ABBEY GATEHOUSE AND NUMBER I THE SQUARE, BLANCHLAND, NORTHUMBERLAND TREE-RING ANALYSIS OF TIMBERS

SCIENTIFIC DATING REPORT
Alison Arnold, Robert Howard and Matt Hurford

ABBEY GATEHOUSE AND NUMBER I THE SQUARE, BLANCHLAND, NORTHUMBERLAND

TREE-RING ANALYSIS OF TIMBERS

A J Arnold, R E Howard, and M Hurford

NGR: NY 965503
© English Heritage
ISSN I749-8775

The Research Department Report Series incorporates reports from all the specialist teams within the English Heritage Research Department: Archaeological Science; Archaeological Archives; Historic Interiors Research and Conservation; Archaeological Projects; Aerial Survey and Investigation; Archaeological Survey and Investigation; Architectural Investigation; Imaging, Graphics and Survey, and the Survey of London. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series and the Architectural Investigation Report Series.
Many of these are interim reports which make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication. Opinions expressed in Research Department reports are those of the author(s) and are not necessarily those of English Heritage.

Requests for further hard copies, after the initial print run, can be made by emailing: Res.reports@english-heritage.org.uk
or by writing to:
English Heritage, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD
Please note that a charge will be made to cover printing and postage.

SUMMARY

Dendrochronological analysis of 29 samples obtained from a range of locations at the Abbey gatehouse and No I The Square, Blanchland, has produced a single dated site chronology, comprising 28 samples and having an overall length of 207 rings. These rings can be dated as spanning the years AD I326-| 532 .
Interpretation of the sapwood on the dated samples indicates the likelihood that all the timbers were cut as part of a single programme of felling in, or about, AD I532. Such a date shows that while the lower levels of both the gatehouse and No I contain some medieval fabric, possibly of late-fifteenth century date, this may have been remodelled in AD I532 when the upper floor of No I was probably added. Tree-ring analysis would also show that work was undertaken on the Abbey buildings shortly before the dissolution here in AD 1536. A single sample remains ungrouped and undated.

CONTRIBUTORS

Alison Arnold, Robert Howard, and Matt Hurford

ACKNOWLEDGEMENTS

The Laboratories would like to thank Mr and Mrs Lamb of the gatehouse and No I The Square for their enthusiasm for this programme of tree-ring analysis and their great cooperation during the disturbance caused by sampling. Their hospitality must also be gratefully acknowledged. The Laboratory would also like to thank Martin Roberts of English Heritage's Newcastle-upon-Tyne office for arranging and assisting with this programme of analysis as well as John Meadows and Isabelle Parsons, of English Heritage's Scientific Dating Section, for commissioning and coordinating the project. Finally, we would like to thank Peter Ryder, buildings archaeologist, for the extensive use of his notes in the introduction section below, and for the use of his plans and drawings in this report.

ARCHIVE LOCATION

Northumberland Historic Environment Record
Northumberland County Council Conservation Team
Environment Directorate
County Hall
Morpeth NE6I 2EF

DATE OF INVESTIGATION

2008-9

CONTACT DETAILS

Alison Arnold and Robert Howard
Nottingham Tree-ring Dating Laboratory
20 Hillcrest Grove
Sherwood
Nottingham NG5 IFT
Matt Hurford
Dendrochronology Laboratory
Research School of Archaeology and Archaeological Science
West Court, 2 Mappin Street
Sheffield SI 4DT

CONTENTS

Introduction I
Sampling 2
Analysis 2
Interpretation 3
Conclusion 3
Bibliography 5
Tables 6
Figures 8
Data of measured samples 18
Appendix: Tree-Ring Dating 25
The Principles of Tree-Ring Dating 25
The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory 25
I. Inspecting the Building and Sampling the Timbers 25
2. Measuring Ring Widths. 30
3. Cross-Matching and Dating the Samples 30
4. Estimating the Felling Date 31
5. Estimating the Date of Construction. 32
6. Master Chronological Sequences 33
7. Ring-Width Indices 33
References 37

INTRODUCTION

Blanchland Abbey (NY 965 503, Figs I and 2) was founded as a Norbertine, or premonstratensian, priory in AD I I 65 by Walter de Bolbec II, and was a daughter house of a similar abbey at Croxton, Leicestershire. The premonstratensians, or White Canons (from the colour of their habit),were originally founded by Saint Norbert at Premontre near Laon in AD II 20 and followed the strict rule of St Augustine, with supplementary statutes that made their life one of great austerity.

Although the abbey granges at Blanchland were pillaged during the Anglo-Scots wars, particularly during AD 1327, the abbey itself was apparently left unscathed. The abbey was dissolved in AD 1536, reformed in AD I537, and dissolved again in AD I539, at which time it was granted to the Bellow and Broxholm families. The estate was later acquired by the Radclyffe family, from whom it passed by marriage to Nicholas Forster. Part of the abbey church was altered and retained for use as a parish church, and the abbot's former residence became the manor house. In AD 1612 it was the residence of Sir Claudius Forster, High Sheriff of Northumberland. In AD 1704 Lord Crewe purchased the estate, and on his death in AD 1721 he left all his properties to be administered in trust for charitable purposes (Lord Crewe's Charity).

Of the abbey buildings, the later-fifteenth-century gatehouse with embattled parapets survives, along with the adjacent, interlinked, house at No I The Square, attached to its west side (see basic plan, Fig 3). The gatehouse is an impressive, stone-built, rectangular structure containing a double-height north-south gate passage with a similarly lofty parallel ground-floor chamber, now occupied by the local Post Office, to the west. What was once a single large chamber to the upper floor, possibly associated with some judicial function and reached via an external staircase to the east, has been subdivided into two smaller rooms. Both rooms at this level are currently used as an art gallery and exhibition space (although the western room was at one time the third bedroom of No I The Square). This western room is dominated by a large medieval fireplace in the north wall.

No I The Square, again with some later-fifteenth century architectural features, is set over three floors; ground, containing the living room and kitchen, first, containing bedroom I, and second, once used as bedroom 2, but now containing the office and workshop of the art gallery. The roof of this room comprises four shallow-pitched, heavily cambered tiebeam trusses, the trusses carrying single purlins to each pitch. It is believed that the house formed part of the monastic outer court buildings, possibly acting as an almonry.

Although the lower floors of both the gatehouse and No I The Square contain similar features of medieval date, the top part of No I The Square is clearly later. It is not certain, however, that the lower portions of the gatehouse and No I are both of the same, later-fifteenth-century date. It has been suggested that the lower portions were extensively remodelled when the top floor of No I was added cAD I500, or that the lower floors
of both are of cAD I500, with the top floor of No I being added only a few years later in a different fabric.

SAMPLING

Sampling and analysis by dendrochronology of the timbers at the gatehouse and No I The Square were requested by Martin Roberts, Historic Buildings Inspector at English Heritage's Newcastle-upon-Tyne office, the primary purpose of this programme being to inform statutory advice. It was hoped that analysis would establish with greater certainty the dates of various elements of the buildings and help determine the possible sequential phases of alteration and change.

Thus, from the timbers available a total of 29 samples was obtained by coring. Each sample was given the code BAG-B (for Blanchland, site ' B ') and numbered $0 \mathrm{I}-29$. Twelve of these samples, BAG-BOI-I2, were taken from the roof (Fig 4) of bedroom 2 of No I The Square, the room now used as an office, with a further I I samples, BAG-BI3-23, being obtained from the ceiling of bedroom I (Fig 5), on the first floor. Four samples, BAG-B24-B27, were taken from the few available ceiling beams of the groundfloor living room (Fig 6), with the final two samples, BAG-B28 and B29, being taken from the two window lintels to the first floor of the west room of the gatehouse (Fig 7), formerly bedroom 3 but now the room used as part of the art gallery. No other suitable timbers were available in any other part of the building, as the accessible timbers were all modern replacements.

The location of samples was noted at the time of coring and marked on the drawings made by Peter Ryder and provided by English Heritage. These are reproduced here as Figures 8a-d. Further details relating to the samples can be found in Table I, in which the timbers have been located and numbered following the scheme on the drawings provided.

ANALYSIS

Each of the 29 samples obtained was prepared by sanding and polishing and their annual growth-ring widths were measured, the data of these measurements being given at the end of this report. The data of these 29 samples were then compared with each other by the Litton/Zainodin grouping procedure (see Appendix), allowing a single group, comprising 28 samples, to be formed at a minimum value of $t=4.4$. The samples crossmatch with each other as shown, sorted by sample location, in the bar diagram, Figure 9. The 28 cross-matching samples were combined at these indicated offsets to form site chronology BAGBSQ0 I, this having an overall length of 207 rings.

