look similar, they are not identical. This is typical
2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5, and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et al 1988; Howard et al 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05,08 , and 45 , have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best crossmatch each other are shown; eg the sequence of ring widths of C08 matches the sequence of ring widths of C45 best when it is at a position starting 20 rings after the first ring of C45, and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching
sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for C08, 0.7 mm for C 05 , and 0.3 mm for C 04 , then the corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of cross-matching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin 1991; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood
rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=15-9)$ and a maximum of $41(=50-9)$. If the last ring of CROA06 has been dated to 1500, say, then the estimated felling-date range for the tree from which it came originally would be between 1506 and 1541. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120 to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et al 2001) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and 26 $(=35-9)$ and the felling would be estimated to have taken place between 1506 and 1526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are $9-36$ (Howard et al 1992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12-15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15-35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515, which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, 15-35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 50-5). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et al 2001, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882-1981. It is described in great detail in Laxton and Litton (1988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et al 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form
they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of BailliePilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

t-value/offset Matrix

C45 C08		C05		C04
C45	+20	+37	+47	
	5.6		+17	+27
C05	5.2	10.4		+10
	5.9	3.7	5.1	

Figure A5: Cross-matching offour sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6. The site sequence is composed of the average of the corresponding widths, as illustrated with one width.

YEAR (AD)
Figure A6: Bar diagram showing the relative positions and dates of the first rings of the component site sequences in the East Midlands Master Dendrochronological Sequence, EM08/87
(a)

(b)

Figure A7 (a): The raw ring-widths of two samples, THO-A01 and THO-B05, whose felling dates are known
Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for treering research, Tree-Ring Bull, 33, 7-14

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95
Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 15-26

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1992 List 44 no 17 Nottingham University Tree-Ring Dating Laboratory: tree-ring dates for buildings in the East Midlands, Vernacular Architect, 23, 51-6.

Laxon, R R, Litton, C D, and Zainodin, H J, 1988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD 1158 to 1540, Medieval Archaeol, 33, $90-8$

Laxton, R R, Litton, C D, and Howard, R E, 2001 Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, 1991 Statistical models of dendrochronology, J Archaeol Sci, 18, 29-40

Miles, D W H, 1997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London Rackham, O, 1976 Trees and Woodland in the British Landscape, London

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:
Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.

