
ISSN 1749-8775

CHURCH OF ST MABENA, ST MABYN, CORNWALL DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

SCIENTIFIC DATING REPORT

lan Tyers

ARCHAEOLOGICAL SCIENCE

CHURCH OF ST MABENA ST MABYN CORNWALL

DENDROCHRONOLOGICAL ANALYSIS OF OAK TIMBERS

lan Tyers

NGR: SX 0418 7320

© English Heritage

ISSN 1749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.

Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers are advised to consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk or by writing to: English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD Please note that a charge will be made to cover printing and postage.

SUMMARY

A tree-ring dating programme was commissioned on timbers in the church of St Mabena, St Mabyn, Cornwall. The results identified that timbers in three areas of roof were datable by tree-ring dating techniques, with all three areas using timbers felled during the latefifteenth or early sixteenth centuries. This dating programme was commissioned to exploit scaffolding access during grant aided repairs. This report archives the dendrochronological results.

CONTRIBUTORS

lan Tyers

ACKNOWLEDGEMENTS

The sampling and analysis of timbers at the church of St Mabena, St Mabyn, Cornwall was funded by English Heritage (EH). Practical help and valuable discussions were provided by Francis Kelly, Historic Buildings Inspector South West Region (EH). Graham Howarth from Ryearch Ltd kindly facilitated access during the repair works.

ARCHIVE LOCATION

Cornwall and Scilly Historic Environment Record Historic Environment Service Kennall Building, Old County Hall Station Road Truro TRI 3AY

DATE OF INVESTIGATION 2008

CONTACT DETAILS

Dendrochronological Consultancy Ltd, 65 Crimicar Drive, Sheffield S10 4EF lan Tyers; ian@dendro.co.uk

CONTENTS

	I
METHODOLOGY	I
RESULTS	4
DISCUSSION	4
REFERENCES	6
FIGURES	7
TABLES	10
APPENDIX I	12

INTRODUCTION

This document is a technical archive report on the tree-ring analysis of timbers within three roofs of the church of St Mabena, St Mabyn, Cornwall (NGR SX 0418 7320). St Mabyn is a settlement on the north-western edge of Bodmin Moor, *c* 7km north of Bodmin, and *c* 5km east of Wadebridge. In 2008 grant-aided repairs to the north aisle roof, the nave, and chancel roofs, and the valley gutter between the nave/chancel and the north aisle of this Grade I listed parish church required the insertion of a large scaffold support structure, and a temporary weatherproof roof. A request was made to investigate if this allowed adequate access to the timbers to undertake sampling of the building. This report describes the results of the dendrochronological analysis of samples from three areas of roof in the church.

The church lies in the historic core of the settlement (Fig I), and the existing church is thought to date from the later fifteenth century. The church has visually similar wagon roofs in the nave, chancel, north and south aisles, and porch (Fig 2). The nave has overall dimensions of c I 8m length, and c 5.5m width, and contains 39 more or less identical trusses, it abuts a chancel roof of c 7m length and c 5.5m width with a further 22 trusses. The north aisle has overall dimensions of c 23m length, and c 5m width, and contains 49 more or less identical trusses. The porch has overall dimensions of c 2.5m length, and c3.5m width, and contains seven again more-or-less identical trusses. Each truss in these roofs contains two straight common rafters, a collar purlin, and upper and lower curved braces on each side to form the wagon roof. There are some small ashlar pieces, usually angled, and some surviving fragments of outer wall plates (Fig 3). The inner wall plates carry decorative mouldings on the inside, and there are sets of carved bosses mostly every third truss inside as well. The roofs have evidently had problems of damp before the current repairs, as there are several campaigns of repairs documented in the nineteenth century and the chancel roof clearly has been extensively modified in the relatively recent past; it contains softwood common rafters and the present collar purlins are turned 90° from their original alignment. All the ancient timberwork throughout is in oak, and these oaks are derived from a mixture of whole trees and quartered trees, although the chancel roof is dominated by fast-grown whole trees.