Site chronology BASGBSQ0 I was then compared to an extensive corpus of reference chronologies for oak, matching repeatedly and consistently with a number of these when the date of its first ring is AD 1326 and the date of its last measured ring is AD 1532. The evidence for this dating is given in Table 2.

The single remaining ungrouped sample, BAG-BI7, was also compared to the reference chronologies but there was no satisfactory cross-matching and this sample must, therefore, remain undated.

INTERPRETATION

Three of the dated samples, $\mathrm{BAG}-\mathrm{B}|4, \mathrm{~B}| 8$, and B 23 , in site chronology BAGBSQ 0 I retain complete sapwood. This means that they each have the last growth ring that the trees they represent produced before they were cut down. In each case the last, complete, sapwood ring, and thus the felling of the trees, is the same at AD 1532.

Two other samples, BAG-BI5 and BI6, come from timbers which did in fact retain complete sapwood but from which, because of the soft and fragile nature of this part of the wood, small portions were lost during sampling. Observations and notes made at the time would suggest that the lost portions of the cores represent number of rings which, given the last extant sapwood ring date on each sample, would make it very likely that the trees these two samples represent were felled in AD I532 as well.

Of the remaining samples, the similarity in position of the heartwood/sapwood boundary on those where it exists with the boundary on those with complete sapwood is consistent with the timbers they represent being felled at a similar, if not identical, date, AD I532. As may be seen from Table I and the bar diagram, Figure 9, the heartwood/sapwood boundary on all the samples where it exists varies from relative position 167 (AD I492) on sample BAG-B04, to relative position 180 (AD I505) on sample BAG-B22, a variation of only 13 years. Such a small range is indicative of timbers cut as part of a single programme of felling.

Such an interpretation is supported by the fact that many of these samples, both those with, as well as those without, a heartwood/sapwood boundary, cross-match very well with each other, suggesting that the trees utilised grew close to each other in the same copse or stand of woodland. Such a phenomenon would be relatively unlikely were the timbers felled, and each element of the gatehouse constructed, at different times. If the trees had been felled at different times, it is probable that they would have come from different sources and would have thus cross-matched less well.

CONCLUSION

Thus, the evidence of tree-ring dating suggests that all the timbers sampled in this programme of analysis were cut as part of a single episode of felling which took place in, or about, AD I532 when the top floor on No I The Square was probably added.

As intimated above, the level of cross-matching between many of the samples is noticeably high, with several values in excess of $t=6.0$ being seen, suggesting the source trees were growing in the same woodland. Indeed, given the levels of cross-matching between some samples, it is likely that some timbers were derived from the same tree.

Samples BAG-B03 and B06, for example, cross-match with a value of $t=10.3$, while samples BAG-BI4 and BI 5 cross-match with a value of $t=11$.4. The highest cross-match is found between samples BAG-B02 and B05, which cross-match with a value of $t=13.7$.

Where this source woodland was cannot be identified precisely by dendrochronology (eg Bridge 2000). However, it would appear that the timbers analysed here are likely to have derived from a nearby woodland. As may be seen from Table 2, which lists a short selection of the reference chronologies used to date site sequence BAGBSQ0I, the highest t-values, and thus the greatest degree of similarity obtained during the dating of the sequence, is mainly with reference chronologies from other sites in Northumberland and County Durham.

One sample, BAG-BI7, remains ungrouped and undated. This sample shows no problems with its annual growth rings, such as distortion or compression, which would make crossmatching and dating difficult, nor is it, with 66 rings, too short for reliable analysis. Indeed, it appears to be a perfectly clear normal sample. It is a common feature or tree-ring analysis, however, for one or more samples not to combine with the main group or to date individually. Sample BAG-BI7 is one such example.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-ring analysis of timbers from the Moot Hall, Market Place, Hexham, Centre for Archaeol Rep, 4I/2004

Arnold, A J, Howard, R E, and Litton, C D, 2006 Tree-ring analysis of timbers from Low Harperley Farmhouse, Wolsingham, County Durham, Engl Heritage Res Dep Rep Ser, 6/2006

Baillie, M G L, and Pilcher, J R, 1982 unpubl A master tree-ring chronology for England, unpubl computer file MGB-EOl, Queens Univ, Belfast

Bridge, M, 2000 Can dendrochronology be used to indicate the source of oak within Britain? Vernacular Architect, 31, 67-72

Hillam, J and Groves C M, I99I Tree-ring analysis of oak timbers from Aydon Castle, Corbridge, Northumberland, Anc Mon Lab Rep, 42/I99 |

Howard, R E, Laxton, R R, and Litton, C D, 200 I a Tree-ring analysis of timbers from Unthank Hall, Stanhope, County Durham, Centre for Archaeol Rep, 4/200।

Howard, R E, Laxton, R R, and Litton, C D, 200 Ib Tree-ring analysis of timbers from Halton Castle, near Corbridge, Northumberland, Centre for Archaeol Rep, 96/200 I

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, I99I List 39 no 10 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 22, 403

Howard, R E, Laxton, R R, and Litton, C D, Nottingham University Tree-ring Dating Laboratory, Hook R, Thornes, R, Royal Commission on the Historical Monuments of England, I992 List 47 no 3 - Nottingham University Tree-Ring Dating Laboratory: truncated principal trusses project, Vernacular Architect, 23, 59-6

TABLES

Table I: Details of tree-ring samples from Blanchland Abbey gatehouse and No I The Square, Blanchland, Northumberland

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Roof to bedroom 2 (office - second floor level)						
BAG-B01	Truss 1, tiebeam	140	no h/s	1326	-------	1465
BAG-B02	North purlin, truss 1-2	105	h/s	1393	1497	1497
BAG-B03	South purlin, truss I-2	110	no h/s	1377	------	1486
BAG-B04	Truss 2, tiebeam	90	h/s	1403	1492	1492
BAG-B05	North purlin, truss 2-3	75	no h/s	1412	---	1486
BAG-B06	South purlin, truss 2-3	102	no h/s	1386	------	1487
BAG-B07	Ridge beam, truss 2-3	60	h/s	1445	1504	1504
BAG-B08	Truss 3, tiebeam	97	no h/s	1362	------	1458
BAG-B09	North purlin, truss 3-4	96	no h/s	1381	------	1476
BAG-BIO	South purlin, truss 3-4	94	no h/s	1389	------	1482
BAG-BII	Truss 4, tiebeam	95	no h/s	1361	------	1455
BAG-BI2	South common rafter 3, bay 3	67	h / s	1434	1500	1500
Ceiling to bedroom I (first floor level)						
BAG-BI3	Ceiling joist I, bay I	63	no h/s	1405	------	1467
BAG-BI4	Ceiling joist 5, bay I	127	31 C	1406	1501	1532
BAG-BI5	Ceiling joist 6, bay I	102	29c	1424	1496	1525
BAG-B16	Ceiling joist 7, bay I	107	28c	1421	1499	1527
BAG-BI7	Ceiling joist I, bay 2	66	h/s	------	------	------
BAG-BI8	Ceiling joist 2, bay 2	138	37C	1395	1495	1532
BAG-BI9	Ceiling joist 4, bay 2	110	no h/s	1357	------	1466
BAG-B20	Ceiling joist 6, bay 2	85	no h/s	1384	----	1468
BAG-B2I	Ceiling joist 7, bay 2	88	no h/s	1366	----	1453
BAG-B22	Main ceiling beam I	93	3	1416	1505	1508
BAG-B23	Main ceiling beam 2	129	29C	1404	1503	1532

Table I: continued

Sample number	Sample location	Total rings	Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)	
Ground floor ceiling (living room)							
BAG-B24	Ceiling beam I	83	h/s	1411	1493	1493	
BAG-B25	Ceiling beam 2	88	h/s	\|4	1	1498	1498
BAG-B26	Ceiling beam 3	110	h / s	1385	1494	1494	
BAG-B27	Ceiling beam 4	72	no h/s	1367	------	1438	
'Bedroom 3' (west gallery room to first floor)							
BAG-B28	Inner lintel	147	h/s	1354	1500	1500	
BAG-B29	Outer lintel	72	no h/s	1380	------	145 \|	

$\mathrm{h} / \mathrm{s}=$ the heartwood/sapwood ring is the last ring on the sample
$\mathrm{c}=$ complete sapwood exists on the timber but all or part of the sapwood has been lost from the sample during coring
$\mathrm{C}=$ complete sapwood is retained on the sample; where dated the last measured ring is the felling date of the timber represented

Table 2: Results of the cross-matching of site sequence BAGBSQOI and relevant reference chronologies when the first-ring date is $A D$ 1326 and the last-ring date is AD 1532

Reference chronology	t-value	Span of chronology	Reference	
Aydon Castle, Corbridge, Northumberland	10.5		(Hillam and Groves 1991)	
Low Harperley Farmhouse, Wolsingham, Co Durham	9.9	AD 1356-1604	(Tyers and Groves 1999 unpubl)	
I-2 The College, Cathedral Precinct, Durham	9.6	AD \|364-153		(Howard et a/l992)
Unthank Hall, Stanhope, Co Durham	9.4	AD 1386-1592	(Howard et a/2001a)	
Halton Castle, Corbridge, Northumberland	8.9	AD 1396-1559	(Howard et a/2001b)	
35 The Close, Newcastle upon Tyne	8.4	AD 1365-1513	(Howard et a/ I991)	
England Master Chronology	8.4	AD 401-1981	(Baillie and Pilcher 1982 unpubl)	
Moot Hall, Hexham, Northumberland	8.3	AD 1341-1539	(Arnold et a/2004)	

FIGURES

Figure I: Map to show the location of Blanchland (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, © Crown Copyright)

Figure 2: Map to show the location of Blanchland Abbey gatehouse and No I The Square, (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: Plan to show layout and arrangement of the gatehouse and No / The Square (after Kevin Doonan, Architects)

Figure 4 (top): Ceiling to bedroom 2 (now the office) of No I The Square

Figure 5 (bottom): Ceiling to bedroom I at first floor level of No I The Square

Figure 6 (top): Ground-floor ceiling (living room) room of No I The Square

Figure 7 (bottom): Window lintels to west gallery room of the gatehouse (formerly bedroom 3)

Figure 8a: Plan of roof to bedroom 2 (now the office) to show sampled timbers (after Peter Ryder)

Figure 8b: Ceiling to bedroom I (first floor No I The Square) to show sampled timbers (after Peter Ryder)

Figure 8c: Ground-floor ceiling (living room No I The Square) to show sampled timbers (after Peter Ryder)

Figure 8d: Bedroom 3 (west gallery room of gatehouse) to show sampled timbers (after Peter Ryder)

Relative

Blank bars = heartwood rings, shaded bars = sapwood rings
h/s = heartwood sapwood boundary
$\mathrm{c}=$ complete sapwood exists on the timber but all or part of the sapwood has been lost from the sample during coring
C = complete sapwood is retained on the sample; where dated the last measured ring is the felling date of the timber represented

Figure 9: Bar diagram of the samples in site chronology BAGBSQOI sorted by sample location

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
BAG-BOIA I40
    97 |74 |44 | 6| | 60 |20 | 38 |39 |73 |98 | 85 |67 |78 | 84 |40 |70 |49 | 36 | 36 |89
    |47 |05 |02 |67 |27 98 |45 |43 |33 ||3 90 || |02 |28 78 97 89 |27 9| |||
    |03 |05 ||7 |32||| 87 |05 ||3|49||4 96 83 92 ||| 94 8| 69 77 |3| 78
    90 80 83 79 6| 9| 68 68 75 75 83 70 94 89 86 95 46 104 67 80
    58 57 59 55 45 44 48 65 4| 4| 43 49 49 39 37 55 33 87 57 54
    38 27 3| 30 37 32 48 33 36 4| 31 30 30 21 22 23 29 26 37 25
    27 26 17 20 28 26 26 35 24 27 44 35 30 36 30 26 33 34 34 36
BAG-BOIB I40
    96 |7| | 46 |69 |54 ||0 |4| | 43 | 65 |99 | 48 | 57 | |5 |79 | 40 | |9 | 59 | 53 |33 |79
    |45 108 |00 l65 |33 |00 |49 |38 |29 | | | |02 |20 ||6 ||4 74 ||8 9| |23 90 |||
    |02 |05 ||6 |33 |2| 8| ||3 |07 |42 |20 97 88 84 |2| 86 8| 74 73 |25 8|
    95 85 73 77 78 85 78 54 80 63102 62 92 87 78 98 52 105 63 82
    60 57 61 54 44 48 39 60 43 40 39 51 49 36 34 47 32 97 57 44
    39 27 30 28 37 33 46 33 35 43 35 33 30 21 2l 23 27 28 38 26
    26 24 20 22 28 24 26 34 26 30 42 36 29 38 29 25 35 34 34 36
BAG-B02A I05
    |64 |54 |26 | || ||0 |34 |20 ||9 | |0 ||5 2|| | |8 |26 80 89 82 62 79 85 ||0
    ||6 86 106 67 |05 86 68 38 76 64||4 100||6 62 36 59 |0| ||7||6|2|
    |22 |45 |56 |20 ||4 99 99 |43|44 |44 | |7 | 86 |99 |4| 2|| 207 238 |62 20| 225
224 |85 |86 232 205 |6| | 64 | 60 |09 || | | | | | | |5 | |5 |76 |7| ||3 ||6 |20 5|
    43 4| 9| |09 ||| 95 |07 |25 ||2 43 73 9| |04 |2| |7| |33 ||2 |23 ||8 88
    6047 75 83 109
BAG-BO2B I05
    | 84 |47 |23 | 36 |09 |3| |04 |27 |42 ||2 2|0 |35 |36 7| 92 9| 65 84 79 |20
    ||8 89 |0| 74 96 76 74 44 75 69 ||3 |07 94 59 37 70 92 ||5 |38||4
```



```
228 | 82 | 74 230 2|| | 55 |57 | 76 || | | | | 34 | 3| | 49 | 65 | 86 | 66 || | || ||2 74
    5| 34 8| ||6 |09 93 104||9||4 66 78 96 |02 127 |73|38 |02||9 |26 88
    59 5| 73 88 107
BAG-B03A IIO
    |57 |53 |59 20| | 83 |39 |29 203 ||2 |49 | 59 | 86 | 45 |28 |29 || | 53 | 85 |4| | 30
    99 ||8 |25 |40 |37 90 |99 ||3 |35 75 70 73 68 75 82 |06 |04 |02 92 70
    75 88 70 52 ||9 97 ||0 |25 |34 |00 78 93 |27 |26||9 | 35 95 || |05 92
```



```
    |69 |34 |26 ||2 99 9| |22 |09 ||9 |27 |53 |42 ||6 ||| |08 64 34 34 79 97
    |24||9||4||0||5 58 8| 88 96|99
BAG-B03B IIO
    |65 | 52 | 66 |90 |93 |29 | 33 200 |22 | 39 | 56 | |5 | | | | | || | ||| | 35 | || |22 | 39
    9| |25 |23 |40 |35 97 | 85 |32 |44 82 69 66 7| 8| 75 |0| l03 |06 92 68
    76 85 67 54 |20 |00 |||||7|35 95 78 95 |25 |25 ||| | 32 |00 |09 |06 94
    |09 97 95 ||2 |23 ||5 |26 |33 |3| |2| | 50 |74 |40 |23 | 38 |25 |4| | 33 |49 |57
    |7| |27 |30 ||3 93 97 |3| |03 ||9 |33 |44 |48 ||2||3 |07 6| 30 38 78 |05
    |27 I09 |2| |09 |22 68 77 80 96 197
BAG-B04A 90
270 |50 |46 |32 |69 | 82 |69 243 |9| 205 |86 | 84 22| | 87 206 |46 |30 | 60 |50 |27
|44 || ||2 75 76 7| |02 ||0 107 |05 72 |20 106 73 82 I09 92 ||7 |05 86
    96 |23 |04 76 |46 |4| |94 | 89 | 63 |75 |76 |75 |55 227 222 |40 | 64 |2| ||8 |33
```



```
    |28 |27 | 38 | 07 | 50 |2| |2| | 44 ||3 | 32
```

```
BAG-B04B 90
    222 |58 |55 | 34 | 76 | | | | 57 228 223 |90 | 74 | 82 2| | |9 209 | |0 | 25 | || | 53 |22
    I4| ||7|| 75 62 76 I07 I08 I09 ||0 79 ||9 |06 66 8| |I5 97 I00 I08 9|
    9| |26 |06 75 |42 |4| |97 | 86 | 66 |79 | 68 | 67 |78 238 224 |52 |5 | |5 |22 |40
```