The original timbers exhibit clear evidence for trestle sawing, and retain a series of scribed carpenters' numbers in Roman numerals. This report arbitrarily assigned truss numbers for each discrete area of roof, running from 1 at the east end of each of the east-west roofs, and from the north end of the porch (Fig 2).

METHODOLOGY

Tree-ring dating employs the patterns of tree-growth to determine the calendar dates for the period during which the sampled trees were alive. The amount of wood laid down in any one year by most trees is determined by the climate and other environmental factors. Trees over relatively wide geographical areas can exhibit similar patterns of growth, and this enables dendrochronologists to assign dates to some samples by matching the growth pattern with other ring-sequences that have already been linked together to form reference chronologies.

The building was visited in May 2008 during the repair work. An assessment of the dendrochronological potential of timbers in five areas of the church had been requested by Francis Kelly. This assessment aimed to identify whether oak timbers with sufficient numbers of rings for analysis existed in any part of the structure. This assessment concluded that the timbers in the chancel roof, and the limited number of surviving timbers in the church tower were unsuitable for sampling and analysis. In contrast, the north side of the north aisle roof and the north side of the nave roof both contained some suitable material, particularly the common rafters and their lower curved wagon braces, whilst the much smaller porch also appeared to be constructed from suitable material. Access to timbers on the south sides of both roofs, and sampling of the collars was considered impractical because of Health and Safety issues. Throughout the building the survival of bark-edge was non-existent and survival of sapwood was negligible.

The selected 23 timbers were sampled using a 15mm-diameter corer attached to an electric drill. The cores were taken as closely as possible along the radius of the timbers so that the maximum number of rings could be obtained for subsequent analysis. The ring sequences in the cores were revealed by sanding.

This preparation revealed the width of each successive annual tree ring. Each prepared sample could then be accurately assessed for the number of rings it contained, and at this stage it was also possible to determine whether the sequence of ring widths within it could be reliably resolved. Dendrochronological samples need to be free of aberrant anatomical features, such as those caused by physical damage to the tree, which may prevent or significantly reduce the chances of successful dating.

Standard dendrochronological analysis methods (eg English Heritage 1998) were applied to each suitable sample. The complete sequence of the annual growth rings in the suitable samples were measured to an accuracy of 0.01mm using a micro-computer based travelling stage. The sequence of ring widths were then plotted onto semi-log graph paper to enable visual comparisons to be made between sequences. In addition, cross-correlation algorithms (eg Baillie and Pilcher 1973) were employed to search for positions where the ring sequences were highly correlated (Tyers 2004a). Highly correlated positions were checked using the graphs and, if any of these were satisfactory, new composite sequences were constructed from the synchronised sequences. Any *t*-values reported below were derived from the original CROS algorithm (Baillie and Pilcher 1973). A *t*-value of 3.5 or over is usually indicative of a good match, although this is with the proviso that high *t*-values at the same relative or absolute position need to have been obtained from a range of independent sequences, and that these positions were supported by satisfactory visual matching.

Not every tree can be correlated by the statistical tools or the visual examination of the graphs. There are thought to be a number of reasons for this: genetic variations; site-specific issues (for example a tree growing in a stream bed will be less responsive to rainfall); or some traumatic experience in the tree's lifetime, such as injury by pollarding, defoliation events by caterpillars, or similar. These could each produce a sequence dominated by a non-climatic signal. Experimental work with modern trees shows that 5–20% of all oak trees cannot be reliably cross-matched, even when enough rings are obtained.

Converting the date obtained for a tree-ring sequence into a useful date requires a record of the nature of the outermost rings of the sample. If bark or bark-edge survives, a felling date precise to the year or season can be obtained. If no sapwood survives, the date obtained from the sample gives a *terminus post quem* for its use. If some sapwood survives, an estimate for the number of missing rings can be applied to the end-date of the heartwood. This estimate is quite broad and varies by region. This report uses a minimum of 10 rings and a maximum of 46 rings as a sapwood estimate (eg English Heritage 1998, 10–11).