```
    12| |24|46 |00 |63 |28 |20 | 40||6 |33
BAG-B05A 75
    123 109 102 106 87 123 93 72 5| 85 7| 94 94 9| 55 40 66 8| 8| ||6
```



```
    |55 |84 |49 |84 |88 |65 |34 | |7 ||8||2 ||5 |27 94 |30 ||6|38||8 80 74 76
    46 4| 32 56 77 86 72 69 76 7| 37 5| 78 87 ||0
BAG-B05B}7
    |23 ||3 |04 |04 82 I2| 92 7| 52 8| 73 98 95 89 53 44 62 79 80 ||3
```



```
    |76 |89 |59 |69 | 82 |73 |25 |29 |20 ||6 |20 |29 90 |26 ||7 |38 ||5 83 72 77
    44 40 34 58 74 86 7| 67 74 7| 38 5| 83 86 105
BAG-B06A IO2
```



```
    84 82 58 92 60 71 87 106 135 99 8| 93 106 76 56 94 90 I28||8 99
    68 55 82 93 89 |09 |32 96 90||0 99 9| 74 72 80 |05 97 ||6|4| |3|
    |20 |2| ||3|43 92 88||4 |2|||| 96||4 88 84 |0| 78 69 84 92 |02 ||3
    109 120102 74 95 86 56 47 35 79 86 IIO 99 74 86 8| 52 63 88 96
    |IO I50
BAG-B06B IO2
```



```
    8। 72 70 85 58 77 86|IO|I27 95 75 87 92 69 48 IO5 76 I22 IO3 89
    65 5| 92 93 100 |10 117 92 103 98 88 92 70 78 80 95 |00 ||5 |37 ||7
    ||5 |20 107 |33 92 88 |06 |2| |09 ||| |22 |03 92 104 85 66 96 97 |02 |2|
    106 122 104 75 82 10| 54 43 35 85 79 ||2 103 76 88 79 45 70 82 92
    1|3|42
BAG-B07A 60
    273 25| 307 255 25| | 82 224 22| 227 | 89|84 225 28| 244 227 |89 20| |59 227 207
    2|5 235 268 |59 | 32 | 33 |64 ||5 83 77 |20 |58 |57 |59 | 60 | 79 |9| |22 |05 |45
    |42 |45 249 |9| | 67 |90 |95 |64 |06 || | | | | 69 | 88 | 7| | 67 |58 |40 90 ||3 ||3
BAG-B07B 60
    290249 3|8267240 190 234 193 232 | || |79 239289238 2|9 |90 |9| |42 236 208
    209 243 269 |55 |33 |28 |65 |07 97 58 || | |7 |58 | 60 |58 |92 |89 |22 |07 |39
    |33 |58 253 | 80 |65 209 206 |72 |06 ||5 |4| |70 | 80 | 64 | 84 |42 |47 95 93 |22
BAG-B08A }9
    |52 205 |47 |49292 262 3|4 232 264 25| 333 3|| 4|6 294 240 249277 346 300 277
    217229232 153 212 25| 238209 | 85 199 |76 2|8 2|| |6| 2|| |56 |77 197 230 2||
```



```
    I2| |44 | 34 |22 99 75 90 |22 ||| || | |6 l06 |09 |22 85 |08 |05 98 |36 |25
    |24 93 |25 ||| |08 |39 |47 |3| 99 ||0 |20 I03 90 77 87 86 79
BAG-B08B 97
    |46 2|||46 |57 302 270 323 243259 27| 337 3394|7 296 230 242 264 322 322 288
```



```
    |24 9| ||0||4||0|50 |40 |39 |0| ||0||8 |03 99 73 84 85 88
BAG-B09A 96
    |3| |09 | 30 |79 97 99 |40 |47 |24 |06 90 85 |25 |35 |03 87 77 83 ||3 |20
    |18 66।42 90 95 60 42 52 55 50 64 8| 86 67 76 54 58 64 5| 31
    727972 84 80 74 50 74 ||7||0 96||9 79 |0| |09 94 75 79 8| |07
    ||3 |32 ||5 |49 | 52 |40 | 40 | 39 |52 85 |2| |3| | 34 | 39 | 65 | 58 | 40 | 34 |27 ||0
```

```
    97 98|44 ||0 |26 |29 |28 |07||0 87 92 68 34 42 7| 88
BAG-B09B 96
    |34 ||3 |29 |84 93 |03 |54 |55 |25 |08 88 88 |26 |36 |06 94 68 85 |07 ||9
    |।8 58|45 87 100 66 45 47 54 52 68 72 82 77 67 52 65 66 55 29
    75757290 86 70 60 62||4 |06 87||9 87 90 |07 |09 80 75 78 |07
    || | |6 ||9 | 50 | 53 |23 |46 |27 |59 |03 |06 |29 |3| |4| | |9 |56 |28 |38 |22 ||3
    |03 92 |5| |05 |23 |22 |37 |20 87 99 99 55 36 35 8| |02
BAG-BIOA 94
```



```
    78 88 92 |28 ||4 |22 |06 96 |37 105 |00 56 98 82 |26 |02 IO7 47 42 50
    6675 89 88 72 92 89 86 75 7| 73 89 97 |0| |24 |76 |22 93 | 33 | 2|
    |4292 99 ||| |24 |09 |03 || ||2 |05 || 94 79 83 78 78 | 30 |07 ||5 |26
    77 87 86 50 36 34 64 89 83 78 56 96 88|||
BAG-BIOB 94
    |70 |5| |7| ||8 |26 |70 |44 |69 96 |26 |49 |45 |48 ||6 |89 | |0 |49 |20 |02 88
    78 85 92|20||5 |25 |08 93|34||| 83 56 96 82 |29 97||0 49 39 5|
    7| 74 85 83 77 9| 87 86 72 74 74 86 92 109 |26 |66 122 |00 | 30 122
    |30 98 95 |2| |27 |08 |0| |24||| 97||0 93 84 72 8| 95 |27||6||0 |29
    72 77 85 50 35 39 69 8| 77 80 65 84 92 100
BAG-BIIA 95
    2|3 200 |62 |75 |55 | 48 |25 |53 | 49 | 54 | 50 | 87 | || 2| | | 75 | 32 | 35 | 60 223 |90
    |85 |56 |53 |99 |22 | 85 |70 |50 |55 |74 | 64 |68 205 2|| |70 |88 |57 |86 |93 200
    |6| |72 209 |70 |79 | 36 |20 |47 |36 |25 ||4 |44 |29 |25 ||4 97 99 |46 87 |34
    |28 |22 |3| ||| |2| 77 94 89 |37 |44 ||7 |37 97 |27 |2| ||3||2 96 94 |4|
    |25 |07 |00 | 35 ||8 |03 | 36 |37 || | | | |2 ||5 |42 |37 |25
BAG-BIIB }9
```



```
    |23||6|24||5||7 87 90 87 |43|44||9|36 98|36||6||3|09 |00 96|30
    |33 |03 ||3 ||5 ||9 |02 |32 |43 || | | |29 |24 |43 |50 ||5
BAG-BI2A 67
    |82 |95 |99 |80 |54 |43 |8| 2|| |76 |95 |9| 2|4 |5| 246 240 208 |96 20| |88 2|3
    206 |49 |77 |54 |47 |54 |42 92 |3| | 54 |29 | 36 |65 |53 | 89 | |5 |27 |47 ||6 92
```



```
    |49 |54 |54 |28 | 30 |43 |59
```


BAG-BI2B 67

```
\(1682|5205169| 56|36| 752291771972092|\mid 147248230223190205189209\)
```



```
|54 |54 | 50 | 42 | |4 |4| | 63
BAG-BI3A 63
239208205254240 |63 | \(36|53| 50|76| 68|82| 60|86| 47|92| 85|55| 98|3|\) \(14|13388| 14|56| 47|4920| 143197|76| 32|28||3| 3||60| 76| 38|87| 47\) |49 | 5 | | 89 | 86 | 34 | 57 | 39 | 22 | 43 | 33 | 39 |4| | \(5||57| 29\) | 26\(||4| 4||49| 53\) 146170210
```


BAG-BI3B 63

```
\(2272|\mid 200249239\) | 7\(|\) || 8 |59 | 49 | 79 | \(8|177| 58|88| 48|97| 86|5| 202 \mid 27\)
```