Where bark-edge or bark survives, the season of felling can be determined by examining the completeness or otherwise of the terminal ring lying directly under the bark. Complete material can be divided into three major categories:

'early spring', where only the initial cells of the new growth have begun – this is equivalent to a period in March/April, when the oaks begin leaf-bud formation;

'later spring/summer' where the early wood is complete but the late wood is evidently incomplete, which is equivalent to May-through-September of a normal year, and

'winter' where the latewood is complete and this is roughly equivalent to September-to-March (of the following year) since the tree is dormant throughout this period and there is no additional growth put on the trunk.

These categories can overlap as, for example, not all oaks simultaneously initiate leaf-bud formation at the same time. It should also be noted that slow growing or compressed material cannot always be safely categorised.

Timber technology studies demonstrate that many of the tool marks recorded on ancient timbers can only have been done on green timber. There is little evidence for long-term storage of timber or of widespread use of seasoned, rather than green, timber in the medieval period.

Reused timbers can only provide tree-ring dates for the original usage date, not their reuse. Identifying reused timbers requires careful timber recording which notes the presence of features which are not functional in the structure. It is always possible that some timbers exhibit no evidence of earlier usage, and are thus 'hidden reused' timbers.

The dendrochronological impact of this problem is particularly acute where only single timbers have been dated from a structure.

The analysis may highlight potential same-tree identifications if two or more tree-ring sequences are obtained that are exceptionally highly correlated. Such pairs, or sometimes more, are then used as a same-tree group and each can be given the interpreted date of the most complete of the samples. They are most useful where several timbers date but only one has any sapwood or where same-tree identifications yield linkages between different structures.

RESULTS

In May 2008 timbers of three separate roofs were cored; these cores were labelled I-23 inclusive. Fifteen timbers were sampled in the north aisle roof, six in the nave roof, and two in the porch roof. Each sample was assessed for the wood type, the number of rings it contained, and whether the sequence of ring widths could be reliably resolved. This assessment confirmed that all the sampled timbers were oak (*Quercus* spp.) and that 22 (the exception was sample 3, which had too few rings) were suitable for dendrochronological analysis. The details of these samples are provided in Table 1.

The samples were prepared for analysis, measured, and then compared with each other. A group of nine timbers from the north aisle roof were found to cross-match each other strongly (Table 2), whilst a group of four samples from the nave roof and the two samples from the porch were also found to form an internally consistent group (Table 3). Each cross-matched group was then combined into a single composite data set. These were compared with each other without identifying any significant correlation between them. These two composite data sets were then compared with medieval and later tree-ring data from throughout England and Wales. Both the composite sequences were found to cross-match against medieval data from sites in the South-West region. This crossmatching provided consistent calendar dates for both sequences (Table 4), and also coincided with a weak match between the two sequences. A summary of the results for the component samples of these two chronologies are provided in Table 1 and Figure 4. The other seven individual series failed to provide any consistent dating evidence. The measurement data for all the measured samples are listed in Appendix 1.

DISCUSSION

Both the composite sequences were found to strongly match composite sequences obtained from buildings in Cornwall and Devon as well as to a lesser extent to other series from across the South-West and other English regions. Although there is still relatively little replicated contemporaneous medieval tree-ring data from the south-western counties of England, it is most likely that this timber was derived from the immediate vicinity of St Mabyn. This cross-dating indicated a late-fifteenth or early sixteenth-century date for all the datable timbers.