``` 156177225
BAG-BI4A 127
230230286256224 | \(8 \mid 199205\) | 78 | \(76|70| 69|47||2| 07||2|| 2|67| 39 \mid 62\) |29 8| 104 |52 ||3 | \(392|6| 70|69| 97|58| 56||863| 0098| 02||3| 37| 24\) \(1|896| 05|4| 8067|05| 4||25| 30| 20|4288898| 7|93| 088486\)
```

$96132938110010064635|1| 59 \mid 11998989486676678102$ $97147118979 \mid 88825767751081009510985816778104107$ $93881 । 19983949596997991799897788082597970$ ।।। IO2 8989798478
BAG-BI4B 127
$23522828526023|175202203170| 86|68| 64|54| 10||3| 07| 07|77| 35 \mid 64$
 $851221231288483|18| 33|4313512913989878| 74901049088$ $94117949298105627|5010494| 151079 \mid 958962717998$ $97|56| 16|0082878850677410710788| 1385816070117106$ 959411398841029398898688809698817184627868 104998888867970
BAG-BI5A 102
|58 |74 |4| ||6||0 |53 |57 |36|44|58|88|93|9| |73|44||5|50|82|53|4|
 $11610812312013610|11210357756491113999912| 981307472$ 60729610895859784727159731831651129891774461 $838398|128| 9473855983737910|7| 8|1127| 766855$ 7787
BAG-BI5B 102
|58 |73 | $3512699|52| 5||50| 53| 49|97| 98|88| 70|35| 20|53| 7||54| 05$ $160||5|| 4|42| 30|44||7| 24|43| 67|50| 09|42| 43|06| 22|208794| \mid 5$
 $6272941168888989568645670|8| 164|14989| 695262$ 8095861138087768460837083102758010978678058 6375
BAG-BI6A 107

 89841029099861089489107956872697910613212310197
 $857167110102869096105909410210310|657| 58847066$ $\begin{array}{lllllllllll}73 & 67 & 52 & 62 & 83 & 93 & 85\end{array}$
BAG-BI6B 107
199 | 66244 | 62 | $6|170| 19|22| 76|29| 3||92| 56| 69|65| 47|3||23| 03 \mid 28$ |44 |3| ||9 | 38 | 33 ||9 | $56|4||45||487| 32|30| 62|02||9| 38|04868|$
8579100859194101102931071026479569210213212510795
10059698576100122929084939265679310210210712991
$867269108100889197109899310 \mid 105100677159837063$
$\begin{array}{llllllll}73 & 69 & 53 & 61 & 79 & 92 & 82\end{array}$
BAG-BI7A 66
|64 |20 |42 |70 | 85 |4| ||8 98 |05 |23 |33 | 28 |3| |03 $98||3| 59| 37|39| 60$

 147210173207238 ।99

BAG-BI7B 66

$2|4| 29|37| 75|79| 35|3| 9||0|| 34|3||32| 449597||7| 70| 38|42| 56$ |3| | 62 |97 | $8|153173| 59|44| 19|0999| 56|94| 75|45| 38|63||5| 00|0|$
 144214167217222 19|
BAG-BI8A 138
|64 |83 |54 | 89 | 70 |9| | $56|77222| 8||99| 42| 35|42| 44|6||45| 70|46| 62$ |58 | 20 | 57 | 87 |04 |2| |27 ||7 |35 |3| ||6|00 $5462||2|| 582||487| 03$ 11280858376838890799810770103105109808581129108

$7797|1| 9212810310678557|5993| 16|20838383564| 43$
5763715468677141497491807471926886716863

BAG-BI8B 138
| 53 | 93 | 58 | 68 | $8|19| 173|72234193203| 42|47| 37|57| 60|48| 70|53| 72$
$160|24| 6||8498| 19| 35||4| 38| 24||2| 045669||2||29||\mid 58997$
$1117986927384838696991047|101106| 10848583126109$
$1161109810211110486105117971051139 \mid 85767265646253$
801041098911910311179637266103123107849278643543
$447368 \quad 6155696849406596896774846577776866$

BAG-BI9A 110
1671621448511595159173208206178100507390182183261199203
| 822 |। $275235230|80| 48263|56| 98|8||80220| 47|84| 36|69| 76|782| 5$

$10712776641161031051061138556671041199 \mid 11495124122101$
$9584779088828|901098611410| 94937897138117 \mid 12$ ||4
1058998117899612595125126
BAG-BI9B 110
$134|60| 4087|16103| 53|8| 204196|74102546792| 80|84262208| 98$ $18221826425|2| 417316626416220218219621 \mid 158179158162170197199$ | 53 |59 | $66200|94| 78279$ | $76|59| 30||5| 25||8||9| 23|28| 23|30| 0||\mid 2$ $116123747|1071021161101079147741051109211496126| 1988$ $1048478879087848410886|10| 13918773105142 \mid 16102117$ $1038|108| 23949 \mid 11994$ |। 110

BAG-B20A 85

409224288343280268236262205 । $8124|2||2521602472452462| 2$ |7| 265 177|69|36|67|79240227|88235222|74 233194229189156223172164207 $193190|43| 26|17| 64|22| 26|33| 67|56| 8||37| 44||7| 02||3|| 5|24||\mid$ $177|36||4| 60|2||3| 104|05| 5||58| 46| 24|3||42| 06||7| 04| 07|30| \mid 7$ | 52 | 46 | 39 | 43 | 83
BAG-B20B 85
$33021928|35930| 26623528920518723520323417324|26| 250239198274$ |76|80|40|70|8| $2232302|62| 7223|852242||242204| 32228|69| 6023 \mid$ $184200|43||4| 23|63| 2||22| 35| 7||53| 80| 30|43||989| 20|26||6| \mid 2$ $166|34| 24|77| 2||2396| 0||50| 74|46||5| 35|45| 07||8| 04| 03|42| 09$ |48|39|39|4| | 8 |
BAG-B2IA 88
217170198212214212246246311308217176185253142166194153282201
$222189244256222146|7619220316324| 18020420730016 \mid 189277260255$
$180146|28| 19|0| 86|36| 288985104|38202||2| 48|27| 22|70| 3|\mid 53$
$74456710888777676125152140154888097 \mid 1011695104122$
12410392 II7 857698 I20
BAG-B2IB 88
202 । 8 । 193204203216236247319293204178198248137157179155279198

$185|48| 2|||5| 1086| 40| 2086|00| 00|47| 93|23| 49||5|| 7|62| 40 \mid 55$

$140|2288| 13928 \mid 105130$
BAG-B22A 93
228166253167454396390444329415345282282306213224248188275304 251285215212268280237286244266 I7I 290267301268342358330329256 316350302297235219247209223231267336240169170197203201210248 $39033420021|15814619522022622826530| 26 \mid 250170146186197298367$ $36227021 \mid 158177158195168297255176212207$

BAG-B22B 93

$24816724016547437|34748831443036827829| 3|32272| 8263166283270$ 255289216204268267240294232272165284277301261335360332336257 310374291302227227243210227226263336245156164192207194219263 387342205213 | 57 |47 | $8222 \mid 217255257303262253$ | 84 | 65179205295344 346278203163177163195170296247219204177
BAG-B23A 129
 |7| | 55 | $21|07| 18|50|||99| 23| 05|3||4||34| 53|37||||58| 98| 46| 7 \mid$ 21019313918719020820415820221121017321917915212812896106125 | 32 | 46 | 53 | 77 | 82 | 70 | 73 |40 $85686|||9| 39| 24| 20||2| 05| \mid 97763$ 79778294101959881626056828975889287696072 $10087|32| 27|20| 43|3| 124|26| 0|99| 1099|09| 009486948069$ 77102 I28 109 971109790127
BAG-B23B 129
$3062672|4205140154132164204158| 7020|152| 88|70| 55|5| 19 \mid 176224$ $180|6||18| 1|109| 49|||10| 12899| 3| 144|38| 45|40| 06|56204| 58 \mid 88$ $21221112817818419720716820120521217622416714813212210510 \mid 134$ $134|38| 5|162| 69|58| 59|26686662| 04|39||5| 3|||5| 02| 22767|$ 8075798983103105926849628698728410294714861 $10594|35| 23|09||4| 40|25| 34||3| 03| 03||39397| 10849| 7670$ $82981131269811 \mid 9795121$

BAG-B24A 83

|08 I37 ||9 |IO IOI $7683|006973||6||3| 36|29| 03765683|0| ~ \mid 05$ 109 |20 $8997||47287788592|| 8|04| 25|19| 24||4| 27| 3||2|| \mid 9$
 127857969 | $51|7| 126|49| 9|139| 42|09779796| 24|76||9| 30 \mid 63$ 11911996

BAG-B24A 83

$107|35| 2|||5| 058390| 067| 80||9|| 4|27| 29|0070548490| 03$ $114115921111088876758|86| 19106125|18| 25107|32| 34120 \mid 19$ $127|43| 49|32| 30|53| 6||3|||9| 3||0799| 2885| 03|33| 4||40| 36| 27$ 139877279 | 46 | 54 | $4||50| 77| 35|56| 09809399||9| 57||6| 27 \mid 58$ 11811699
BAG-B25A 88
। 8 । $24625631034834532827218432726529738 \mid 307312355233204283256$

 7710576 |l4 | 23 |l2 | 29 | 26

BAG-B25B 88

। 8 | 248264299346352269286201339254299387303316346229201270259 $247224 \mid 67305297226$ | 29 ||6||4|43|77|70 203229 |92|47 220 | $80 \mid 6593$
 $646|596693898385| 24|259| 4887|2||17| 24|63| 0287 \mid 22$ $8910774109118 \mid 16126128$
BAG-B26A IIO | 57201 । 71 | $8121 \mid 182246222278323309282247259260324320320400344$ $35629424624721821922 \mid 234232$ |9| $19315018816913612316816|227| 54$ $1609337108|39| 50|3| 157||2| 55| 45|06| 2595|20| 37|38| 0594|\mid 4$
 1058816211593996335404466899897899373373560 669812693808754384076
BAG-B26B 110
|42 20| | 69 |76 220 |73 23022427432330 | 287257278277314314320394343

```
36| 284244 244224 2|9223 246 233 |95 | 86 | 39 |9| | 60 |4| | 23 |70 |55 228 |66
|7295 38 |07 |29 |49 |33 |60 ||9 |67 | 39 |02 |2| 97 ||6 |34 | 33 |04 8| |03
|50 99 |75 |39 |24 ||8 |27 |8| |69 |34 |32 |07 |04 98 99 96 84 78 ||3 94
|O| ||O|53||4 90 IO| 6| 35 36 50 64 |07 87 92 92 93 73 32 34 67
    64 |00 ||3 83 78 9| 55 37 38 7l
BAG-B27A 72
    |73 |56 | 73 |20 | 75 | 65 |24 |06 ||4 |0| ||6 92 |05 78 8| || ||0 93 8| 86
    96 82 92 80 63 70 75 84 75 77 68 78 |l6 93 79 76 10। 90 84 53
    66 72 59 53 73 75 89 80 84 77 95 85 54 74 108 86 108 102 9| 79
    68 63|IO 9966 83 8| 83 9| 67 67 l03
BAG-B27B 72
    |67 |52 |73 |24 |62 |63 |20 |02 ||3 |0| ||2 98 |05 79 85 ||5 ||4 95 80 88
    9377 76 7| 59 72 75 86 76 8| 68 87||2 92 82 7| ||5 97 86 49
    6073 56 49 69 75 |00 83 84 72 9| 84 53 70 |04 85 |04 |04 9| 77
    66 64 IO| 97 69 78 73 83 9| 65 65 IO|
BAG-B28A | 47
    |5| | 87 |79 |25 99 |03 |04 8| ||5 96 |36 |22 |55 |05 84 95 95 |03 |25 83
    103 65 99 65 69 93 64 41 52 49 68 38 76 74 60 73 73 64 83 102
    |24 ||9|29 ||| 106 76 89 |04 72 76 |02 95 87 54 77 52 48 57 73 77
    |54 |73 |07 90 ||3 52 86 85 65 100 86 |0| 72 47 9| 240 l94|4| |2| 78
    |।2 |55 |25 99 95 73 84 79 53 54 80 7| 59 84 92 80||8 |74 ||7 |28
    ||| 75 48 72 59 45 50 54 5| 82 65 82 9| 97 86 49 59 63 38 29
    34 5| 66 44 66 7| ||9 |06 99 |22 |08 | 40 | |4 |55 | 37 |09 ||2 86 |07 8|
    l64 |63 |75 |34 | 30 I57 |20
BAG-B28B I47
    |59 |96 |97 ||5 |0| || 99 90 ||4 |00 |36||| |52||| 7| |08 93 93 |29 92
    99 65 104 57 72 84 67 48 38 61 68 43 62 86 67 63 75 72 79 106
    |||||6।28 |04 |05 87 93 |06 70 86 98 99 85 52 89 54 4| 58 65 85
    |46 |76 100 94||3 63 82 82 69 90 90 106 77 45 87 227 |95|49||5 82
    ||6 146 |37 95 99 67 89 75 58 53 69 82 54 8| 89 77 |3| |76 |45 |04
    92 65 52 67 54 5| 57 43 58 79 65 78 102 87 109 63 63 55 34 29
    4| 5| 57 44 60 78 |09||4 95 ||9 |04 |3| |44 | 60|3| |22||| 85 |05 79
    |48 |53 |94 |3| | 35 |65 |23
BAG-B29A 72
563535345 399456 303437338392287242272205343299277 319227300 258
255 225 |83 223 |98 |97 |39 ||5 |08 88 99 ||7 ||7 89 7| |0| 92 ||5 |26 ||7
|56 |46 |54 |29 ||8 |5| 87 47 73 |33 |27 | 47 |55 |29 |57 |54 | 30 |22 73 88
||2 |3| | 04 ||2 | |0 | 42 | 38 | 43 |54 | 64 | 23 | 62
BAG-B29B 72
543533 359402457 322424326405260253296224 33। 266 279312 2।0 285 256
269213|87228|90 204 |20100 |08 7| 82 ||| |23 9| 86||0 98||6|30 96
|40 |33 | 64 | 44 ||2 |43 90 47 75 | 43 | 45 |4| | 64 |26 |4| | 69 |20 |2| 68 88
|38 |45 |07 |20 | 32 | 35 | 35 |54 | 38 |6| | 32 |52
```


APPENDIX: TREE-RING DATING

The Principles of Tree-Ring Dating

Tree-ring dating, or dendrochronology as it is known, is discussed in some detail in the Laboratory's Monograph, An East Midlands Master Tree-Ring Chronology and its uses for dating Vernacular Building (Laxton and Litton 1988) and Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates (English Heritage 1988). Here we will give the bare outlines. Each year an oak tree grows an extra ring on the outside of its trunk and all its branches just inside its bark. The width of this annual ring depends largely on the weather during the growing season, about April to October, and possibly also on the weather during the previous year. Good growing seasons give rise to relatively wide rings, poor ones to very narrow rings and average ones to relatively average ring widths. Since the climate is so variable from year to year, almost random-like, the widths of these rings will also appear random-like in sequence, reflecting the seasons. This is illustrated in Figure AI where, for example, the widest rings appear at irregular intervals. This is the key to dating by tree rings, or rather, by their widths. Records of the average ring widths for oaks, one for each year for the last 1000 years or more, are available for different areas. These are called master chronologies. Because of the random-like nature of these sequences of widths, there is usually only one position at which a sequence of ring widths from a sample of oak timber with at least 70 rings will match a master. This will date the timber and, in particular, the last ring.

If the bark is still on the sample, as in Figure AI, then the date of the last ring will be the date of felling of the oak from which it was cut. There is much evidence that in medieval times oaks cut down for building purposes were used almost immediately, usually within the year or so (Rackham 1976). Hence if bark is present on several main timbers in a building, none of which appear reused or are later insertions, and if they all have the same date for their last ring, then we can be quite confident that this is the date of construction or soon after. If there is no bark on the sample, then we have to make an estimate of the felling date; how this is done is explained below.

The Practice of Tree-Ring Dating at the Nottingham Tree-Ring Dating Laboratory

I. Inspecting the Building and Sampling the Timbers. Together with a building historian the timbers in a building are inspected to try to ensure that those sampled are not reused or later insertions. Sampling is almost always done by coring into the timber, which has the great advantage that we can sample in situ timbers and those judged best to give the date of construction, or phase of construction if there is more than one in the building. The timbers to be sampled are also inspected to see how many rings they have. We normally look for timbers with at least 70 rings, and preferably more. With fewer rings than this, 50 for example, sequences of widths become difficult to match to a unique position within a master sequence of ring widths
and so are difficult to date (Litton and Zainodin 1991). The cross-section of the rafter shown in Figure A2 has about 120 rings; about 20 of which are sapwood rings - the lighter rings on the outside. Similarly the core has just over 100 rings with a few sapwood rings.

To ensure that we are getting the date of the building as a whole, or the whole of a phase of construction if there is more than one, about $8-10$ samples per phase are usually taken. Sometimes we take many more, especially if the construction is complicated. One reason for taking so many samples is that, in general, some will fail to give a date. There may be many reasons why a particular sequence of ring widths from a sample of timber fails to give a date even though others from the same building do. For example, a particular tree may have grown in an odd ecological niche, so odd indeed that the widths of its rings were determined by factors other than the local climate! In such circumstances it will be impossible to date a timber from this tree using the master sequence whose widths, we can assume, were predominantly determined by the local climate at the time.

Sampling is done by coring into the timber with a hollow corer attached to an electric drill and usually from its outer rings inwards towards where the centre of the tree, the pith, is judged to be. An illustration of a core is shown in Figure A2; it is about 150 mm long and 10 mm diameter. Great care has to be taken to ensure that as few as possible of the outer rings are lost in coring. This can be difficult as these outer rings are often very soft (see below on sapwood). Each sample is given a code which identifies uniquely which timber it comes from, which building it is from and where the building is located. For example, CRO-A06 is the sixth core taken from the first building (A) sampled by the Laboratory in Cropwell Bishop. Where it came from in that building will be shown in the sampling records and drawings. No structural damage is done to any timbers by coring, nor does it weaken them.

During the initial inspection of the building and its timbers the dendrochronologist may come to the conclusion that, as far as can be judged, none of the timbers have sufficient rings in them for dating purposes and may advise against sampling to save further unwarranted expense.

All sampling by the Laboratory is undertaken according to current Health and Safety Standards. The Laboratory's dendrochronologists are insured.

Figure A I: A wedge of oak from a tree felled in 1976. It shows the annual growth rings, one for each year from the innermost ring to the last ring on the outside just inside the bark. The year of each ring can be determined by counting back from the outside ring, which grew in 1976

Figure A2: Cross-section of a rafter, showing sapwood rings in the left-hand corner, the arrow points to the heartwood/sapwood boundary (H/S); and a core with sapwood; again the arrow is pointing to the H / S. The core is about the size of a pencil

Figure A3: Measuring ring widths under a microscope. The microscope is fixed while the sample is on a moving platform. The total sequence of widths is measured twice to ensure that an error has not been made. This type of apparatus is needed to process a large number of samples on a regular basis