The tree-ring analysis dates the rings present in the cores. The correct interpretation of those dates relies upon the characteristics of the final rings in them. No sapwood survived on any of the timbers, previous problems of water entry into the roofs had presumably ensured this, but almost all the samples were targeted at timbers with surfaces that appeared to be their original heartwood/sapwood boundaries. Making allowances for minimum and maximum likely amounts of missing sapwood provides individual felling date ranges for each of the datable timbers. Figure 4 and Table 1 includes the interpreted felling date ranges for each of the datable samples.

The mathematical combination of estimated sapwood distributions is statistically complex. Whatever method is used would indicate these roofs are utilising timbers felled in the later fifteenth and/or early sixteenth centuries. The calculation of common felling periods for the three roofs suggests construction dates of AD 1513–35 for the north aisle, AD 1485–1514 for the nave, and AD 1487–1523 for the porch. It is therefore most likely that the nave and porch are broadly contemporaneous, with the north aisle roof likely to have been a slightly later addition. Given the uncertainty of the correct sapwood estimate to utilise in this area, the use of robust combinatorial methods or alternative statistical approaches might sacrifice a broad and indicative date for a narrower one of potentially spurious precision. The obvious conclusion is that the north aisle was probably built a short period after the nave, porch, and perhaps the chancel were built. This extensive campaign of building presumably reflects a period of economic strength in the parish.

REFERENCES

Arnold, A, Howard, R, and Litton, C, 2006 *Church of St Martin, East Looe, Cornwall: treering analysis of roof timbers*, EH Res Dep Rep Ser, **46/2006**

Baillie, M G L, and Pilcher, J R, 1973 A simple crossdating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7-14

English Heritage, 1998 *Dendrochronology: guidelines on producing and interpreting dendrochronological dates*, London

Groves, C, 2005 *Dendrochronological Research in Devon: Phase I*, Centre for Archaeol Rep, **56/2005**

Howard, R E, Laxton, R R, and Litton, C D, 1996 *Tree-ring analysis of timbers from Mercer's Hall, Mercer's Lane, Gloucester*, Anc Mon Lab Rep, **13/96**

Howard, R E, Laxton, R R, and Litton, C D, 1998 *Tree-ring analysis of timbers from Naas House, Lydney, Gloucestershire*, Anc Mon Lab Rep, **36/98**

Nayling, N, 1999 *Tree-ring analysis of timbers from the White House, Vowchurch, Herefordshire*, Anc Mon Lab Rep, **73/1999**

Tyers, I, 2004a Dendro for Windows program guide 3rd edn, ARCUS Rep, 500b

Tyers, I, 2004b *Tree-ring analysis of oak timbers from Holy Cross Church, Crediton, Devon*, Centre for Archaeol Rep, **32/2004**

Tyers, I, 2004c *Tree-ring analysis of oak timbers from Pendennis Castle, Near Falmouth, Cornwall*, Centre for Archaeol Rep, **38/2004**

FIGURES

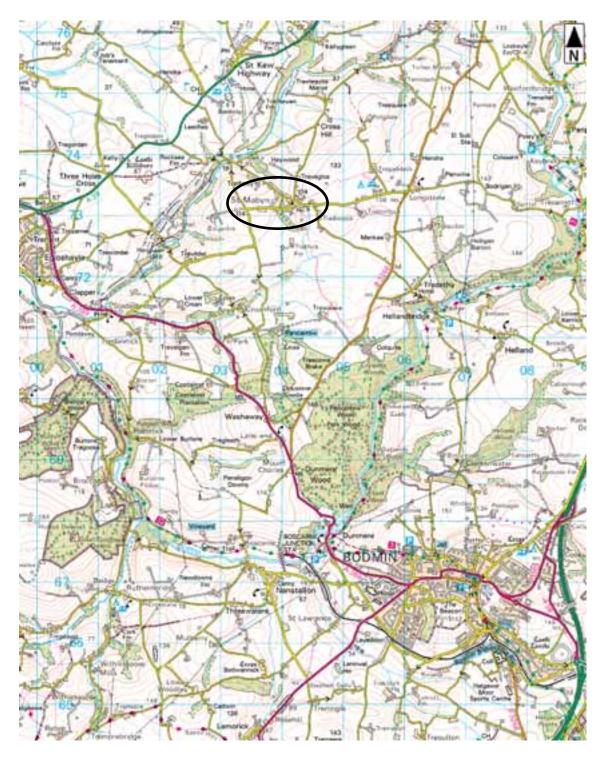


Figure 1. Location of the church of St Mabena, St Mabyn, Cornwall (circled). © Crown Copyright. All rights reserved. English Heritage 100019088. 2007

Figure 2. Plan of the church of St Mabena, St Mabyn, Cornwall. The truss numbering schemes followed in this report, and the location of the sampled areas are shown. Based on a plan by Bazeley, Miller-Williams and Corfield, Architects, supplied by English Heritage 2008

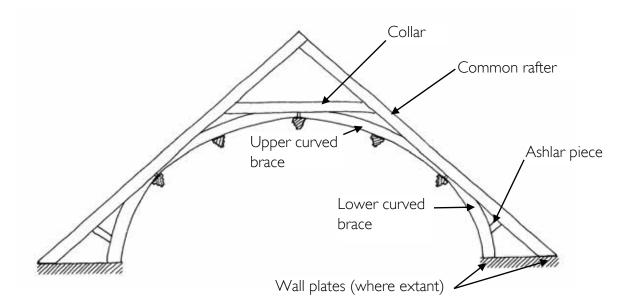
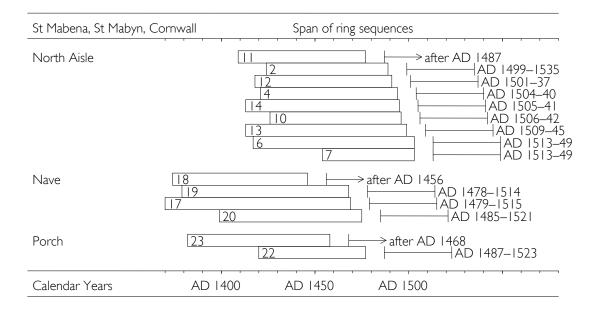



Figure 3. Sketch of a typical truss from the church of St Mabena, St Mabyn, Cornwall, showing the nomenclature followed in this report

Figure 4. Bar diagram showing the absolute dating positions of the 15 dated tree-ring sequences for samples from the church of St Mabena, St Mabyn, Cornwall. The interpreted felling dates are also shown for each sample. KEY White bars are oak heartwood.

TABLES

Sample	Location	Rings	Sap	Date of measured sequence	Interpreted result
	Aisle T17 N brace	94	H/S	undated	-
2	Aisle T16 N rafter	66	H/S	AD 1424-89	AD 1499–1535
3	Aisle T I I N rafter	<i>c</i> 45	H/S	unmeasured	-
4	Aisle T9 N brace	74	H/S	AD 1421–94	AD 1504-40
5	Aisle T7 N rafter	63	H/S	undated	-
6	Aisle TT N brace	87	H/S	AD 1417-1503	AD 1513-49
7	Aisle T5 N rafter	50	H/S	AD 1454-1503	AD 1513-49
8	Aisle T3 N rafter	51	H/S	undated	-
9	Aisle T20 N rafter	61	-	undated	-
10	Aisle T31 N rafter	71	H/S	AD 1426–96	AD 1506-42
	Aisle T36 N rafter	69	-	AD 1409-77	after AD 1487
12	Aisle T46 N rafter	74	H/S	AD 1418–91	AD 1501-37
13	Aisle T44 N rafter	87	H/S	AD 1413–99	AD 1509-45
14	Aisle T40 N rafter	83	H/S	AD 1413–95	AD 1505-41
15	Aisle T33 N brace	51	H/S	undated	-
16	Nave T9 N rafter	74	H/S	undated	-
17	Nave T10 N rafter	100	H/S	AD 1370–1469	AD 1479–1515
18	Nave T22 N rafter	73	-	AD 1374–1446	after AD 1456
19	Nave T23 N rafter	90	H/S	AD 1379–1468	AD 1478-1514
20	Nave T26 N rafter	77	H/S	AD 1399–1475	AD 1485–1521
21	Nave T29 N rafter	54	H/S	undated	-
22	Porch T4 W brace	58	H/S	AD 1420–77	AD 1487–1523
23	Porch T5 E brace	77	-	AD 1382-1458	after AD 1468