2. Measuring Ring Widths. Each core is sanded down with a belt sander using medium-grit paper and then finished by hand with flourgrade-grit paper. The rings are then clearly visible and differentiated from each other with a result very much like that shown in Figure A2. The core is then mounted on a movable table below a microscope and the ring-widths measured individually from the innermost ring to the outermost. The widths are automatically recorded in a computer file as they are measured (see Fig A3).
3. Cross-Matching and Dating the Samples. Because of the factors besides the local climate which may determine the annual widths of a tree's rings, no two sequences of ring widths from different oaks growing at the same time are exactly alike (Fig A4). Indeed, the sequences may not be exactly alike even when the trees are growing near to each other. Consequently, in the Laboratory we do not attempt to match two sequences of ring widths by eye, or graphically, or by any other subjective method. Instead, it is done objectively (ie statistically) on a computer by a process called cross-matching. The output from the computer tells us the extent of correlation between two sample sequences of widths or, if we are dating, between a sample sequence of widths and the master, at each relative position of one to the other (offsets). The extent of the correlation at an offset is determined by the t-value (defined in almost any introductory book on statistics). That offset with the maximum t-value among the t-values at all the offsets will be the best candidate for dating one sequence relative to the other. If one of these is a master chronology, then this will date the other. Experiments carried out in the past with sequences from oaks of known date suggest that a t-value of at least 4.5 , and preferably at least 5.0 , is usually adequate for the dating to be accepted with reasonable confidence (Laxton and Litton 1988; Laxton et a/ I988; Howard et a/ 1984-1995).

This is illustrated in Figure A5 with timbers from one of the roofs of Lincoln Cathedral. Here four sequences of ring widths, LIN-C04, 05, 08, and 45, have been cross-matched with each other. The ring widths themselves have been omitted in the bar diagram, as is usual, but the offsets at which they best cross-match each other are shown; eg the sequence of ring widths of C 08 matches the sequence of ring widths of C 45 best when it is at a position starting 20 rings after the first ring of C 45 , and similarly for the others. The actual t-values between the four at these offsets of best correlations are in the matrix. Thus at the offset of +20 rings, the t-value between C45 and C08 is 5.6 and is the maximum found between these two among all the positions of one sequence relative to the other.

It is standard practice in our Laboratory first to cross-match as many as possible of the ring-width sequences of the samples in a building and then to form an average from them. This average is called a site sequence of the building being dated and is illustrated in Figure A5. The fifth bar at the bottom is a site sequence for a roof at Lincoln Cathedral and is constructed from the matching sequences of the four timbers. The site sequence width for each year is the average of the widths in each of the sample sequences which has a width for that year. Thus in Fig A5 if the widths shown are 0.8 mm for $\mathrm{C} 45,0.2 \mathrm{~mm}$ for $\mathrm{C} 08,0.7 \mathrm{~mm}$ for C 05 , and 0.3 mm for C 04 , then the
corresponding width of the site sequence is the average of these, 0.55 mm . The actual sequence of widths of this site sequence is stored on the computer. The reason for creating site sequences is that it is usually easier to date an average sequence of ring widths with a master sequence than it is to date the individual component sample sequences separately.

The straightforward method of cross-matching several sample sequences with each other one at a time is called the 'maximal t-value' method. The actual method of crossmatching a group of sequences of ring-widths used in the Laboratory involves grouping and averaging the ring-width sequences and is called the 'Litton-Zainodin Grouping Procedure'. It is a modification of the straightforward method and was successfully developed and tested in the Laboratory and has been published (Litton and Zainodin ।99।; Laxton et al 1988).
4. Estimating the Felling Date. As mentioned above, if the bark is present on a sample, then the date of its last ring is the date of the felling of its tree (or the last full year before felling, if it was felled in the first three months of the following calendar year, before any new growth had started, but this is not too important a consideration in most cases). The actual bark may not be present on a timber in a building, though the dendrochronologist who is sampling can often see from its surface that only the bark is missing. In these cases the date of the last ring is still the date of felling.

Quite often some, though not all, of the original outer rings are missing on a timber. The outer rings on an oak, called sapwood rings, are usually lighter than the inner rings, the heartwood, and so are relatively easy to identify. For example, sapwood can be seen in the corner of the rafter and at the outer end of the core in Figure A2, both indicated by arrows. More importantly for dendrochronology, the sapwood is relatively soft and so liable to insect attack and wear and tear. The builder, therefore, may remove some of the sapwood for precisely these reasons. Nevertheless, if at least some of the sapwood rings are left on a sample, we will know that not too many rings have been lost since felling so that the date of the last ring on the sample is only a few years before the date of the original last ring on the tree, and so to the date of felling.

Various estimates have been made and used for the average number of sapwood rings in mature oak trees (English Heritage 1998). A fairly conservative range is between 15 and 50 and that this holds for 95% of mature oaks. This means, of course, that in a small number of cases there could be fewer than 15 and more than 50 sapwood rings. For example, the core CRO-A06 has only 9 sapwood rings and some have obviously been lost over time - either they were removed originally by the carpenter and/or they rotted away in the building and/or they were lost in the coring. It is not known exactly how many sapwood rings are missing, but using the above range the Laboratory would estimate between a minimum of $6(=\mid 5-9)$ and a maximum of 41 ($=50-9$). If the last ring of CRO-A06 has been dated to 1500 , say, then the estimated felling-date range for the tree from which it came originally would be between I506 and I54I. The Laboratory uses this estimate for sapwood in areas of England where it has no prior information. It also uses it when dealing with samples with very many rings, about 120
to the last heartwood ring. But in other areas of England where the Laboratory has accumulated a number of samples with complete sapwood, that is, no sapwood lost since felling, other estimates in place of the conservative range of 15 to 50 are used. In the East Midlands (Laxton et a/200I) and the east to the south down to Kent (Pearson 1995) where it has sampled extensively in the past, the Laboratory uses the shorter estimate of 15 to 35 sapwood rings in 95% of mature oaks growing in these parts. Since the sample CRO-A06 comes from a house in Cropwell Bishop in the East Midlands, a better estimate of sapwood rings lost since felling is between a minimum of $6(=15-9)$ and $26(=35-9)$ and the felling would be estimated to have taken place between 1506 and I526, a shorter period than before. Oak boards quite often come from the Baltic region and in these cases the 95% confidence limits for sapwood are 9 to 36 (Howard et a/ I992, 56).

Even more precise estimates of the felling date and range can often be obtained using knowledge of a particular case and information gathered at the time of sampling. For example, at the time of sampling the dendrochronologist may have noted that the timber from which the core of Figure A2 was taken still had complete sapwood but that some of the soft sapwood rings were lost in coring. By measuring into the timber the depth of sapwood lost, say 20 mm , a reasonable estimate can be made of the number of sapwood rings lost, say 12 to 15 rings in this case. By adding on 12 to 15 years to the date of the last ring on the sample a good tight estimate for the range of the felling date can be obtained, which is often better than the 15 to 35 years later we would have estimated without this observation. In the example, the felling is now estimated to have taken place between AD 1512 and 1515 , which is much more precise than without this extra information.

Even if all the sapwood rings are missing on a sample, but none of the heartwood rings are, then an estimate of the felling-date range is possible by adding on the full compliment of, say, I 5 to 35 years to the date of the last heartwood ring (called the heartwood/ sapwood boundary or transition ring and denoted H / S). Fortunately it is often easy for a trained dendrochronologist to identify this boundary on a timber. If a timber does not have its heartwood/sapwood boundary, then only a post quem date for felling is possible.