Table 1. Details of the 23 samples from timbers from the church of St Mabena, St Mabyn, Cornwall.

KEY Aisle; North Aisle wagon roof truss numbers T1–T49 from east, Nave wagon roof truss numbers T1– 39 from east (note there are also 22 trusses in the chancel roof), Porch wagon roof truss numbers T1–T7 from north. Braces are lower curving braces, Rafters are common rafters. N north, E east, W west, H/S is heartwood/sapwood edge.

Table 2. The t-values (Baillie and Pilcher 1973) between 9 sampled north aisle timbers from the church of St Mabena, St Mabyn, Cornwall.

	4	6	7	10		12	13	14
2	-	-	6.07	-	-	9.37	-	-
4		4.95	-	6.04	-	-	6.92	7.75
6			4.01	-	7.53	-	5.29	4.82
7				-	3.37	3.53	3.78	-
10					-	-	5.12	12.18
						-	4.48	3.51
12							3.10	-
13								6.29

Table 3. The t-values (Baillie and Pilcher 1973) between 4 sampled nave and 2 sampled porch timbers from the church of St Mabena, St Mabyn, Cornwall.

	18	19	20	22	23
17	-	4.89	3.23	3.01	5.05
18		4.80	3.65	-	5.01
19			7.78	6.39	6.67
20				3.92	4.42
22					-

Table 4. Showing example t-values (Baillie and Pilcher 1973) between the two composite sequences constructed from the church of St Mabena, St Mabyn, Cornwall and oak reference data. These two composite chronologies overlap and cross-match (t-value 3.98)

	St Mabyn I	St Mabyn 2
Reference chronology	AD 1370-	AD 1409-
	1477	1503
Cornwall, Goldophin House Godolphin Cross (Tyers and Tyers in prep)	5.49	5.09
Cornwall, Pendennis Castle nr Falmouth (Tyers 2004c)	6.02	7.03
Cornwall, St Martins Church East Looe (Arnold <i>et al</i> 2006)	5.23	8.58
Devon, Crediton Holy Cross church (Tyers 2004b)	5.22	7.28
Devon, Prowse barn Sandford (Groves 2005)	5.69	5.64
Gloucestershire, Gloucester Mercers Hall (Howard <i>et al</i> 1996)	4.73	5.68
Gloucestershire, Naas House Lydney (Howard <i>et al</i> 1998)	5.49	5.22
Herefordshire, White House Vowchurch (Nayling 1999)	4.86	5.81