5. Estimating the Date of Construction. There is a considerable body of evidence collected by dendrochronologists over the years that oak timbers used in buildings were not seasoned in medieval or early modern times (English Heritage 1998; Miles 1997, 50-5). Hence, provided that all the samples in a building have estimated felling-date ranges broadly in agreement with each other, so that they appear to have been felled as a group, then this should give an accurate estimate of the period when the structure was built, or soon after (Laxton et a/ 200 I, fig 8; 34-5, where 'associated groups of fellings' are discussed in detail). However, if there is any evidence of storage before use, or if there is evidence the oak came from abroad (eg Baltic boards), then some allowance has to be made for this.
6. Master Chronological Sequences. Ultimately, to date a sequence of ring widths, or a site sequence, we need a master sequence of dated ring widths with which to cross-match it, a Master Chronology. To construct such a sequence we have to start with a sequence of widths whose dates are known and this means beginning with a sequence from an oak tree whose date of felling is known. In Figure A6 such a sequence is SHE-T, which came from a tree in Sherwood Forest which was blown down in a recent gale. After this other sequences which cross-match with it are added and gradually the sequence is 'pushed back in time' as far as the age of samples will allow. This process is illustrated in Figure A6. We have a master chronological sequence of widths for Nottinghamshire and East Midlands oak for each year from AD 882 to 1981. It is described in great detail in Laxton and Litton (I988), but the components it contains are shown here in the form of a bar diagram. As can be seen, it is well replicated in that for each year in this period there are several sample sequences having widths for that year. The master is the average of these. This master can now be used to date oak from this area and from the surrounding areas where the climate is very similar to that in the East Midlands. The Laboratory has also constructed a master for Kent (Laxton and Litton 1989). The method the Laboratory uses to construct a master sequence, such as the East Midlands and Kent, is completely objective and uses the Litton-Zainodin grouping procedure (Laxton et a/ 1988). Other laboratories and individuals have constructed masters for other areas and have made them available. As well as these masters, local (dated) site chronologies can be used to date other buildings from nearby. The Laboratory has hundreds of these site sequences from many parts of England and Wales covering many short periods.
7. Ring-Width Indices. Tree-ring dating can be done by cross-matching the ring widths themselves, as described above. However, it is advantageous to modify the widths first. Because different trees grow at different rates and because a young oak grows in a different way from an older oak, irrespective of the climate, the widths are first standardized before any matching between them is attempted. These standard widths are known as ring-width indices and were first used in dendrochronology by Baillie and Pilcher (1973). The exact form they take is explained in this paper and in the appendix of Laxton and Litton (1988) and is illustrated in the graphs in Figure A7. Here ring-widths are plotted vertically, one for each year of growth. In the upper sequence of (a), the generally large early growth after 1810 is very apparent as is the smaller later growth from about 1900 onwards when the tree is maturing. A similar phenomenon can be observed in the lower sequence of (a) starting in 1835. In both the widths are also changing rapidly from year to year. The peaks are the wide rings and the troughs are the narrow rings corresponding to good and poor growing seasons, respectively. The two corresponding sequence of Baillie-Pilcher indices are plotted in (b) where the differences in the immature and mature growths have been removed and only the rapidly changing peaks and troughs remain, that are associated with the common climatic signal. This makes cross-matching easier.

Bar Diagram

C45

Figure A5: Cross-matching of four sequences from a Lincoln Cathedral roof and the formation of a site sequence from them

The bar diagram represents these sequences without the rings themselves. The length of the bar is proportional to the number of rings in the sequence. Here the four sequences are set at relative positions (offsets) to each other at which they have maximum correlation as measured by the t-values. The t-value/offset matrix contains the maximum t-values below the diagonal and the offsets above it. Thus, the maximum t-value between C08 and C45 occurs at the offset of +20 rings and the t-value is then 5.6 . The site sequence is composed of the average of the corresponding widths, as illustrated with one width

(a)

(b)

Figure $A 7$ (a): The raw ring-widths of two samples, THO-AOI and THO-BO5, whose felling dates are known

Here the ring widths are plotted vertically, one for each year, so that peaks represent wide rings and troughs narrow ones. Notice the growth-trends in each; on average the earlier rings of the young tree are wider than the later ones of the older tree in both sequences

Figure A7 (b): The Baillie-Pilcher indices of the above widths

The growth trends have been removed completely

References

Baillie, M G L, and Pilcher, J R, I973 A simple cross-dating program for tree-ring research, Tree-Ring Bull, 33, 7-I4

English Heritage, 1998 Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates, London

Hillam, J, Morgan, R A, and Tyers, I, I 987 Sapwood estimates and the dating of short ring sequences, Applications of tree-ring studies, BAR Int Ser, 3, I65-85

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1984-95 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, I5-26

Hughes, M K, Milson, S J, and Legett, P A, I98I Sapwood estimates in the interpretation of tree-ring dates, J Archaeol Sci, 8, 38 I-90

Laxon, R R, Litton, C D, and Zainodin, H J, I988 An objective method for forming a master ring-width sequence, P A C T, 22, 25-35

Laxton, R R, and Litton, C D, 1988 An East Midlands Master Chronology and its use for dating vernacular buildings, University of Nottingham, Department of Archaeology Publication, Monograph Series III

Laxton, R R, and Litton, C D, 1989 Construction of a Kent master dendrochronological sequence for oak, AD II 58 to I540, Medieval Archaeol, 33, 90-8

Laxton, R R, Litton, C D, and Howard, RE, 200I Timber: Dendrochronology of Roof Timbers at Lincoln Cathedral, Engl Heritage Res Trans, 7

Litton, C D, and Zainodin, H J, I99I Statistical models of dendrochronology, / Archaeo/ Sci, 18, 29-40

Miles, D W H, I 997 The interpretation, presentation and use of tree-ring dates, Vernacular Architect, 28, 40-56

Pearson, S, 1995 The Medieval Houses of Kent, an Historical Analysis, London
Rackham, O, 1976 Trees and Woodland in the British Landscape, London

ENGLISH HERITAGE RESEARCH DEPARTMENT
English Heritage undertakes and commissions research into the historic environment, and the issues that affect its condition and survival, in order to provide the understanding necessary for informed policy and decision making, for sustainable management, and to promote the widest access, appreciation and enjoyment of our heritage.
The Research Department provides English Heritage with this capacity in the fields of buildings history, archaeology, and landscape history. It brings together seven teams with complementary investigative and analytical skills to provide integrated research expertise across the range of the historic environment. These are:

* Aerial Survey and Investigation
* Archaeological Projects (excavation)
* Archaeological Science
* Archaeological Survey and Investigation (landscape analysis)
* Architectural Investigation
* Imaging, Graphics and Survey (including measured and metric survey, and photography)
* Survey of London

The Research Department undertakes a wide range of investigative and analytical projects, and provides quality assurance and management support for externally-commissioned research. We aim for innovative work of the highest quality which will set agendas and standards for the historic environment sector. In support of this, and to build capacity and promote best practice in the sector, we also publish guidance and provide advice and training. We support outreach and education activities and build these in to our projects and programmes wherever possible.
We make the results of our work available through the Research Department Report Series, and through journal publications and monographs. Our publication Research News, which appears three times a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities. A full list of Research Department Reports, with abstracts and information on how to obtain copies, may be found on www.english-heritage. org.uk/researchreports
For further information visit www.english-heritage.org.uk