APPENDIX I

smc 265 39 42 47 64 68 69 88 80 	273 139 177 161 58 46 96 75 94 113	227 152 130 86 58 90 88 108 74	206 134 145 84 76 88 64 72 100 114	160 163 88 68 100 60 56 78 70	99 110 93 88 56 64 76 76	103 118 109 59 104 70 51 62 87	125 139 110 79 94 52 85 78 108	106 209 90 76 59 47 81 57 87	32 04 24 56 60 56 91 74 00
smc2 184 292 110 219 122 125 143	237 179 179 138 210 255 152	251 143 182 178 227 175 113	38 88 53 79 247 31 32	278 153 281 217 346 128 122	149 220 170 127 190 120 135	122 232 151 199 209 88	206 133 211 236 155 177	171 175 139 186 168 141	173 193 171 147 193 130
smc4 342 246 250 140 105 250 142 83	242 368 184 165 118 258 106 61	322 244 147 234 146 207 91 85	255 133 114 291 124 183 84 84	359 249 106 219 206 134 56	326 182 142 293 241 135 64	194 317 97 251 280 152 71	314 289 139 268 248 118 53	218 308 147 197 156 138 54	217 205 114 166 227 116 77
smc5 158 124 131 102 92 117 108	121 120 109 98 136 162 86	39 38 34 87 40 6 	8 27 20 0 5 80	69 23 08 23 17 02	34 14 1 89 91 78	132 133 112 136 89 79	129 138 89 124 97 108	63 29 84 09 24 02	107 130 118 119 126 94
smc6 173 84 132 82 67 124 96 144 161	161 123 100 88 122 127 85 144 127	108 88 72 75 85 105 85 131 162	64 89 58 97 37 99 89 56 50	186 92 86 79 85 96 164 183 134	 111 127 72 65 94 94 125 134 131 	148 92 89 70 92 110 160 160 133	90 61 89 68 88 100 216 138	89 88 113 65 105 100 160 118	93 78 106 68 129 83 126 206

smc7 440 290 106 179 98	272 364 149 142 81	440 283 180 110 118	308 249 148 115 139	410 344 165 93 93	229 140 152 107 161	408 177 133 126 161	358 133 203 110 136	332 115 148 80 105	245 127 159 83 94
smc8 355 108 132 177 255 133	301 99 125 136 258	314 95 167 156 282	287 133 110 156 200	240 89 96 157 165	129 150 98 139 202	129 132 97 181 133	138 142 150 179 115	134 122 192 166 165	109 125 187 236 152
smc9 315 204 93 87 225 161 113	283 227 100 102 225 99	369 210 125 144 190 179	240 151 141 168 219 152	248 166 62 175 218 118	226 49 15 58 66 56	232 168 148 177 183 100	220 156 123 211 145 92	204 72 132 199 111 142	207 114 86 177 137 86
smc10 241 178 132 116 198 114 63 66) 105 193 95 127 233 104 72	49 53 29 69 47 0 47	2 49 27 50 85 3 46	32 25 09 234 23 9 57	40 26 63 34 38 68	77 28 12 85 99 13 64	44 27 14 88 01 11 54	179 95 130 163 112 79 54	229 113 99 236 97 51 55
smc1 640 171 86 90 57 44 71	315 206 88 90 63 90 59	260 228 68 69 78 72 49	386 139 215 65 49 85 56	275 241 77 75 37 74 54	366 121 86 102 48 63 64	244 88 154 126 42 94 70	227 115 135 77 59 81 91	346 101 359 51 58 107 88	331 186 122 50 126 123
smc12 128 94 94 232 161 199 99 83	2 101 63 104 174 110 143 103 95	6 7 35 2 5 63 7 83	49 99 84 5 15 10 9	103 98 114 94 126 97 100	58 83 89 6 28 18 80	27 00 96 93 05 94 3	5 38 80 05 47 47 5	4 09 73 63 42 95	76 121 133 121 182 107 91

smc12 232 177 215 108 116 133 124 94 86	288 184 195 106 137 146 82 97 99	241 203 247 116 89 140 92 78 85	176 186 199 112 124 133 129 95 118	198 150 268 116 117 144 118 107 89	187 203 215 167 187 121 108 62 73	40 40 95 50 27 97 79 99	200 175 152 126 165 128 103 88	190 183 169 122 143 110 115 89	129 298 143 116 146 96 102 72
smc12 205 138 92 113 154 101 96 80	171 143 164 82 107 131 100 89 87	168 169 227 103 90 169 69 64 101	67 225 89 16 97 56 73 84	277 121 206 93 93 155 92 105	252 155 153 142 144 120 83 75	160 113 143 131 139 84 88 58	229 109 106 108 170 126 69 87	207 3 2 06 27 26 16 85	154 163 99 106 138 114 109 85
smc15 278 176 77 169 297 189	5 256 175 93 157 225	238 246 68 179 280	198 242 74 213 268	236 221 130 226 257	230 173 151 197 243	152 201 141 306 208	174 126 173 222 249	307 200 123 224 201	174 105 133 265 207
smc16 399 193 147 106 82 187 112 127	5 154 185 117 125 93 90 166 111	216 160 115 134 107 128 119 107	180 161 149 199 100 95 146 85	201 183 220 131 105 94 155	56 09 83 27 38 74 70	227 143 212 167 170 125 226	87 58 85 23 202 63 208	212 66 171 106 247 237 209	43 68 12 34 63 227 6
smc17 410 177 133 85 225 86 115 35 58 60	7 262 188 123 84 247 104 133 45 74 62	261 182 81 88 247 68 123 56 83 49	324 153 72 157 143 112 80 54 61 63	371 186 72 160 181 134 69 67 67 37	224 122 91 106 126 102 68 92 63 54	219 172 85 104 129 135 60 98 63 57	175 182 72 89 107 123 57 77 54 54	191 149 79 105 129 135 67 94 83 56	241 119 95 172 107 131 48 72 55 73

smc18 475 610 138 189 172 194 171 64	3 254 267 190 170 165 208 192 133	345 396 165 205 136 253 286 125	353 260 192 177 120 204 206	238 211 139 186 218 235 100	228 176 154 222 77 213 105	300 114 179 116 121 158 108	204 270 125 121 109 180 104	293 127 164 168 95 191 79	567 130 236 117 291 161 53
smc19 194 140 166 166 87 110 69 99 107	8 189 110 125 135 59 78 101 98 113	234 162 111 121 67 103 76 95 142	227 115 126 165 75 115 68 124 115	186 97 228 125 112 96 79 88 127	195 96 150 148 112 124 79 94 103	130 129 116 120 92 158 100 90 116	64 2 60 02 14 43 28 12 19	204 137 142 122 86 145 106 115 156	 186 161 122 107 118 103 116 129 160
smc2(184 184 117 83 46 59 70 138	231 143 84 51 50 73 93 114	66 13 92 62 63 76 18 27	127 136 90 69 63 130 92 92	239 123 106 77 68 85 116 101	202 152 101 83 69 79 108 111	182 124 79 99 74 76 154 147	165 114 80 95 77 91 128	147 148 63 86 74 94 126	127 149 77 55 50 95 134
smc2 315 76 113 112 288 178	1 372 68 109 174 213 220	207 74 180 275 244 186	157 78 292 245 194 178	138 122 244 281 305	60 47 62 7 24	36 155 199 92 200	36 152 279 179 124	37 125 171 244 137	59 107 179 130 205
smc22 101 196 225 149 164 198	2 94 186 205 172 186 117	83 362 205 175 166 82	169 239 163 132 169 90	161 407 184 131 110 91	8 487 97 9 47 40	147 369 171 159 110 130	166 256 181 114 172 132	255 231 195 167 164	233 116 170 89 122

smc23	}								
89	84	73	50	84	101	77	69	69	79
68	64	56	79	91	99	103	118	120	70
71	166	126	75	106	98	80	96	68	82
84	97	118	74	62	63	74	57	45	46
46	81	75	46	62	55	63	50	48	62
57	69	66	92	64	84	39	40	30	35
39	37	48	67	62	69	76	84	40	53
50	64	51	68	105	89	90			

ENGLISH HERITAGE RESEARCH DEPARTMENT

English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.

The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

- * Aerial Survey and Investigation
- * Archaeological Projects (excavation)
- * Archaeological Science
- * Archaeological Survey and Investigation (landscape analysis)
- * Architectural Investigation
- Imaging, Graphics and Survey (including measured and metric survey, and photography)
- * Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.

We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports

For further information visit www.english-heritage.org.uk

